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Abstract 

Diffuse large B-cell lymphoma is an aggressive and heterogeneous type of non-Hodgkin 

lymphoma. Circulating tumour DNA (ctDNA) is composed of highly fragmented tumour-

derived cell-free DNA (cfDNA) and can be extracted from a patient’s bloodstream. This 

“liquid biopsy” contains tumour-specific genetic alterations inclusive of simple somatic 

mutations and copy number variations (CNVs). Quantifying ctDNA is challenging, as 

existing tools are inconsistent in determining the fraction of ctDNA in a plasma sample 

(known as the purity) and have variable sensitivity at low levels. Leveraging CAPP-Seq 

and low-pass WGS (lpWGS), I developed a bioinformatic program called PurEctDNA 

that estimates cfDNA purity levels with high accuracy across a broad range (5-100%). 

With this, I modified the CNV caller, WisecondorX, to infer purity and produce improved 

copy number profiles from lpWGS data. Utilizing these new methods could enable more 

accurate and sensitive detection of ctDNA from lymphoma patients thereby improving 

our ability to monitor disease progression non-invasively. 

 
Keywords:  Diffuse large B-cell lymphoma; circulating tumour DNA; liquid biopsy; 

purity estimation; copy number profiling 
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Chapter 1.  
 
Introduction to Diffuse Large B-cell Lymphoma and 
Circulating Tumour DNA 

1.1. Non-Hodgkin Lymphoma  

Lymphomas are tumours that originate from cells of the lymphatic system. This 

malignancy is broadly divided into classical Hodgkin and non-Hodgkin lymphomas 

(NHLs), with the latter encompassing 90% of subtypes1. NHL is the 5th most commonly 

diagnosed cancer in both males and females in Canada as of 2021, accounting for more 

than 540,000 new cases around the world2,3. Diagnosis more often occurs at advanced 

disease stages resulting in a poor prognosis4.  

NHLs arise from the clonal expansion of B, T, or natural killer lymphocytes during 

various stages of development and differentiation, with 85% of cases coming from the B 

cell lineage1,5,6. B cell development takes place in the bone marrow where V(D)J 

recombination occurs to rearrange the immunoglobulin (Ig) heavy chain genes, thereby 

creating antibody diversity7,8. During this process, double-stranded DNA breaks can 

occur elsewhere in the genome and are resolved through DNA repair processes, leading 
to chromosomal translocations7. Whereas these steps occur in the bone marrow, the 

terminal stages of B cell differentiation take place in the germinal centre of the lymph 

node. Here, B cells are activated through antigen binding and T cell signalling, causing B 

cell expansion and further differentiation into memory B cells or plasma cells7,8. Germinal 

centres are also the main site of antibody generation and Ig alteration via somatic 

hypermutation and class-switch recombination, respectively7. Both processes can cause 

DNA damage and have the potential to contribute somatic mutations to B cells that may 

facilitate lymphomagenesis.  

B-NHLs are a diverse group of malignancies that can be broadly separated into 

various types, dependent on the differentiation stage of B cells. Based on the clinical 
features of the individual cancers, they can be categorized as indolent lymphomas such 

as follicular lymphoma (FL) and aggressive subtypes such as diffuse large B-cell 

lymphoma (DLBCL) and Burkitt lymphoma9.  
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1.2. Diffuse Large B-cell Lymphoma 

DLBCL is an aggressive type of NHL and the most common NHL diagnosed in 

adults, accounting for 30-40% of newly diagnosed cases in North America10. This 

malignancy can arise de novo or through the histologic transformation of other 

lymphoma types such as FL11,12. DLBCL is a clinically and genetically heterogeneous 

disease, where patients respond differently to frontline therapy due to inter- and intra-

patient genetic variability as well as the clonal diversity of this subtype. 

1.2.1. Clinical Features and Diagnosis 

DLBCL can manifest in any of the primary or secondary lymphoid organs 

including lymph nodes, the spleen, as well as among extranodal sites13,14. The 

predominant extranodal site is the gastrointestinal tract, whereas other common areas 

include the stomach, central nervous system, testis, breast, mediastinum, skin, and 

bone, yet almost any organ can be affected13,15–18. Typical symptoms of DLBCL consist 

of enlarged lymph nodes and occasionally B symptoms in approximately 30% of patients 

that present as fever, loss of more than 10% body weight or excessive night sweats17–19.  

The standard diagnostic methods for DLBCL are a positron emission 

tomography/computed tomography (PET/CT) scan and surgical excision biopsy. 

Immunohistochemistry and fluorescence in situ hybridization (FISH) can also be 

performed to genetically characterize the tumour20. PET/CT imaging is used to 

determine the affected location(s) and can aid in determining the preferred site to 

biopsy21. After a biopsy is performed, the tissue’s morphology is examined. DLBCL 

tumours have B cells that appear in a diffuse pattern with occasional areas of necrosis, 

although around 10% of cases display a starry sky pattern representative of high 

proliferation rates, a feature that is more commonly attributed to Burkitt lymphoma17. A 

large diversity of morphological variations have been reported in DLBCL including the 

centroblastic, immunoblastic, and anaplastic variants17. Morphology alone cannot be 

used to differentiate the subtypes of NHL and make a diagnosis. To accomplish such, 

the immunophenotype must be characterized. Immunohistochemistry and flow cytometry 

can identify NHL subtypes based on the presence of cell surface markers and protein 

expression levels22. This can be variable due to the heterogeneity of the malignancy, 

although the most common immunophenotypes contain surface markers of CD19, 
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CD20, CD22, CD79A/B, PAX5, and IgM17,23. Other markers can be expressed less 

frequently or in specific subtypes of DLBCL such as MUM1, CD10, BCL6, Ki67, MYC, 

TP53, and CD517,23. Lastly, FISH is often used to detect high grade B-cell lymphoma, a 

subtype that contains double- or triple hit rearrangements involving the MYC and BCL6 

or BCL2 oncogenes24.  

1.2.2. Prognostic Methods 

After diagnosis, a patient’s prognosis can be assessed through several tools: the 

International Prognostic Index (IPI), cell of origin classification, and genetic 

classification25–29.  

The IPI is a numerical risk score that is derived from the combination of five 

clinical variables: age at diagnosis, ECOG performance status, serum lactate 

dehydrogenase (LDH) concentration, number of extranodal sites, and disease stage25. 

This system assigns one point for each of these negative prognostic factors and 

categorizes patients into four groups assessing their risk of death: 0 or 1 indicates low 
risk, 2 equates to low intermediate risk, 3 is a high intermediate risk, and the two highest 

values indicate high risk25. Naturally, a higher IPI score correlates to a worse prognosis 

in general and aids with outcome prediction, but this is only a course tool. Features such 

as these, suggesting a patient has higher or lower risk, may inform on treatment options 

for patients with aggressive types of NHL but in general practice, patients all receive the 

same initial treatment. Leveraging the IPI to determine the risk of death or potential 

treatment alternatives of a patient can enhance diagnosis and in turn improve the 

corresponding clinical management strategy.  

Gene expression profiling has allowed DLBCL to be separated into two molecular 
subtypes, based on gene expression patterns that are characteristic of distinct B cell 

differentiation stages26. These so-called “cell of origin” (COO) groups differ by their 

clinical presentation and molecular features. The germinal centre B-cell-like (GCB) 

subtype more closely resembles the expression patterns of normal B cells in the 

germinal centre. The activated B-cell-like (ABC) subtype, in contrast, contains signatures 

similar to those of activated plasma B cells26. Cases that do not fit into either group are 

known as unclassifiable. Patients with GCB DLBCL have a significantly longer overall 

survival in comparison to those with the ABC subtype 26. Though there is not one 

characteristic genetic alteration that is pathognomonic in DLBCL, some of the more 
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common genes found to be mutated in cases regardless of COO subtype encode 

histone or chromatin modifiers such as ARID1A and TET2 mutations6,30. Frequent 

alterations found in the GCB DLBCL subtype include mutations affecting the histone 

modifiers EZH2, CREBBP, KMT2D and EP300, as well as the B cell homing regulators 

GNA12, GNA13, and BCL2 translocations that regulate apoptosis31–35. Finally, somatic 
mutations preferentially associated with the ABC DLBCL subtype are genes that activate 

the NF-kB and B-cell receptor pathways including IRF4, MYD88, CD79A, CARD11, 

PIM1 and TNFAIP333,34,36,37.  

The recently developed LymphGen classifier uses genetic features to distinguish 

DLBCL into six genetic subgroups, with the intention of ultimately using this information 

to guide therapy27,38–40. These subgroups are defined by different combinations of 

recurrent genetic aberrations such as mutations, copy number aberrations and gene 

fusions41,42. The LymphGen algorithm classifies tumours based on how well they belong 

to one of the defined genetic subtypes, or a mixture thereof. DLBCL tumours that are 

classified into multiple subgroups reflects the genetic heterogeneity of the disease along 
with the imperfection of existing classification tools.  

1.2.3. Tumour Heterogeneity and Resistance to Treatment 

Tumorigenesis occurs via the acquisition of one or more somatic mutations within 

a non-malignant cell. These alterations provide a selective advantage typically for 

abnormal cell growth43. In aggressive NHLs, this results in uncontrolled cellular 

proliferation and the emergence of additional somatic driver and passenger mutations, 

allowing further progression of the neoplasm44. Sustaining malignancy requires 

sequential somatic mutations, resulting in clonal and sub-clonal selection among the 
tumour cells. These clones are subject to evolutionary selection pressure where only 

subclones that contain advantageous mutational profiles for tumour survival proliferate 

and maintain neoplastic growth44,45. As development progresses, the heterogeneity of 

the tumour increases, making extranodal involvement and treatment resistance more 

likely to occur45. DLBCL is a phenotypically, clinically, and genetically heterogeneous 

malignancy.  

Approximately 60% of patients experience long-term benefit from the 

combination chemotherapy R-CHOP (rituximab plus cyclophosphamide, doxorubicin, 

vincristine and prednisone)46. Patients with DLBCL that do not respond to frontline 



5 

therapy or relapse after treatment (termed rrDLBCL) have a 2-year complete response 

rate of ~20% and a 5-year overall survival rate of ~50%, indicating dismal survival 

outcomes47,48. Minimal residual disease (MRD) describes when a limited number of 

tumour cells remain after treatment and can lead to patient relapse. DLBCL displays a 

high level of inter- and intrapatient heterogeneity where clonal diversity is largely 
associated with MRD and relapsed or refractory cases (Fig 1.1). The specific acquired 

mutations that contribute to treatment resistance in rrDLBCL are not well known, with 

recent work from our group and others indicating some examples49–53. Genetic 

alterations that may associate with rrDLBCL cases are largely in line with pathways and 

cellular processes that are perturbed more generally in DLBCL. These include genes 

involved in epigenetic regulation, immune surveillance, cell-cycle regulation, and the 

JAK-STAT and NF-kB signalling pathways49,50,54. Mutations in more limited number of 

specific genes have been reported to be relevant to the acquisition of treatment 

resistance, such as TP53, KMT2D and MS4A150,55. Although the genetic landscape of 

DLBCL has been extensively studied and characterized, it is uncommon for patients with 

rrDLBCL to undergo a tissue biopsy at the time of progression, making the identification 

and characterization of chemotherapy-resistant subclones extremely difficult56. 

Understanding the genetic composition of a tumour that has survived frontline therapy is 

crucial, as the knowledge of mutations that affect treatment response may ultimately 

lead to changes in up-front or subsequent clinical management. 

1.3. Circulating Tumour DNA is a Non-Invasive Biomarker 

The current gold standard diagnostic method for lymphoma involves a tissue 

biopsy, where a piece (or core) of tumour tissue, often an entire lymph node, is removed 

from the patient. This procedure allows for an accurate histological assessment of the 

malignancy yet contains some major drawbacks as it cannot reflect real-time spatial and 

temporal heterogeneity during disease progression57,58. Spatial heterogeneity describes 

genetic diversity among different regions of the same tumour or between extranodal 

sites, and temporal heterogeneity reflects the genetic diversity of an individual tumour 

over time (Fig 1.1)45. Serial tissue biopsies are not typically performed in a clinical setting 

due to patient discomfort, high costs, inaccessible tumour location (potentially leading to 

tumour cell seeding and further complications), and the inability to view macroscopic 

tumours after treatment response58,59. 
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Figure 1.1. Summary depicting lymphoma tumour heterogeneity 
Differently coloured cells within the tumours represent individual clones with distinct mutational 
profiles. This figure was created with biorender.com 

A cancer biomarker is a biological molecule found in a patient that can be either 

tumour-derived or produced by the body when a tumour is present60. Many biomarkers 

that have been discovered and studied to date are present in various bodily fluids of a 

diseased patient, and can be obtained through non-invasive methods such as a blood 

draw or urine sample61–64. During tumour development, apoptotic and necrotic cells 
release circulating tumour cells (CTCs), tumour-derived extracellular vesicles (EVs), 

along with cell-free DNA (cfDNA) and RNA (cfRNA) into the bloodstream65,66. The 

detection and quantification of these components in blood or other non-tissue samples is 

termed as a liquid biopsy. These can broadly be utilized as a non-invasive approach for 

studying tumour genetics and have been shown to be useful to study clonal evolution 

and real-time disease burden through serial monitoring57,67,68.  

Exosomes are EVs released from the tumour via fusion in response to stress 

factors such as chemotherapeutics69–71. These can be extracted from various bodily 

fluids including the blood, saliva, CSF and urine67,71–73. Exosomes can contain tumour-

derived DNA, RNA, protein and metabolites, making them a substrate for real-time early 

cancer detection, prognosis, disease monitoring and resistance prediction in a variety of 

cancer types72,74,75. Exosomes have been found to not only contribute to metastasis but 

can also aid in the prediction of metastatic location due to their integrin and oncogenic 

gene expression profile72,76,77. In DLBCL, exosome-derived nucleic acid and protein 

content can be leveraged for molecular analyses. These include the use of exosomal 
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miRNA to determine chemoresistant patients and the monitoring of relapse post-

treatment78,79. While utilizing exosomes as a DLBCL biomarker holds potential, current 

studies are limited with cohort sizes and differing protocols require standardization79,80.  

In addition to using membrane-bound molecules as a biomarker for DLBCL, 

fragments of circulating cfDNA and cfRNA have also demonstrated clinical value. 
Different forms of cfRNAs are present in the blood such as messenger RNA (mRNA), 

micro RNA (miRNA) and long non-coding RNA (lncRNA)81. Increased mRNA expression 

of common DLBCL oncogenes and tumour suppressors has been found to positively 

correlate with a poor overall survival82,83. The majority of studies focusing on miRNA 

(most commonly the upregulation of miR-21 and miR-155) have consistently shown a 

significant association with disease survival, prognosis, and response prediction in 

rrDLBCL patients treated with R-CHOP84–86. lncRNAs are infrequently investigated for 

biomarker discovery in DLBCL, though have demonstrated potential as a future 

diagnostic and chemotherapeutic resistance evaluation tool87. In comparison with 

mRNA, encapsulated cell-free miRNA and lncRNA are known to be more resistant to 
ribonuclease degradation, facilitating detection and isolation81. Studies are limited within 

the cfRNA field for DLBCL and require additional validation88.  

While biomarkers that can be extracted from liquid biopsies such as exosomes 

and cfRNA have shown many advancements and are potential candidates for early 

detection, disease monitoring and resistance prediction in DLBCL, in depth biological 

and technological knowledge is still lacking to provide better patient outcome in a clinical 

setting. Alternatively, tumour-derived cfDNA, known as circulating tumour DNA (ctDNA), 

particularly shows great promise and rapid development as a tool to assess tumour 

burden, clonal evolution, response to therapies, MRD, and relapse in DLBCL67,89. 

 CtDNA is released into the peripheral bloodstream from tumour cells undergoing 

apoptosis, necrosis and secretion90. This cell-free double-stranded DNA is approximately 

147-167bp in length due to its correspondence to nucleosomes and chromatosomes 

(Fig. 1.2)91. Furthermore, the size of mononucleosomal ctDNA is only about 10-20bp 

smaller than the germline cfDNA continuously present in the bloodstream of a healthy 

individual92,93. CtDNA has been shown to reflect genetic and epigenetic alterations 

inclusive of simple somatic mutations (SSMs), copy number variations (CNVs), IgH gene 

rearrangements and methylation patterns in a multitude of cancers, making it the ideal 

biomarker to leverage for my project67,94–96. 
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1.3.1. ctDNA Quantification for Monitoring and Prognostication 

The small size difference between the cfDNA molecules from tumour cells and 

healthy cells along with the often exceedingly low levels of ctDNA (0.01% of the total 

cfDNA) in the plasma provide significant limitations for robust and accurate 
quantification97,98. The amount of ctDNA is elevated in a cancer patient and directly 

correlates to tumour burden99. With this, many studies have demonstrated that higher 

levels of ctDNA in the bloodstream correlate to an overall worse survival outcome, 

establishing its value as a prognostic biomarker in DLBCL100–102.  

To assess the value of ctDNA for rrDLBCL prediction during interim and post-

treatment, ctDNA quantification is commonly examined alongside standard PET/CT 

imaging parameters. The metabolic tumour volume (a measure of tumour burden) is 

particularly valuable and highly correlates to increased ctDNA levels103,104. Quantifying 

ctDNA alongside the use of PET/CT imaging to assess disease outcome and predict 

relapse in DLBCL has rapidly gained popularity, as its use and improvement from the 

limitations of PET/CT have been validated100,105. Such limitations include subjecting 

patients to radiation, false positive or negative results, as well as the discouragement of 

routine surveillance imaging after a patient achieves complete response21,106,107. With the 

advancement of sensitive ctDNA quantification methods (such as NGS) in DLBCL, it is 

possible to predict relapse between 3 and 6 months prior to clinical presentation108,109. 

Overall, liquid biopsies have shown to be highly accurate for real-time prognosis, 

monitoring and relapse detection in DLBCL, and in addition to the evaluation of ctDNA 

through quantification and mutational profiling, studies have recently started focusing on 

the epigenetic landscapes and fragmentomics of ctDNA110–112. Liquid biopsies have 
begun the process of adoption into clinical practices as complimentary tool alongside the 

existing gold standard procedures113. With this, it is difficult to quantify ctDNA in a 

sensitive and standardized manner to broadly incorporate into the clinical setting, 

presently making most detection techniques suitable only as research-based tools. 

Additional  

 



9 

 
Figure 1.2. Contents of the peripheral blood near a malignant tumour 
CTCs and ctDNA are shed from the tumour and circulate along with normal cfDNA and red blood 
cells in the bloodstream. CtDNA is wrapped around nucleosomes or chromatosomes, defining 
their fragmentation length. This figure was created with biorender.com. 

1.4. Methods of ctDNA Quantification  

Cell-free DNA extracted from a liquid biopsy contains a mixture of DNA 

originating from both tumour and normal cells. SSMs and CNVs can be present in both 

DNA derivatives, making the determination of which genomic aberrations are solely from 

the tumour important, as this can significantly alter how clinical decisions are made. This 

is called tumour purity, where the fraction of cancer cells in a liquid biopsy sample are 

quantified. Other terms for tumour purity when used in the context of ctDNA are tumour 

fraction, cellularity or ctDNA level. For example, IchorCNA and MRDetect utilize tumour 

fraction, whereas PurBayes utilizes tumour purity and Sequenza describes the term as 

tumour cellularity114,59,115,116. For consistency, in this thesis I use tumour purity both in the 

context of ctDNA and tissue biopsies. 

Sensitive and accurate ctDNA quantification is important for the detection of 

changes in tumour burden, including treatment response and relapse. This becomes 

increasingly challenging with patients that have a low tumour burden (e.g. after 

treatment), as ctDNA is present in low abundances. Quantification and analysis 

approaches for ctDNA are broadly categorized into targeted and untargeted (or 

unselected) approaches117,118. Targeted ctDNA detection techniques leverage the use of 
gene panels or “selectors” to monitor a subset of tumour-specific mutations or structural 
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rearrangements and require prior knowledge of the genetic landscape for the cancer of 

interest117,118. Detecting SSMs via targeted sequencing enables ctDNA level estimation 

using the variant allele frequency (VAF). The VAF describes how often a specific 

mutation is found in a sample and is calculated by dividing the number of reads that 

match the variant allele by the overall coverage on that locus. Alternatively, untargeted 
screening methods allow the inference of CNVs and the discovery of novel genomic 

alterations with no prior knowledge of specific somatic mutations necessary. These 

assays can be expensive resulting in limited sensitivity117,119. Another method to estimate 

purity from a liquid biopsy, in addition to VAF, involves the deviation of non-diploid CNVs 

from the expected log2 ratio of a pure tumour. 

Most studies utilize one sole method for ctDNA quantification, such as ultra-deep 

targeted sequencing or WGS to infer VAFs that reflect tumour burden and aid in the 

detection of MRD or rrDLBCL120–123. Various bioinformatic programs are available for the 

molecular analysis and estimation of purity from plasma samples. Though a seemingly 

simple concept, the accurate estimation of tumour purity is extremely difficult, with 
various inconsistencies shown between the current bioinformatic techniques124. 

Programs that estimate purity utilize either a copy number-based approach (IchorCNA, 

Sequenza, Battenberg, ABSOLUTE and THetA) or a variant-/B-allele frequency 

(VAF/BAF) -based approach (PurityEst, PurBayes, or VAF-inferral via multiplex droplet 

digital PCR (ddPCR) or CAPP-Seq)114,116,125–128,115,129. To date, three programs exist to 

calculate purity based on both CNV and single nucleotide variant (SNV) integration of 

WGS data; PyLOH, Accurity, and MRDetect130–132. PyLOH and Accurity both estimate 

tumour purity and ploidy from modelling somatic CNVs and heterozygous germline 

SNVs (using BAF). MRDetect on the other hand, is specifically designed for ctDNA and 
estimates purity using genome-wide SNVs and CNVs to detect extremely low tumour 

fractions in MRD59.  

1.4.1. Leveraging Targeted Sequencing to Infer Somatic Mutations 

Utilizing conventional PCR-based methods to quantify ctDNA such as 

quantitative PCR or FAST-SeqS was initially popular due to their low costs and 

straightforward procedures, though their inadequate sensitivity when detecting ctDNA at 

low levels (for applications such as the prediction of MRD) has led to further 

advancements in the field133. Digital PCR methods such as ddPCR have an improved 
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ability to detect clinically relevant mutations with low VAFs (~0.1%), as this technique is 

highly precise and has a low false-positive rate when counting individual ctDNA 

molecules118,134–137,89,138,139. The amplification and high throughput sequencing of Ig gene 

rearrangements (known as IgHTS) is also utilized to quantify ctDNA in NHL140. This 

method has been shown to be highly specific and sensitive, and is frequently compared 
to PET/CT for the detection, prognosis, and surveillance of several NHL subtypes 

including DLBCL141,142,108,140. Other ctDNA quantification techniques utilize targeted gene 

panels include tagged amplicon sequencing, the safe sequencing system, and cancer 

personalized profiling by deep sequencing (CAPP-Seq)120,138,143–146. The CAPP-Seq 

technique has been gaining adoption due to its low error rate, high sensitivity and 

specificity and low input ctDNA requirements, making it the most broadly applied ctDNA 

quantification technique used for lymphomas109,120,138,147–149. CAPP-Seq leverages the 

use of a gene panel or “selector” to detect SNVs, insertions and deletions (indels), 

structural rearrangements, and somatic CNVs for individual cancer subtypes120,149. This 

method uses a pool of biotinylated DNA oligonucleotide probes to target the frequently 

mutated regions in the cancer of interest through hybridization-based library enrichment 

or “capture”. The selector probes anneal preferentially to the desired regions of the DNA 

library, resulting in enrichment followed by sequencing and analysis150. With the many 

benefits of this technique, it nevertheless has limitations including the inefficient capture 

of breakpoints that underlie structural rearrangements, the requirement for a lower 

detection threshold for early stage tumours, and the inability to comprehensively identify 

CNVs150.  

For ctDNA quantification methods that utilize SSMs, the first step after alignment 

of reads is the inference of somatic variants from the alignments or “variant calling”. This 
can be accomplished from a matched tumour sample or directly from the sequencing 

data from the ctDNA. Commonly used tools for this include Strelka, LoFreq, MuTect2, 

and SAGE151–154. These programs have a high sensitivity for calling low-VAF variants 

which is necessary during ctDNA analysis, as liquid biopsies generally have lower VAFs 

compared to tissue biopsy samples155–158.  

1.4.2. Detecting Copy Number Variants from Untargeted Methods 

While targeted approaches are highly sensitive, specific and flexible, 

comprehensive/untargeted methods offer the opportunity for unbiased genetic profiling 
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of ctDNA on a genome-wide scale61,138. Multiple techniques are available to detect CNVs 

and genomic rearrangements without the requirement of any prior knowledge of the 

tumour. These include whole genome- and whole exome sequencing (WGS and WES, 

respectively), where the sensitivity to detect low-VAF variants is dependent on coverage 

depth which increases with cost159,160,138. Low-pass WGS (lpWGS, coverage ~0.1-1x) 
has emerged as a rapid, high-throughput and inexpensive alternative for ctDNA 

quantification in cancers such as DLBCL. This method allows the estimation of ploidy, 

CNVs, and ctDNA levels from liquid biopsies114,161–163.  

Somatic CNVs are large regions of the genome that are amplified or deleted 

during tumour development164,165. These genotypic alterations are present in a different 

number of copies from the germline or healthy state, therefore determining the number 

of CNVs at a locus is called “copy number calling”. Due to the expression level of a gene 

being correlated to its copy number, many cancer-related genes can be affected by 

CNVs, thereby deregulating their expression in cancer cells164,166. Identifying somatic 

copy number events have been valuable in the prognosis and treatment decision of 
cancers including DLBCL164,167. Various programs are available for this purpose, though 

the majority utilize data from standard WGS. Calling CNVs from lpWGS data specifically 

can be performed using a limited number of bioinformatic tools, with IchorCNA and 

WisecondorX being the most prevalent due to their explicit intended use of lpWGS data 

and direct applicability to liquid biopsies168,169. IchorCNA was developed to quantify 

tumour purity while accounting for ploidy and subclonality through the use of a hidden 

Markov model (HMM) segmentation algorithm168. WisecondorX infers CNVs utilizing an 

optimized data normalization process, followed by circular binary segmentation (CBS), 

and finally the assignment of aberrant segments to their respective copy number 
state169. Although both programs can adequately detect CNVs, each have unique 

limitations that hinder the accurate quantification of ctDNA from lpWGS input. Within our 

group, IchorCNA has been found to have limited resolution for focal events and 

consistently overfits CNV calls by wrongly assigning aberrant segments to an overly high 

or low copy state (e.g. if a segment is neutral or gained it is called incorrectly as 

amplified, or vice versa for deletions) particularly in samples containing low ctDNA levels 

(<10%). Despite WisecondorX having an easily customizable set of input arguments, the 

software package lacks the ability to calculate tumour purity, ploidy, subclonality, and 

often outputs biased copy number calls in samples with a considerate number of CNVs 
when many more amplifications are present than deletions or the opposite.  
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1.5. Gap in Knowledge and Project Novelty 

In general, there remains a paucity of open source bioinformatic tools for 

analyzing ctDNA for the purpose of purity estimation. Moreover, to our knowledge, there 

are no existing programs that utilize both copy number information from lpWGS and the 

VAF of simple somatic mutations from targeted capture sequencing to estimate tumour 

purity from liquid biopsies. To address this unmet need, I have developed a new tool for 

this application, which I named PurEctDNA (Purity Estimation of circulating tumour 

DNA). The goal of PurEctDNA is to enable reliable tumour purity estimates for non-

invasive treatment monitoring and relapse assessment of lymphoma patients with 

improved accuracy. To date, there is no established method of leveraging both data 

types to calculate tumour purity from serial sampling of liquid biopsies. 

In preparation for the development of PurEctDNA, I utilized both IchorCNA and 

WisecondorX to estimate the copy number profiles of samples based on lpWGS data. To 

address the limitations of IchorCNA and WisecondorX detailed above, I improved the 

performance of WisecondorX through the extensive modification of the source code. 

Furthermore, I altered WisecondorX to generate enhanced copy number plots, as well 
as a new file type and tumour purity estimate that was not previously produced by the 

program. Improving this pipeline, in addition to developing PurEctDNA, resulted in two 

new methods of reliably estimating tumour purity from liquid biopsies.  
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Chapter 2.  
 
Improving Genomic Aberration Detection and 
Tumour Purity Estimation for Liquid Biopsies  

2.1. Introduction  

In general, circulating cfDNA from both healthy and tumour cells are present in a 

liquid biopsy, although the relative representation from each source can vary through a 

patient’s clinical course. There is a broad division of approaches for analyzing liquid 

biopsies to quantify the relative contribution of tumour cells (tumour purity) that rely 

either on 1) tracking the presence of tumour-derived simple somatic mutations (SSMs) 

and structural variants (SVs) or 2) estimating the levels of circulating tumour DNA 

(ctDNA) in the plasma (known as the tumour purity). The first approach is more 

amenable for the general study of tumour genetics including changes to the mutational 

landscape of subclonal populations changes over time. This has been accomplished 

through serial sampling of liquid biopsies. In theory, the eventual clinical application of 

such approaches may afford the opportunity to detect mutations that predict early 

relapse, disease progression, and even the acquisition of mutations that contribute to 

treatment resistance. A more common clinical application of ctDNA is to employ its 

quantification as a proxy to measure tumour burden, or the total volume of tumour cells 

in the body. At the most extreme end, the use of high-sensitivity assays allows for the 

detection of minimal residual disease (MRD) that have been shown capable of predicting 

an upcoming relapse weeks before the current gold standard tissue biopsy or PET/CT 

imaging techniques108,109. To assess the somatic single nucleotide variants (SNVs) and 

CNVs present in liquid biopsies, the majority of programs leverage only one of two 

sequencing data types for tumour purity estimation. The most common programs 

leverage copy number calling to determine the purity and ploidy from matched tumour 

and normal samples using whole genome sequencing (WGS)114,116,125–127,123.  

Inferring copy number alterations requires the normalization, segmentation, and 

interpretation of aberrant (non-diploid) segments into estimates of discrete copy number 

states, which refers to the number of copies per tumour cell. The discrete aberrant states 

are generally referred to as single-copy gain (3), multi-copy gain (>=4; amplification), 
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and either heterozygous (1) or homozygous deletion (0). This process begins with 

normalization, a data pre-processing step that accounts for known causes of systematic 

variation in the data. Common normalization processes include correction for GC 

content and mappability biases169,170. After the data are normalized, segmentation is 

performed, where the genome is divided into bins that are then grouped into sets of 
continuous bins estimated to have equal copy number. The log2 ratio is calculated for 

each bin, and these values are included when segmentation and plotting take place. Due 

to noise, the individual bins eventually assigned to a segment can have a broad range of 

values. Two common methods used for segmentation to infer tumour-derived copy 

number profiles are circular binary segmentation (CBS) and the hidden Markov model 

(HMM). CBS identifies regions of equal copy number using change-point detection 

where segments are conceptualized to be spliced at either end to form a circle171. 

Considering this, the arc spanning an individual segment is compared to the following 

segment, and for different copy numbers to be assigned the neighbouring segments 

must have statistically significantly different means from each other171. HMM 

characterizes “hidden” states through multiple probability parameters and estimates the 

maximum likelihood of each copy number state through the expectation-maximization 

algorithm114. Because this method includes a model that estimates the copy number for 

each segment directly, they have the benefit of not requiring the application of a 

threshold to the segmented data. After segmentation is complete, copy number profiles 

are analyzed. Different programs incorporate various parameters to interpret features of 

the malignant genome such as tumour purity, ploidy, and subclonality estimates. In this 

work, I use the copy number calling programs IchorCNA and WisecondorX as they both 

leverage lpWGS data from liquid biopsies114,169.  

Primarily, this work focuses on the application of WisecondorX as it is a relatively 

new tool for ctDNA application with the potential to overcome some of the limitations of 

IchorCNA described in Chapter 1. These limitations include IchorCNA’s requirement for 

manual curation of copy number profiles. IchorCNA leverages HMM for segmentation 

and produces a set of solutions with different log likelihoods, tumour fraction estimates, 

and copy number calls for each sample. The solution with the highest log likelihood 

appears first and the corresponding segmental information is based off this primary 

solution. However, this copy number profile may be suboptimal and so manual 

inspection of every sample is necessary, especially those with a non-diploid tumour 
ploidy. Usually, the optimal solution is clear to identify, as incorrect profiles will contain 
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many subclonal events, whole genome amplification or deletion events, or segments that 

are wrongly being called as neutral. This process is not necessary for WisecondorX, as 

the program performs aberration calling in three steps: BAM to NPZ file format 

conversion, reference creation, and CNV prediction169. Segmentation occurs via the CBS 

algorithm and CNV determination can be accomplished through two routes; either a 
default Z-score calculation or a user-definable cut-off associated with log2 ratios to 

separate aberrant and normal segments. When applied to the same data, WisecondorX 

often produces copy number profiles comparable to IchorCNA, with exceptions more 

common when applied to samples with a less balanced suite of alterations (e.g. many 

more gains than losses). With these samples, WisecondorX assigns the mean log2 ratio 

as zero resulting in the inaccurate assignment of copy number states. I noted that the 

copy neutral state is defined as the median value of all bins, which is a fundamental 

limitation of the software. In the most common example, this shifts the estimated copy 

number downward and can lead to the incorrect assignment of diploid regions as 

deletions. To address this issue, the log2 ratios and cut-off values require re-calculation 

to adjust final outputs and increase accuracy of aberration calls to ultimately improve 

ctDNA quantification. 

Estimating tumour purity from targeted sequencing methods such as CAPP-Seq 

or ddPCR and the corresponding variant calling pipelines is also commonly performed, 

as the variant allele frequency (VAF) of somatic SNVs is directly calculated120,135,151–154. 

The VAF represents the fraction of sequencing reads that match a variant from the 

overall coverage at that genetic locus. The main limitation when leveraging only VAF is 

that tumour purity has several confounding factors including ploidy, subclonality and the 

effect of CNVs on VAF, which are not taken into consideration by existing tools. These 
factors are important to consider, as a variant’s allele frequency that is calculated from 

the same subclonal population changes depending on the copy number and timing of 

the alteration.  

In this chapter, I implemented a strategy to leverage both somatic variant calls 

from CAPP-Seq data and copy number profiles from lpWGS data as a means to 

estimate tumour purity with high accuracy. The purity estimation tool that I developed, 

called PurEctDNA (Purity Estimation of circulating tumour DNA; pronounced “pure 

ctDNA”), annotates cancer-specific variants to their respective copy number state and 

calculates the mutational VAF, ploidy and purity for each sample. It also produces the 
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final purity values along with a summary table for each copy-annotated variant and their 

relevant parameters. This program is deployed as a component of the open source R 

package “GAMBLR”. This is the codebase for the genomic analysis of mature B-cell 

lymphomas (GAMBL) project, which is introduced briefly in a subsequent section.  

Here, I demonstrate the validation of PurEctDNA through two different analyses 
involving ground truth genome comparisons and an in silico dilutions. No other 

bioinformatic programs exist to date that estimate tumour purity of cfDNA through the 

same parameters as PurEctDNA, making this tool a novel method to assess the 

mutational and overall ctDNA level of liquid biopsies. PurEctDNA is easily customizable, 

as users can specify their preferred CNV caller for the input copy number profiles, an 

optional gene panel and other options for subsetting the data in meaningful ways. These 

parameters allow for a facilitated and reliable analysis of the tumour purity and 

mutational profile from plasma-based cfDNA samples.  

2.2. Methodology 

2.2.1. Cohorts  

A total of 897 plasma samples from 5 clinical trials were used in this study: LY17, 

Obinituzumab-GDP (OZM073), Epizyme, Montreal (a cohort of rrDLBCL patients), and 

the BC ctDNA cohort (a group of DLBCL patients from British Columbia). lpWGS was 

performed on 610 samples from 594 patients and CAPP-Seq was performed on 376 

samples from 249 patients (Table A.1). Plasma samples were obtained from 

collaborators at the Jewish General Hospital (JGH) in Montreal, Quebec and the British 

Columbia Cancer Agency (BCCA) in Vancouver, British Columbia.  

The GAMBL project is a meta-analysis of all available genomes from mature B-

cell neoplasms, mostly non-Hodgkin lymphomas with over 1300 tumours having fully 

analyzed genomes available including copy number and mutation profiles. For 

validation, I selected 495 genomes (491 from solid tissue biopsies, and 4 from liquid 

biopsies) from GAMBL for two separate analyses. Using the estimated purity from the 

Battenberg pipeline, all 495 of these were utilized to evaluate the accuracy of 

PurEctDNA. The subset of 4 genomes derived from ctDNA were also used for in silico 

dilution experiments. These ctDNA genomes were from the OZM073 and LY17 clinical 

trials.  
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2.2.2. Plasma Sample Processing, Sequencing and Read Alignment 

All patient samples that underwent lpWGS were processed and sequenced by 

collaborators at the JGH (Montreal, Quebec) or the BCCA (Vancouver, BC), depending 

on the cohort, whereas those that underwent CAPP-Seq were processed and 
sequenced by a former member of the Morin lab.  

 
cfDNA Isolation  

Blood samples were either processed to separate plasma from the cellular 

fraction promptly after collection (<4 hours) or stored in blood collection tubes, which 

prevent cell lysis, (Streck, La Vista, NE, USA) and processed within 2 weeks. All plasma 

was separated into aliquots (typically 1-2 mL) and stored at -80°C for future extraction. 

Cell-free DNA was isolated using the QIAamp® circulating nucleic acid kit (Qiagen, 

Hilden, Germany) or the MagMAX Cell-Free DNA isolation kit (ThermoFisher Scientific, 
Waltham MA, USA), where samples were lysed with the Proteinase K treatment prior to 

magnetic bead binding with the latter kit.  

 
Library preparation and sequencing 

Library preparation for the 376 plasma samples that were sequenced via CAPP-

Seq (~1000x coverage), was performed in concordance with the methodologies 

described in Rushton et al., 2020172. In short, ctDNA libraries were pooled with xGen 

lockdown oligonucleotide probes (Integrated DNA Technologies, Coralville, IA, USA) and 

custom gene capture pools, and then enriched via hybridization capture targeting a 

panel of 63 lymphoma-specific genes (Table A.2). Libraries were multiplexed and 
sequenced on either the Illumina MiSeq or NextSeq instruments, depending on the 

cohort.  

For the 610 plasma samples with lpWGS (~0.4x coverage) performed, libraries 

were constructed using the xGen cfDNA & FFPE DNA Library Prep MC kit (Integrated 

DNA Technologies, Coralville, IA, USA). Sequencing was performed on the Illumina 

HiSeq and MiSeq systems.  

Genomes derived from the GAMBL project were sequenced to between 40x and 

80x coverage on a variety of Illumina sequencers, dependent on their age and the 

source of each genome. The details for the cohorts used here are provided in the papers 
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detailing each individual study173,174. All cases utilized from GAMBL had a matched 

normal sample (a sample of healthy tissue from the same individuals) sequenced to an 

average depth of 40x.  

 

Sequencing read alignment 
For the sample data obtained from targeted sequencing, all read alignment 

methodology described in this section was completed by a member of the Morin lab. 

Raw reads were aligned to the hg38 using bwa-mem175. Reads from lpWGS as well as 
the ctDNA genomes in GAMBL were aligned to grch37 using bwa-mem175. Picard 

MarkDuplicates was used to flag duplicate reads, and quality control was performed 

using Picard CollectWGSMetrics (http://broadinstitute.github.io/picard/). ReadCounter by 

HMMcopy (https://github.com/shahcompbio/hmmcopy_utils) was used to count the 

reads in individual 500 kb genomic windows, utilizing only reads with a mapping quality 

of at least 20. Copy number profiles were separately determined using both IchorCNA 

and WisecondorX 114,169. Samples processed through IchorCNA were manually 

inspected, and the optimal fit for each sample was manually selected from the full set of 

solutions.  

2.2.3. Determination and Improvement of Tumour-Specific CNVs and 
SNVs from ctDNA 

Modification of the WisecondorX source code to improve aberration calls 
To test the capabilities and parameter requirements for WisecondorX, I 

processed 14 samples from the BC ctDNA cohort. Of these samples, 10 were DLBCL, 3 

were FL, and 1 was mantle cell lymphoma (MCL). As per the published WisecondorX 

pipeline, samples were converted from the BAM to NPZ file type, a reference was 

created using a set of 86 plasma samples that were identified as having minimal (<1%) 

ctDNA levels. I adjusted the bin size to detect CNVs using 500kb bins, as the default 

(5kb) produced very noisy plots, making CNVs difficult to accurately identify.  

The first step to improve the biased copy number calls generated from this 
program (as seen in Fig. 2.1) was determining an approach to center the mean log2 ratio 

to a baseline that more accurately represents the segments in the diploid state such that 

new cut-off values for gains and losses can be determined. To accomplish this, I 

visualized the distribution of the log2 ratio per segment as a mixed histogram and 
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density plot. This allowed the visualization of each assigned copy number state, with 

individual density curves representing each ploidy (Fig. 2.2).  

These visualizations revealed that the mean was commonly not aligned with the 

mode of the highest peak. To infer the individual distributions contributing to this, I used 

the R package Mclust (https://cran.r-project.org/web/packages/mclust/) to apply a 
Gaussian mixture model to the bin-level reads counts per sample. Within this model, I 

was able to specify the number of mixture components (“clusters”) that ultimately 

correlated to the number of peaks on the distribution curve. Setting this cluster number 

to 1 and taking the mean of that cluster allowed me to determine how offset the genomic 

alterations were from the copy neutral state. This mean was positive if there were more 

gains and CNVs were shifted downwards, and negative if there were more losses and 

the variants were all shifted upwards in the initial plot (Figs 2.3 and A.2 show segments 

being moved upwards due to a positive mean being calculated). With this, I incorporated 

this “offset value” as a new argument into the WisecondorX source code within the main 

python script, where this value was added (or subtracted) to the pre-existing calculations 
for log2 ratios, Z-scores, and normalization weight values. These three variables were all 

used in the downstream code for segmentation, aberration calling and plot generation, 

so modifying them based on the offset value resulted in all steps within the program to 

be adjusted accordingly. This new argument can be specified when running my 

improved version of WisecondorX to fix biased copy number profiles.  

After leveraging the offset value to shift segments to their correct states, there 

was a need to similarly re-define the cut-off values to assign segments as gains and 

losses. This was a pre-existing argument available in the original WisecondorX code 

defined as “beta”, that should optimally be close to the purity. I similarly leveraged the 
mixture model approach to calculate beta. Here, I explicitly specified 3 clusters for the 

model to fit bins in each segment, given the common pattern of three main clusters 

representing diploid, gain and heterozygous loss (Fig. 2.2A shows the clusters and their 

correspondence to each copy state). Using the clusters, I determined the deviation of 

each from the copy neutral state. I calculated the tumour content and read depth ratio for 

bins that are in the gained or lost states and used these ratios to calculate the purity of 

the sample. This estimate was reiterated back into WisecondorX to accurately define 

aberration cut-off values as a loss, neutral, or gain for resulting tables and scatter plots 

(Fig A.2). 
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In addition to correcting CNV calls, I modified other features from the 

WisecondorX source code to improve copy number profiles and tables, allowing for more 

detailed analyses. Initially, WisecondorX only assigned copy number states 1, 2, and 3 

to aberrant segments (i.e. discrete states of high-level gains and homozygous losses 

were not considered). Because the CNV state is used in the inference of purity, I 
enhanced the downstream analyses by adding an additional cut-off value. This was 

based on the standard read depth ratio calculation that assigns the appropriate 

segments as amplifications (copy state 4 or higher) and lists them within the resulting 

tables and plots. The addition of this state is utilized further in the next section.  

With this modified code, I created a new plot that incorporates the density curve 

generated during mixture modelling to aid in the visualization of the biased and shifted 

segments. A key output file for representing CNV is known as a SEG file. Unfortunately, 

this file type was not initially produced by WisecondorX, therefore I modified the program 

to generate this SEG file and confirmed that the corresponding calls were assigned 

properly in IGV.  

I applied all modifications described above to increase the accuracy of CNV 

detection in a standardizable manner through the development of a snakemake 

workflow176. This workflow automatically performs an initial run of the unmodified 

WisecondorX program defining 500 kb bins, calculates the offset mean and purity, inputs 

those values as arguments back into the modified version of WisecondorX, re-running 

the program and re-calculating the purity using the values of the adjusted segments.  

 
Detecting Simple Somatic Mutations (SSMs) 

To determine lymphoma-specific simple somatic mutations (SSMs) from liquid 

biopsy samples, I created a pipeline that consists of three main steps: variant calling, 

post-filtering, and MAF file manipulation. Many variant callers are available to 

accomplish the first step, whereas the latter two steps require specific criteria that is 

highly dependent on the application and data quality. 

I implemented a snakemake workflow that runs two modules (the SAGE variant 

caller and vcf2maf) that have been implemented as part of the LCR-modules 
(https://github.com/LCR-BCCRC/lcr-modules) analytical pipeline. This pipeline required 

a table as input that specified the identification name for each sample along with the 

sequencing type, patient identifier, tissue status, and the genome build. This table was 
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used within the LCR-modules snakefile to run the proper samples through SAGE, and 

the resulting VCF files produced by SAGE were converted to MAF using the vcf2maf 

module. The only parameter that differed from the default whilst running SAGE was 

setting the validation stringency to lenient to allow variants with low read support to be 

detected. The output of vcf2maf is a tab-delimited table from each sample containing 
one line per variant using the standard mutation annotation file (MAF) format 

implemented for The Cancer Genome Atlas (TCGA). Importantly, these files contain the 

read counts for reference and alternate allele. 

After variants were identified and VCFs were converted to MAFs, I performed 

post-filtering on these MAFs to remove artifacts using a custom python script previously 

written by a member of the Morin lab. This accounted for strand bias, mapping quality, 

mismatch bias, and depth filtering, while also removing common sequencing errors and 

germline variants that might have been present after somatic variant calling was 

performed. I subset the filtered outputs to the capture space, meaning the mutations 

called were only kept within the MAF file if they were within the region of interest as 
defined by the experiment. Next, I identified the subset of samples that contained data 

from both lpWGS and CAPP-Seq to view their mutational profiles.  

2.2.4. PurEctDNA 

Goals and implementation 
To improve tumour purity estimation for liquid biopsies by leveraging information 

from both lpWGS and CAPP-Seq data, I developed a novel bioinformatic program called 

PurEctDNA. The input for this tool is a SEG and a MAF file as input, respectively from 

any common CNV caller and SSM calling/annotation pipeline. Notably, this tool can also 

be applied to low-pass WGS data or deeply sequenced genomes but was specifically 

designed to estimate tumour purity from cfDNA samples that have undergone targeted 

sequencing and lpWGS. To develop PurEctDNA, I utilized the segment information from 
IchorCNA and my modified version of WisecondorX along with the post-filtered MAF files 

curated from SAGE.  

PurEctDNA is implemented in R and utilizes dplyr, data.table and custom 

functions to assign the absolute copy number to each mutation, ultimately performing 

mutation-level corrections to allow estimation of individual cancer cell fraction and overall 

estimation of tumour purity. This program utilizes these variants and their annotated 
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copy number, along with the tumour variant reference- and alternate allele counts, to 

calculate the purity (Eq. 1) and VAF (Eq. 2). Within PurEctDNA, mutations assigned as 

copy number state 1 or 2 and those assigned as copy number state 3 and above are 

analyzed separately. The mean of these grouped mutational purities is calculated, and 

the final purity is determined by taking the mean of all annotated variants from that 
sample. If the final purity is over 1 (100%), PurEctDNA estimates that value as 1, as no 

sample can contain more ctDNA than cfDNA.  

 

Equation 1: 

Purity =
Copy Number ∗ VAF

Ploidy
 

Equation 2: 

VAF =  
t_alt_count

t_ref_count + t_alt_count
 

 

 

PurEctDNA produces a purity estimate and summary table displaying all copy 

number annotated variants along with their respective VAF, ploidy, and mutational purity 

estimates. Two plots are also optionally generated from the program. These are both 

histograms, showing the distribution of VAFs and purity estimates present in each copy 

number state within the selected sample.  

I incorporated the R script where these calculations take place into GAMBLR and 

developed a command line workflow that runs multiple samples through the function 

efficiently.  

 

Validation analyses 
I performed two different methods of validation for PurEctDNA, where I primarily 

tested genomes from tissue biopsies that had accurate purity estimates determined with 

high concordance between at least two separate pipelines. I compared these estimates 

to PurEctDNA by evaluating correlation between methods across all samples. I further 

explored the performance across a range of purities using an in silico dilution approach.  

 The first validation incorporated samples containing sequenced genomes from 

solid tissue biopsies that were previously analyzed in GAMBL. I selected samples 

containing WGS data where purity estimates contained a 5% concordance between two 

bioinformatic tools that perform copy number calling and tumour purity estimation 
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specifically for WGS data (Battenberg and Sequenza116,125). These 495 samples were 

considered to have highly accurate purity values and were therefore used a ground truth 

to compare against PurEctDNA estimates. Copy number profiles (SEG files) used in this 

analysis were produced by Battenberg. Different parameters available for PurEctDNA 

were leveraged in this validation to test how the tumour purity estimates change when 
they are utilized. A Pearson correlation value was calculated for each comparison. 

The second validation entailed the generation of in silico dilutions of tumour 

samples from liquid biopsies that have undergone WGS. Four samples were used in this 

analysis from patients with DLBCL, as these were the only genomes that were 

accessible from GAMBL with deeper sequencing done. To generate these dilutions, I 

determined the fraction of reads from the tumour (Ft) and matched normal (Fn) samples, 

taking coverage and purity into account using the following equation: 

 

Equation 3: 

Ft =  
Pf ∗ Cn ∗ Fn

Ct (Pi − Pf)
 

 

Where Ft is the fraction of the tumour sample required, Fn is the fraction of the 

normal sample required, Ct is the coverage of the tumour, Cn denotes the coverage of 

the normal, Pi is the initial purity of the tumour sample, and Pf is the final tumour purity. 
For each of the four ctDNA genomes utilized in this analysis, purity estimates were down 

sampled in increments of 5%, starting from 5% and leading up to 5% below the initial 

purity value (Table A.3). For example, if a sample has an initial purity estimate of 40%, I 

diluted the sample to values of 5%, 10%, 15%, 20%, 25%, 30% and 35% using reads 

from the matched normal genome.  

 After the necessary amount of tumour and normal sample required for the 

dilution was determined, I used samtools to combine the tumour and normal reads, 

creating one indexed cram file for each dilution. Next, I used a pipeline within GAMBL to 

dilute the cram files and return these in MAF format. To test PurEctDNA, I used the 

diluted MAFs and corresponding SEG files generated from Battenberg as inputs to 

determine if the resulting tumour purity was accurate. As a last validation measure, I ran 
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the diluted samples through Battenberg using the LCR module’s pipeline to determine 

how well this program estimated the down-sampled purity compared to PurEctDNA.  

2.3. Results 

2.3.1. Modified WisecondorX Improves ctDNA Copy Number Inference 

WisecondorX occasionally generates inaccurate CNV calls 
As described in Chapter 1, liquid biopsy samples that are processed through 

WisecondorX are known to have biased results when a significant amount of either 

gained or lost aberrations are called (Fig. 2.1). This is due to the underlying calculation 

that WisecondorX performs, where the mean of the log2 ratio is set as zero (copy 

neutral) and all copy number calls are shifted in the opposite direction, leading to an 

inaccurate output. When examining the results from this program on their own, it is not 

always clear that the copy number profiles are wrong. To overcome this, I compared 

each of the original ctDNA samples’ CNV calls to IchorCNA, allowing for the direct 

detection of any genome-wide or focal errors.  

In addition to analyzing copy number profiles, I plotted the log2 ratio values of the 

individual bins from the entire sample as a density plot to assess the distribution of bins 

across each copy number state. Ideally, three curves should be seen. The largest curve 
peaking at zero (corresponding to copy-neutral segments in diploid tumours) and deleted 

or gained regions should be less common (showing smaller density curves on either side 

of the largest neutral curve) however this was not always the case (Fig. 2.2). Of the 14 

ctDNA samples initially analyzed through this pipeline, only 3 required a substantial shift 

while the remaining 11 required little to no shift as their neutral peak was centered very 

close to zero.  
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Figure 2.1. Initial copy number profiles from IchorCNA and WisecondorX  
A higher number of gained and amplified regions are present in this sample, causing 
WisecondorX to offset genome-wide CNVs downward. Most segments that are copy neutral from 
IchorCNA (A) are identified as deletions from WisecondorX (B). This representative sample 
illustrates the effect of unbalanced amounts of gains and losses can lead to an inaccurate 
analysis of the tumour molecular profile.  
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Figure 2.2. Inferring copy number state from local density of log2 ratio values 
(A) The ideal three peaks are present at the expected density levels, as the tumour is diploid with 
the majority of bins assigned as neutral, and less common deleted and gained regions below and 
above the neutral curve, respectively. (B) More than three peaks are present due to a surplus of 
gained and amplified regions in the tumour. Both plots contain more gained CNVs than deletions, 
resulting in biased copy number profiles. 

 
Correcting biased aberration calls and estimating tumour purity 

To overcome some of the inaccuracies in CNV profiles inferred by WisecondorX, 

I applied a Gaussian mixture model and calculated the offset of the mean of all 

alterations relative to the copy neutral state such that segments could be shifted to the 

appropriate position (see Methods). This resulted in segments being at an accurate log2 

ratio, yet the aberration calls were still incorrect. When bins are shifted, the beta 

argument must be set, otherwise the appropriate copy number state will not be assigned 

to the new segment location due to WisecondorX using Z-scores as a default instead of 

log2 ratios. Therefore, I consistently ran clustering to force the mixture model to infer 1 

or 3 clusters from the data respectively to calculate the proper offset and beta values. 

These parameters were chosen because they were observed to produce the most 

consistent fit and best calculations across all samples. I found that higher positive or 

A 

B 
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negative offset values correlated to a larger deviation away from the neutral state and 

thus represent how much the log2 ratio must be shifted. For example, a sample with an 

over-representation of gains and amplifications would automatically be shifted 

downwards (segments will contain lower log2 ratio values) by the original WisecondorX 

program due to an over-estimation of the baseline for the neutral/diploid state. This is 
caused by the use of all bins to calculate the median, including those representing 

regions affected by gains and losses (Fig. 2.3).  

To identify copy number profiles in need of improvement from WisecondorX, I 

used IchorCNA profiles from the same samples with low ctDNA levels. Calling 

aberrations in samples with low purity is important because an accurate copy number 

profile is required to accurately quantify ctDNA levels. This applies to clinically relevant 

scenarios where patients commonly have low ctDNA, for example the detection of MRD 

or assessing a patient’s response during and after treatment. Owing to this, bioinformatic 

programs must provide this high sensitivity for an accurate estimate that can then be 

interpreted clinically. IchorCNA claims to reliably estimate purity in liquid biopsies with 
values as low as 3%168, yet members of our group have found this to be untrue. 

Aberrations called at a purity lower than 10% are not as reliable, due to significant 

overfitting that has been seen in these sample types. This is partially explained by 

IchorCNA’s method of segmentation and how it requires extensive manual curation of 

the resulting plots to ascertain the appropriate CNV profiles. WisecondorX, on the other 

hand, does not have this issue and performs aberration calling very well with samples 

below 10% tumour purity (Fig. 2.4). Adding a prior purity estimate to WisecondorX allows 

for improved analysis of the copy number profiles and largely correlates to the estimate 

produced from IchorCNA.  

 

Feature extension and standardization of the new WisecondorX pipeline 
Alongside the modification of WisecondorX to improve ctDNA copy number 

inference, I updated the plots and tables that are produced and standardized the new 

snakemake pipeline to make the program more user-friendly. To produce outputs more 

consistent and directly comparable with the outputs of IchorCNA, the program was 

modified to consider a new CNV gain class (amplifications) and a colour encoding 

consistent with IchorCNA (Fig. 2.5).  
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SEG files list the loci of each segment with its corresponding copy number event 

and absolute copy number, flags any loss of heterozygosity (LOH) events, and lists the 

log2 ratio values. Changing the source code of WisecondorX to produce a SEG file has 

many benefits, as this file type is useful for analyzing aberration calls in the integrative 

genomics viewer (IGV) platform between serial plasma samples, tissue biopsy samples, 
and for comparing CNVs from multiple bioinformatic programs simultaneously (Fig. 2.6). 

Leveraging SEG files in IGV from diagnostic tumour and serial plasma samples allows 

for the analysis of tumour progression and treatment response. This type of analysis is 

ideal for tumour biopsy samples containing a high sequencing coverage and plasma 

samples with a high level of ctDNA, as CNVs are called more reliably in these cases and 

a high correlation between CNVs present in both sample types can be seen (Fig. 2.6).  

 

 

 
Figure 2.3. Implementing the offset value and purity back into WisecondorX 

sucessfully adjusts segments 
(A) A copy number profile from the original WisecondorX program, showing offset segments. This 
results in the neutral peak of the density plot on the right to be a negative log2 ratio value and 
aberrations are called inaccurately for this cfDNA sample. (B) After segments are shifted, the 
neutral peak of the density plot on the right is centered at zero and CNVs are in turn appropriately 
assigned.  

A 

B 
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Figure 2.4. IchorCNA overfits CNV calls for samples with low ctDNA levels 
(A) Copy number profile from IchorCNA, a tumour purity of 13% was estimated for this sample. 
Many segments are assigned as amplifications and horizontal lines where bins assigned to 
segments through HMM can be clearly viewed, specifically on chromosomes 7p and X. (B) Copy 
number profile from the improved WisecondorX program. No amplifications are called, and beta 
was specified as the same 13% to match the IchorCNA tumour purity. This direct comparison 
shows the difference in segmentation and aberration cutoff values between IchorCNA and 
WisecondorX, as well as a slight difference in focal aberration calls between WisecondorX and 
IchorCNA at low ctDNA levels.  
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Figure 2.5. Representative copy number profile from original and modified 

versions of WisecondorX  
(A) The original copy number profile produced by WisecondorX prior to any modification. (B) The 
same offset genome after adjusting the source code, prior to the use of beta. Tumour purity 
estimate = 42.5%. (C) After incorporating beta and adjusting aberration calls, these now 
correspond to the profiles determined by IchorCNA. Amplifications are also displayed. Tumour 
purity estimate = 40.3%. (D) The corresponding IchorCNA copy number profile, with an estimated 
purity of 40.5%. 
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Figure 2.6. Examining CNVs in IGV facilitates aberration comparison between 

tissue biopsies and plasma samples 
(A) An IGV representation of genome-wide CNV calls from Battenberg-derived SEG files for a 
tissue biopsy sequenced at high depth (top row) along with the corresponding liquid biopsy 
samples produced by WisecondorX (middle) and IchorCNA (bottom row). CNVs determined 
between these programs can differ between the tumour and plasma-derived genomes, with the 
largest discrepancy in aberration calls for this sample located on chromosome 7. Copy number 
profiles are shown of the tumour genome from Battenberg (B) and of the liquid biopsy samples 
taken on the same date from WisecondorX (C) and IchorCNA (D). 
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2.3.2. SNV analysis to infer tumour genetics and improve ctDNA 
quantification 

In this analysis, the prevalence of common lymphoma-specific variants was 
determined, allowing the VAF to be calculated within PurEctDNA to ultimately contribute 

to cfDNA purity estimation. Detecting SSMs and their corresponding VAF from deep 

targeted sequencing techniques such as CAPP-Seq enables ctDNA quantification and is 

especially helpful in the identification of low VAF variants that are common to liquid 

biopsies. Here, SSMs were identified from 376 samples with CAPP-Seq data using the 

SAGE program and a custom post-filtering script (Table A.1). Of these, 89 ctDNA 

samples had sequencing data from both CAPP-Seq and lpWGS and thus were used in 

the implementation and evaluation of PurEctDNA. In addition to utilizing the VAF in the 

development of PurEctDNA, detecting the prevalence of SSMs aids in the inferral of 

tumour specific molecular profiles such as the heterogeneity and clonal evolution of a 
tumour, and can therefore help assess a patient’s response to therapy and 

chemoresistance.  

Variant calls were subset to the set of 63 lymphoma-related that were specifically 

targeted in the hybridization capture panel. These genes were selected for this panel 

based on their recurrent mutation in relapsed and refractory cases of DLBCL and include 

genetic and epigenetic modifiers of common pathways that lead to lymphoid 

tumorigenesis (Table A.2). The top 3 most commonly mutated genes among all samples 

were TP53 (39%), KMT2D (39%), and CREBBP (22%), which is consistent with the 

known frequency of mutations in rrDLBCL and other B-cell lymphomas (Fig. 2.7). These 

tumour suppressor genes are typically found mutated in approximately 20-25%, 20-30%, 

and 5-25% of aggressive B cell lymphoma subtypes, respectively177–179. With this, I also 

found the expected occurrence of commonly mutated genes in rrDLBCL including B2M, 

TNFRSF14, EZH2 and ARID1A from the samples analyzed among all 5 clinical cohorts. 

Here, the top three variants remained the same yet were present in elevated numbers, 

potentially due to these samples containing a higher level of ctDNA and are thereby 

more likely to have recurrently mutated genes identified than the samples where capture 

was not performed. 
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Figure 2.7. Mutations in rrDLBCL genes observed at the expected frequency 
The above oncoplots show somatic variants identified from 376 samples from 5 cohorts (A), and 
89 samples (a subset of the 376) that contain data from both lpWGS and CAPP-Seq techniques 
(B). The subset of cases with matched lpWGS, which were used in the development of 
PurEctDNA, have a similar frequency of mutations in these genes relative to the full cohort.  

A 

B 
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2.3.3. Analysis and Validation of PurEctDNA Purity Estimates 

PurEctDNA parameter description and initial analysis using cfDNA samples 
PurEctDNA estimates the level of ctDNA in a plasma sample (or tumour purity) 

based on the relationship between absolute copy number, VAF and ploidy of the 

individual mutation called from CAPP-Seq and lpWGS. In implementing PurEctDNA, I 

provided the user with options to provide their own MAF and SEG file or, if the user has 

access to the Morin labs GAMBL repository, directly refer to samples within this dataset 
using the sample identifier. Providing custom copy number information is optional, as 

these calls may not always be available or reliable depending on the tumour ploidy and 

the protocol used for sample collection and sequencing. I therefore customized 

PurEctDNA to estimate purity in either scenario using all the data provided. If a SEG file 

is not provided, the somatic variants must still be assigned a copy number state for 

purity to be calculated, which is assumed to be diploid at every position otherwise. Users 

also have the option to only include coding genes from the input MAF file, along with 

subsetting the somatic variant calls to a cancer-specific gene panel. This panel can (but 

is not limited to) include the same genes used in the panel from when targeted 

sequencing was performed and is input as a BED file into PurEctDNA. Lastly, as 
described in Methods, two histograms are optionally produced to visualize the calculated 

VAF and purity for the distribution of mutations within the sample. These are faceted 

based on copy number state.  

As an initial comparison of purity estimates between two copy number tools, I 

analyzed 63 samples with somatic variant calls from CAPP-Seq and corresponding SEG 

files from my modified version of WisecondorX and IchorCNA. These estimates showed 

a high positive Pearson correlation (r = 0.965, slope = 0.96), indicating that PurEctDNA 

can robustly estimate tumour purity using copy number information from different tools 

(Fig. 2.8). 

Comparisons were not only performed between programs, but also between 

changes in purity estimates when a SEG file is given and when it is not (Fig. 2.9). A high 

positive Pearson correlation (r > 0.9, slope = 1) was found for both CNV callers when 

comparing estimates from when a SEG is utilized or not. This shows that copy number 

alterations affect how purity is calculated, as estimates differ from 0-20% when using 

copy number information from IchorCNA compared to when variants are assigned to the 

copy neutral state. WisecondorX displays a much lower range here, where the purity 
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estimates differ less than 10% from when a SEG is used and when all variants are 

assumed diploid. 

To assess the inferred CNVs and purity estimates produced from PurEctDNA 

when the copy number profile was provided from WisecondorX or IchorCNA, I calculated 

the percent of the genome that was altered (“PGA”) between the two programs and 
correlated this PGA value to purity from PurEctDNA. Here, many similarities were seen 

between WisecondorX and IchorCNA for the fraction of CNVs called (Fig. 2.10). Various 

outliers were also present, where more CNVs were detected by one of the algorithms 

compared to the other. With this analysis, neither PGA values from WisecondorX nor 

from IchorCNA represent “true purity”, therefore samples were grouped into thirds 

depending on their purity estimate given from PurEctDNA when all variants were 

assumed diploid. The values produced by PurEctDNA when copy number profiles were 

utilized from WisecondorX and IchorCNA were also defined, allowing for the comparison 

between purity estimates from these copy number callers and their correspondence to 

the grouped “truth” estimates (Fig. 2.10A & D, B & E, C & F). This showed frequent 
similarities between estimates when CNV profiles from IchorCNA and WisecondorX 

were used, though samples with purity estimates that differ from the “truth” values were 

also observed.  

 
Figure 2.8. Purity estimates when leveraging the custom copy number profiles 

from IchorCNA and WisecondorX are highly correlated 
Scatterplot showing purity estimates from the same cfDNA samples, comparing copy number 
information from IchorCNA and WisecondorX. The slope of the linear relationship is 0.96, 
indicating a strong positive correlation.  
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Figure 2.9. Purity estimates differ between IchorCNA and WisecondorX when 

aberrations are derived from the copy number callers or all are 
assigned as diploid by PurEctDNA 

A higher Pearson correlation (r = 0.987, slope = 1) is found for WisecondorX (compared to 0.951 
and a slope of 0.99 for IchorCNA), showing that the tumour purity estimated with specific copy 
number profiles from IchorCNA’s SEG file differs from when all copy states are assigned as 
neutral more than the estimates from WisecondorX.  

A B 
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Figure 2.10. The percent of the genome altered (PGA) between WisecondorX and 

IchorCNA is representative of differences between the programs and 
how well they infer CNVs in each range of ctDNA levels 

Scatterplots showing the distribution of 63 samples containing different levels of CNVs called (the 
PGA) by WisecondorX and IchorCNA. When PGA values on the x and y axes correspond, the 
amount that the genome is altered from the diploid state is equivalent between both programs. 
When they do not correspond, one algorithm is assigning more or less CNVs than the other. 
Samples are grouped into three sections, by their purity estimate given by PurEctDNA when 
variants are assumed diploid; A & C, B & E, and C & F. Samples are coloured by their purity 
estimates given when the copy number profiles from WisecondorX (A-C) or IchorCNA (D-F) are 
used in PurEctDNA.  

GAMBL genome validation 
The previous analysis has various limitations that precluded the ability to draw 

firm conclusions about the performance of PurEctDNA. Primarily, this related to the lack 

of a high-confidence gold standard measurement of ctDNA level for each sample. Using 

the data analyzed in the GAMBL project, I identified genomes with robust measurements 

of purity by selecting cases with values having nearly identical tumour purity estimates 
between the Battenberg and Sequenza programs. These were considered as “ground 

truth” to use as a comparison against PurEctDNA (Fig. 2.11). I estimated purity in each 

of these using PurEctDNA and found a high Pearson correlation between the ground 

truth values and those from PurEctDNA (r = 0.88, Fig. 2.12). A small number of outliers 
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are present when examining the purity values from PurEctDNA in this validation 

analysis. To determine the potential factors influencing these discrepancies, I separately 

explored the estimates for samples within four ranges of ploidy estimates. This was done 

separately using the ploidy estimation inferred by Sequenza and the estimate given by 

Battenberg. These values represent the average copy number of the genome. These 
comparisons show that many purity estimates that are discordant between PurEctDNA 

and one of these algorithms are in tumours with more extreme ploidy estimates (Figs 

2.12-2.14, C, D).  

These analyses provided PurEctDNA with all somatic variants identified genome-

wide, which is more than is typically available in a CAPP-Seq experiment. To simulate 

this scenario, I restricted the mutations to the regions covered by our sequencing panel, 

which represents 63 lymphoma-related genes. I then compared the estimates to ground 

truth tumour purity. Here, a lower Pearson correlation was observed, showing that the 

accuracy of this approach is diminished when fewer mutations are available (r = 0.71 

and r = 0.88, respectively, Fig. 2.13). An increased number of outliers were present 
below the line of best fit, where PurEctDNA underestimated the tumour purity for several 

samples. Faceted plots to examine ploidy states were created, again explaining some of 

the outliers. 

I performed a similar analysis to determine how purity estimates differ when 

PurEctDNA assumes all regions are diploid. Interestingly, this resulted in a very similar 

Pearson correlation, presumably due to the reduction in the number of extreme outliers 

observed among genomes with more extreme ploidy estimates (Fig. 2.14). Generally, 

values were calculated at a higher mutational- and overall purity estimate when all copy 

number states were set to 2, due to deleted variants shifting the mean VAF upwards. 
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Figure 2.11. Samples obtained from the GAMBL project with a 5% concordance 

between the Battenberg and Sequenza 
A total of 495 samples are included in this analysis. Purity estimates range from 0.10 to 1.00 (10-
100%), with a smaller fraction of samples that contain a purity estimate of 0.50 (50%). These 
samples are highly positively correlated (Pearson r = 0.997, slope = 1), enabling them to be 
labelled as ground truth in this validation.  
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Figure 2.12. PurEctDNA accurately estimates purity from tumour tissue samples 
(A) Scatterplot showing a high linear correlation between PurEctDNA purity and ground truth 
estimates (Pearson r = 0.88). Here, concordant purity values are from Sequenza. (B) Correlation 
between PurEctDNA, Battenberg, and Sequenza shows high Pearson correlation coefficients, 
with PurEctDNA and Battenberg displaying the lowest correlation (r = 0.876). (C) Dividing 
samples by their ploidy as determined by Sequenza showing that cases having more extreme 
ploidy estimates (1 and 4) exhibit lower correlation. (D) In contrast, separating samples by their 
ploidies assigned by Battenberg shows more outliers in the diploid state. Tumour samples with a 
genome-wide ploidy of 3 or above show overestimated tumour purity values by PurEctDNA, 
according to both Battenberg and Sequenza.  

A B 

C D 



42 

 

 
Figure 2.13. Tumour purity estimates are more dispersed when a limited set of 

somatic variants are used 
(A) The correlation between ground truth estimates from Sequenza and PurEctDNA purity 
estimates derived from only somatic variants in the region targeted by a lymphoma gene panel is 
shown. (B) Three correlations amongst PurEctDNA, Battenberg, and Sequenza. Pearson 
correlation coefficients are displayed, with PurEctDNA and Battenberg containing the lowest 
value (r = 0.713). (C) Determining the dispersion of samples per ploidy state estimated by 
Sequenza shows outliers in samples with more extreme ploidies. (D) Separating based on 
Battenberg ploidy estimates shows a larger dispersion of outliers at extreme ploidy states 
compared to those seen in Figure 2.12.  

A B 

C D 
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Figure 2.14. PurEctDNA purity values are not altered when variants are subset to 

genes of interest and assigned as copy neutral  
(A) A moderate linear correlation between PurEctDNA purity and ground truth estimates from 
Sequenza is shown. A slope of 1 was manually added to better view how points differ from this 
ideal linear fit. (B) The correlation between PurEctDNA, Battenberg, and Sequenza show the 
lowest correlation (r = 0.716) between PurEctDNA and Battenberg, as seen in figures 2.12 and 
2.13 as well. (C) Samples are grouped by their ploidy as assigned by Sequenza, where most 
outliers are contained in samples with more extreme ploidies. (D) Samples are grouped by their 
respective ploidies assigned by Battenberg with a lower number of outliers found at extreme 
ploidy states compared to when CNV profiles are utilized.  

In silico dilution validation 
 Four ctDNA genomes with tumour and normal WGS data from the GAMBL 

project were down sampled to test the validity of PurEctDNA, as well as the programs 

accuracy at pre-determined high and low ctDNA levels. A total of 43 dilutions were 

generated in silico and purity estimates were produced by PurEctDNA and Battenberg. 

PurEctDNA estimates tumour purity at a very high accuracy for all ctDNA levels, as 

demonstrated by a Pearson correlation to the dilutions of 0.968 (Fig. 2.15A). Battenberg 

also estimates purity extremely well on samples equivalent to or above 15% ctDNA, 

A B 

C D 
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although fails to accurately estimate values below this as 6/8 (75%) of the dilutions with 

generated purity values of 5% and 10% were calculated to be above 95% (Fig. 2.15B). 

Due to the dilution calculation not utilizing purity given from the pre-determined ground 

truth estimates (from Sequenza and Battenberg), an overestimation of PurEctDNA’s 

purity estimates was seen for two of the four samples (Fig. 2.15A). Owing to this, I 
utilized purity values given directly from Battenberg as a second measure of 

PurEctDNA’s accuracy (Fig. 2.15C). This use of diluted ground truth purity estimates 

further validated PurEctDNA and increased the Pearson correlation (r = 0.986) of the 

program as an accurate purity estimation tool.  

 

 

 
Figure 2.15. PurEctDNA estimates tumour purity from in silico dilutions with high 

accuracy 
(A) A linear correlation for the in silico diluted ctDNA genomes with coverage ranging from 27-
37x. A high Pearson correlation value (r = 0.968) demonstrates that PurEctDNA estimates tumour 
purity with high accuracy, down to 5% purity. (B) A linear correlation comparing purity calculated 
from the dilutions to Battenberg values. A high correlation is seen when examining sample purity 
estimates above 15%, yet the program is limited with purity values below this. (C) A high positive 
correlation between PurEctDNA purity estimates and ground truth estimates from Battenberg. 
Outliers (5% and 10%) from Battenberg (B) are included.  

A B 

C 
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Chapter 3.  
 
Discussion, Limitations and Future Directions for the 
Purity Estimation of cfDNA 

3.1. Discussion and Conclusions 

Determining the proportion of cfDNA in a plasma sample that originates from 

tumour cells is crucial for assessing tumour dynamics, heterogeneity, response to 

treatment, and the detection of relapsed or refractory cases of various cancers. Tumour 

purity from both tissue and liquid biopsy sample is rarely confidently known and difficult 

to accurately determine. This is readily apparent given that many of the available tools 

do not give concordant estimates. Available programs for inferring tumour purity from 

sequencing data commonly rely on the variant allele frequency (VAF), or the B-allele 

frequency (BAF) and the log ratio of somatic copy number variations (CNVs). The 

available bioinformatic tools for estimating the purity from a liquid biopsy are scarce. At 

the outset of this project there were no programs available that estimate the level of 

ctDNA in a plasma sample using data from both targeted sequencing and lpWGS. 

Therefore, I developed PurEctDNA, a novel program that utilizes somatic variants and 

the copy number profile of plasma samples and estimates the mutational and overall 

tumour purity. In addition to the creation of this tool, I modified the copy number caller 

WisecondorX to improve the detection of accurate CNV profiles and incorporated a 

purity calculation that did not previously exist.  

The improvements to WisecondorX utilized the results from IchorCNA as ground 

truth because that tool was specifically developed to identify CNVs on ctDNA from 

lpWGS data. This program is used often in our group but has known limitations when 

applied to samples with a tumour purity below approximately 10-15%. In samples with 

lower purity, we observed that IchorCNA overfits CNV calls to a model with an 

implausible combination of ploidy and subclonal CNVs (Fig. 2.4). From direct 
comparisons, WisecondorX produced superior aberration calls in these conditions, 

qualifying itself as a suitable program to use alongside or as a replacement for IchorCNA 

to analyze CNV events from liquid biopsies. Despite this benefit of WisecondorX, the 

software originally lacked the ability to calculate tumour fraction, ploidy, subclonality, and 
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often output biased copy number calls when samples contain an imbalance of copy 

number gains and losses. I modified the source code to address some of these 

limitations and implement new features into the program for improved ctDNA 

quantification. 

Initially, a Gaussian mixture model was used to manually determine cut-off 
values and allow the inference of the segments most likely representing regions that 

were diploid, gained and lost. I determined a suitable number of mixture model clusters 

that were necessary to center the data allowing more accurate genome-wide detection 

of diploid and non-diploid regions of the genome (Fig. A.1). These new ctDNA level 

estimates are frequently similar to IchorCNA, although have been found to differ in cases 

where many CNVs are present, as ploidy is not taken into consideration (Fig. 2.10). 

Ultimately, given the shortcomings of each tool that were identified in these analyses, it 

is preferrable that another program be used in conjunction with WisecondorX, 

particularly when purity estimation is a priority and when a cfDNA sample is not diploid. 

The modified WisecondorX software now infers CNV profiles more reliably than 
IchorCNA in samples with low ctDNA levels. Also, due to differences in segmentation 

methods (HMM vs CBS), WisecondorX occasionally assigns more focal events that may 

not be detected by IchorCNA. Such events may be of utility if the user is seeking CNVs 

of diagnostic or prognostic relevance. Moreover, WisecondorX appears more robust 

than IchorCNA in the samples that are overfit by the IchorCNA model (Fig. 2.4). 

Ultimately, adjusting how WisecondorX calls CNVs, along with the modification to the 

visual outputs and the addition of amplifications has significantly improved the copy 

number caller’s functionality and ability to accurately analyze ctDNA from lpWGS data.  

In its current implementation, PurEctDNA has eight customizable options for the 
user to apply this tool to different combinations of inputs and to perform different 

computations. The only required input is a MAF file containing somatic variants and 

reference/alternate allele read counts from either genome-wide or targeted sequencing. 

One option is to allow the variants to be subset to a user-defined set of regions, in my 

case this was genes of relevance to DLBCL. This work shows that use of this feature 

can lead to occasional underestimation or overestimation of the final tumour purity, 

resulting in a lower concordance with the ground truth estimate. Although this is a 

limitation, the use of gene panels is a typical use case in ctDNA sequencing. In many 

cases, the number of variants is significantly reduced, causing purity estimates to further 
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deviate from their accurate value. This is also seen when only coding mutations (rather 

than lymphoma-associated mutations) are specified, due to the reduction of data. These 

experiments highlight a caveat for users of CAPP-Seq, namely that samples with a low 

number of somatic variants will, in general, have less accurate tumour purity/ctDNA level 

estimates.  

When a copy number profile is not provided to PurEctDNA, the estimated tumour 

purity is derived solely from VAF information. In cases where tumour purity or ctDNA 

levels are high and a significant number of genomic alterations are present in the ctDNA, 

copy number profiles will differ significantly from the neutral state. As such, if copy 

number is assumed to be diploid through PurEctDNA, the VAF of variants found in 

deleted regions would be proportionally higher as a function of tumour purity, which 

would systematically and erroneously increase tumour purity estimation for the sample. 

Similarly, mutations on chromosomes with increased copy number will have higher VAF 

(if on the gained copy) or lower VAF otherwise. Samples with genomes that appear to 

have minimal copy number alterations can often be explained by low purity, which can 
limit our sensitivity to detect CNVs accurately. This seems to be more pronounced with 

WisecondorX. For example, in Figure 2.9 the samples with lower purity are more 

strongly correlated between purity estimates when the use of a copy number profile from 

IchorCNA (A) or WisecondorX (B) is toggled.  

Leveraging the percentage of the genome that is altered from the normal diploid 

state (called the PGA) showed a frequent correlation to the fraction of CNVs observed 

between WisecondorX and IchorCNA (Fig. 2.10). Here, a number of outliers were 

present, with the most extreme cases found in the lower (PurEctDNA purity below 33%) 

and upper (PurEctDNA purity above 66%) groupings of purity. I further examined some 
of the largest outliers, including one sample with a purity estimate of 31% where the 

PGA of WisecondorX was 100% and that of IchorCNA was 23% (Fig. A.3). This specific 

sample contained a copy number profile where the full genome was amplified, which is 

clearly incorrect as seen when compared to the IchorCNA profiles and that from the 

unadjusted plot. Examination of those case led to the discovery of a bug in the 

WisecondorX snakefile, thus fixing this error. Another outlier that is present from Figure 

2.10C and 2.10F represents a similar error, yet for the opposite case (Fig. A.3). This 

sample with a 72% estimated purity contained a PGA from WisecondorX of 53% and a 

PGA from IchorCNA of 90%. Here, WisecondorX assigned the genome as diploid, where 
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IchorCNA inferred it to be a triploid tumour. In cases such as this, it is difficult to 

determine which algorithms’ CNV calls are correct, as the BAF information or a tissue 

biopsy sample from a similar timeframe as the plasma sample would be necessary to 

discern the ploidy.  

While originally obtaining genomes that have undergone WGS from the GAMBL 
project with purity values within a 5% concordance, samples were chosen from 

Sequenza, Battenberg and IchorCNA. Only 33 genomes contained this concordance, 

whereas 495 were found when the IchorCNA estimate was not considered. To explore 

this further, I compared the IchorCNA purity estimate among samples with a high 

concordance between Battenberg and Sequenza. This demonstrated that IchorCNA had 

a tendency to underestimate purity in cases with purity above 50% according to 

Sequenza and Battenberg (Fig. A.4). In contrast, when these same comparisons are 

made against PurEctDNA there is a high concordance. Also, comparison of the 

PurEctDNA tumour purity estimates to IchorCNA estimates revealed the same pattern of 

purity underestimation by IchorCNA among high-purity samples (Fig. A.4). The number 
of cases with highly discrepant underestimates of purity by IchorCNA is striking. It should 

be noted that IchorCNA generates multiple copy number profiles with different fits of its 

model and these need to be manually curated to identify the best fit. This curation was 

not done for these samples. Also, IchorCNA was developed for low-pass genome data 

from ctDNA and the samples used in this validation had high sequencing depth. 

Because of this unexplained discrepancy I excluded the IchorCNA purity estimates from 

this GAMBL genome validation analysis and instead relied on concordant purity 

estimations from Sequenza and Battenberg as ground truth to compare against 

PurEctDNA validates the tool’s accuracy to estimate purity from genomes with tumour 
fractions mainly above 50%. I had technical constraint preventing the ability to 

adequately measure the performance of purity estimates below 50% due to the bias 

towards high purity tumours with WGS data. This is due to the genomes being derived 

from solid tissue biopsies and not liquid biopsies and the preferential use of high purity 

tumours for most WGS experiments. Also, Sequenza and Battenberg are specifically 

designed to call CNVs and estimate tumour purity values from genomes that have 

undergone deeper WGS methods, unlike genomes from lpWGS that have a very low 

coverage. Therefore, estimates below 50% from Sequenza and Battenberg are less 

reliable for this analysis (Fig. 2.12A), hence why more scattered purity values are seen 
from PurEctDNA.  
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Despite a high correlation between PurEctDNA purity estimates and the ground 

truth estimates, there are still various outliers. Separation of cases into ranges of ploidy 

estimates from either Battenberg or Sequenza allows some of these discrepancies to be 

explained. PurEctDNA assigns ploidy to the copy-annotated mutations in each sample 

depending on two factors: the copy number state of that region and the prior estimate of 
local purity. When a variant is assigned as deleted or neutral, PurEctDNA automatically 

sets the mutational ploidy to 1, which is the only possible ploidy in a heterozygous 

deletion, as copy neutral LOH events are not incorporated into the PurEctDNA 

calculation. A prior purity estimate is calculated for these lost or neutral copy number 

cases by calculating the mean of all mutational purities with these classifications. For 

variants with a copy number of 3 or above (representing gained and amplified structural 

variants), PurEctDNA considers all possible ploidy states and calculates the individual 

purity for each of these, taking the ploidy producing the value closest to the prior 

estimate of purity (based on diploid regions). Owing to how PurEctDNA assigns ploidy 

and omits copy neutral LOH events, this can explain the limited number of higher purity 

estimates seen from haploid or diploid tumour genomes. Within the GAMBL genome 

validation analysis, it was found that PurEctDNA occasionally overestimates tumour 

purity when the sample ploidy is higher. This could be due to the outliers containing 

insufficient read depth therefore affecting the VAF, or when samples contain a low 

number of somatic variants, resulting in an overly high or low purity estimation.  

After performing the in silico dilution analysis on four ctDNA genomes, I found 

that PurEctDNA estimates purity with high accuracy across a lower range. The true 

purity of these was eventually found to be incorrectly calculated and this was not 

corrected. To account for this, I determined the correlation between purity estimated 
from PurEctDNA and Battenberg as values from Battenberg are the best estimate of 

purity available at this time due to their concordance to ground truth (Fig. 2.15C). 

Running Battenberg on these samples provides a good estimate of purity across most of 

the range with the exception of the sample with the highest dilution. Interestingly, this 

confirmed that Battenberg can also over-fit in some situations, leading to striking over-

overestimates of purity in samples with low purity (here, ~15%). In contrast, PurEctDNA 

performed well down to 5% when correlated to the in silico dilutions and 15% with 

Battenberg dilution purity values, demonstrating its capabilities to correctly estimate 

purity from samples at all ctDNA levels.  
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In conclusion, I have developed two improved methods for tumour CNV detection 

and purity calculation to address an unmet need for ctDNA quantification. Both utilize 

lpWGS data as input, which is beneficial as it is a cost effective and high-throughput 

method for the analysis of structural variants in liquid biopsies. I modified WisecondorX 

to more accurately infer aberrant regions of the genome and improved its visualization 
and outputs, thus allowing more accurate calculation of tumour purity by using these 

outputs in PurEctDNA. I created a snakemake workflow that automatically incorporates 

these adjustments as a standardization measure for the future use of this improved 

program. This aspect of my project is beneficial to researchers who analyze ctDNA data 

using lpWGS and are looking for an improved copy number calling method from 

IchorCNA, which obviates the required manual curation of IchorCNA results. Tumour 

purity is extremely difficult to correctly estimate and does not often correlate between 

programs. PurEctDNA is a tool that leverages CAPP-Seq and lpWGS data to accurately 

estimate purity from liquid biopsies. This program has the potential to benefit 

researchers in the assessment of ctDNA to track tumour burden, treatment response, 

and patient relapse using plasma-derived sequencing data. 

3.2. Limitations  

While WisecondorX has been modified for improved ctDNA quantification, the 

program still has notable limitations and missing features. Every copy number calling 

tool that estimates purity utilizes different parameters and produces copy number 
profiles with a different extent of information. Most of these programs incorporate ploidy, 

purity and maximum likelihood estimates, along with clonal and subclonal copy number 

inferral within their algorithms and resulting files for tumour samples that contain over 

30x coverage and a matched normal116,125,127. As described in Chapter 1, a limited 

number of tools currently exist to infer copy number and purity from ctDNA from lpWGS 

data. These consist mainly of the IchorCNA and WisecondorX pipelines. IchorCNA 

integrates 33 optional parameters and produces estimates for tumour purity, ploidy, and 

subclonal status, data before and after the application of normalization metrics, and a set 

of copy number profile solutions from different fits of a modal, each with an individual 

log-likelihood that does not always relate to the most biologically sensible fit of the 
data168. IchorCNA also calls homozygous deletions, losses, copy neutral events, gains, 

amplifications, and subclonal events. Alternately, the original WisecondorX contains 19 
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optional parameters and generates estimates for a copy-profile abnormality score as 

well as segmental, bin-wise, and aberration-based log2 ratios and Z-scores for each 

sample169. WisecondorX only assigns losses, copy neutral events, and gains during copy 

number profiling. I added support for amplifications while modifying the source code. 

These events can only be inferred when the argument beta is used after shifting. I could 
not include amplifications without beta since Z-scores are used in WisecondorX as the 

default for aberration calling. Due to Z-scores leveraging the standard deviation within 

their calculations and cut-off values, there was no way to accurately implement this 

calculation to infer amplifications. This can only be accomplished when beta is used to 

leverage the log2 ratio where a standardized calculation involving the read depth ratio 

can be applied to add such events. Homozygous deletions or subclonal events were 

also not included in the modified WisecondorX. Ideally, subclonal events are important to 

consider when performing CNV calling and purity estimation, as ctDNA has been shown 

to describe both inter- and intra-tumoral heterogeneity compared to the gold standard 

tissue biopsy. Having the ability to detect these events is extremely beneficial for 

research purposes as well as clinical interpretations of a patient’s tumour progression, 

relapse assessment, and treatment decisions. Considering this, the lack of subclonality 

inferral and ploidy estimation in WisecondorX is a significant limitation.  

PurEctDNA appears to be an accurate tumour purity estimation method that 

leverages both SNV and CNV data from cfDNA samples. This program incorporates all 

confounding factors when estimating tumour purity apart from subclonality. When 

reliable somatic variant calls and copy number profiles are used as input for PurEctDNA, 

the resulting mutational and overall purity estimate is highly accurate on a large range of 

ctDNA levels (as low as 5%). Owing to this, PurEctDNA is dependent on these inputs 
and estimates purity. If the somatic mutations are not subset to the genes of interest 

after variant calling and post-filtering is performed, PurEctDNA contains two parameters 

that can aid with this: allowing the sample to be subset to a cancer-specific gene panel, 

and filtering to coding-only mutations. Otherwise, the quality of ctDNA variants within the 

program are dependent on the variant calling pipeline used. The same situation is 

relevant with copy number calls, where the reliability of the absolute copy number for 

each locus are dependent on the bioinformatic program used. However, if these are 

incorrect, PurEctDNA can label all variants as copy neutral. This is occasionally a larger 

issue for programs such as IchorCNA, where we have relied on the copy number profile 
with the highest log likelihood estimate, which is not always the most accurate. For rarer 
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cases where the solution is not correct (e.g. a non-diploid tumour with extreme CNV 

events), this causes downstream issues with purity estimates from PurEctDNA.  

The in silico dilution validation analysis demonstrated that PurEctDNA can 

estimate purity with a high level of accuracy, yet was limited in its sample size and 

number of dilutions performed. Only five ctDNA genomes were available in GAMBL for 
this analysis, with one excluded from the analysis as it did not contain a 5% 

concordance between Battenberg and Sequenza. Because of this, no ground truth purity 

estimate was available, making the resulting purity estimation unreliable. The remaining 

four genomes were diluted by only 5% increments as storage space quickly became 

limited due to the large size of these genomes. Samples were only diluted down to 5% 

purity, as the ~30x coverage restricted the number of reads that supported the variants. 

Owing to this, testing the limits of sensitivity that PurEctDNA can attain was not possible 

at this time. This can be addressed as a future experiment, as CAPP-Seq data is 

available on these samples, and this higher coverage can be utilized for further dilutions 

in silico to determine the sensitivity of PurEctDNA below 5%.  

3.3. Future Directions 

A limited number of samples were available for the initial ctDNA analysis and in 

silico dilution validation of PurEctDNA. Using larger cohorts would be ideal for examining 

the lowest tumour purity value that PurEctDNA can accurately estimate and determining 

the sensitivity of the program. Discovering the lowest detection limit can aid in the 

extension of PurEctDNA to estimate purity after treatment or during low tumour burden 

to detect relapse or MRD. As described in Chapter 1, the only other existing tool that is 

able to detect extremely low levels of ctDNA is called MRDetect. This program also 

leverages SNVs and CNVs yet does not utilize targeted sequencing data or lpWGS, and 

has been developed for MRD detection from WGS data (~35x coverage)132. A future 

study that can be performed is comparing PurEctDNA to MRDetect using WGS and 

lpWGS data, as well as samples at a larger range of purity values (0.01-100%).  

As a gold standard ctDNA quantification method does not currently exist, no 

ground truth estimates were available for this project. However, the use of IgHTS to 

track clonal Ig V(D)J gene rearrangements from ctDNA has been shown as a highly 

sensitive and specific technique for disease detection and surveillance in cancers 

including NHL and could therefore be utilized as a method to compare purity estimates 



53 

to PurEctDNA. Due to the unresolved differences seen between the current mutational 

and copy number approaches for ctDNA quantification, IgHTS affords the opportunity to 

contribute to the determination and resolution of such discrepancies and ultimately 

advance the development of a gold standard measurement of ctDNA in DLBCL. Owing 

to this, performing IgHTS on the samples utilized in this project and comparing them to 
values produced from PurEctDNA is a future study that could be done to assess the 

accuracy of the estimated ctDNA levels.  

Further testing on how well PurEctDNA estimates purity on cfDNA samples from 

serial time points with the corresponding clinical data would be desirable, as this would 

allow the program to have a more clinical application rather than more research based 

as it currently stands. With this, I would incorporate a patient-level summary with new 

plots and tables describing how ctDNA-derived tumour purity changes over the course of 

treatment, response, and post-therapy monitoring. Ideally, the ctDNA levels would be 

compared with clinical variables measured by imaging techniques or other 

complementary approaches for quantifying or detecting MRD. 

As PurEctDNA is a newly developed program, there are a variety of extensions 

that can be added to increase performance. Although the existing parameters allow for 

adjustments regarding somatic SNV and CNV calls, they can be expanded to improve 

precision when serial samples are being analyzed. Currently, PurEctDNA estimates 

purity for one sample at a time and does not recognize the relationship between samples 

from the same patient. PurEctDNA can be modified to leverage information from 

samples from same patient, identify matching mutations between them, and assign the 

same ploidy states for those variants with preference from samples with higher purity. 

The copy number profile from the higher purity sample can also be utilized, as this profile 
would be the most reliable with more detectable CNVs present. This can be a parameter 

that is specified by the user only when samples are obtained in a short timeframe, as 

liquid biopsies taken months or years apart are more likely to contain mutations at 

different copy number states due to tumour clones evolving in response to treatment or 

relapse.  

Another feature that exists in PurEctDNA but was not directly evaluated is the 

individual estimation of cancer cell fraction (CCF) for all mutations. The CCF is the 

proportion of cancer cells that each variant is present in which aids in describing a 

tumours clonal composition180. Two CCF values are currently calculated in PurEctDNA 
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and listed in the resulting summary table, though testing is still required to establish their 

validity. The first is a mutational CCF where the maximum value is 1, representing a 

clonal variant. This is calculated where the purity estimate of the individual variant is 

divided by the highest mutational purity among the listed variants in the sample (Eq. 4). 

The second value is the CCF of the sample that incorporates the individual purity of 
each variant and the final purity (Eq. 5). This CCF of the sample is flawed, though, as it 

produces values above 1. An analysis was not completed to assess this measure due to 

time limitations to attain lpWGS and CAPP-Seq data on a suitable cohort with numerous 

serial samples available. Ultimately, this variable would be beneficial as it allows the 

visualization of how mutational clonality changes over time and if it correlates to 

treatment or relapse.  

 

Equation 4: 

CCFmut =  
Purityindividual mutation

Puritymax mutation
 

Equation 5: 

CCFsample =  
Purityindividual mutation

Purityfinal
 

 

In addition to continuous testing, optimization, and feature extension to 

PurEctDNA, an interesting future experiment could examine the effect of fragment 

enrichment on CNV calling and cfDNA purity estimation. Here, sequencing reads could 

be selected in silico to fragment lengths below 167bp, as this is the peak size of ctDNA 

that corresponds to chromatosomes after being released from the tumour via apoptosis 

and necrosis. This might aid in determining if fragment enrichment enhances ctDNA 

detection, accuracy of somatic CNV calls, and if the sensitivity of PurEctDNA is affected. 

Analyzing a subset of fragment lengths to select for tumour-derived fragments has been 

shown to enhance detection of ctDNA as well as identify clinically actionable mutations 

and CNVs that were not previously found181. This is advantageous as fragments can be 

enriched after lpWGS rather than more expensive sequencing techniques where a larger 

depth is necessary. 

In summary, many modifications and extensions can be performed on 

PurEctDNA, as it has only been tested on a limited subset of liquid biopsy samples from 

patients with NHL. Many additional analyses and extended projects can be performed 
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with PurEctDNA to further improve ctDNA quantification through genetic and epigenetic 

analyses, on patients with a variety of cancer types, and even to carry over into a clinical 

setting. Considering this, the present version of PurEctDNA is a highly accurate tool that 

can be used in the non-invasive monitoring of tumour burden, treatment response and 

relapse assessment in lymphoma patients.  
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Appendix 

Table A.1. Summary of plasma sample cohorts used 

 # Samples with CAPP-Seq # Samples with lpWGS 

LY17 92 39 

OZM073 59 21 

Epizyme 59 24 

Montreal 88 511 

BC ctDNA 78 15 

Total 376 610 

 

Table A.2. List of lymphoma-specific genes used in the CAPP-Seq panel and to 
subset genes during PurEctDNA purity estimation

Chromosome Hugo_Symbol 

chr1 TNFRSF14 

chr1 SPEN 

chr1 ID3 

chr1 ARID1A 

chr1 ZC3H12A 

chr1 BCL10 

chr1 CD58 

chr1 BTG2 

chr2 BIRC6 

chr2 FBXO11 

chr3 MYD88 

chr3 RHOA 

chr3 GNAI2 

chr3 NFKBIZ 

chr3 TBL1XR1 

chr3 KLHL6 

chr4 NFKB1 

chr5 EBF1 

chr6 IRF4 

chr6 HIST1H1C 

chr6 HIST1H1E 

chr6 PIM1 

chr6 CCND3 

chr6 NFKBIE 

chr6 TMEM30A 

chr6 SGK1 
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chr6 TNFAIP3 

chr7 GNA12 

chr7 CARD11 

chr7 BRAF 

chr7 EZH2 

chr8 MYC 

chr9 NOTCH1 

chr10 FAS 

chr11 MPEG1 

chr11 MS4A1 

chr11 CCND1 

chr11 ETS1 

chr12 KMT2D 

chr12 STAT6 

chr12 HVCN1 

chr13 FOXO1 

chr13 RB1 

chr14 ZFP36L1 

chr15 B2M 

chr15 RFX7 

chr15 SIN3A 

chr16 CREBBP 

chr16 SOCS1 

chr16 IL4R 

chr16 IRF8 

chr17 TP53 

chr17 CD79B 

chr17 GNA13 

chr18 BCL2 

chr19 TCF3 

chr19 S1PR2 

chr19 MEF2B 

chr19 POU2F2 

chr22 EP300 

chrX P2RY8 

chrX TMSB4X 

chrX DDX3X 
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Table A.3. Variables and resulting purity estimates used in the in silico dilution of 
four ctDNA genomes from PurEctDNA and Battenberg 

Sample 
ID 

Normal 
fraction 

Final 
purity 

Initial 
purity 

Coverage 
normal 

Coverage 
tumour 

Tumour 
fraction 

PurEctDNA 
purity 

Battenberg 
purity 

CAMP-
0009 

1 0.05 0.74 27.907 36.658 0.058 0.045 0.95 

CAMP-
0009 

1 0.1 0.74 27.907 36.658 0.125 0.090 0.101 

CAMP-
0009 

1 0.15 0.74 27.907 36.658 0.204 0.135 0.147 

CAMP-
0009 

1 0.2 0.74 27.907 36.658 0.299 0.181 0.193 

CAMP-
0009 

1 0.25 0.74 27.907 36.658 0.414 0.227 0.245 

CAMP-
0009 

1 0.3 0.74 27.907 36.658 0.557 0.274 0.287 

CAMP-
0009 

1 0.35 0.74 27.907 36.658 0.740 0.322 0.337 

CAMP-
0009 

0.5 0.4 0.74 27.907 36.658 0.491 0.370 0.391 

CAMP-
0009 

0.5 0.45 0.74 27.907 36.658 0.659 0.420 0.441 

CAMP-
0009 

0.5 0.5 0.74 27.907 36.658 0.906 0.469 0.500 

CAMP-
0009 

0.25 0.55 0.74 27.907 36.658 0.654 0.510 0.543 

CAMP-
0009 

0.2 0.6 0.74 27.907 36.658 0.830 0.562 0.613 

CAMP-
0009 

0.1 0.65 0.74 27.907 36.658 0.825 0.615 0.665 

CABN-
0003 

1 0.05 0.4 20.304 27.866 0.104 0.054 0.944 

CABN-
0003 

1 0.1 0.4 20.304 27.866 0.243 0.099 0.950 

CABN-
0003 

1 0.15 0.4 20.304 27.866 0.437 0.155 0.127 

CABN-
0003 

1 0.2 0.4 20.304 27.866 0.729 0.213 0.171 

CABN-
0003 

0.5 0.25 0.4 20.304 27.866 0.607 0.273 0.226 

CABN-
0003 

0.25 0.3 0.4 20.304 27.866 0.546 0.338 0.262 

CABN-
0003 

0.1 0.35 0.4 20.304 27.866 0.510 0.408 0.333 

OZM073
-005 

1 0.05 0.74 20.774 34.136 0.041 0.039 0.963 



80 

OZM073
-005 

1 0.1 0.74 20.774 34.136 0.087 0.078 0.981 

OZM073
-005 

1 0.15 0.74 20.774 34.136 0.140 0.119 0.132 

OZM073
-005 

1 0.2 0.74 20.774 34.136 0.203 0.159 0.171 

OZM073
-005 

1 0.25 0.74 20.774 34.136 0.277 0.200 0.205 

OZM073
-005 

1 0.3 0.74 20.774 34.136 0.365 0.241 0.254 

OZM073
-005 

1 0.35 0.74 20.774 34.136 0.473 0.283 0.296 

OZM073
-005 

1 0.4 0.74 20.774 34.136 0.609 0.326 0.341 

OZM073
-005 

1 0.45 0.74 20.774 34.136 0.782 0.371 0.389 

OZM073
-005 

0.5 0.5 0.74 20.774 34.136 0.507 0.412 0.452 

OZM073
-005 

0.5 0.55 0.74 20.774 34.136 0.669 0.459 0.481 

OZM073
-005 

0.5 0.6 0.74 20.774 34.136 0.913 0.506 0.536 

OZM073
-005 

0.25 0.65 0.74 20.774 34.136 0.659 0.552 0.592 

OZM073
-005 

0.2 0.7 0.74 20.774 34.136 0.852 0.601 0.639 

OZM073
-005 

0.1 0.75 0.74 20.774 34.136 0.913 0.650 0.682 

OZM073
-025 

1 0.05 0.61 22.681 37.213 0.076 0.056 0.095 

OZM073
-025 

1 0.1 0.61 22.681 37.213 0.174 0.114 0.120 

OZM073
-025 

1 0.15 0.61 22.681 37.213 0.305 0.173 0.194 

OZM073
-025 

1 0.2 0.61 22.681 37.213 0.488 0.236 0.253 

OZM073
-025 

1 0.25 0.61 22.681 37.213 0.762 0.301 0.305 

OZM073
-025 

0.5 0.3 0.61 22.681 37.213 0.609 0.368 0.365 

OZM073
-025 

0.25 0.35 0.61 22.681 37.213 0.533 0.437 0.469 

OZM073
-025 

0.1 0.4 0.61 22.681 37.213 0.488 0.512 0.512 
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Figure A.1. Manual discovery of the mixture model-based cutoff values and best 

cluster values to reiterate back into WisecondorX 
Using a mixture model approach, I manually determined the appropriate cluster number for each 
of the 14 samples originally run through WisecondorX. I calculated the cut-off values between 
copy lost and gained states utilizing the samples classification plot (B) and aligned it to the 
corresponding density plot (C). With this manual calculation, the offset value to shift bins by was 
0.0458 and the beta was 0.2932. After incorporating the standardized cluster numbers of 1 and 3 
for the offset and beta arguments respectively, WisecondorX calculated the offset number to shift 
bins as 0.0692 and the beta (also the tumour purity estimation) as 0.3728. This purity estimate of 
37% is similar to the estimate of 43% from IchorCNA, and properly shifts and calls structural 
aberrations for this sample.  

A 

B 

C 
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Figure A.2. Modifying segment positions and aberration calls from WisecondorX 

using the offset mean and beta 
(A) Original copy number profile produced by WisecondorX before any modifications were 
performed on the program. Here, the mean log2 ratio of segments is centered at zero though 
many gains and amplifications are present resulting in offset CNV calls. (B) After all bins are 
clustered into one mixture component and the mean is utilized to adjust the segments to their 
appropriate locations. (C) After the offset mean is incorporated to move segments and the purity 
estimate is used as the argument “beta” to adjust cut-off values for copy number aberrations to be 
called according to their new log2 ratio values. 

A 

B 

C 
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Figure A.3. Copy number profiles from WisecondorX and IchorCNA that 

correspond to extreme outliers during the PGA analysis 
(A) This shows a copy number profile from WisecondorX that is one of the largest outliers from 
the PGA analysis (Fig 2.10, Chapter 2). Here, a limitation of WisecondorX is shown, where all 
segments are wrongly assigned as amplifications, with 100% of the genome shown as altered, 
compared to IchorCNA with a PGA of 23% (B). This much of an over-inferral of CNVs is 
extremely rare for WisecondorX and has since been found to be a bug in the snakefile when 
biased segments are adjusted due to the unadjusted profile showing a diploid tumour (not 
shown). A similar phenomenon is seen with the CNV profile from a sample containing a high PGA 
from IchorCNA and a low PGA from WisecondorX (C, D). This highlights IchorCNA’s ability to 
either assign tumours as triploid or could be a case of overfitting. This cannot be confirmed 
whether the IchorCNA or WisecondorX copy number profile is more accurate to the tumour 
without the BAF or tissue biopsy sample from a similar timepoint.  
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Tumor Fraction: 0.2373, Ploidy: 2.14
Subclone Fraction: 0.413, Frac. Genome Subclonal: 0.00, Frac. CNA Subclonal: 0.01
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Figure A.4. IchorCNA underestimates purity values for tissue tumour genomes  
This underestimation results in a poor correlation to Sequenza (A), Battenberg (B) and 
PurEctDNA (C) estimates. 
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