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Abstract 

Multiplication is important for future mathematical competency. However, many students 

have difficulty thinking multiplicatively. Researchers attribute this difficulty to the 

widespread use of the repeated addition model when introducing learners to 

multiplication. In this dissertation, I explore how learners’ multiplicative thinking emerges 

around/with a gesture-based, multi-touch, iPad application called TouchTimes (TT), 

which enables learners to create and manipulate a multiplication model that is different 

from the repeated addition model.  

Learning mathematics by using digital tools is a complex phenomenon. Drawing on my 

diffractive reading of the theory of semiotic mediation through enactivism, my thesis 

addresses multiple dimensions of this phenomenon, presented in three separate 

qualitative studies which followed the methods of videography.  

The first study explores the semiotic potentials of TT and pencil-and-paper to engage 

students with multiplicative thinking. The analysis was conducted with respect to the 

same multiplication task which was initially designed for TT and modified for pencil-and-

paper. The data were created through the recordings of the critical gestures that were 

required to solve the task. The findings show that two artefacts share some semiotic 

potentials and also that each of them has some singular contributions to students’ 

understanding of multiplication.  

The second study examines how young children make sense of TT when they use a duo 

of artefacts (pencil-and-paper and TT) back-and-forth. The data were created through a 

video-recording of a five-year-old child using the duo. The findings were strongly related 

to those of previous research and showed that back-and-forth use of the duo helped the 

child bring forth different aspects of multiplicative relationships.  

The third study attends to how children collaboratively structure quantities in TT. The 

data were created by a video-recording of two third-graders’ interaction around/with TT. 

The findings showed that the structures of the students’ bodies and TT co-evolved 

through reciprocal interactions. While at the beginning, these structures were aligned 

with additive relationships, they were multiplicative towards the end. The peer’s body 

contributed to this shift in various ways other than allowing for the verbal exchange of 

ideas. 
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Chapter 1.  
 
Introduction 

This dissertation contributes to the discussion about the relationship between the various 

bodies (tools, tasks, people) that participate in the mathematical thinking process. It 

consists of three published articles, each of which focuses on the same iPad application 

that was designed to engage students in multiplicative thinking. In this chapter, I provide 

background information about, yet not limited to, the application, the mathematical 

concept, and the theories I studied. While I do this, I introduce some personal stories 

that reveal my own relationship with each of them.  

Mathematics education researchers as a community have been interested in the 

use of tools for teaching and learning since its foundation. Upon analyzing the official 

journal of The International Commission on Mathematical Instruction, ‘‘L’enseignement 

mathematique’’, from its creation in 1908, Maschietto and Trouche (2010) identified an 

association between the use of various tools and an experimental approach in 

mathematics teaching, including the idea of the mathematics laboratory. This approach 

continued with respect to the introduction of computers in mathematics lessons, and 

other digital technologies (including handheld calculators, software and the Internet), 

which allowed new opportunities for experimentation and for revitalizing the idea of a 

mathematics laboratory. 

The main components of a mathematics laboratory are the presence of tools that 

can be used for mathematical experiments or constructions (these were original 

concrete tools such as mechanical or digital calculators), the presence of an expert 

guide, and a good set of open activities proposed to students to carry out collaboratively 

(Maschietto & Trouche, 2010). Participating in such a learning environment, pupils 

construct meaning through open exploration of a given subject without time pressure.  

Following Seymour Papert’s proposition of microworlds, which were designed by 

drawing on the situated and embodied nature of cognition (Healy & Kynigos, 2010), 

researchers developed an interest in building and studying learning environments that 

might be described as a mathematical laboratory with digital tools. In these 

environments, digital tools were used to enable students to explore and make sense of 
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“difficult” mathematical concepts through their bodily interactions with the tools. The 

following list includes just a few examples of such contemporary works:  

• Nathalie Sinclair and her team study geometric objects developed through 
using dynamic geometry environments, that are “computer programs which 
allow one to create and then manipulate geometric constructions, primarily in 
plane geometry” (Rakov, Gorokh, & Osenkov, 2009, p. 278);  

• Maria G. Bartolini Bussi and Maria Alessandra Mariotti study number sense 
developed through using an e-pascal (a virtual counterpart of Pascal’s 
calculator);  

• Dor Abrahamson and his team study ratio developed through using a Wiimote 
(a remote-controller that allows the user to manipulate items on screen 
via gesture recognition).  

This dissertation focuses on one such kind of digital technology, which has 

emerged relatively recently—touchscreen technology. In particular, it concerns the iPad 

application TouchTimes (Jackiw & Sinclair, 2018), which was designed to help children 

develop a robust understanding of multiplication. This dissertation will investigate: (1) the 

affordances of this application to build meaning for multiplication and develop 

multiplicative thinking; (2) how a student creates meaning when the specific tasks 

created for this tool are introduced with corresponding pencil-and-paper activities; (3) 

how students’ multiplicative thinking emerges as they interact with/around TouchTimes 

(TT) collaboratively when they were given a specific multiplication task. Studying this 

technology from various, yet related angles, this dissertation follows a manuscript-type 

dissertation, or a dissertation comprised of “a compilation of research articles” (Paltridge 

& Starfield, 2007, p. 70) to thoroughly examine both TT’s potential affordances and its 

actual use in developing multiplicative thinking. 

With this introductory chapter, I aim to provide readers with sufficient background 

information for the following chapters that consists of three research articles. To do that, 

I introduce the rationales, conceptual frameworks, research questions, and overall 

methodological direction I employed, respectively. I finish this chapter by describing my 

positionality as a researcher and outlining the organization of my dissertation. 
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1.1. Rationales 

1.1.1. An Introspection of My Motivation  

My interest in educational tools dates back to my undergraduate studies in teaching 

mathematics. My professors emphasized the importance of active learning by using 

materials, so I was motivated to apply these ideas in my own classroom. However, this 

was challenging in Turkey because many schools privileged practicing test items to 

prepare students for national exams. Fortunately, I found a boutique private middle 

school where activity-based learning through material use was highly valued. As the only 

mathematics teacher in the school, I felt alone and lonely at the beginning of my 

teaching career. 

Designing effective mathematics tasks and introducing them in the classroom 

successfully was challenging, in part because I was not familiar with this type of learning 

myself. Upon watching how primary school teachers used materials in their mathematics 

lessons, I noticed that activity-based instructions with materials was open to different 

interpretations. Rather than using materials to build meaning for mathematical concepts, 

some teachers were using them only after they gave step-by-step instructions. Students 

were given various materials with various tasks to apply “freshly learned concepts”. In 

contrast, I was trying to incorporate the materials and tasks into students’ meaning-

making process. Even though I was having difficulties to design such a learning 

environment, the moments when I experienced the power of thinking with tools (Levy, 

1993, as cited in Villarreal & Borba, 2010) to learn mathematics motivated me to pursue 

a master’s degree in primary education.  

I still remember one such joyous moment when I prompted a student, who was 

known as “mathematically weak”, to figure out rounding numbers to the nearest tens. In 

order to explain this concept, I used a drawing as in Figure 1.1 and asked the student to 

imagine placing a ball on a number and seeing where it rounded. After she tried this 

method with different numbers, I witnessed the student’s excitement about figuring out 

rounding numbers. Then I decided to build a concrete model made of plastic water 

bottles to build the broken line and an actual ball which was rolled in the bottles. This 

way students could experience this method physically, rather than only imagining it 

mentally.  
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Figure 1.1. A re-enaction of my drawing for rounding numbers. 

My interest in educational material design continued during my master studies, 

this time intertwined with technology. I was introduced to the ideas of Seymour Papert, 

especially the concept of turtle geometry that grew out of the Logo Group at MIT. This 

concept inspired me to design, though only on paper as a course project, a digital tool 

(see Figure 1.2) that would help students develop an understanding of integers, 

including arithmetic operations on them, with which students have difficulty. 

 

Figure 1.2. The imagined interface of the digital tool I designed. 

Continuing my education as one of the Ph.D. students of Dr. Nathalie Sinclair, I 

was involved in a research programme called “Tangible Mathematics Learning”. This 

programme proposes to provide young learners with an intuitive and embodied interface 

via the touch-screen iPads enabling them to explore mathematical ideas and express 

mathematical understandings by using their fingers. It is closely aligned with the 

pedagogy I wish to enhance. Thus, working as a research assistant in this project, I 

carried my personal interest into another level by shifting from drafting plans for possible 

digital tools to studying a real educational tool called TouchTimes.  
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1.1.2. An Inspection of the Motivations behind TouchTimes 

TouchTimes is designed to mobilise the embodied nature of cognition, particularly in 

relation to research arising from these three aspects of embodiment: 

• a high correlation between spatial reasoning and mathematical achievement;  

• the positive impact of gesturing on students’ mathematical thinking;  

• the research areas that show the kinetic and temporal nature of mathematics. 

Drawing on these findings, TT aims to endow children’s understanding of 

multiplication with the representational power of their fingers. The following sub-sub-

section elaborates on these areas of research in embodied cognition.  

Spatial reasoning and mathematical achievement 

The title proposes a concept called spatial reasoning, yet the literature shows that there 

is not a standardized term for this phenomenon. Although terms such as ‘spatial skill’, 

‘spatial ability’, and ‘spatial thinking’ are related, the concept of ‘spatial reasoning’ draws 

attention to the inferencing nature of the activities such as imaging, transforming and 

locating. Thus, reasoning is preferred to the term “ability”, which implies an innate trait 

that cannot be changed through learning (N. Sinclair, personal communication, 

November 15, 2018). Indeed, research on spatial reasoning shows that it is malleable 

(Verdine, Irwin, Golinkoff, & Hirsh-Pasek, 2014; Zhang, 2016) and a hypothesis of the 

TT design is that it can draw on and support spatial reasoning.  

A related concept is that of visual-spatial skills, which Zhang (2016) defined as, 

“the ability to understand the visual-spatial relations among objects” (p.179). Rather than 

defining what it is, studies mostly explain what it does. For example, Verdine et al. 

(2014) stated that, “spatial skills support the process of representing, analyzing, and 

drawing inferences from relations between objects” (p. 39). Similarly, Al-Balushi and Al-

Battashi (2013) referred to spatial skills as involving “the retrieval, retention and 

transformation of visual information in a spatial context” (p. 14). Those descriptions 

associate spatial skills with manipulation of existing visual information. In addition, Lean 

and Clements (1981) emphasized “the ability to formulate mental images” (p. 267) as 

another aspect of spatial skills. 
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As the plural form of the term “spatial skills” implies, the phenomenon is 

separated into different categories. According to Linn and Petersen (1985, as cited in 

Zhang, 2016), there are three types of spatial skills: spatial perception, mental rotation, 

and spatial visualization. Spatial perception refers to “identifying spatial relations among 

task components in spite of distracting information” (p. 180). Mental rotation means 

“mentally rotating a 2-D or 3-D object” (p. 180). Spatial visualization denotes “processing 

complicated, multi-step manipulations, often analytical, of spatial information” (p. 180).  

Studies indicate a positive correlation between the spatial skills and mathematics 

performance for different age groups from university down to pre-school students. 

Battista, Wheatley and Talsma (1982) examined the relative importance of spatial 

visualization (yet another term!) for pre-service teachers’ achievement in a geometry 

course. They found that nearly a third of the variance in achievement in geometry exams 

is accounted to spatial visualization (operationalised as mental rotation). Guay and 

Daniel (1977) distinguished low spatial ability from high spatial ability and found that both 

are positively correlated with mathematics achievement of elementary school children 

(grade 5 to 7). Gilligan, Flouri and Farran (2017) investigated the predictive role of 

spatial skills on 7-year-old children’s performance on comprehensive mathematical 

topics. They found that spatial skills (operationalised as recreating 3D models) in age 5 

explained 8.8% variance in mathematics performance in age 7. Zhang (2016) found that 

the spatial perception (processing spatial relations between visual forms) was positively 

correlated with early number competence.  

Dehaene, Bossini, Giraux, and Pascal (1993) brought some explanation about 

the relationship between spatial reasoning and mathematical thinking. They identified an 

association between space and numbers. When participants were asked to classify 

numbers by placing them right or left based on a given rule (odd numbers to the right 

and even numbers to the left), the response rate was shorter for the large numbers that 

were placed on the right and the small numbers that were placed on the left. Dehaene et 

al. (1993) attributed this association to a mental number line, which might help learners 

in their calculations various ways (Marghetis, Núňez, & Bergen, 2014) However, this 

association between number and space was not universal. The direction of the 

aforementioned association between numbers and space reversed for the participants 

who are familiar with right-to-left writing. This shows how bodily acts may shape the 

conceptualization of mathematical objects by shaping the spatial reasoning (Newcombe 
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& Frick, 2010). The following section elaborates on this relationship by focusing on the 

gestures as a specific form of bodily acts.  

Gesturing and mathematical thinking 

Gestures are generally seen as a tool to represent ideas. For example, McNeill’s (1992) 

categorized gestures into four groups: beat gestures reflect the tempo of the speech; 

deictic gestures indicate directions or refer to something mentioned previously; iconic 

gestures represent an object; metaphoric gestures represent an abstract idea. Drawing 

on this typology, Alibali and Nathan (2012) proposed these gestures as strong evidence 

for the embodied nature of cognition. Deictic gestures manifest “a mapping between an 

abstraction and a more concrete, familiar referent” (p. 250). Pointing to the geometrical 

shapes drawn on a surface while explaining the relationships between their parts is an 

example for deictic gestures. Representational gestures, which have both iconic and 

metaphoric character, reflect “mental simulations of action and perception” (p. 252). For 

example, keeping one’s arm upward at an angle and moving it up and down while 

explaining the change in the slope of a line is described as a representational gesture. 

Metaphoric gestures manifest the conceptual metaphors that map abstractions to 

specific bodily experiences. For instance, Alibali and Nathan (2012) identified a hand 

making hops on a table as a gesture that manifested the conceptual metaphor of time as 

a movement in space.  

According to Radford (2009), the sole emphasis on the expressive role of 

gestures draws on the theoretical conceptions of thinking as a mental phenomenon. 

Instead, he conceptualized thinking as a material phenomenon that occurs through 

intricate interplay among language, body and tools. Therefore, gestures function as one 

of the “genuine constituents” of thinking, not only as its manifestation (Radford, 2009, p. 

113). In alignment with Radford’s conceptualization of gestures, Streeck (2009) defined 

them as: 

[…] a constantly evolving set of largely improvised, heterogeneous, partly 
conventional, partly idiosyncratic, and partly culture-specific, partly 
universal practices of using the hands to produce situated understandings. 
(p. 5) 

According to this definition, gestures are not only “in the air” forms of 

communication, but also “on the ground” forms of meaning-making. Sinclair and de 
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Freitas (2014) were particularly interested in indexical gestures and, following Peirce, 

their material nature. They drew on Charles Sanders Peirce, whose classification of 

signs was the basis of McNeill’s work, to recover the importance of the trace left by 

indices, such as the smoke that indexes the fire, or the footprint that indexes the 

passage of a human. Thus, in TT, a screen gesture, like tapping one’s finger, can index 

the increasing of the unit, but it also leaves a visible trace on the screen.  

When the gesture is used “in the air”, perhaps to explain to a classmate, then the 

gesture may no longer leave a visible trace. However, recent technology shows that 

even these in-the-air gestures may leave coloured traces, as in the case of the "1 Year 

to Go!" ceremony in 2019, where traces of an athlete’s movement were created (see 

Figure 1.3). These traces index the movement of the hand. I point this out as further 

evidence of the changing nature of signs as a function of technology, and the materiality 

of both communicative and meaning-making gestures. 

 

Figure 1.3. Capturing traces of gestures in the air. 
Credit: Tokyo 2021 Olympics one year ago ceremony "1 Year to Go!" Opening Performance 
(Tokyo Olympics 2020 Reloaded, Aug 2, 2019) 

There are several examples that illustrate how gestures participate in arithmetic 

thinking. Radford (2003) documented how one eighth-grade student identified a pattern 

between the consecutive figures in a sequence as he pointed the figures with his pencil 

and verbalized the arithmetic actions that reveals the pattern. This “crude pointing” 

gesture allowed the students to go beyond the given figures and to find the number of 

items in any specific figure (p. 47). In this particular case, the interaction between 

gesturing and speech was explained as a means of “making apparent the new relations 

and objects that needed to be put forward in the generalizing activity” (p. 65).  

https://en.wikipedia.org/wiki/Charles_Sanders_Peirce
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Marghetis, Núñez, and Bergen (2014) showed how hands participate in 

arithmetic operations. 44 undergraduate students were shown single digit addition and 

subtraction number problems (e.g., 4 + 3) and two responses in the top corners of a 

computer monitor. They were asked to select the exact solution among these responses 

by using a computer mouse. Their hand movements were recorded based on the 

streaming x, y co-ordinates of the computer mouse cursor. These recordings revealed a 

systematic deflection in hand movements; to the right during addition and to the left 

during subtraction. 

Berteletti and Booth (2015) provided neuroscientific evidence for the link between 

finger movement and arithmetic thinking, especially in subtraction and multiplication. 39 

children between eight and thirteen years of age were shown a subtraction or 

multiplication word problem and asked if the outcome was correct. During this task, they 

were in the fMRI scanner and responded by pressing a button. The results showed that 

finger motor areas in the brain were activated only during subtraction problems. Berletti 

and Booth (2015) attributed this to how these two operations were processed. While 

subtraction relies on quantity manipulation, multiplication relies on verbal retrieval, which 

indicates rote memorization of multiplication facts.  

Björklund, Kullberg and Kempe (2018) investigated how young children use their 

fingers to manipulate quantity during subtraction. In this study, 4–5-year-olds were given 

a word problem verbally and observed while they solve the problem. Researchers 

identified three roles of the fingers in solving the subtraction problem: (1) counting the 

fingers as single units; (2) structuring the parts and the whole; (3) combining these two 

functions together. They associated the success in subtraction with the second role of 

fingers, which allowed a simultaneous experience of parts and the whole. Children who 

used their fingers this way either showed the given part in the problem with their fingers 

by folding them and raising the remaining fingers at once, or vice-versa. This study 

supports Bender and Beller’s (2012) hypothesis about the role of fingers in learning 

mathematics. These authors documented the differences between the structures of 

several finger counting systems and proposed that a comparative study of finger 

counting systems might reveal important implications for their influence on 

understanding of various mathematical topics such as infinity, base system, and mental 

number line.  
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In light of the previous studies, the design of TT considers the generative role of 

fingers as constituent of cognition and aims to prompt learners to use their fingers in 

specific spatio-temporal configurations. This would allow students to experience 

multiplicative relationships and develop multiplicative thinking through their hands.  

1.2. Multiplication and Multiplicative thinking 

Multiplication is a mathematical concept first introduced in the early grades (2nd or 3rd 

grades) of the elementary school in British Columbia. At these grades, it is defined as an 

arithmetic operation on natural numbers. As the grade level increases, this same 

operation is also defined on other number sets such as rational numbers, irrational 

numbers, integers, and on various other mathematical objects such as functions and 

matrices. Moreover, this concept is important to gain understanding in other 

mathematical concepts such as proportion (Hino & Kato, 2019; Singh, 2000) and 

fractions (Hackenberg & Tillema, 2009). Therefore, it is important to understand this 

concept very well for future achievements in mathematics. However, studies show that 

students have certain difficulties with multiplication, not only to recall multiplication facts 

and compute multiplicative expressions, but also to solve word problems.  

Students in the lower elementary school tend to add the given numbers in 

multiplication problems, while in the upper elementary level, they tend to use 

multiplication inappropriately for the additive situations (van Dooren, de Bock & 

Verschaffel, 2010). The numbers given in the problems (van Dooren et al., 2010) and 

key words such as twice (Carrier, 2014) play a role on which operation students choose 

to solve the word problems. This shows that, rather than using the mathematical 

structures underlying the word problems, students respond to the mathematical tasks 

based on the superficial task characteristics.  

Some intervention studies demonstrated improvement in students’ achievements 

when they were faced with multiplication problems (e.g., Agaliotis & Teli, 2016; Bakker, 

van den Heuvel-Panhuizen, & Robitzsch, 2015; Zhang, Xin, & Si, 2013). However, even 

though a student can use multiplication algorithms properly in multiplicative situations, 

this does not guarantee that they are engaged in multiplicative thinking (Carrier, 2014), 

which is necessary to master the conceptual field of multiplicative structures (Vergnaud, 

1988). Vergnaud claims that, like other conceptual fields, the field of multiplicative 
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structures consists of, “a set of situations that make the concept meaningful, […] a set of 

invariants (objects, properties and relationships) that can be recognized and used by 

subjects to analyze and master these situations, and a set of symbolic representations 

that can be used to point to and represent these invariants and therefore represent the 

situations and the procedures to deal with them” (p. 141).  

He also proposed that a single concept usually develops not in isolation, but in 

relationship with other concepts. This explains why students who understand various 

elements of multiplication, such as factors and multiples, the commutative property of 

multiplication and the inverse relationship between multiplication and division, might 

have difficulty to make connections between these concepts (Hurst, 2017), due to a lack 

of familiarity with the multiplicative structures that emerge from the intricate relationships 

among these individual elements.  

Students are more familiar with additive thinking, in which they measure an 

amount of quantity by using a single unit-count and compare the amount of two 

quantities in terms of the difference, not the ratio, between them, which is also measured 

by the same single unit-count that measures both quantities.  

When students are given problems that can be solved both by additive and 

multiplicative approaches, they tend to approach the quantities additively. Upon facing 

quantities in the problems, they are more prone to focus on the difference and the sum 

between the quantities, rather than the multiplicative relationships among them 

(Degrande, Hoof, Verschaffel, & Dooren, 2018). In the former case, one structures the 

quantity based on a single unit count. In the latter, one needs to structure a quantity 

considering the intricate relationships between multiple unit-counts (more in Chapter 2).  

Figure 1.4 illustrates the differences between these two approaches to the 

quantity. 
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                  Additive Approach 

 

 

Multiplicative Approach 

 
Functional Relationship 

 

Figure 1.4. Additive and multiplicative approaches to structure quantity. 

Looking at the image of the apples in Figure 1.4, we can quantify them in two 

different ways. First, we can add 2 repeatedly four times. In this case the only quantity 

we play with is the number of apples which is represented by 2. We add them four times 

because there are four plates, but the number of plates is not visible in this equation, 

unlike the number of apples. So, the emphasis is on the apples. The unit we are 

counting with is 1 apple is represented in the model with the black dots.  

If we want to find the total number of apples by multiplying, we do something 

different. We multiply 4 by 2. In this equation, two different quantities are emphasized at 

once. Unlike in the additive case, 2 does not represent the number of apples, but the 

number of apples per plate, a relationship between the plates and the apples. Vergnaud 

(1988) called this a functional relationship. According to this relationship, one plate 

corresponds to two apples and this correspondence holds for each plate. Thanks to this 

relationship, we can calculate the total number of apples not by counting the apples one 

by one but by counting the plates. Davydov (1992) describes this situation as the indirect 

measurement of quantity through the transfer of unit count. In brief, when we think 
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multiplicatively, we simultaneously play with two distinct unit counts that have a 

functional relationship.  

Many school curricula (e.g., in British Columbia and Turkey) are aligned with 

Vergnaud’s notion of conceptual fields of multiplicative structures as they introduce 

multiplication to students in relation to various concepts such as skip counting, arrays, 

division and repeated addition. Among these concepts, the last one seems to be the 

fundamental concept on which multiplication is based.  However, an over-emphasis on 

the repeated addition model is thought to have a negative effect on students 

multiplicative thinking (e.g., Confrey, 1994; Greer, 1994; Maffia & Mariotti, 2018; 

Schwartz, 1988; Vergnaud, 1988).  

The association between multiplication and repeated addition was also very 

strong for me. When Dr. Sinclair asked me at our very first research meeting “what is 

multiplication?”, I immediately answered as “repeated addition”. Moreover, my early 

writings on multiplication included sentences like “multiplication is repeated addition”. 

Despite this association, which was suggested as a possible limitation in mathematical 

achievement, I consider myself mathematically literate (I successfully completed my 

mathematics classes and obtained high marks on the national exam). So, it seems that 

thinking of multiplication as repeated addition may not be so problematic. Either I 

managed to pass the exams based on my success in following and applying algorithms 

for multiplication or, as the above examples of apples show, my spatial skills, especially 

the spatial perception, helped me to bring forth two-unit counts (as the model on the right 

in Figure 1.4) even though I engaged with images (as apples on plates in Figure 1.4) 

that was most likely associated with the repeated addition model (as the model on the 

left in Figure 1.4). Based on the findings of this study, I am leaning to the second 

possibility and argue that it is not the model itself, but how learners engage with it that 

plays a role in building understanding.  

When the focus was on finding an answer to multiplication sentences, introducing 

multiplication through the repeated addition model may work well, because the solution 

to multiplication sentences can be obtained through repeated addition. This equivalence 

between the repeated addition and multiplication sentences might lead to the 

conclusions such that multiplication is a short-cut for repeated addition. Such 

conclusions only reduce multiplication to an algorithm, obscuring the underlying 
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multiplicative structures that are quite different from the relationships among the 

addends and the sum of an addition.  

When learning multiplication through the repeated addition model, some students 

might not have the opportunity to build a new approach to structure quantity 

multiplicatively, which is very important for understanding more advanced mathematical 

concepts in the upper grades such as linear functions, vector spaces and dimensional 

analysis (Vergnaud, 1988). The repeated addition model may assist in calculating the 

answer for the multiplication sentence, but it may not help them develop multiplicative 

thinking. Therefore, alternative models to repeated addition may be helpful.  

There are different representations suggested in the research literature as 

alternatives to the repeated addition model, such as arrays, double number lines or 

graphs (more in Chapter 4). In addition to using these static models, Kaput (1985) 

proposed presenting them on a computer screen simultaneously. This would help 

students make connections between the models by manipulating one of them and 

monitoring the change in all representations at once. Moreover, variations of all models 

would emphasize the invariant relationship between the two unit counts of multiplication. 

In alignment with, yet not limited to, Kaput’s proposition, this study examines how 

TouchTimes provides students with a means to develop multiplicative thinking by using 

their fingers to manipulate multiple representations of multiplication in a world that 

embeds multiplicative structures.  

1.3. Studying TouchTimes  

TouchTimes consists of two worlds called Zaplify and Grasplify (more detailed 

descriptions of these worlds are in Chapters 2 and 4). In the Zaplify world, learners can 

create horizontal and vertical lines that look like lightning rods which create orange 

sparks at the points where they intersect (see Figure 1.5a). The Grasplify world allows 

users to create a collection of individual circular discs with one hand and the multiple 

copies of this collection with the other hand simultaneously (see Figure 1.5b).  
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Figure 1.5. Making 3 x 4 a) in Zaplify, b) in Grasplify. 

I studied both worlds, but I am more attracted to Zaplify as a researcher for some 

cultural reasons. In particular, I made exciting connections between the terminology 

used for multiplication in Turkish and the interface of Zaplify, which illustrates 

multiplication with crashing lightning rods. The Turkish term for multiply is “çarpmak”. 

The word “çarpmak” means ‘to hit’, or ‘to crash’ in daily usage, which I associate with the 

crash between the lightning rods of Zaplify. Also, this Turkish word is used for electric 

shock, which I associated with the lightning rods of Zaplify. For example, the following 

sentence and its Turkish translation illustrate how this word is used in these contexts. 

He got an electric shock from one of the wires.  

Kablolardan birinden dolayı adamı elektrik çarptı. 

In the Turkish translation, “elektrik” is the subject of the sentence which hits (çarpmak) 

the person.  

Mustafa Kemal Atatürk, the founder of the Turkish Republic, translated this word 

into Turkish from its Arabic counterpart. The Arabic word for multiplication is “darp”, 

which also means ‘to hit’, or ‘to crash’. This association between multiplication and 

hitting may not be random. Indeed, the book Fleeting footsteps: Tracing the conception 

of arithmetic and algebra in ancient China (Lam & Ang, 2004) documents the 

multiplication algorithm step-by-step both in Chinese (sun zi suanjig, around the 3rd 

century AD) and in Islamic resources. The methods are very similar in both cultures. 

Interestingly, this method is devised by manipulating physical rods in China. Maybe this 
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is the reason why it is called “carpma” (to hit). In order to multiply the numbers, one must 

hit the relevant rods to each other to track the numerals used in the computation.  

This double meaning of the term “multiply” in these languages also reminded me 

of a multiplication technique that might indicate a relationship between this term and 

crash. In this method, which is sometimes referred as Japanese Multiplication Method, 

the numbers are represented with parallel line segments according to base ten. The digit 

places are identified by the space between the separate chunks of lines (see Figure 1.6). 

When a number is multiplied by another one, the line segments of one number are 

drawn in a way that they intersect with the line segments of the other number (see 

Figure 1.6). The digits of the product are obtained through the number of intersection 

points accumulated in different sections of the diagram (see Figure 1.6). Looking at this 

diagram, I imagine the intersection points as the places where the rods crash each 

other.   

 

Figure 1.6. 13 x 21 in Japanese multiplication method. 

In addition to this possible association between crashing rods and multiplication, I 

identified another resemblance between Zaplify and the Turkish terminology for 

multiplication. Unlike in English, the Turkish language has no separate terms for 

multiplicand and multiplier. They are both called “çarpan”, which phonetically means the 

object that hits. I associated this with the symmetric nature and functioning of lightning 

rods in Zaplify. Unlike in the Grasplify World, each hand creates the same type of 

objects, but in different orientations.  

All of these associations prompted me to conduct some research in Turkey to 

study the relationships between language, multiplication models and multiplicative 
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thinking. I collaborated with an elementary school teacher for six weeks to teach second 

graders multiplication. In the mornings, she introduced the topic the way she used to do 

in previous years. In the afternoons. I gave students relevant Zaplify tasks to work in 

small groups. In between, we either debriefed about our lessons or planned the next 

lessons. When we talked about the affordances of Zaplify in one of these meetings, one 

of her first responses was about how Zaplify can create models faster than drawing them 

on the board.  

TT definitely allows users to create numerous multiplication sentences in a short 

time, yet it consists of other important affordances. However, its interface might obscure 

them from the user. The two worlds of TT might first recall two different static 

representations of multiplication: equal groupings and arrays, respectively. Therefore, a 

new technology, which looks like the virtual counterpart of the existing concrete models, 

including the drawings on paper, might raise the following questions: Why do we need 

this? Cannot we do the same with the concrete models? I encountered these questions 

multiple times in different contexts and they led me to study the similarities and 

differences of engaging with the same model in two different settings, computerized and 

non-computerized. In the first article I included in this dissertation, I use the Theory of 

Semiotic Mediation (TSM) to study some important differences in how students use their 

bodies to create the same model in distinct settings and how these differences might 

potentially result in different meanings.  

After the computerized artefacts are introduced into the classrooms, their 

implications are discussed in contrast to non-computerized artefacts, prompting teachers 

to choose one over the other. Even the mathematics textbooks and some educational 

magazines participated in this debate through the images they used (see Figure 1.7). 

The image on the left depicts “a rather unintelligent-looking man holding a calculator” 

(Villarreal & Borba, 2010, p. 57) and it possibly reveals a negative attitude towards 

calculator for learning arithmetic operations. On the other hand, the image on the right 

(see Figure 1.7) illustrates a classroom where a classmate is accused of using pencil-

and-paper which is to be considered inappropriate (Villarreal & Borba, 2010). 
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“Teacher, Gonzalez is using pencil and 
paper!’’ 

Figure 1.7. Images represent the debate between pen and paper and computer 
use. 

Maschietto and Soury-Lavergne (2013) shifted this debate. They proposed that 

introducing a digital artefact with its physical counterpart may enrich students’ 

experiences and prompt them to transfer schemes from the physical artefact. Thus, it 

may extend students’ learning experiences by raising an awareness of the epistemic 

value of their actions with the physical artefact. This assumption about how the duo of 

artefacts extend students’ learning enforces a specific order to introduce the duo to the 

students: first the physical artefact and then its digital counterpart. This order might 

withhold the affordances of the physical artefacts, which the digital counterpart cannot 

provide.  

In the second article, drawing on TSM, I studied how one learner built meanings 

by interacting with a duo of artefacts that was introduced in a cyclical manner (digital-

physical-digital-physical…). The findings show that the reciprocal transfer of signs from 

one medium to the other allowed the student to enrich the meaning she or he created for 

multiplicatively structured quantities in TouchTimes.  
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TSM hypothesises that students learn mathematics by creating specific signs 

while they manipulate mathematical artefacts in a social context (more on this in the next 

section). So, in my first two articles, this theory helped me identify which signs were 

created. However, it did not assist me to understand the processes that led to these 

signs that can foster a specific way of mathematical thinking in these interactions. The 

third study examines this process by drawing on enactivism (more on this in the next 

section) and sheds some light on how signs emerge and how various bodies participate 

in one’s learning process.  

1.4. Theoretical Underpinnings  

Since computerized technology entered the classrooms, many theoretical frameworks 

have been used to study learning mathematics with technology (Drijvers et al., 2010). 

Some theoretical constructs were adapted from existing higher order theories used in 

mathematics education (e.g., cognitive, sociocultural and enactivist theories) and tailored 

for investigating mathematical learning and teaching within technological environments 

(e.g., webbing and situated abstraction, milieu, perceptuo-motor integration, semiotic 

mediation). The multiplicity and isolated use of these theoretical frames started to raise 

some concerns among researchers for being an obstacle to explain all phenomena in 

the complex setting of learning mathematics in a technology-rich environment  (Artigue & 

Mariotti, 2014; Donevska-Todorova & Trgalova, 2018; Drijvers et al., 2010).  

 These concerns indicate a movement towards networking theories in the 

mathematics education research. So, I draw on various theoretical constructs to study 

different aspects of mathematics learning with/around TT. I chose these constructs both 

from a grand frame that explains learning in general, and from an intermediate frame 

that explains learning mathematics by using a tool (Kieran, Doorman, & Ohtani, 2015). 

These theories are enactivism (Maturana & Varela, 1987) and the theory of semiotic 

mediation (Bartolini Bussi & Mariotti, 2008), respectively.  

1.4.1. Enactivism 

I first encountered enactivism during Dr. Alf Coles’ seminar at Simon Fraser University in 

2018. The seminar was about re-imagining mathematics pedagogy from an enactivist 

standpoint. An image in his slides immediately attracted my attention back then (see 
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Figure 1.8) and I still remember it after three years. The image was depicting a 

bacterium’s movement with and without sugar molecules in the environment. It was 

unusual to see that learning, which is a phenomenon that is mostly attributed to humans, 

was explained by referring to a one-cell organism’s behaviour. 

 

Figure 1.8. Chemotaxis of a bacterium. 
Credit: https://thisscienceiscrazy.wordpress.com/tag/random-walk/ 

This reference to a bacterium’s movement to explain learning makes me very 

excited because this perspective supports my personal beliefs about animal intelligence. 

I always found it unfair that complex animal behaviour like bees constructing hexagonal 

structures are mostly associated with genetic coding but not cognition. In a way this 

association creates a hierarchical relationship between animals and humans, favouring 

the latter. Seeing the image that acknowledges a bacterium’s behaviour as an example 

of cognition, I become interested in enactivism as explained by Maturana and Varela 

(1987). 

According to enactivism, living beings have specific organizations and structures. 

Organization is “the relations that must exist among the components of a system for it to 

be a member of a specific class. Structure denotes the components and the relations 

that actually constitutes a particular unity and make its organization real” (Maturana & 

Varela, 1987, p. 43). Organization is specific to a class of unities, while structure is 

specific to a particular unity within the class. For example, when we talk about a person, 

we distinguish the person as a member of the class of human beings, as we recognize 

the parts of her/his body and the interaction within that body that keeps the person alive 

and makes her/him human. However, the specific features of the structure of the person, 

such as her hair colour, height, and weight, do not change her/his humanness.  
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Living beings are autopoietic unities which are organized in a way that they 

maintain their existence by changing their own structure in relation to their environment. 

In this relationship, the changes in the environment might trigger some changes in the 

structure of the organism. Even though this change in the organism’s structure is 

triggered by the environment, the organism’s structure itself determines the range of its 

changes. Similarly, these changes in the structure of the organism can trigger some 

changes in the environment. If these reciprocal changes maintain living being’s 

existence, organism’s actions are described as effective and they indicate learning. This 

process of structural congruence between the organism and its environment is called 

structural coupling.  

Varela, Thompson, and Rosch (1991) based enactive approach on two 

underlying premises:  

• “perception is consisted in perceptually guided action; 

• cognitive structures emerge from the recurrent sensorimotor patterns that 
enable action to be perceptually guided" (p.173).  

Even though these premises were not explicitly stated in Maturana and Varela (1987), I 

can relate them to how they explained the bacterium’s movement towards sugar based 

on the entanglement between action and perception and the emergent nature of 

cognitive structures. The flagellum of the bacterium is a tail-like structure that extends 

out from the base of the cell. It rotates in two directions. While bacterium moves forward 

as the flagellum rotates in one direction, the organism tumbles at the same place as it 

rotates on the opposite direction. The membrane of the bacterium has special molecules 

that are susceptible to sugar molecules. When there is a change in the sugar 

concentration around the bacterium, the cell structure changes because of the 

interaction between the bacterium’s membrane and the sugar molecules, rotating the 

flagellum in a different direction.  

 This correlation between the sensory and motor surface of the bacterium is 

recurrently established at each moment and allows the emergence of a discriminatory 

behaviour as the bacterium heads towards the sugar. Thus, as the bacteria cognizes the 
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sugar, it acts effectively to approach the sugar1. Even though I write the account of this 

correlation between the sense and the motor surfaces in a chronological order, it occurs 

simultaneously. The sense and motor surfaces are not discrete structures that function 

sequentially. They are opposite ends of a continuous structure. While this continuity is 

straightforward in one-cell organisms, in more complex organisms, it is maintained 

through the complex neural system.  

The enactivist premise on the emergent nature of cognitive structures shifts the 

acquisitionist approach of learning to a more participationist one. Rather than 

emphasizing the constructed mental structures of learners, it associates knowing with 

doing and being. As the -ing form in “knowing” indicates, learning is conceptualized as 

an activity that happens in the present, as opposed to the noun “knowledge” that 

implicates a fixed mental entity acquired by learners. Therefore, enactivism 

acknowledges the body as one of the constituents of learning. This approach has 

recently been adopted by many researchers in the field (for examples, see Chapter 4).  

Adopting an enactivist approach in my research is an experience that emotionally 

influences me. Coming from a constructivist tradition, I was always uncomfortable to 

study schemes which are operationalized as invisible mental structures that cannot be 

observed but can be inferred from learners’ verbal accounts or from their techniques, “a 

manner of solving a task” (Artigue, 2002, p. 248). Theorizing cognition as an effective 

action helps me feel a bit at ease because it allows me to study learners’ actions not as 

the representation of their mental schemes but as the constituent of their learning. Even 

though both participationist and acquisitionist approaches study the observable actions 

to examine learning, differences in the epistemological approaches might result in 

distinct educational goals and curricular requirements (Drijvers et al., 2010). For 

example, considering techniques as generative, not representative, elements of learning 

may encourage curriculum designers to hold bodily activities as the main requirements 

of mathematics lessons.  

 

1While accounting for cognition, Maturana and Varela are very careful to distinguish the operation 
of an organism from an observer’s semantic description of the behaviour. While moving its 
flagellum according to the sugar concentration is the operation of a bacterium, labelling this 
behaviour as ‘approaching sugar’ is an observer’s semantic description of the bacterium’s 
movement. 
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Whether seen as the counterparts of schemes or not, techniques are found to be 

essential in learning because “technical and conceptual aspects are closely related” 

(Drijvers et al., 2010, p. 110). For example, one can draw a circle either by 

circumscribing a bottle cap or by turning the unfixed end of a compass around its fixed 

end. However, the user experiences the constant distance between the centre and the 

circumference of the circle only with the second technique which may allow the user to 

perceive circles as the collection of points equidistant from a fixed point (Bartolini Bussi 

& Mariotti, 2008). However, this connection between the technical and the conceptual is 

not trivial.  

Researchers have proposed various theoretical metaphors to explain this 

connection. According to sociocultural perspectives, a more knowledgeable person acts 

like a scaffolder and enables learners to achieve a task that they would not be able to 

accomplish alone (Wood, Bruner, & Ross, 1976). In addition to an adult’s scaffolding, 

tools play an important role to mediate higher forms of mental activity including 

mathematical ideas (Vygotsky, 1978, as cited in Bartolini Bussi & Mariotti, 2008,). Noss 

and Hoyles (1996) criticized these two metaphors for attributing agency to the entities 

external to the learner and proposed another metaphor called webbing. It is a support 

mechanism that learners can draw on to understand mathematical concepts. It is made 

of connections embedded in the structure of an environment. However, rather than a 

physical phenomenon, it denotes a cognitive construct that is a product of learners’ and 

others’ (for example the designers of the setting) current understanding of it. Thus 

‘webbing’ acknowledges the agency of learners and that of the environment.  

 According to Mariotti (2002), these metaphors effectively highlight the potential 

of an artefact in learning mathematics, yet fail to explain the complete story of how and 

why these tools enable learners to access mathematical ideas. Based on this concern, 

Bartolini Bussi and Mariotti (2008) proposed the theory of semiotic mediation (TSM) 

which integrated Rabardel’s instrumental genesis with Vygotsky’s approach to artefacts 

to elaborate on the link between artefacts and mathematical knowledge (more 

explanation in Chapter 2).  
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1.4.2. The Theory of Semiotic Mediation 

According to Rabardel (1995, as cited in Bartolini Bussi & Mariotti, 2008), an artefact is a 

concrete or symbolic object. When it is used in a specific way to achieve a specific task, 

an instrument emerges. The instrument is a psychological construct that consists of the 

artefact and individual schemes for a given task. The transformation of artefacts into 

instruments is called instrumental genesis and it consists of two processes: 

instrumentation and instrumentalization. The former refers to the emergence of 

utilization schemes; the latter refers to recognizing different components of the artefact. 

These processes are subject to the characteristics of the context within which the 

artefact originates.  

Individuals may transform several artefacts into mathematical instruments if they 

get into a situation where they need to use mathematical relationships. For example, 

during the Covid-19 pandemic, protecting social distance in the community parks has 

become the responsibility of the local governments. I saw some municipal workers using 

a string which was tied to a stake and a paint brush at the opposite ends to enclose a 

circular area with 2 metre diameter. The fixed length of the string and the fixed location 

of the stake seems to have become salient for these people and spur them to combine 

these artefacts to enclose an area whose boundary is exactly 1 metre away from the 

location of the stake at each point. Thus, the bundle of string, the stake, and the paint 

brush became a tool (like a compass) to draw circles in the parks during the pandemic.  

An artefact may be associated with mathematical concepts that are already 

familiar to its user as in the previous example. Artefacts can also be used to help users 

access mathematical concepts that are novel to them. According to the theory of 

semiotic mediation (Bartolini Bussi & Mariotti, 2008) this happens when individuals 

collaboratively manipulate an artefact that embeds mathematical relationships (more 

explanation in Chapters 2 and 3). As students use tools to solve a task, they create 

some signs both to manipulate the artefact in a specific way and to communicate with 

others. These signs are firstly related to the specific aspects of the artefact, thus enable 

students to create a personal meaning for the artefacts. Then these signs evolve into 

signs that are related to mathematical knowledge shared by the mathematical society 

(see Figure 1.9).  
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Figure 1.9. Accesing mathematical concepts through artefacts. 
Credit: Maffia & Mariotti (2020, p. 27). 

Evolution is a term that I feel comfortable to use in a biological context. It is 

defined as “change in the heritable characteristics of biological populations over 

successive generations” (“Evolution”, 2020). However, seeing this term in relation to the 

TSM challenged my familiarity with the concept. Does ‘the evolution of signs’ mean that 

individuals first create only artefact signs and then create only mathematical signs? Or is 

it the change in an individual’s phenomenological experience with respect to the created 

signs such that the same sign first refers to the use of an artefact and then to the 

mathematics culture? Or is it the creation of mathematical signs in addition to artefact 

signs and using them in relation to each other? Since, according to TSM, the evolution of 

signs is key to learning mathematics, I have found it important to ask the right question 

to understand this theory correctly. 

An important question posed in Mariotti (2009) directed my attention to learners’ 

phenomenological experiences to explain the process of evolution: “how may personal 

meanings arising from the use of a certain artefact for the accomplishment of a task 

become mathematical meanings for students?” (p. 429). For a meaning to change, the 

interplay between the signs should also change because TSM does not make a strict 

separation between signified and signifier, and rejects the assumption that meanings 

exist independent from their signifiers (Mariotti, 2009). Therefore, it is important to 

understand how signs are created. At this point, TSM draws on Vygotsky’s theoretical 

constructs of internalization and mediation (Mariotti, 2007).  

According to Vygotsky, signs are the products of the process of internalization, 

which is described as the individual elaboration of previous socially lived experiences. 



26 

Social cognitive functions that are active in collaboration become internal cognitive 

functions through internalization.  

Even though this description emphasizes social activities as the prerequisite for 

meaning making and cognitive development, Vygotsky refers to a specific type of social 

experience in which the interlocutors have different statuses. There must be a 

collaboration between “one individual, whose cognitive attitude presents a potential in 

relation to change, and another individual (or a collectivity) who intentionally cooperate 

to accomplish a task or to pursue a common aim” (Bartolini Bussi & Mariotti, 2008, p. 

749). In other words, individuals develop higher cognitive functions as they collaborate 

with more knowledgeable interlocutors. During this collaboration, signs are used both to 

accomplish a task and to communicate. It is the latter aim that contributes to the 

cognitive development because individuals must interpret the signs created by others 

and respond to them appropriately to communicate. Therefore, the system of signs and 

semiotic processes constitute the basis for internalization.  

For internalization to happen, certain semiotic processes must be stimulated. 

Considering mathematics learning, TSM suggests that this stimulation is achieved by the 

semiotic mediation of the artefact and the cultural mediation of teachers. Both mediation 

processes involve a mediator whether semiotic or cultural, a learner that is subjected to 

mediation and circumstances for mediation such as the means of mediation and the 

location in which mediation occur.  

A teacher uses an artefact as a semiotic mediator as long as the tool can evoke 

both personal and mathematical meanings. Such tools are said to have a semiotic 

potential. Even though an artefact has such a potential, as a cultural mediator, the 

teacher plays a central role in the evolution of mathematical meanings from personal 

meanings by unfolding the potential of the artefact through certain activities. TSM 

categorizes such didactic activities into three groups that should be conducted 

respectively in a cyclical manner.  

The didactic cycle starts with the introduction of an artefact and a task to 

students. The students use the artefact to solve the mathematical task collaboratively in 

small groups. This type of social activity promotes the emergence of artefact signs 

during the achievement of the task. The second phase of the didactic cycle requires that 
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the students individually engage in specific semiotic processes by producing and 

recording signs related to the use of the artefact, such as writing a reflection on the 

activities conducted at the previous phase. Even though the signs created in this phase 

are related to the use of the artefact, as in the previous phase of the didactic cycle, this 

semiotic process is described as “a first detachment from the contingency of the situated 

action” (Bartolini Bussi & Mariotti, 2008, p. 755).  

According to TSM, keeping a notebook plays a key role in the evolution of signs 

because the written record of the signs makes them permanent objects, which can be 

offered as an artefact in the following semiotic activities to create a semantic link to 

mathematical signs. It is the last phase in which the teacher facilitates the evolution of 

signs by conducting mathematical discussions that stimulate the collective production of 

signs. These discussions promote a cognitive dialectics between artefact and 

mathematical signs. Therefore, it is described as the core of the semiotic processes that 

constitute the basis of the teaching and learning.   

The teacher initiates certain didactic moves to facilitate the evolution of 

mathematical signs during mathematical discussions. These didactic moves consist of 

two pairs of actions: the “back to the task” / “focalization” pair, and the “ask for a 

synthesis” / “provide a synthesis” pair. The first pair of actions has two aims: promoting 

the students’ production and sharing of artefact signs and directing the students’ 

attention only to the ones that have potential to evoke mathematical signs. One typical 

example of a “back to the task” move is asking the students how they accomplished the 

task by using the artefact. Responding to this question, the students might create 

various artefact signs some of which do not demonstrate a potential to be linked with 

mathematical signs. At this point, the teacher “focalizes” the discussion by selecting the 

pertinent aspects of using the artefact and by directing the students’ attention to them.  

While “back to the task”/ “focalization” moves can help students to collaboratively 

construct shared and stable artefact signs, the “ask for a synthesis” / “provide a 

synthesis” pair promotes the detachment of these signs from the artefact context. 

Prompting the students to generalize their personal meanings that cling on the use of the 

artefact is one way of facilitating this detachment. Generalizations are made with pivot 

signs, which are related to artefact use but at the same time have potential to be linked 

to the target mathematical signs. Therefore, this second pair of actions stimulates the 
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production of pivot signs. The “ask for a synthesis” action prompts the students to make 

a synthesis of the discussion up to a certain point and the students respond to this 

request by using pivot signs as they make generalizations. Then this generalization is 

reformed and fixed by the teacher’s integration of the standard mathematical terminology 

into students’ generalization. The teacher thus “provides a synthesis” for the 

mathematical discussion.  

Even though the notions of internalization and mediation are introduced to 

explain the process of sign production, they seem to be more successful in disintegrating 

an event into discrete chunks that is responsible for the creation of signs instead of 

unearthing a continuous process. For example, mediation is explained through the 

separation between the mediator, learner, and the conditions of mediations and the 

mediated. As evident in the main activities of didactic cycle, teacher mediates certain 

student actions. However, it does not explain how these actions emerge.  

Similarly, internalization is explained through a movement from external to 

internal. However, it does not explain how that movement happens. Instead of studying 

each chunk and their role separately, examining the process as a whole by focusing on 

the bi-directional relationships among them might shed more light on the process which 

starts with the learners’ encounter with an artefact and ends with the emergence of signs 

that can be associated with the targeted mathematical concepts.  

1.4.3. An Alternative Approach to Networking Enactivism and TSM 

There have been several attempts in the literature to explain internalization by disrupting 

the external-internal separation. They focus on the individual experiences that are 

guided by cultural artefacts and social settings (Zittoun & Gillespie, 2015). Even though 

this attempt to reinterpret the process of internalization might challenge its dualistic 

nature, explaining it by clinging on to a theory that is built on this very separation may 

not break the dualistic habits entrenched within its main constructs. The term 

“internalization” itself promotes a separation between “in” and “out” of a person. At this 

point, I took a diffractive approach (Jackson, & Mazzei, 2012) and read TSM through 

enactivism by interpreting the constructs of TSM based on the enactivist premises which 

explain cognition by focusing on the inseparable link between organisms and their 

environments (see Figure 1.10 for a pictorial depiction of this link).  
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Figure 1.10. Union of organism and environment. 
Note: The Image is from Maturana and Varela (1987, p. 240). 

In Chapters 2 and 3 there is no explicit reference to enactivism but I used some 

notions of TSM with an enactivist interpretation. For example, instead of analyzing the 

utilization schemes as mental constructs stored in the mind, I focused on the emergent 

bodily actions as the constituent of artefact signs. In Chapter 4, instead of 

operationalizing multiplication knowledge as an immaterial object to be accessed 

through internalization, I consider the sensorimotor-integration (as per Nemirovsky, 

2013) as one aspect of multiplicative thinking. This notion focuses on the individual and 

does not explain the social aspects of learning as emphasized by the Vygotskian notion 

of mediation. However, instead of operationalizing the teacher’s contributions to 

students’ tool use as mediation, I identified these instances as “social coupling2” 

(Maturana & Varela, 1987, p. 188) among  the people.  

The theory of didactic situations (TDS) and activity theory also acknowledge this 

relationship between the learners and the environment, yet each of them situates the 

environment differently (Drijvers et al., 2010). While the environment acts like an 

antagonist to the subjects according to TDS, activity theory describes it as cooperative 

with the learner. Unlike TDS and activity theory, enactivism does not attribute any 

agenda either to the environment or to the organism. One does not adapt to the other. 

They co-evolve as long as they coupled structurally.  

 

2 This phrase is used interchangeably with the phrase “third-order coupling” (see Maturana & 
Varela, 1987, p. 268). I think “social coupling” transmits the social aspect of the phenomenon 
more explicitly to the reader. Therefore, I chose to adopt it in my writing.  
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Drijvers (2019) also proposed networking the theories of embodied cognition and 

instrumentation, which is an important part of TSM, in a complementary manner. This 

way, one can address the aspects of learning that have not been focused on by the 

other. According to him, the former theory has not particularly concerned about the 

convergence of tool techniques and conventional mathematical notions, whereas the 

latter one tended to neglect the embodied nature of cognition. Thus networking them 

“reconcile[s] the embodied nature of instrumentation schemes and the instrumental 

nature of sensorimotor schemes” (Drijvers, 2019, p. 16).  

This complementary approach is inspiring for me to examine learning more 

comprehensively, yet at the same time it is challenging because it prompts me to accept 

distinct epistemological assumptions simultaneously. The operationalization of schemes 

as mental phenomena seems to be a barrier for this reconciliation from the beginning as 

embodied approaches oppose to the dualism between the mind and the body. So rather 

than bringing these theories together with their assumptions, reading TSM through an 

enactivist lens allowed me to re-operationalize some theoretical constructs of TSM 

based on the enactivist premises. Thus, this process made the reconciliation between 

the two theories epistemologically compatible for me and helped me answer the 

following main question in this dissertation: 

How does multiplicative thinking emerge around/with TouchTimes?  

Learning mathematics in a technology-rich environment can be studied from many 

different points of view. Therefore, I focused on a different aspect of the setting in each 

study comprising this dissertation. As a whole, they enabled me to answer the above 

question through a three-dimensional examination as explained below.  

1.5. An Overview of the Studies 

In the first study, I examined how TT, particularly Zaplify, can contribute to students’ 

multiplicative thinking in a way that differs from a pencil-and-paper environment. The 

theory of semiotic mediation proposes that if an artefact mediates both personal 

meanings related to the achievement of a task and mathematical meanings related to 

the target mathematical concepts, it has a semiotic potential. Therefore, I analyzed the 

semiotic potential of Zaplify by focusing on its potential. Since the interface of Zaplify has 
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some features that are similar to arrays, which can be drawn with pencil-and-paper, I 

also analyzed the semiotic potential of pencil-and-paper. This dual analysis helped me 

understand the unique participation of Zaplify in students’ opportunities for meaning 

making.  

In order to conduct the analysis of semiotic potential, I designed a specific task 

and recorded my actions as I solved the task in these two different settings. My 

interactions in these two settings resulted in two images that modelled the same 

multiplicative situation in the task. Even though these models looked similar visually, I 

discussed how the differences in the actions that created these models can contribute to 

students’ meaning-making process in a unique way.  

In the second study, I examined how a 5-year-old child identified multiplicative 

relationships while reciprocally using a duo of artefacts introduced in the first study, 

pencil-and-paper and Zaplify. Drawing on the theory of semiotic mediation and using 

Arzarello, Paola, Robutti, and Sabena's (2009) synchronic and diachronic analysis of 

semiotic bundles3, I studied the relationship between the signs the child created in two 

different settings and argued that the reciprocal use of the artefacts enriched the child’s 

experiences of Zaplify, allowing him to extend his understanding of multiplicative 

relationships embedded in TT.  

In this second study, the child engaged with Zaplify in a social setting. He was 

interacting both with his father and with the researcher as he manipulated TT. These 

individuals did not manipulate TT, but as “more knowledgeable” ones they directed the 

child’s attention to specific features of Zaplify by verbal exchanges.  

In the third study I examined how a third grader learns to structure a given 

number in a multiplicative way while collaborating with a “not more knowledgeable” peer 

with/around TT under the supervision of the researcher. In this study, students used the 

other world of TT, Grasplify. Although its interface is very different from Zaplify, the 

underlying design principles of each world are mostly shared. For example, the iconic 

and symbolic signs are simultaneously presented in each world. It is an important 

 

3 “A system of signs—with Peirce’s comprehensive notion of sign—that is produced by one or 
more interacting subjects and that evolves in time” (Arzarello, Paola, Robutti, & Sabena, 2009, p. 
100). 
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feature for learning multiplication because the simultaneous transfer of changes across 

the representations helps learners understand the invariant nature of functional 

relationships between the multiplicative factors (Kaput, 1985).  

The analysis of the data was framed by the enactivist notions of distinctions, 

structural and social coupling. This approach focuses on the interactions between the 

individuals and their environment allowing me to understand how learning mathematics 

by using technology emerges as the students collaborate with both “more” and “not 

more” knowledgeable individuals. I discussed how others’ bodies participate in one’s 

learning and presented an alternative argument to Kaput’s (1985) proposal.  

1.6. Methodological Considerations 

I was interested in the emergence of multiplicative thinking around/with TT across all the 

articles of this dissertation. Therefore, in addition to the users’ target actions that I 

identified as multiplicative, I focused on the learning processes “[that] contribute[s] to 

such a development before the target action has been established” (Shvarts, Alberto, 

Bakker, Doorman, & Drijvers, 2021, p. 456). Learning is an ongoing process, so it is 

impossible to pinpoint a specific point in time as the beginning of multiplicative thinking. 

Similarly, it is not meaningful to state that multiplicative thinking is completely developed 

at a specific point in time of an individual’s life. Considering this, I studied the process 

which started with an individual’s encounter with TT and ended with the emergence of 

the target actions. The ontological and epistemological assumptions I presented in the 

previous section directed my focus onto the learning process and informed the 

methodological approaches I adopted.  

All three studies in this dissertation are aligned with Hatch's (2002) 

characterization of a qualitative study. Hatch provided a list of characteristics by 

synthesizing several widely cited sources on qualitative work, yet he stated that this list 

does not constitute a norm that each qualitative study should follow. Rather, he 

proposed this list as a way to understand qualitative research in relation to more 

traditional forms of scholarship. Below, I present this list and explain how the three 

studies of this dissertation are aligned with it. According to this list, qualitative methods 

have the following characteristics:  
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1. “The intent is to explore human behaviours within the contexts of their natural 

occurrence” (Hatch, 2002, p. 7).  

In this dissertation, my aim was to study how children engaged with TT to solve 

specific TT tasks. One study examined a child’s interaction with TT at his home. The 

other study examined two children’s interaction at school, separate from the rest of their 

classmates. In both cases, the children were with a researcher who interacted with them 

while they manipulated TT. Even though these instances may be considered as artificial 

settings arranged by the researcher to create data, the interactions between children 

and the researcher is authentic to classroom activities, which happen when teacher 

initiates a mutual inquiry with students about their class work (diSessa, 2007).  

2. “It is axiomatic in this view that individuals act on the world based not on some 

supposed objective reality but on their perceptions of the realities that surround 

them. […] Qualitative research is about understanding the meanings individuals 

construct in order to participate in their social lives” (Hatch, 2002, p. 7&9). 

I found these characteristics as being aligned with enactivism’s assumption that 

there is not “the reality”—rather, individuals bring forth their own realities. Following this 

assumption, I aimed to understand what relationships children bring forth out of their 

interaction with/around TT, instead of asking to what extent children can represent 

multiplication.    

3. “Data take on no significance until they are processed using the human 

intelligence of the researcher” (Hatch, 2002, p. 7). 

In all three studies, I created the data as a result of my intellectual engagement 

with the video-recordings of events. For example, a video segment as a collection of 

pictures became the data as soon as I made sense of the graphics: I described the 

accumulation of lights with different frequencies on the screen as pips (one of the 

Grasplify objects).    

4. “Researchers […] must spend enough time with those participants in those 

contexts to feel confident that they are capturing what they claim” (Hatch, 2002, 

p. 8). 
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Enough time is a vague expression, so it is open to interpretation. Rather than 

taking time as a criterion, I considered the amount of interactions observed by the 

researcher as a measure of credibility of the researcher’s claim. Thanks to the nature of 

TT, which allows users to create countless interactions with different quantities in a short 

period of time, I observed enough interactions to make sound interpretations, but I don’t 

claim to “capture” the reality.  

5. “Qualitative methods provide means whereby social contexts can be 

systematically examined as a whole, without breaking them down into isolated, 

incomplete, and disconnected variables” (Hatch, 2002, p. 9). 

I find this characteristic relevant to enactivism’s emphasis on the inseparable link 

between the organisms and their environment. In my analysis, I interpreted the events 

considering wholeness and the complexity of the context (both social and material).  

6. “Qualitative research is as interested in inner states as outer expressions of 

human activity […] Researchers concentrate on reflexively applying their own 

subjectivities in ways that make it possible to understand the tacit motives and 

assumptions of their participants” (Hatch, 2002, p. 9). 

The studies of this dissertation do not fully reflect this characteristic. I did not 

distinguish inner states from outer expressions. Rather, I considered the human actions 

as the very essence of the individual’s motives. 

7. “The overall pattern of data analysis in qualitative work is decidedly inductive, 

moving from specifics to analytic generalizations” (Hatch, 2002, p. 10). 

My analysis reflects an opposite nature: I started with the theoretical constructs 

and interpreted the events deductively based on them. Thus, I intend to unpack the 

process of children’s engagement with TT based on specific assumptions of the 

theories.  

8. “Reflexivity [to keep track of one’s influence on a setting, to bracket one’s biases, 

and to monitor one’s emotional responses] […] is essential to the integrity of 

qualitative research” (Hatch, 2002, pp. 10-11). 
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There are different types of qualitative research methods. The three studies 

included in this dissertation use videography (Knoblauch, 2012) as a method to analyze 

people acting in social settings by video. This method is similar to ethnography as it 

addresses the conduct of people in their natural environments; and audiovisual 

observation is the core activity of this method. However, it differs from ethnography in 

three aspects. While ethnographical studies require longer periods of fieldwork, data 

collection is shorter for a videography. 

The lack of intensity in data collection of videography might be criticized by 

others for being superficial. However, videographies create huge amount of data which 

requires intensive and detailed data analysis, unlike the conventional ethnographies 

based on written records. Lastly, ethnographies focus on larger, locally distributed social 

structures. In contrast, a videography encompasses the particulars of situated actions in 

social interactions. For example, instead of studying mathematics clubs in schools, a 

videography may try to unpack how a student performs a specific mathematics activity in 

a mathematics club.  

Videographies assume that “actions […] are produced methodologically in certain 

ways, and it is only being performed in certain ways that certain things are brought 

about” (Knoblauch, 2012, p. 74). This was aligned with how I approached the children´s 

actions while they manipulated TT. Instead of regarding these manipulations as 

background activities to learning multiplicative structures, I considered the series of the 

children´s actions involved in using TT as the very essence of learning multiplicative 

structures.  

I analyzed three video-recordings, each of which was used for each individual 

study. The events recorded in the videos shared some characteristics with clinical 

interviews, yet differed from them in a few aspects. diSessa (2007) described a clinical 

interview “as one-on-one encounter between an interviewer, who has a particular 

research agenda, and a subject” (p. 525). The interviewer´s role is to propose 

interviewees a problematic situation to think about and to encourage them to explore 

these situations by using materials, if possible. Another role of the interviewer is to 

prompt the interviewee to explain their thinking by talking aloud or by using available 

materials. Thus, the aim of the clinical interview is “to allow the interviewee to expose 

his/her “natural” ways of thinking about the situation at hand”, not the interviewer’s 
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“intended response” (pp. 525–526). Therefore, it has a reflective nature, and it takes 

time. The interviewer achieves this by avoiding making personal, authoritative 

challenges and judgments on subjects´ responses; and giving instructions for the 

solution of the problem.  

Like in a clinical interview, the interviewers met the children (one 5-year-old and 

two 9-year-olds) with a particular research agenda: to understand how children think 

while solving TT tasks. However, the events recorded in the videos differed from a 

clinical interview due to the interviewers’ epistemological assumptions. Clinical 

interviews come from the cognitive tradition. Therefore, they assume that interviewee´s 

thinking should be surfaced in a mutually intelligible way, which is mostly through verbal 

exchanges. As a result, a clinical interviewer prompts the interviewee to talk aloud. 

Whereas the interviewers in the video-recordings were more interested in prompting the 

interviewees´ bodily action, yet they did not completely neglect the verbal exchanges.  

Clinical interviews also aim to unearth the students’ “current knowledge” (Steffe, 

Thompson, & Glasersfeld, 2000, p. 274). Thus, they involve two assumptions: (1) that 

knowledge has a static nature, and it exists prior to the interviewing; and (2) that 

interviewing is a transparent instrument that can “measure” students’ “current 

knowledge” without interfering with it. However, drawing on new materialism’s approach 

to the instrument of measurement and the measured phenomena, I do not separate the 

latter from the former. In other words, I assume that the interviewing process unearths 

students’ thinking which emerges as a result of the interaction with the interviewer, the 

interviewee/s and TT. Like in clinical interviews, I did not identify any incident in which 

the interviewers communicated judgements on subject´s responses. However, I argue 

that interviewing guided the children to achieve the TT tasks without providing them with 

direct instructions. Therefore, it can be said that the interviewer and TT acted like 

teaching agents, unlike in a clinical interview.  

The teaching aspect of the interviews might recall teaching experiments. 

However, the events recorded in the videos do not have all the characteristics of a 

teaching experiment. According to Steffe, Thompson and von Glasersfeld (2000) a 

teaching experiment consists of a sequence of teaching episodes each of which involves 

a teaching agent, one or more students and a witness of the teaching episodes. The 

sequence of teaching episodes allows the teacher-researcher to generate hypotheses 
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about students’ learning and test them. The witness of the teaching episodes catches 

important elements of a student's actions and propose further action to contribute to 

students’ learning in case the teacher-researcher misses them. These two 

characteristics of the teaching experiment were not evident in the recorded events in my 

studies.  

There are different ways to analyze data in a videography (Knoblauch, 2012). I 

followed two approaches which are aligned (1) with Siegler and Crowley's (1991) 

microgenetic analysis and (2) with vom Lehn and Heath’s (2012) interpretive audiovisual 

analysis. While Sigler and Crowley (1991) used microgenetic analysis to study 

conceptual development in children, vom Lehn and Heath’s (2012) used interpretive 

audiovisual analysis to study people´s interactions in museums and science centres. It 

seems that the former method tends to direct researchers’ focus more on the individual, 

unlike the latter one. Combining two methods helped me consider the relationships 

between the individuals’ actions while I attended the changes in the actions of one child 

to study the process of children’s learning around/with TT.  

Microgenetic method was first suggested in the field of developmental 

psychology to unearth the process of cognitive development (Siegler & Crowley, 1991). 

This method associates development with change and focuses on the change while it 

happens. In other words, instead of comparing behaviors before and after a change 

happens as in the pre and posttest studies, this method is interested in what happens in 

between.  

Siegler and Crowley (1991) described the change as a continual phenomenon, 

not as occasional episodes that ‘punctuate’ the static developmental states. However, 

they do not explicitly state what it is that changes. Some of their examples indicate 

changes in cognitive schemes, others are about changes in children’s strategy to solve a 

problem. They did state that this method is applicable in any study that focuses on the 

process of change irrespective of their theoretical orientation. Since I took an enactivist 

approach to understand how target actions around/with TT emerged once the children 

were encountered with the tablet, I conducted the analysis by focusing on the change in 

the children’s actions. 
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This method has three characteristics: 

• observations span the entire period from the beginning of the change to the 
time at which it reaches a relatively stable state; 

• the density of observations is high relative to the rate of change of the 
phenomenon; 

• observed behavior is subjected to intensive trial-by-trial analysis, with the goal 
of inferring the processes that give rise to both quantitative and qualitative 
aspects of change. (Siegler & Crowley, 1991, p. 606)  

Following this method, I divided the video-recordings into numerous discrete 

sections (more explanation in Chapters 2, 3 and 4). This helped me focus on a very 

short section of the recording at a time to make fine distinctions in meaning (Parnafes & 

DiSessa, 2013). Thus, microgenetic method yielded “more differentiated descriptions of 

particular changes” (Siegler & Crowley, 1991, p. 608) in children’s actions around/with 

TT. However, this method does not prompt the researcher to understand the change 

with respect to the actions of others. At this point, vom Lehn and Heath’s (2012) 

interpretive audiovisual analysis allowed me to attend these relationships to understand 

the change process in a more holistic way.  

vom Lehn and Heath (2012) drew on studies that ¨have directed analytic 

attention towards the action and interaction with and around the material environment 

and in particular the ways in which tools, technologies, objects and artefacts feature in, 

and gain their occasioned sense and significance through, practical collaborative 

activities¨ (p.101). This approach is very appropriate to study how children make 

meaning while they collaboratively manipulate TT. Moreover, its assumptions are 

aligned with enactivist and sociocultural theories I draw on. Three main assumptions of 

Lehn and Heath´s (2012) approach are: 

• The intelligibility of action, its sense and significance, is inseparable from the 
occasion, moment and circumstances in which it is produced. 

• Social actions and activities are emergent and contingently accomplished with 
regard to each other […] The action is both context sensitive and context 
renewing.  

• The analysis is concerned with explicating the organization through which 
participants produce particular actions and make sense of the actions of the 
others. (p. 104) 
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The emergent nature of the actions recalls enactivism and suggests that 

“whatever is observable and understandable should not be considered as being due to 

external factors beyond the video recorded scene itself, such as “derives”, 

“subconscious desires”, attitudes or interests, but as motivated by the local sequence of 

actions recorded” (Knoblauch, 2012, p. 74).The specific location and character of an 

action (vocal, visual or material) and how it is related to preceding and proceeding 

actions are critical to the sequential analysis. This emphasis on the context is aligned 

both with sociocultural and enactivist approaches to learning.  

As in vom Lehn and Heath (2012), I conducted the analysis on the audiovisual 

recording, yet used the transcription of the audiovisual data to get familiar with the 

complexities of a particular fragment in the data corpus. I used a technical instrument 

called score (Raab & Tanzler, 2012) to translate visual and vocal data into written 

language. A score consists of a table in which actions are recorded based on their 

successive and simultaneous occurrences. The events are noted vertically in separate 

rows to illustrate their temporal succession. The audiovisual dimensions of the events 

are distinguished according to the research interest and noted in different columns of the 

same row to illustrate their simultaneity. I froze the video and created motionless stills to 

record the events into the score.  

 The analysis I present in this dissertation is not a verbal account of students’ 

mathematical realities, but it is my interpretation of students’ mathematics (as per Steffe 

et al.’s (2000) differentiation of students’ mathematics and the mathematics of students). 

Therefore, it is not objective; indeed, as Maturana and Varela said: “Everything said is 

said by the observer” (1987/1992, p. 65). It is also not the only possible interpretation. 

Even though the variation in what researchers emphasize in their analysis might be seen 

as a weakness of this method, I choose to see it as a strength because “different 

possibilities for students' mathematics education emerge” from these variations (Steffe et 

al., 2000, p. 269).  

1.7. Dissertation Organization 

As a manuscript-based thesis, the organization of this dissertation is different from 

traditional ones which have IMRaD (Introduction–Method–Result–and–Discussion) 

structure. Except for the last chapter, each of the following chapters constitutes an 
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independent research study which is already published in a journal. Chapter 2 explores 

the semiotic potentials of TT and pencil-and-paper. Chapter 3 examines young learners’ 

meaning making process of TT when they use it with pencil-and-paper. Chapter 3 

studies primary school students’ responses to a TT task while they collaborate with a 

peer. The chapters are ordered this way to maintain the coherence across the 

manuscripts. This order also coincides with the chronological order of the articles with 

respect to their publishing date. 

Each of these chapters follows a prelude which consists of my accounts of the 

creation stories of each manuscript. These preludes also outline the purpose and nature 

of the manuscripts and how they relate to the aims of the overall program of my research 

and to the other manuscripts included in the thesis. 

 As an inevitable consequence of this type of dissertation, the manuscripts must 

be identical to the published version. This created a tension for me because I wanted to 

make some changes in the original versions after reengaging with these manuscripts to 

compile them in my dissertation. I found that some ideas may lead to misunderstandings 

and that some others are not emphasized enough. Therefore, I provided postludes at the 

end of each chapter, which aim to clarify or re-emphasize these ideas.  

The last chapter of this dissertation is the conclusion chapter, which integrates 

the main results across the manuscripts. It summarizes key findings; lists the theoretical, 

methodological, and practical implications of my study; addresses to the limitations and 

challenges I identified as a researcher and provides directions for future research. 
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Prelude to Chapter 2 

The following manuscript is a research paper which is an expanded version of a paper I 

submitted to the Tenth European Society for Research in Mathematics Education 

Topic Conference: Mathematics Education in the Digital Age (MEDA). In that conference 

paper, I analyzed the semiotic potential of Zaplify with respect to two different tasks 

which were designed to engage students with two important key ideas of multiplication: 

unitizing and spreading.  

I expanded the conference paper into the following article which was published in 

the journal ‘Mathematics’ on 9 March 2021. In the article, I analyzed the semiotic 

potentials of Zaplify and pencil-and-paper with respect to another spreading task, which 

could also prompt students to experience unitizing. My aim in making a dual analysis 

was to examine the particular contribution that Zaplify offered in comparison to pencil-

and-paper. I decided to make such a comparison after one of the audience members at 

my MEDA asked me “what is the added value of Zaplify”. This was a common reaction I 

encountered in different settings.  

I first heard the following question, which was posed by a colleague when 

Grasplify (the other world in TT of which interface looks like colourful tokens) was 

introduced in a research meeting: “Why do we need Grasplify if we have access to 

physical manipulatives?” Then I encountered a teacher’s comment on the affordances of 

Zaplify: “It does what I do with drawings, but faster”. This type of reaction speaks to the 

tendency people have to consider the affordances of TT mostly based on its static 

characteristics (such as shape, colour, quantity) of objects they identified on the 

interface at a specific time point.  

As these characteristics are also shared by manipulatives and static models, it is 

not surprising that TT does not, on the surface, seem to provide students with more 

experiences than manipulatives and static models would. However, my own perspective 

was that the way these objects are created also matters when learners build 

mathematical meanings. Since the analysis of the semiotic potential of an artefact 

reveals an artefacts’ various modes of use, comparing the semiotic potentials of two 

artefacts would illustrate the “added value” of Zaplify with respect to pencil-and-paper. 

With this analysis, I aimed to answer the following research questions: 

http://erme.site/
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• Which signs might emerge when students use pencil-and-paper to solve a 
multiplication task? 

• Which signs might emerge when students use Zaplify to solve a multiplication 
task? 

• Which meanings of multiplication do these signs relate to?  

As the aforementioned question about the added value of Zaplify implies, I was 

also thinking that Zaplify would extend the affordances of pencil-and-paper. In other 

words, in addition to all affordances of pencil-and-paper, Zaplify would have some other 

affordances to prompt multiplicative thinking. However, through the dual analysis, I 

learned that each artefact allows unique experiences for the learners, rather than one 

being the continuation of the other. My equal focus on the product and the process 

allowed me to identify these unique experiences.  

This manuscript presents the semiotic potential of Zaplify based on how I used 

the artefact. This contrasts with the other manuscripts, in which I studied how students 

actually learned around/with TT. I present this manuscript first for two reasons. Firstly, it 

familiarizes the reader with the affordances of Zaplify to engage learners with 

multiplicative thinking. Secondly, while reading the rest of the dissertation, it directs the 

reader’s attention both to the objects students manipulated and to their actions, which is 

likely to be neglected if it is not explicitly emphasized. 
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Chapter 2.  
 
The Analysis of a Model–Task Dyad in Two 
Settings: Zaplify and Pencil-and-Paper 

Abstract 

This paper examines the added value of a digital tool that constitutes a new model to 

introduce students to multiplication. Drawing on the theory of semiotic mediation, the 

semiotic potential of this new model is analysed with respect to the same task that can 

be solved in two different settings (the digital tool and pencil-and-paper). The analysis 

shows that the task solutions undergo significant changes depending on to the 

technological settings. Even though the end product of the model–task dyads might look 

the same in both settings, the product emerges from the different processes that would 

mediate quite different meanings for multiplication. This suggests that while designing 

tasks that involve mathematical models, rather than focusing only on the end product, 

considering the whole process would reveal the extensive potential meanings the 

model–task dyad can mediate. 

Keywords: digital tools; model–task dyad; multiplication model; the semiotic potential 

2.1. Introduction 

The repeated addition model is pervasively used in schools around the world to teach 

multiplication although it cannot fully capture the essence of multiplicative situations (see 

below for more detail). Students might be able to come up with the right answer to 

multiplication equations by using this model, yet this does not guarantee an 

understanding of multiplicative relationships (Hurst & Hurrell, 2016). Additive thinking still 

overweighs the multiplicative thinking, when students in the upper grades interpret the 

situations that are open to both ways of thinking (Degrande et al., 2018). 

This has in part driven the growth of research around the use of different models 

(Askew, 2018; Kosko, 2020; Venkat & Mathews, 2019).These models represent 

multiplicative situations by illustrating a number of pre-given objects that are spatially 

organized different from that of the repeated addition model. However, this static 
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approach to depict multiplication excludes the processes that are involved in multiplying. 

This paper describes a new model—henceforth called Zaplify—that draws on but is not 

identical to existing models. Like the others, Zaplify is spatially organized in order to 

highlight multiplicative relationships. Unlike the other models, it has been developed by 

using multi-touch technology affordances so that the model also requires physical 

multiplicative actions. Zaplify does not draw on game design elements such as time 

constraint, embedded tasks and level. Instead, it offers an open exploratory environment 

for students to bodily experience multiplicative structures. 

Given existing models, it is reasonable to ask why a new one is necessary and, 

furthermore, to consider what exactly it can contribute to the teaching and learning of 

mathematics. This is the basic question that I pursue in this paper (This is an expanded 

version of the conference paper written by Günes). However, instead of focusing just on 

the model, I examine how a given task changes according to the models and the 

technological environments (dynamic or static) in which it is situated. Therefore, I follow 

the theory of semiotic mediation in analysing the model–task dyad by looking at how the 

same task might be solved with different models that are enacted in different 

environments, as a way of understanding how the model might give rise to different 

solutions and different ways of reasoning about those solutions. Thus, this paper 

attempts to answer the question Watson and Ohtani (2015) posed to further the 

research in task design: “How different design principles reflect or generate different 

perceptions of mathematical concepts” (p. 14). 

2.2. The Theory of Semiotic Mediation 

Drawing on Vygotsky’s theoretical construct of semiotic mediation, Maria Giuseppina 

Bartolini Bussi and Maria Alessandra Mariotti developed the Theory of Semiotic 

Mediation (hereafter, TSM) to explain mathematics learning through collective use of 

mathematical artefacts. There are four assumptions underlying this theory (Maracci & 

Mariotti, 2012). First, forming scientific concepts is among the main objectives of the 

teaching-learning process that involves both acting on artefacts to accomplish some 

tasks and building mathematical meanings out of these actions. Creating signs within an 

intricate interplay constitutes the origin of this semiotic process. Second, these scientific 

concepts cannot be formed without conscious awareness. Individuals create personal 

meanings by interacting with the artefact. Semiotic processes bring these personal 
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meanings into consciousness and enable individuals to formulate scientific concepts out 

of these personal meanings. Third, “mathematical meanings are culturally and 

historically established” and they “can be crystallized and embed into certain artefacts 

and signs” (Maracci & Mariotti, 2012, p. 22). Unlike most learners, the teacher, as an 

expert in the field, can identify such embedded mathematical meanings. Lastly, TSM 

assumes that intensive human mediation is necessary for learners to form mathematical 

meanings by using such artefacts. 

Based on these assumptions, TSM hypothesizes that “meanings are rooted in 

the phenomenological experience, but their evolution is achieved by means of social 

construction in the classroom, under the guidance of the teacher” (Mariotti & Cerulli, 

2001, p. 225) and accounts for this evolution with a theoretical construct called didactic 

cycle (Bartolini Bussi & Mariotti, 2008). As the aim of this paper is to analyse the 

potential link between artefacts and mathematical meanings, rather than a teacher’s 

exploitation of this link, I will only explain TSM’s constructs of “artefact”, “signs” and “the 

semiotic potential of an artefact”. 

2.2.1. Artefact and Signs 

Bartolini Bussi and Mariotti (2008) defined an artefact as any object that was made by 

human beings: “Sounds and gestures; utensils and implements; oral and written forms of 

natural language; texts and books; musical instruments; scientific instruments; tools of 

the information and communication technologies” are examples of various types of 

artefacts (p. 746). The TSM’s use of the term “sign” is aligned with Pierce’s description: 

“something which stands to somebody for something in some respect or capacity” 

(Drijvers et al., 2010, p. 118). The sign functions both to represent something, and to 

create meaning through their intricate interplay (Drijvers et al., 2010). As the 

teaching/learning process is based on meaning making, signs play an important role in 

this process. In their seminal work, Bartolini Bussi and Mariotti (2008) referred to 

Vygotsky’s list of signs that includes “language; various systems for counting; mnemonic 

techniques; algebraic symbol systems; works of art; writing; schemes, diagrams, maps, 

and mechanical drawings; all sorts of conventional signs; etc.” (p. 751). 

Even though Bartolini Bussi and Mariotti (2008) defined artefacts and signs 

separately and listed several examples for each construct, it might be difficult to 
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distinguish them in some cases because some of the above-mentioned examples are 

given both as an artefact and as a sign (e.g., gesture, language). This prompted me to 

consider artefacts and signs not as disjoint materials but as phenomenological entities. 

At this point, Bartolini Bussi and Mariotti’s (2008) reference to Vygotsky’s analogy 

between tools and signs together with Wartowsky’s categorization of artefacts is helpful 

in explaining how TSM distinguishes the artefact from the sign. 

In the Vygotskian account, the analogy between the “tool” and the “sign” might 

reflect the distinction between TSM’s constructs of artefact and sign: 

The invention and use of signs as auxiliary means of solving a given 
psychological problem (to remember, compare something, report, choose, 
and so on) is analogous to the invention and use of tools in one 
psychological respect. The sign acts as an instrument of psychological 
activity in a manner analogous to the role of a tool in labour. (Vygotsky, 
1978, as cited in Bartolini Bussi & Mariotti, 2008, p. 753) 

This analogy reflects two distinctions between the sign and the tool. First, the 

nature of the activity differs. Artefacts are used to conduct physical activity, whereas 

signs play a role in psychological activities. Second, their mediating functions are 

different. While the tool functions as externally oriented, it exerts human influence on the 

object of physical activity; the sign functions as internally oriented, it does not change 

anything in the object of a psychological activity. It is an internal activity aimed at 

mastering oneself (Falcade, Laborde, & Mariotti, 2007, p. 55). In other words, we change 

the world via tools, we master ourselves via signs. 

Wartowsky (1979, as cited in Bartolini Bussi & Mariotti, 2008) separated the 

artefacts into three types, according to the user’s phenomenological experience. A 

primary artefact is used to navigate one’s environment. A secondary artefact is used to 

preserve and to transmit skills, which is necessary for the use of primary artefacts. 

Finally, tertiary artefacts do not have a practical goal in the sense of primary artefacts, 

yet they “constitute an autonomous ‘world’, in which the rules, conventions and 

outcomes no longer appear directly practical” (1979, as cited in Bartolini Bussi & Mariotti, 

2008, p. 779). 

For example, if I move the handle of a door, I can open the door physically. Here, 

the handle, a human made object, is the primary artefact which helps me to open the 

door. If I then move my hand in the air, as if grabbing the handle and rotating my fist 
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downwards, this gesture becomes a secondary artefact because it helps me remember 

how to open the door or to communicate to others how to open the door. In other words, 

the gesture stands (in part, at least) for the act of opening the door, the same way Pierce 

characterized signs: “Something which stands to somebody for something in some 

respect or capacity” (Pierce, 1932, as cited in Drijvers et al., 2010, p. 118). The rotation 

of the handle might then be modelled as an angle, which is a geometrical construct that 

conforms to certain geometrical rules. In this case, the notation of angle constitutes a 

tertiary artefact. Within this categorization, the primary artefacts might correspond to the 

TSM’s notion of artefact. The secondary artefacts can be associated with what TSM 

refers to as signs. 

2.2.2. The Semiotic Potential of an Artefact 

Wartowsky’s categorization of artefacts might present them as mutually exclusive 

entities. However, the same object might be used both as an artefact and as a sign 

according to the phenomenological experience of the user (Maschietto & Bartolini Bussi, 

2009). For example, for a novice learner, an abacus might be interpreted as a tool to 

record the counting activity, whereas for an expert, such as a teacher, the abacus might 

represent place-value. Thus, the same artefact has the potential to mediate two different 

but related meanings. Bartolini Bussi and Mariotti (2008) described this as the semiotic 

potential of an artefact. 

The artefacts that have semiotic potential can be used to help its users enact 

mathematical relationships that are novel to them. According to TSM, whenever 

individuals use an artefact to achieve a mathematical task in a social context, they will 

be using the artefact in a certain way and will be creating certain signs both to achieve 

the given task and to create shared meanings. TSM categorizes these signs according 

to their relationship to the artefact and to the mathematical culture. The artefact sign 

plays a role in expressing the relationship between the task and the artefact. It is 

associated with the operations conducted to achieve the task. The mathematical sign 

expresses the relationship between the artefact use and mathematical knowledge, and it 

is aligned with the existing mathematical culture. The pivot sign “may refer both to the 

activity with the artefact; in particular [it] may refer to specific instrumented actions, but 

also to natural language, and to the mathematical domain” (Bartolini Bussi & Mariotti, 
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2008, p. 757). It plays an important role in the evolution of artefact signs into 

mathematical signs. 

The evolution of artefact signs into mathematical signs is the aim of mathematics 

education and this is achieved by the semiotic mediation of the artefacts and the cultural 

mediation of the teacher (Bartolini Bussi & Mariotti, 2008). At this point, Mariotti (2012) 

considered the analysis of an artefact’s semiotic potential as an a priori phase in 

designing a successful teaching sequence, because the specific utilisation schemes 

(Verillon and Rabardel (1995) defined the utilization schemes in the Piagetian tradition 

as “the structured set of the generalizable characteristics of artefact utilization activities” 

(p. 86)) can be predicted from examining the tasks in relation to the artefact. In this 

paper, by comparing the semiotic potentials of Zaplify and pencil-and-paper with respect 

to the same task, I aim to identify the added value of Zaplify in evoking various meanings 

of multiplication. The comparison is not meant to argue that one is better than the other; 

it simply brings to the foreground the particular value of Zaplify that may be difficult to 

appreciate when it is assumed that pencil-and-paper is the presumed technology of 

learning multiplication. 

2.3. Repeated Addition versus Multiplication 

The repeated addition model (RAM) of multiplication, equates a multiplication sentence 

to an addition sentence. For example, 4 x 3 is arithmetically represented as the repeated 

sum of 3 taken 4 times. The visual representation of this repeated addition involves 4 

groups of 3 objects as in Figure 2.1: 

 

Figure 2.1. RAM of multiplication 4 × 3. 

RAM depicts multiplication as the collection of equal groups. Therefore, it may 

suggest that multiplication involves a spatial organization of pre-existing objects. Even 

though this model represents objects in groups, the quantity of the groups is not as 
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visible in the mathematical expression as the size of the groups (which is represented by 

the total number of purple apples in a group, as in Figure 2.1). Therefore, RAM 

emphasizes only a one-unit count which is represented by purple apples. The groups 

are spatially separated, and this separation might portray each addend as independent 

of the others. The RAM might therefore suggest that changing the size of one group 

would not require a change in the sizes of the other groups. 

RAM is widely evoked in mathematics curricula as a bridge between addition and 

multiplication (e.g., Turkish mathematics curriculum, British Columbia mathematics 

curriculum). However, multiplication is explicitly distinguished from repeated addition by 

several researchers. Their definitions of multiplication emphasize both its static and 

dynamic aspects by pointing to the relationships between the quantities involved in multi- 

plication and to the underlying actions taken in multiplicative situations. 

Schwartz (1988) situated the meaning of multiplication within mathematical 

modelling activity. He claimed that the identification of quantities and referents (the 

attributes to be measured) is the basis for such an activity. He distinguished two types of 

quantities: extensive and intensive. Extensive quantities are the ones that are directly 

counted or measured like weight, height or amount. Intensive quantities cannot be 

quantified directly but must be calculated through other quantities such as speed (the 

travelled distance per unit time). 

Schwartz (1988) separated mathematical operations into two groups: referent 

preserving and referent transforming operations. The former produces a third like 

quantity out of two like quantities. Addition and subtraction are such operations. Referent 

transforming operations produce a quantity with a different referent. Multiplication enters 

this second category, and Schwartz (1988) described it as a mapping from “a quantity in 

one space to another quantity in another space” (p. 50). Thus, all multiplicative situations 

require the identification of three referents and three relationships between them. For 

example, the multiplication that reveals the number of points in a 3 x 4 array (see Figure 

2.2) can be represented as: 

{3, the number of rows} × {4, the number of points per row} = {12, the number of 

points} 
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Figure 2.2. The points in a 3 × 4 array. 

In this situation there are three relationships between the number of rows (R), of 

points (P), and of points per row (PpR): R = P/PpR, PpR = P/R, P = R PpR. 

Vergnaud (1988), like Schwartz, proposed that identifying the relationships 

between the variables was essential for multiplication. However, he identified two 

variables and four values attached to them. 

In Figure 2.3, Vergnaud (1988) distinguished two relationships: scalar and 

functional. The scalar relationship is the ratio between two values of a variable: for 

example, the ratio between the number of cars is five to one and this is the same for the 

number of tires. On the other hand, the functional relationship is the ratio between two 

values of two distinct variables. For example, the functional relationship between the 

number of cars and the number of tires is four. This is similar to Schwartz’s (1988) 

intensive quantity that builds a many-to-one correspondence between the number of 

cars and tires. One car corresponds to four tires and this correspondence holds for each 

car. 

 

Figure 2.3. The representation of a multiplicative situation in Vergnaud’s T-
Table. 

Drawing on Piaget, Clark and Kamii (1996) pointed to two important differences 

between multiplication and repeated addition. First, multiplication involves two units each 
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of which quantifies two distinct entities. There is a many-to-one correspondence 

between these units. This correspondence may be associated with Vergnaud’s (1988) 

functional relationship, for example between the number of cars and the number of tires: 

one car corresponds to four tires. The car represents a composite unit that is made up of 

four units. Whereas addition emphasizes only one unit that quantifies the size of the 

groups (as in the above-mentioned case of purple apples). Equal groupings might recall 

composite units. However, they are not quantified in the addition: the amount of groups 

is not assigned a numerical value, unlike the size of the groups. 

Based on this difference, inclusion relationships between the units of addition 

and multiplication also have different natures. Since there is only one unit in repeated 

addition, they are included in one level among themselves as in Figure 2.4a. When we 

add “2”s, we act on the units that quantify the size of the groups. Thus, these units (they 

are represented by the individual black discs in Figure 2.4a) construct a collection of 

multiple individual units. Moreover, each addend acts independently from the others. 

Therefore, let us say in 2 + 2 + 2 + 2, increasing the size of the first group from two to 

three (this is represented by the red dot added next to the first two black dots in Figure 

2.4a), does not have to change the size of the rest of the groups. Therefore, the groups 

that are depicted in repeated addition do not necessitate a many-to-one correspondence 

that holds for each group. Whereas in multiplication, the single units (represented by 

black discs in Figure 2.4b) that take part in the body of the composite unit create a single 

multitude (represented by the blue ellipses in Figure 2.4b). As these single units are 

included among themselves, they are also included in each multitude simultaneously 

because of the many-to-one correspondence between the composite and the single 

units (represented by the arrows in Figure 2.4b). Thus, any change in the size of one 

multitude, let us say from two to three (as represented by the red dot added next to two 

black discs in Figure 2.4b), is mirrored on the size of the other multitudes (as 

represented by the red discs added into four blue ellipsis in Figure 2.4b). Therefore, 

increasing the first factor of the multiplication 2 x 4 = 8 by one unit increases the product 

by four units. 
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Figure 2.4. The representation of inclusion relations:(a) in repeated addition (b) 
in multiplication. 

Note: The diagram is reimagined based on Clark & Kamii (1996) and Confrey (1994). 

Confrey (1994) took a dynamic approach and described multiplication with 

respect to creating a numerical quantity. She described multiplication as, “an action of 

creating simultaneously multiple versions of an original” and named this action as 

“splitting” (p. 292). The notion of an original in this definition might recall the single unit of 

repeated addition. Fortunately, Confrey (1994) explicitly stated the main difference 

between splitting and repeated addition: they differ based on how the change occurs. In 

repeated addition, identifying a unit and counting instances of that unit consecutively 

brings the change. Whereas in splitting, change occurs through a simultaneous one-to-

many splitting action. Moreover, Confrey (1994) defined the unit as “the invariant 

relationship between a successor and its predecessor; it is the repeated action” (p. 312) 

and distinguishes between additive unit in a repeated addition and a multiplicative unit in 

splitting. Thus, she considered the unit of the operations in relation to the action. 

Counting the results of splitting action might also be associated with the model of 

repeated addition. However, Confrey (1994) warned that, “the cognitive act of 

recognizing a situation as multiplicative and displaying it appropriately occurs prior to this 

counting action” (p. 311). 

Davydov (1992) explained multiplication with respect to the operations involved 

in the quantifying activities. He defined such activities as “assigning a numerical value of 

some magnitude in relation to a given unit” (p. 11). Such activities become cumbersome 

when the given unit-count is too small. Davydov (1992) described multiplication as a 

practical tool to quantify magnitudes by transferring the unit count from a smaller to a 

larger one “for which a relationship to another, smaller unit, is already established” (p. 

(b) (a) 
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12). Davydov’s conceptualization of multiplication emphasized both a multiplicative 

action (transfer of the unit count) and multiplicative relationships between the quantities. 

For example, let us say a grocery shop employee needs to make an inventory for 

the amount of honey in stock. Honey is sold in individual jars and they come in boxes of 

8. The employee can assign a numerical value to the amount of honey either in relation 

to a jar or in relation to a box. In this case, the jar and the box are the two distinct unit-

counts for quantifying activity, and they have an established relationship because of 

packaging: each box corresponds to 8 jars. If the employee wants to assign a numerical 

value to the amount of honey with respect to jars, they can directly count the jars one by 

one. Alternatively, the employee can indirectly quantify it with respect to jars by counting 

the boxes and transferring the unit-count from the jars (the smaller unit-count) to the 

boxes (larger unit-count) thanks to the established relationship between them. If there 

are 14 boxes of honey jars, the operations that are involved in indirect measurement are 

represented as “8 x 14 = 112”. In this equation, 8 represents the established relationship 

between the smaller (the jar) and the larger (the box) unit-counts. This is similar to 

Schwartz’s (1988) intensive quantity and Vergnaud’s (1988) functional relationship. 14 

represents the numerical value of the magnitude (the amount of honey) in relation to the 

larger unit-count (the box); 112 represents the numerical value of the magnitude (the 

amount of honey) in relation to the smaller unit-count (the jar). 

As shown in the above models of multiplication, the researchers conceptualized 

multiplication by focusing either on the relationship between the quantities, or on the 

action underlying the multiplicative situations, or both. Table 2.1 summarizes these 

approaches. 
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Table 2.1. The various meanings of multiplication 

The Researcher Key Concepts of Multiplication 

Schwartz (1988) 

Multiplication is a mapping from “a quantity in one space to another 
quantity in another space” (p. 50). All multiplicative situations require the 
identification of three referents and three relationships between them. 

  

Vergnaud (1988) 

Multiplicative situations include two variables and a functional 
relationship (many-to-one correspondence) between them.  

 

Clark and Kamii (1996) 
Multiplication has two units which have inclusion relationships in two 
levels.  

Confrey (1994) 

 

Multiplication is “an action of creating simultaneously multiple versions of 
an original” and named this action as “splitting” (p. 292) 

. 

Davydov (1992) 
Multiplication is a practical tool to quantify magnitudes by transferring the 
unit count from a smaller to a larger one “for which a relationship to 
another, smaller unit, is already established” (p. 12). 

 

2.4. TouchTimes 

TT (Jackiw & Sinclair, 2019) is an iPad application designed to enhance multiplicative 

thinking as different from repeated addition. The design of TT draws both on Davydov’s 

(1992) notion of change in unit-counts and on Vergnaud’s (1988) notion of functional 

relationship. TT consists of two worlds called Grasplify and Zaplify. Both worlds are 

designed to convey the multiplicative ideas brought by Davydov and Vergnaud, yet they 

embedded these ideas in distinct models that prompt learners to embody them in 

different ways. This paper will focus only on the Zaplify world, which can be described as 

a dynamic array model. 

Zaplify starts with an empty screen. When the tablet is placed horizontally on a 

surface, four fingerprints appear just above the lower edge of the tablet, and three 

fingerprints appear on the left edge of the tablet (see Figure 2.5a). Then, a diagonal 

appears on the screen as the fingerprints gradually fade away (see Figure 2.5b). These 

fingerprints and the diagonal line are introduced automatically by the app to guide users 

to place their fingers both horizontally and vertically in the designated areas (upper and 

lower triangular areas) which are formed by the diagonal. While the fingerprints 

completely disappear in a few seconds, the diagonal line stays on the screen until the 
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user touches on the screen (see Figure 2.5c). Users can create two types of Zaplify 

objects: lightening rods and lightening balls (these will be explained in detail below). 

 

(a) 

 

(b) 

 

(c) 

Figure 2.5. (a) Fingerprints, (b) fingerprints and the diagonal line, (c) the 
diagonal line. 

Zaplify can be used in two modes: unlocked and locked. The user can change 

the screen mode by touching the lock icon at the lower right corner of the screen. This 

icon becomes visible once the user touches on the screen and creates a Zaplify object 

(see Figure 2.6). In unlocked mode, the Zaplify object(s) stay(s) on the screen as long as 

the user maintains the finger contact. In locked mode, the Zaplify objects stay on the 

screen even after the user lifts their finger-created the object/s. It is possible to shift from 

unlocked to locked mode any time. When the screen mode changes, the visual 

characteristics of the Zaplify objects slightly alter. 

(a) (b) (c) 

Figure 2.6. (a) Vertical lines, (b) horizontal lines (c) both horizontal and vertical 
lines. 

When a user places a finger on the screen in unlocked mode, a yellow object that 

looks like a “lightening rod” (referred to as “lines” henceforth) appears. The lines extend 

from one edge of the screen to the opposite edge. These lines are not static objects, 

rather they continuously tremble like lightning strikes. The lines seem to be passing 
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through the point where the user’s fingertip contacts the screen. If the user touches the 

lower triangular area, Zaplify produces vertical lines (see Figure 2.6a), while touches in 

the upper triangular area produce horizontal lines (see Figure 2.6b). Screen contact can 

be made with one finger at a time or with multiple fingers simultaneously. Multiple fingers 

can create either only vertical lines (see Figure 2.6a), only horizontal lines (see Figure 

2.6b) or both (see Figure 2.6c), according to the position of the fingers. 

The number of vertical and horizontal lines are indexed separately by two black 

numerals. The numeral at the top of the screen represents the number of vertical line(s) 

(see Figure 2.6a) and it continuously moves from left to right on a horizontal path, 

repeatedly passing over all vertical lines. The numeral at the right edge of the screen 

represents the number of horizontal lines (see Figure 2.6b) and it follows a vertical path 

up and down spanning all horizontal lines. 

Whenever a horizontal line intersects with a vertical line, a lightening ball 

(referred to as “points” henceforth) gradually appears at the close vicinity of the 

intersection point. Like the lines, the points are not static objects. They vibrate like 

sizzling sparks. The total number of points is represented by an orange numeral that 

appears at the upper right corner of the screen (see Figure 2.6c). No orange numeral 

appears at the upper right corner unless there is an intersection (see Figure 2.6a,b). 

When a user lifts a finger, the line that is created by that finger and the points that 

vibrate on it disappear all together. This change is immediately mirrored in the numerals 

that represent the numbers of lines and the product. The orange numeral that represents 

the number of points (the ones before the finger is lifted) moves down until the bottom 

edge of the screen and then disappears. Meanwhile, a new orange numeral that 

represents the number of points (the ones that are left after the finger is lifted) appears 

on the upper right corner of the screen. 

The Zaplify objects are created according to the same principles in locked mode: 

(1) Users create line objects when they touch the screen; (2) The location of touch 

designates the orientation (vertical/horizontal) of the lines; (3) The circular object(s) 

appear at the intersection(s) of perpendicular lines. In locked mode, the Zaplify objects 

stay on the screen once they are created. Therefore, they do not disappear, even though 
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the line-making fingers are lifted. The Zaplify objects are also dynamic in this mode, yet 

they do not vibrate as dramatically as they do in unlocked mode. 

Let us say a user first creates two horizontal and one vertical lines in locked 

mode. When the user touches the screen, a new yellow vertical line appears, and it 

vibrates as in the unlocked mode (see Figure 2.7a). Once the user lifts that finger, the 

amplitude of the vibration reduces and the colour of the line changes to a darker hue 

(see Figure 2.7b); all the lines that are parallel to it (vertical lines in this example) 

gradually slide (to the left in this example) until the grid becomes symmetrical (see 

Figure 2.7c). 

   

(a) (b) (c) 

Figure 2.7. (a–c): Adding a vertical line in locked mode. 

According to TSM, an artefact that is used to solve a task has a semiotic 

potential if it mediates two meanings: (1) with respect to the achievement of the task; (2) 

with respect to the mathematical culture (Bartolini Bussi & Mariotti, 2008). Therefore, the 

semiotic potential of the artefact cannot be identified without considering the specific 

task. I have analysed the semiotic potential of pencil-and-paper and Zaplify based on the 

task called “Making 198 with various M-ples”. M-ple is a specific Zaplify term that refers 

to a line that has exactly M (any positive integer) points on it, as in Figure 2.8. For 

example, three-ple is a line that has only three points on it. In this analysis, I assume that 

students are already comfortable with this term. 
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Figure 2.8. Examples of M-ples. 

The task consists of the following questions: 

(1) Make the product 198 by counting up with two-ples? 

(2) Make the product 198 by counting up with three-ples? 

(3) Make the product 198 by counting up with four-ples? 

(4) Make the product 198 by counting up with five-ples? 

(5) Make the product 198 by counting up with nine-ples? 

2.4.1. The Underlying Task Design Principles 

I chose this task because it followed many task design principles proposed in (Leung & 

Baccaglini-Frank, 2017). I draw particularly on the two following principles: (1) providing 

students with tasks that would involve a variety of examples (e.g., Mackrell & Bokhove, 

2017; Robotti, 2017) and (2) providing students with tasks that lead to conflicting 

situations (e.g., Bokhove, 2017; Naftaliev & Yerushalmy,2017; Buchbinder, Zodik, Ron, 

& Cook, 2017). Keeping certain aspects of the examples intact and changing others 

prompt discernment and awareness by enabling students to separate “certain aspects of 

something from other aspects”, to contrast their experiences, to make generalizations 

(Bokhove, 2017, p. 248). Conflicting situations “creat[e] learning opportunities for 

students to re-evaluate and refine their mathematical and proof-related knowledge” 

(Buchbinder, Zodik, Ron, & Cook, 2017, p. 217). 
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This Zaplify task achieves the first principle by prompting students to count up by 

various M-ples. Both the act of counting up and the target product stay invariant, unlike 

the M-ples. Moreover, the product is chosen to be a big number so that students will be 

counting up for an extended time period and creating several products until they reach 

198. This is designed to help students focus on the structure rather than on computation 

(Zazkis, 2001). Repeating the process for a while would create new examples in which 

the structures they discern hold true.  Therefore, this repetition could enable students to 

make a generalization out of their experiences, thus crystalizing the multiplicative 

meanings that emerge. This task would also lead to a conflict: the third and the fourth 

subtasks do not have a solution in Zaplify. Although students first have to create an M-

ple and then tap one finger repetitively until they create the target product in each case, 

this strategy would not work for making 198 with four-ples and five-ples. This task also 

follows the sequence suggested by Bokhove (2017): “first appropriate pre-crisis items, 

then the item that intends to intentionally cause a crisis (for some students), and then 

some post-crisis items” (p. 242). The task starts with counting up by two-ple and three-

ple. These are pre-crisis items that would build students’ confidence because it is very 

easy to reach 198 by repeating taps. Then, the crisis items (counting up with four-ples 

and five-ples to make 198) follow. They would possibly pose frustration in students’ 

bodies yet prompt them to ask “why”, which is an important question for learning. Finally, 

the last subtask includes a post-crisis item that students can solve without having 

difficulty. 

Another design principle highlighted in Leung and Baccaglini-Frank (2017) was 

that of feedback. The feedback in Zaplify has the “trivial sense in which the appearance 

and behavior of objects that are constructed is feedback” (Finzer, as cited in Mackrell & 

Bokhove, 2017, p. 66). For example, students are not given any message saying 

whether they achieve the task or not. The numeral that represents the product in Zaplify 

is the feedback for students to judge if they succeed because this type of feedback 

“offers immediate information, which is directly related to one’s actions, and which can 

guide further actions, especially if a goal has not been reached” (Sinclair & Zazkis, 2017, 

p. 190). Moreover, the feedback is “constrained by the mathematics underlying the 

environment. In this way unexpected implications of the mathematics may be revealed” 

(Laborde, as cited in Mackrell & Bokhove,2017, p. 62). For example, in Zaplify the M-

ples are all connected to each other in the array form. It is impossible to create various 
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types of M-ples at the same time. This multiplicative relationship that underlies Zaplify 

would reveal that some numbers cannot be reached by counting up with any M-ples as 

happens in the above-mentioned crisis items. 

This task is designed specifically for Zaplify. Therefore, it is not a task that 

teachers would ask their students to solve with pencil-and-paper. I analyzed the semiotic 

potential of pencil-and-paper with respect to this task to understand the unique 

contribution of Zaplify to students’ meanings for multiplication. 

2.5. Data Analysis 

Mariotti (2012) suggested that Rabardel’s theoretical notion of utilization schemes that 

are associated with specific tasks were important tools to analyze the semiotic potential 

of an artefact. Verillon and Rabardel (1995) defined the utilization schemes in the 

Piagetian tradition as “the structured set of the generalizable characteristics of artefact 

utilization activities” (p. 86). Borrowing a theoretical construct from cognitivist 

approaches might seem to be contradictory for TSM, which draws on a social 

constructivist approach (primarily through Vygotsky). However, rather than a scheme 

that was defined as an entity existing in the mind of the person independent from the 

social context, Mariotti (2012) seemed to be interested in the person’s real actions that 

can be observed by another individual. In the same article in which she promoted the 

utilization schemes as a tool for analysis of the semiotic potential of an artefact, she 

wrote: 

Thus, the artefact and the modes of its use may appear as key elements in 
the emergence of mathematical knowledge in the school context. They 
become a unit of analysis that can guide the design of teaching and 
learning activities. (p. 26) 

Parallel to Mariotti’s (2012) account, I have focused on the real actions (modes of 

use) conducted around/with artefact in my analysis rather than the schemes that are 

believed to exist in the mind. However, I decided that the unit of analysis should be the 

potential signs emerging from the user’s potential modes of use. Since the meanings are 

created through the interplay of signs (Bartolini Bussi & Mariotti, 2008), identifying the 

signs with respect to this intricate interplay would reveal the potential meanings. These 

signs may include the potential gestures, potential words to describe both artefact and 

the interactions with/around the artefact. In order to capture these potential signs, I video 
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recorded an iPad screen as I solved the given Zaplify task and verbally described the 

steps I took. An M-ple can be created in many ways that might be associated with: 

(1) 1 × (1 + 1+1 + …… + 1)  

         The sum is equal to M 

(2)    1 × M 

(3)    M × 1 

I analyzed the third case that was aligned with Davydov’s (1992) argument about 

the direction of the transfer of unit-counts (from the smaller unit-count to the larger unit- 

count, not vice versa). Students might create the M-ples in any of these ways. However, 

a teacher’s role is to select the most appropriate signs that emerge from the artefact use 

and highlight them in the classroom activities to exploit the semiotic potential of the 

artefact (Mariotti, 2009). Therefore, I chose to illustrate the most appropriate mode of 

Zaplify use that would be associated with the targeted meanings of multiplication. 

I organized the transcription of the video-recording in a table format that included 

three parts: the written record of my verbal accounts, written descriptions of my bodily 

actions and Zaplify objects (see Figure 2.9). I highlighted the transcription with specific 

colours to match the signs that were simultaneously created in different modalities. For 

example, the parts highlighted in yellow happened at the same time: as I was saying 

“then”, I was pressing my four fingers on the iPad screen and Zaplify created four 

horizontal lines. I have compartmentalized the video-recording into ten-second-intervals 

to systemize the transcription. Surprisingly, this artificial separation did not create a 

semantic break between the cells except for one incident in which my verbal account “I 

am going to press my four fingers, at once, on the upper triangular” was in two separate 

cells. In this case, I moved the first part of the sentence down to the following cell 

together with the corresponding records of the bodily actions and the screen 

configurations. In my analysis, I identified the signs that would be associated with 

various meanings of multiplication and examined the relationship between them. 
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Figure 2.9. An excerpt from the transcription organized in a table. 

2.6. Semiotic Potential of Pencil-and-Paper 

In order to create an M-ple that is aligned with the multiplication expression M x 1, 

students must first draw as many parallel lines as the number of points that should be on 

the M-ple. Then, they must draw one perpendicular line that intersects with these parallel 

lines. After students finish drawing the perpendicular line, they must draw individual 

points at the intersections. Pencil-and-paper allows students to draw each line and point 

one at a time (see Figure 2.10a,c). Similarly, as they draw the perpendicular line, the 

intersections of the lines would appear one by one, sequentially (see Figure 2.10b). 

Students can also start by drawing as many points as there would be on a given M-ple 

and then draw the lines that would pass through these points. 

   

(a) (b) (c) 

Figure 2.10. (a–c) The three steps of drawing an M-ple. 

Drawing perpendicular lines would create visual and haptic distinction in 

students’ experiences due to the orientations of lines. Students most probably start 

drawing the horizontal lines from the left to the right and vertical lines from the top to the 

bottom. This spatial and orientational separations might be described by two distinct 
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signs (e.g., “vertical” and “horizontal”; tracing gestures from left to right for horizontal 

lines and top to bottom for vertical lines) that might be associated with two distinct unit-

counts of multiplication. 

While students draw the vertical line, the trace of the pencil passes over the 

existing traces of the parallel lines (see Figure 2.10b). This physical interaction between 

the traces of perpendicular lines might evoke for students the relationship between the 

multiplicative factors: one factor spreads over the other factor. Moreover, physical 

contact with the points that are drawn at the intersections might help students identify 

inclusion relationships in two levels (as per Clark and Kamii, 1996): a point at the 

intersection is included both in the horizontal and in the vertical line simultaneously. 

Drawing points at the intersections of lines might evoke the idea of double 

unitizing (as per Davydov, 1992). While each horizontal line corresponds to one point, 

the vertical line corresponds to M points and thus constitutes an M-ple. Therefore, the 

former might be associated with the smaller unit-count, while the latter might evoke the 

larger unit-count. The number of points on an M-ple might be associated with the 

functional relationship between the sizes of unit-counts. As the referent of the intensive 

quantity is different from the ones that create it (Schwartz, 1988), the points are the 

objects that are different from the lines that create them. They refer neither to the 

number of horizontal lines, nor to the number of vertical lines but to the horizontal lines 

per vertical lines. 

Creating points one by one at the intersections of lines might emphasize a 

sequential nature for unitizing action. Therefore, drawing an M-ple might evoke for 

students the idea of combining multiple single units instead of creating a single multitude 

as Confrey (1994) suggested. 

In order to count up with the given M-ple, students must repeatedly draw M-ples 

and add up the points on them until they reach the given product. This might associate 

multiplication with a counting activity as opposed to Confrey’s (1994) warning that, “the 

cognitive act of recognizing a situation as multiplicative and displaying it appropriately 

occurs prior to this counting action” (p. 311). 

Every time students draw a new M-ple, the number of intersections on the new 

M-ple must be the same as the previous M-ples. However, the free nature of the pencil-
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and-paper might prompt students to draw as many points as they want on a line. 

Therefore, while they have M points on the previous M-ples, they might draw fewer 

points on the following vertical line to reach the given product. This allows students to 

reach 198 irrespective of the M-ples they draw. For example, they can create four-ples 

to reach 198. In this case, after they make the product 196 by drawing the 49th four-ple, 

they may not completely draw the 50th four-ple. After they create two points on the 50th 

vertical line and reach 198, they might simply stop drawing (see Figure 2.11). This 

gradual increase in the number of points might also be associated with the conception of 

product as the combination of single units rather than the combination of multitudes. 

Moreover, this potential inconsistency of the number of points on each M-ple might 

evoke for students a functional relationship that is not spread equally across each larger 

unit-count. 

  

Figure 2.11. An example of gradual increase in the number of points. 

2.7. Semiotic Potential of Zaplify 

This task must be solved in locked mode, because the target number is very large and 

creating it by keeping the fingers on the screen is not feasible. When Zaplify is in locked 

mode, the lines stay on the screen even though the user lifts the finger(s) that create(s) 

them. When the user holds a line in locked mode, it is yellow and very vibrant. It looks as 

if it passes below the user’s fingertip. As soon as the contact between the line making-

finger and the screen diminishes, the line becomes purple and less vibrant. All lines 

slightly glide across the screen until they become equidistant. 

The task starts with an empty screen that is divided by a diagonal (see Figure 

2.5c). Before touching the screen, I say, “In order to make, in order to count up, by four-
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ples until one hundred-ninety-eight”. Starting to “Make one hundred-ninety-eight” on an 

empty screen might be associated with a meaning for multiplication that refers to 

creating a quantity from scratch, rather than structuring a given quantity as represented 

by the static repeated addition model. This dynamism is aligned with Confrey’s (1994) 

description of multiplication as “creating multiple versions of an original” (p. 292). 

The first step of counting by four-ples in Zaplify might be associated with the 

concept of composite unit. 

00:10: C: I am going to press, my four fingers (stretching four left hand 

fingers on the edge of the screen), at once (pressing four fingers down 

simultaneously), on the upper triangular, this is going to make, four 

horizontal lightning rods. 

During this episode, I first see an empty screen divided by a diagonal (see Figure 2.5c); 

then four horizontal lines and the black numeral “4” appear on the screen (see Figure 

2.12a), and then the lines vibrate, and the numeral continuously moves up and down. 

In this episode, the quantity is represented in three modalities: through (1) the 

utterance of “four fingers”, (2) stretching and pressing four fingers; (3) the appearance of 

four lines on the screen. While the verbal and the bodily account quantify the fingers, the 

Zaplify account quantifies the lines. The location of the lines creates a relationship 

between the lines and the fingers: The lines pass through my fingertips creating a 

correspondence between the lines and the fingers. This correspondence transfers the 

quantity of the fingers to the quantity of the lines. This transfer and the appearance of 

the black numeral “4” on the screen might evoke the mathematical meaning of 

“fourness” as a composite unit. Moreover, pressing four fingers simultaneously while 

uttering the word “four” might strengthen this idea of a composite unit. 
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(a) (b) 

Figure 2.12. (a) Four horizontal lines and the numeral “4”, (b) one four-ple on the 
vertical line. 

Note: The green arrows are added on the figures to illustrate the path the numerals follow. 

The third step of the task creates a four-ple. Creating an M-ple in Zaplify can be 

associated with the concepts of factors, product, transfer of unit counts and the 

functional relationship. 

00:20: C: Then (holding four left fingers on the screen), one by one, I 

am going to press my (stretching right index finger above the screen) 

finger (moving the index finger to the right edge and pressing it down). 

During this episode, the four horizontal lines vibrate and the black numeral “4” moves up 

and down continuously. One vertical line appears as if it passes below the index finger. 

The black numeral “1”, four points that vibrate around the intersections of the 

perpendicular lines and the orange numeral “4” appear on the screen simultaneously 

(see Figure 2.12b). The vertical line together with the points on it moves towards the left 

edge of the screen. The black numeral “1” follows the vertical until it is stabilized (see 

Figure 2.13a). 
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(a) (b) 

Figure 2.13. (a) 1 four-ple; (b) 9 four-ples. 

In this episode, certain signs that are created in each modality reveal contrasting 

relationships. For example, using right and left hand creates a bodily contrast; the 

orientation of horizontal and vertical lightning rods, the vertical and horizontal routes of 

the black numerals create a visual contrast. In addition to these contrasts, placing 

fingers on two different sides of the diagonal creates a spatial separation between the 

line-making fingers and the lines they create. These contrasting signs might be related to 

two distinct quantities that have distinct referents (as per Vergnaud (1988) and Schwartz 

(1988)). The two numerals that represent these quantities might be associated with two 

distinct unit-counts of multiplication (as per Davydov, 1992). While one four-ple (the 

vertical line that has four points on it) might be associated with the larger unit-count, four 

one-ples (the horizontal lines with one point) might be associated with the smaller unit-

count. 

As soon as the vertical line intersects the parallel lines, this creates as many 

points as the number of parallel lines. Creating multiple points with one finger might be 

associated with the transfer of unit-counts in multiplication (as per Davydov, 1992). 

Moreover, as happens in the solution of the task by using pencil-and-paper, the number 

of points on a four-ple might be associated with the functional relationship between the 

sizes of the unit counts (as per Vergnaud, 1988). In addition to the functional 

relationship, four points on the vertical line can also be associated with the product in 

this episode. 
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The idiosyncratic character of the Zaplify objects might mediate the difference 

between the factors and the product. While the lines can be related to the factors of 

multiplication, points can be related to the product. The difference between the colours 

and the movement of the numerals contributes to this separation as well: while the 

moving numerals that represent the number of lines are black, the static numeral that 

represents the number of points is orange. Thus, it might evoke for students a meaning 

for multiplication different from repeated addition in which both addends and the sum are 

represented with the same type of objects. However, the factors and the product do not 

act as independent entities. As the vertical line moves to the left, the points on it move to 

the left with the same pace. This might be associated with the co-varying relationship 

between the product and the factors. In a later episode, I start to increase the product by 

repeatedly tapping my right index finger along the bottom of the screen as I say, “I press 

my one finger”. This mode of use might be related to various meanings of multiplication. 

During this episode, the four-ple and the black numeral “1” stay at the centre of the 

screen and the black numeral “4” moves up and down continuously on the right edge of 

the screen (see Figure 2.13a). A new vertical appears on the screen with each tap. Each 

vertical line passes below the right index finger and slides (either to the right or to the 

left) when the finger is lifted. Every time a new vertical is created, four new points appear 

where the vertical line intersects four horizontals. At the end of this episode, there are 

nine verticals on the screen (see Figure 2.13b). During this episode, the black numeral 

increases by one starting from “1” until “9”, it moves left and right at the top of the screen 

(see Figure 2.13a,b). The orange numeral increases by four starting from “4” until “36” 

(see Figure 2.13a,b). 

The repetition of unitizing action creates the same signs again and again that 

might result in a generalization about multiplication. Every time I place a new finger 

below the diagonal, a new four-ple (a line with four points) appears. The number of 

points on each four-ple is the same as the number of horizontal lines. Thus, this 

repeating four-ples might evoke for the students the functional relationship between the 

units as a constant entity that is spread across each larger unit count (as per Vergnaud, 

1988). 

The simultaneous actions may create connections between the Zaplify objects. 

Both the black numeral that represents the factor and the orange numeral that 

represents the product simultaneously change with each tap. Thus, the synchronized 
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haptic and visual experiences might create a connection between the factors and the 

product. However, the amount of change in the numerals is not the same. While the 

black numeral that represents the number of vertical lines increases by one, the orange 

numeral increases by four, which corresponds to the number of horizontal lines. 

Therefore, the horizontal lines might be perceived as playing a role in this connection 

between the verticals and the orange points. This imbricative connection might be 

associated with the covariation of product with respect to both factors. 

In the above analysis, I illustrate the solution of the third subtask. The rest of the 

subtasks can be solved in a similar way by creating different M-ples and repeatedly 

tapping one finger only on one triangular area until reaching the given product. However, 

among these five M-ples only the two-ples, three-ples, and nine-ples would allow 

students to create exactly the given target product 198. Working with different M-ples, 

students would not reach the given product in each case. For example, when they create 

four-ples to reach 198. In this case, after they make the product 196 by pressing the 

49th four-ple, pressing one finger on the screen would create the 50th four-ple. Since the 

orange numeral would abruptly change from 196 to 200 with the 50th four-ple, the 

students cannot see 198 on the screen contrary to their expectation (see Figure 

2.14a,b). This unexpected change in the product might prompt students to explore the 

covarying relationship between the factors and the product. 

  

(a) (b) 

Figure 2.14. (a) Making the 49th; (b) the 50th four-ples in Zaplify. 
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2.8. Discussion 

As a researcher who works on educational technologies, one of the questions I have 

been repeatedly asked is “what can this technology do that pencil-and-paper cannot 

do?”. In this paper, I answer this question by analysing the semiotic potential of both 

pencil-and-paper and Zaplify. However, the unbreakable link between the task and the 

semiotic potential of an artefact problematizes this question. As the tasks are created 

based on their artefacts (e.g., dragging task in a dynamic geometry environment (DGE) 

is a task specific to DGE), different artefacts prompt distinct modes of use to solve the 

task (e.g., drawing lines with pencil-and-paper versus pressing fingers on the iPad 

screen). The different modes of use have potential to create different personal 

meanings, which can in turn evoke different mathematical meanings. Therefore, rather 

than asking “what does Zaplify adds to the pencil-and-paper?”, the question should be 

“what is the unique contribution of each artefact to students’ meanings?”. However, this 

does not imply that those meanings are always mutually exclusive. 

The analysis of the semiotic potentials of Zaplify and pencil-and-paper show that 

each artefact has the potential to mediate meanings that could help students distinguish 

multiplication from repeated addition. Both artefacts can mediate multiplication as a 

binary operation in which each quantity has a distinct referent. While the horizontals 

quantify one factor as the smaller unit count, the verticals quantify the other factor as the 

larger unit count (Davydov, 1992). The points on the M-ples represent the functional 

relationship (as per Vergnaud, 1988) between the smaller and the larger units. In each 

artefact, the referent of the product is different from the factors. 

The binary nature of multiplication can be mediated based on the contrasting 

signs. Each artefact has the potential to mediate such signs. However, Zaplify can 

provide students with more means to create contrasting signs. For example, the 

diagonal in Zaplify that visually divides the screen into two separate areas might also be 

related to the difference between the referents of two multiplicative factors. Moreover, 

the numerals in Zaplify quantify two different types of lines. Therefore, they might also be 

related to the distinction between the referents of the factors. Students may also add 

numerals on their drawings. However, these signs would be static on paper. Whereas in 

Zaplify, numerals move in two different directions that might give students another 

opportunity to discuss the difference between the referents of the factors. 
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Solving a task in Zaplify results in simultaneous actions. This simultaneity 

presents another unique contribution of Zaplify in mediating various meanings for 

multiplication. When using Zaplify, a student can use both of her hands, each spatially 

separated, at the same time. This has the potential to provide a haptic experience that 

can differentiate the factors. While drawing, students can also experience a spatial 

haptic difference because of the orientation of tracing gesture. However, these 

separations would also be temporally apart, lessening the contrast between the haptic 

experiences. 

The simultaneous actions conducted in Zaplify also support the idea of the 

transfer of unit counts (as per Davydoy, 1992).  In Zaplify, one finger brings M point(s) as 

soon as the M-ple-making finger touches the screen. This transfer is not simultaneous 

when using pencil-and-paper. Every point must be drawn sequentially, so the 

correspondence between the unit counts is revealed after students complete their 

drawing and count the total number of points on the line. Therefore, this temporal 

separation between the points might hinder the emphasis on the simultaneous unitizing 

action of multiplication. 

Pencil-and-paper can also contribute to students’ meaning making process in a 

unique way. The intersections between the perpendicular lines and the points in Zaplify 

appear without users’ direct manipulation: students interact with these signs only through 

visual experience. Whereas when students draw the intersections and the points with 

pencil-and-paper, they create these signs both with visual and haptic experiences. 

Therefore, drawing an array with pencil-and-paper might provide more means to mediate 

the relationship between the factors and the product. 

Each artefact has a unique contribution to the mediation of multiplication as 

different from repeated addition. Therefore, instead of choosing one artefact over the 

other, combining these similar but unique artefacts in the learning process would enrich 

students’ meaning-making process as Maschietto and Soury-Lavergne (2013) 

suggested. They conceptualized the combined use of a physical pedagogical artefact 

and its digital counterpart as duo of artefact and showed that the use of technology 

added value to the use of physical objects as classroom teaching equipment because 

different artefacts triggered different signs, and different signs lead to different 

cognitions. 
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The analysis of the semiotic potential of the artefacts revealed two types of 

interplay between the signs: the contrasting play and the parallel play. In a contrasting 

play, signs are situated as opposed to each other or the signs that signify differences 

become salient. Whereas in the parallel play, signs that signify a commonality between 

the entities are related to each other with linguistic, visual, or haptic connections. Even 

though in each episode the interplay between visual and haptic signs carries the 

contrasting and the parallel meanings simultaneously, prompting certain linguistic signs 

might highlight the targeted interplay between the signs. For example, in each episode, 

while the vertical and horizontal lines present a contrast between the Zaplify objects, the 

repetition and the simultaneity of actions present a similarity between the objects. 

Therefore, the users would simultaneously experience these interplays. When a 

question prompts students to create additional linguistic signs within a parallel interplay, 

these signs would highlight the experiences related to similarity over contrast for that 

session. 

The semiotic analysis of artefacts based on TSM is conducted with respect to a 

pre-given task. However, this analysis can also give educators insights about how to 

design new tasks. Starting the analysis with the targeted mathematical meanings and 

relating them to the specific modes of artefact use provide educators with a framework to 

progress in their designs. The task designer first decides which mathematical meanings 

to evoke and then they consider which mode of artefact use might be related to these 

meanings, as illustrated in Fahlgren (2016). The compartmentalization of the video-

recording into ten-seconds intervals shows that the main task (making 198 in Zaplify) 

consists of many sub tasks that require different modes of artefact use. For example, 

creating an M-ple, increasing the number of M-ples, making a specific product are three 

subtasks embedded in this main task. Each of these subtasks requires a certain mode of 

artefact use that would mediate specific personal and mathematical meanings. 

Therefore, the identification of appropriate subtasks and the integration of them in a 

specific way would evoke the desired mathematical meanings. 

Since the meanings emerge from the interplay of the signs (Maracci & Mariotti, 

2012), examining the relationships between the signs that participate in the targeted 

mathematical meanings might help the task designer to prompt an appropriate mode of 

use for the artefact. Let us take Confrey’s (1994) description of multiplication: “creating 

versions of an original” (p. 292). This expression consists of the interplay between three 
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main signs: “creating”, “version”, and “original”. Here, original refers to the first example 

of its species. Therefore, the question of “what counts as the original in Zaplify” would be 

the catalyzer for the designer to choose a specific subtask. However, the separate 

analysis of these signs would reduce the overall meaning of multiplication. For example, 

analyzing the sign “original” without considering the sign “version” would be incomplete. 

It is important to ask, “how are the original and the version related to each other?”. This 

relationship can be associated with a common notion of multiplication that is emphasized 

by many researchers, yet with different names: functional relationship (as per Vergnaud, 

1988), intensive quantity (as per Schwartz, 1988), many-to-one correspondence (as per 

Clark and Kamii, 1996). Therefore, the original and its version should be prompted 

according to the specific relationship between them. For example, if one point is 

considered as the original, then making an M-ple would be considered as the version of 

an original. If an M-ple is taken as an original, making multiple M-ples would be a version 

of it. 

2.9. Conclusions 

Task design, most of the time, does not explicitly designate a specific technology. How- 

ever, the pencil-and-paper is generally the implied technology especially when the task 

prompts students to use static mathematical models. However, with digital technology- 

specific tasks, we also do not often think about what the task might offer in other 

technological settings. In this paper, I have analysed the model–task dyad in two distinct 

settings through the theory of semiotic mediation to examine the affordances of the 

Zaplify model in mediating multiplication as different from repeated addition. This is 

similar to identifying the potential of a duo of artefacts in mediating mathematical 

meanings in the sense that the analysis requires close examination of two similar 

artefacts. However, unlike a duo of artefact, the analysis of the model–task dyad allows 

researchers to imagine the possibility of two artefact by considering how a single task 

might be interesting and relevant to each. 

The analysis of the semiotic potential of two artefacts with respect to the same 

task illustrates how the tasks can undergo some changes when attempted in two 

different environments. These changes seem to be minor if the focus is directed at the 

end product, which is the array. However, the processes that result in the array in both 

environments include many actions that can mediate quite different meanings for 
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multiplication. This analysis suggests that while designing a task, the focus should not 

be only on the end product; instead, designers should also consider the bodily actions 

involved in the task solution. 

As the term suggests, this analysis identified the potential of these artefacts to 

mediate various meanings of multiplication. The next step will be to study how these 

potentials do/not unfold in a real classroom when students attempt to solve the task with 

each of these artefacts. 
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Postlude 

Re-engaging with this article a few months after it was published, I found some points 

that could be re-addressed. These are related to my methods to analyze the data, the 

illustration of the Zaplify objects and the Davydovian notions of smaller and larger unit-

count.  

I have not found an explicit account of a method for the analysis of the semiotic 

potential of an artefact. Based on the reports of such analyses, undertaken by other 

researchers, I assumed that they simply imagining how a learner might use an artefact. I 

devised two different methods in which I used the artefact myself to solve the 

multiplication task. I used one method for the analysis of pencil-and-paper and the other 

one for the analysis of Zaplify. In the former method, I took the photos of each action that 

was necessary to complete the task. In the latter method, I video recorded myself while I 

used Zaplify and created signs in different modalities. These methods allowed me to 

base my analysis on concrete snapshots of the events. 

I realized that I missed some important information in my analysis when I used 

the images as the basis of my data creation. For example, when I reported on my 

analysis of the semiotic potential of pencil-and-paper, I wrote that “In order to create an 

M‐ple that is aligned with the multiplication expression M × 1, students must first draw as 

many parallel lines as the number of points that should be on the M‐ple”. When I 

engaged with this finding after my paper was published, I found it problematic because it 

is impossible to create Mx1 by using pencil-and-paper. Each line had to be created 

sequentially unless M = 1. Therefore, whoever uses pencil-and-paper has to create (1 + 

1 + 1 … + 1) x 1, not Mx1. This is an important difference as it may influence how a 

learner experiences a quantity (as a single multitude or multiple singles).  

The illustration of M-ples as shown in figure 2.8 on page 65 is also problematic. I 

would modify this image by adding horizontal lines to the vertical M-ples and vertical 

lines to the horizontal M-ples. Because these added lines would create intersection 

points and index the genesis of the dots. Otherwise, the image cannot completely 

illustrate my following statement: “While each horizontal line corresponds to one point, 

the vertical line corresponds to M points and thus constitutes an M‐ple. Therefore, the 
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former might be associated with the smaller unit‐count, while the latter might evoke the 

larger unit‐count”.  

After engaging with this statement, I felt that I should clarify the Davydovian 

notions of smaller and larger unit-count, as well. This statement is true only for the 

individual M-ples. It might be confusing when the reader engages with this statement 

with respect to an image as in Figure 2.13b. After the fourth M-ple, the horizontals 

include more than 4 points on it. So, one might relate horizontals with the larger unit-

count and the verticals with the smaller unit-counts. However, the smaller and larger 

unit-counts do not refer to the units with the larger/smaller quantity on them. The larger 

unit-count is the composite unit created through unitization of the smaller unit-counts. 

Therefore, the larger unit count emerges in relation to the smaller unit-count. In other 

words, it can be identified in Zaplify after the smaller unit-count is designated. The 

temporality of the actions in Zaplify is one way to distinguish these two unit-counts. If the 

temporality is disregarded, it is possible to experience either the horizontal or the vertical 

lines as the larger unit-count. In this respect, arrays prove to be versatile to model 

multiple multiplicative situations on the same diagram.  

It is also important not to confuse the smaller and larger unit-counts with the 

magnitude of multiplicative factors. Think about the multiplication expression 3 x 1/4 = 

3/4. According to Davydov (1992), this equation models a situation in which an amount 

or quantity is measured by transforming the unit-count from smaller to larger. In this 

situation, the smaller and larger unit-counts can be represented as in the following:  

Smaller unit-count:  

Larger unit-count:  

 

The first factor is the measure of larger unit-count with respect to the smaller unit-

count. The second factor refers to the measure of quantity with respect to the larger unit 

count. The product is the measure of quantity with respect to the smaller unit count. For 

example, in this situation the larger unit-count corresponds to three (as per the first 

factor) smaller unit-counts. The amount of the quantity to be measured corresponds to 

one fourth (as per the second factor) of larger unit-count. The amount of the quantity to 
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be measured corresponds to three fourth (as per the product) of smaller unit count. As 

the example illustrates, the types of the unit-counts are not determined by the 

magnitudes of the factors. They depend on the experience of the person who conducts 

the measuring activity.  
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Prelude to Chapter 3 

The following article is a research paper which evolved from one of my comprehensive 

exam papers. In that paper, I explored the theory of semiotic mediation by analyzing a 

video-recording of my neighbour’s child using TT. In my analysis, I focused on the 

artefact and pivot signs the child created when he used pencil-and-paper and Zaplify 

back-and-forth to solve the same tasks. The main tasks were making one, two, three 

and six dots in Zaplify and they corresponded to unitizing and spreading, two of the key 

ideas that underlie multiplication.  

The combined use of a physical pedagogical artefact and its digital counterpart is 

described as a duo of artefacts in the literature. In most of the research studies, the duo 

of artefacts is provided to the students with a specific order in which the digital artefact 

follows the non-digital one. This order might be related to the assumption that the digital 

artefact expands the affordances of the non-digital one. However, as the first article in 

this dissertation shows, each artefact has some unique affordances.  

Even before writing the first article, I thought that this non-digital followed by 

digital artefact order might hinder the potential of physical artefact to enrich the 

affordances of the digital counterpart. I wondered how using a duo of artefacts back-and-

forth might influence students’ meaning making. I explored this new way of using a duo 

by reviewing my aforementioned analysis of the task “making one dot” and shared my 

findings in a departmental conference. Later on, I extended my conference paper into 

the following article which was published in the Simon Fraser University Educational 

Review Journal on August 5, 2021. 

Even though this article dates back to my initial exploration of TSM, it relates to 

the first article by extending its findings. In the first article, I explored the semiotic 

potentials of Zaplify and pencil-and-paper separately. In the following article, I explored 

how a child made sense of Zaplify when he used pencil-and-paper and Zaplify back-and-

forth; and how his personal meanings were related to multiplicative thinking. The 

following article answered two research questions: 

• How do signs evolve when a child reciprocally uses a duo of artefact? 

• How does a child experience the relationships between the Zaplify objects?  



89 

Chapter 3.  
 
Reciprocal Influences in a Duo of Artefacts: 
Identification of Relationships that Serves to 
Multiplicative Thinking 

Abstract 

The combined use of a physical pedagogical artefact and its digital counterpart is 

described as a duo of artefact. In the literature, duos of artefacts are mostly presented 

with a certain order: non-digital artefact is followed by the digital counterpart. This study 

examines the influence of reciprocal use of artefacts in a duo on a 5-year-old child’s 

identification of multiplicative relationships between the objects. The data is created 

through the video record of two clinical interviews with the child. The results showed that 

the reciprocal use of the artefacts enriched the child’s experiences of each artefact and 

mediated the relationships which were important for multiplicative thinking. 

Keywords: duo of artefacts, multiplicative thinking, drawing, educational technology 

3.1. Introduction 

Studies show that mathematical tasks which require students to manipulate physical 

artefacts enhance mathematical teaching and learning (Carbonneau et al., 2013). 

However, the rigid structure of artefacts might prevent teacher from modifying them in a 

way to increase their mathematical potentials. At this point, their digital counterparts add 

value to the use of physical objects as classroom teaching equipment because different 

artefacts trigger different signs (e.g., natural language, gestures, and mathematical 

semiotic systems), and different signs lead to different meanings. Digital counterpart can 

achieve this through “offering students a new opportunity to identify the mathematical 

properties embedded in the artefact behavior and more abstract and conventional 

representation of mathematical objects” (Soury-Lavergne, 2017, p.1). This combined use 

of a physical pedagogical artefact and its digital counterpart is described as duo of 

artefacts (Maschietto & Soury-Lavergne, 2013). 
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Integrating duo of artefacts in mathematics classes is a recent practice, but it has 

already demonstrated some positive outcomes (see below for more detail). In most of 

these studies, the duo of artefacts is presented with a certain order: first, students are 

introduced the physical artefact and then they are given the digital counterpart. This 

restrictive order suggests that the duo of artefacts enhances mathematical ideas through 

the added value of digital counterpart only. However, this one-directional approach might 

hinder the potential of physical artefact to enrich the affordances of the digital 

counterpart. In the literature, various duos of artefacts have been used to introduce 

students to various mathematical topics. I will study how reciprocal use of a duo of 

artefacts enhances the mathematical ideas related to multiplicative thinking which, to the 

author’s knowledge, has not been studied with respect to a duo of artefacts yet. In this 

study, the digital artefact is a free tablet application called TouchTimes (Jackiw & 

Sinclair, 2019) which is designed to develop multiplicative thinking through creating 

quantities in specific ways. The physical artefact is the pencil-and-paper, through which 

students draw the target numbers they created with Zaplify – one of the TouchTimes 

“worlds”. 

3.2. Duo of Artefacts 

Drawing on instrumental approach, Soury-Lavergne (2021) proposes a difference 

between “two artefacts” and “duo of artefacts”. According to the instrumental approach, 

when individuals encounter an artefact (material entity), they construct utilization 

schemes (psychological entity) as they interact with the artefact. The combination of the 

material and the psychological entities generates a specific instrument for the individual. 

This is called instrumental genesis. For example, upon seeing a plastic circular object 

(material entity), someone might think of placing it on the paper and circumscribing 

(psychological entity) to create a geometrical diagram. 

The difference between “two artefacts” and “duo of artefacts” depends on the 

nature of instrumental genesis they prompt. The former suggests two separate 

instrumental geneses of two separate artefacts. Whereas the duo of artefacts constitutes 

a system that emerges through the joint instrumental genesis of two artefacts. Soury-

Lavergne (2021) acknowledges that the new instruments integrate the previously 

developed instruments into its form creating a system rather than an isolated 

independent instrument. As it is not practical to identify all the previous instruments in a 
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system, she proposes to reduce the complex system of instruments into duo of a 

tangible entity and a digital one to study their influence on learning. 

Drawing on Bourmaud, Soury-Lavergne (2021) indicates three conditions for the 

joint instrumental genesis triggered by a duo of artefact: complementarity, continuity and 

antagonism. When two artefacts are used together (either simultaneously or 

successively) they complement each other. However, the complementary use of 

artefacts may not result in a joint instrumental genesis without a continuity between 

them. When the artefacts are used in relation to each other, shared characteristics or 

elements of the artefacts build a continuity. On the other hand, the divergent 

features/functionalities of the artefacts result in antagonism between them. These 

divergences create constraints for the users’ existing schemes and prompt them to 

adapt their schemes when passing from one artefact to the other. 

These three conditions explain why providing two artefacts may not be effective 

in creating a system of artefacts that results in joint instrumental genesis. This is 

illustrated in Lei et al. (2018) that examined an ineffective combination of a material and 

a digital tool. The material artefacts were a tape measure and theodolite. Whereas the 

digital artefacts were two apps installed in tablets called EasyMeasure and Angle Meter. 

The teacher provided the students with this duo of artefacts to introduce the concept of 

percentage error. One of the main reasons Lei et al. (2018) attributed to the failure of the 

duo was the difference between the artefacts. Apart from their functions, which was to 

measure, they did not share any feature. When we consider Lei et al.’s (2018) finding 

with respect to the conditions cited by Soury-Lavergne (2021), it could be said that there 

is little opportunity not only for continuity but also for antagonism. So, unlike a duo of 

artefact, these two tools did not lead to a system of artefacts that triggered a joint 

instrumental genesis. Therefore, it is not appropriate to call them as duo of artefacts 

from Soury-Lavergne’s perspective. Unlike this counterexample, the literature presents 

various successful use of duo of artefacts in teaching and learning mathematics. The 

following section summarizes a few of them. The exemplar studies are chosen to 

represent the diverse use of duos in mathematics lessons. 
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3.3. Teaching and Learning through Various Duos of 
Artefacts 

Maschietto (2018) studied how the Pythagorean theorem was introduced to 7-grade 

students in a composite environment which consisted of a material and a digital tool. 

One of the material tools was a mathematical machine which consisted of four congruent 

wooden right triangles that fitted into a wooden square. The square was covered with a 

red paper and surrounded by a frame. The digital tool was an Interactive Whiteboard 

(IWB) on which the teacher created the digital version of the mathematical machine. The 

tasks were (1) to obtain red square areas by placing the triangle prisms into the square 

frame and (2) to change the configuration to obtain a larger red square which is 

surrounded by the triangle prisms. While students directly manipulated the mathematical 

machine, the digital tool was manipulated only by the teacher and a few students to 

switch between the configurations of the triangles on the board. Even though many 

students did not manipulate the digital tool directly, Maschietto (2018) proposed that the 

conservation of the square areas was emphasized through linking the manipulations of 

the triangles in the digital tool with the manipulations of the triangles in the mathematical 

machine. This conversation helped students deduce the Pythagorean theorem. 

Van Bommel and Palmér (2018) compared six-year-old students’ responses to a 

combinatorial task when they used only physical artefacts and when they used a duo of 

artefacts. The task was to find how many different ways three toy bears can be arranged 

in a row on a sofa. The physical artefacts were the toy bears, paper and a number of 

coloured pencils to record the arrangements. The analysis of the children’s drawings 

revealed many duplicates in students’ solutions and thus indicated that students did not 

systematize their solutions. The digital artefact was designed based on these findings to 

provide the children with feedback about the duplicates. When the students used the 

duo of artefacts, they were first introduced the digital artefact and then asked to find the 

number of seating arrangement by using paper and pencil. The results show that the 

children who solved the task via the duo of artefacts were found to keep more 

systematic records of the situations and to enhance their understanding of what a 

duplicate means in a combinatorial problem. 

Soury-Lavergne and Maschietto (2015) studied how a duo of artefacts was used 

by six years-old students to learn about numbers. The students first worked with 
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pascaline, a mechanical machine made of gears which allowed students to create and to 

add numbers symbolically by rotating them. The digital counterpart of pascaline was 

embedded in an e-book. The students were given two tasks. One of them asked 

students to add two numbers. The other one asked them to write a number with 

minimum rotations. The findings showed that the duo of artefacts prompted the students 

to connect the separate conceptualizations of quantity and digit. 

All the duos used in these studies conform to the three principles that would 

result in a joint instrumental genesis. While they differ from each other in terms of 

mathematical topics they develop, the type of artefacts involved in the duo and the 

nature of the tasks they posed; the order of the artefacts was the same across all of 

these studies: either the digital artefact was followed by the non-digital counterpart or 

vice versa except for one case. In Soury-Lavergne and Maschietto (2015), one teacher 

made the physical artefact available again after the students had difficulty to solve the 

tasks in e-pascaline. This bi-directional use of duo is unique among these studies and it 

suggests a new way to exploit the potential of the duo. Compared to using each element 

of a duo individually in successive occasions, manipulating them reciprocally during a 

mathematical activity might enhance the integration of instrumental geneses more 

strongly. 

In this study, I will examine reciprocal use of a duo which involves pencil-and-

paper as its non-digital element. Compared to the artefacts like the mechanical 

machines used in Soury-Lavergne and Maschietto (2015) and Maschietto (2018), pencil-

and-paper provides students with a special medium to create meanings with less 

restrictions that stem from the physical structure of the artefact. This use of pencil-and-

paper is different from using drawings only to express and record thoughts after 

manipulating the mechanical artefact, which was the case in all three studies. However, 

the unrestricted diagramming might deviate learners from the target mathematical idea 

unless it is repeatedly restructured based on the manipulation of the digital artefact 

which embeds the intended mathematical relationships within its design, in this study the 

multiplicative relationships. 
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3.4. Multiplicative Thinking 

Multiplicative thinking is conceptualized by many researchers in a unique way. Even 

though they slightly differ from each other and focus on the different aspects of the 

concept, one thing is shared by all: it is different from additive thinking. Schwartz (1988) 

focuses on the referents of quantities in these operations. While the quantities refer to 

the same entity in addition (e.g., 5 apples + 4 apples = 9 apples), different type of 

quantities are operated on in a multiplication (e.g., 5 kg of apples per bag x 4 bags =20 

kg apples). Similarly, Clark and Kamii (1996) points to the abstraction of the number of 

units involved in both operations. While addition is conducted with only one unit-count 

(that quantifies only the individual apples in the previous example), in multiplication one 

operates on two unit-counts (one that quantifies the bags of apples, the other that 

quantifies the weight of the apples per bag). 

Vergnaud (1988) emphasizes the relationship between the unit counts a child 

establishes in an operation and distinguishes scalar relationships from functional ones. 

For example, when asked the problem “Amy wants to buy 4 bags of apples. Each bag 

has 5 kg of apples. How many kilos of apples does she buy in total?”, a student might 

show the solution either with 4x5=20 or with 5x4=20. Even though they are both 

multiplications, Vergnaud says that “the relationships that leading to these choices are 

very different” (p. 145) and illustrates the difference using the following T tables in Figure 

3.1. 

  

Figure 3.1. Illustration of 4x5=20 and 5x4=20. 
Note: Adapted from “Multiplicative structures” by G. Vergnaud, G., in J. Hiebert & M. Behr (Eds.), 
Number concepts and operations in the middle grades (pp. 141–161), 1988, Lawrence Erlbaum 
Associates. Copyright 1988 by The National Council of Teachers of Mathematics. 

In the first case students attends to the ratio between the same quantities which is a 

scalar. Therefore, 4 x 5 is a “concatenation” of 5+5+5+5: the amount of apples = the 
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amount of 1 bag, plus the amount of 1 bag, plus the amount of 1 bag, plus the amount of 

1 bag (Vergnaud, 1988, p. 146). Whereas in the second case (5 x 4) the student attends 

to the ratio between the different quantities. In this case 5 is not a scalar, it is associated 

with a many-to-one correspondence between the unit counts: 5 kilos per 1 bag. 

In addition to this static relationship between the two unit-counts, Davydov (1992) 

points to a dynamic feature of multiplication when he defines it as the transfer of unit 

counts. He explains the meaning of multiplication with respect to measuring activities 

and distinguishes a small and a large unit-count which both quantify a given magnitude 

of an object. Measuring a magnitude (e.g., apples) with the small unit (kg) would be 

impractical. Therefore, one indirectly quantifies the magnitude in relation to the smaller 

unit by transferring the unit count from the smaller to the larger (bags) thanks to the 

established relationship between the two (5 kg/bag). This transfer implies a 

simultaneous multiplicative action. 

Drawing on Davydov’s notion of transfer of unit-count and Vergnaud’s notion of 

functional relationship, Jackiw and Sinclair (2019) designed TouchTimes (TT) to 

enhance multiplicative thinking. TT consists of two models or “worlds” – Zaplify and 

Grasplify. Davydov’s and Vergnaud’s multiplicative notions are conveyed in both worlds, 

yet through distinct models. Thus, Zaplify and Grasplify prompt learners to experience 

these multiplicative ideas in two different ways. This paper will focus only on the former 

world (see Bakos & Pimm, (2020) for more details on how Grasplify world prompts these 

multiplicative notions). 

3.5. Zaplify 

When entered, this world shows an empty screen. When the tablet is placed horizontally 

on a surface, seven fingerprints and a diagonal line appear respectively in order to guide 

users to place their fingers both horizontally and vertically in the designated areas 

separated by the diagonal (see Figure 3.2a & 3.2b). 



96 

 

(a) 

 

(b) 

Figure 3.2. (a) Fingerprints and (b) fingerprints and the diagonal. 

When a user places and holds any finger on the screen, a “lightening rod” (I will 

call them “lines” from now on), which passes through the point of touch and crackles 

dynamically, appears on the screen either horizontally or vertically according to the 

position of the touch with respect to the diagonal. The upper-left triangular area formed 

by the diagonal allows horizontal lines (HL), while the lower-right triangular area allows 

vertical lines (VL). Screen contact can be made with one finger at a time or with multiple 

fingers simultaneously. Multiple fingers that maintain continuous contact can create 

either only HL, only VL or both VLs and HLs (see Figure 3.3 a-c). Whenever two 

perpendicular lines intersect, an orange disc gradually appears on the intersection 

points. The numerical value of the total number of intersections, which is the product of 

the two factors, appears in the upper right corner of the screen (see Figure 3.3c). If there 

is no intersection, only the number of factors appear (see Figure 3.3 a,b). 

(a) (b) (c) 

Figure 3.3. (a)HLs, (b) VLs (c) VLs and HLs. 

There are two modes of manipulation of the app: locked and unlocked. In the 

unlocked mode, the lines disappear as the fingers separate from the screen, whereas in 

the locked mode, lines remain on the screen even when the user’s finger is lifted, but no 

longer crackle dynamically. This allows a user to create products that involve more than 

ten fingers. 



97 

The Zaplify objects, the gestures that create these objects and the relationship 

between these objects are all associated with various aspects of multiplicative thinking. 

The vertical and the horizontal lines represent the two unit-counts of multiplication. The 

orientations of lines may help students distinguish these units-counts. In addition to this 

visual difference, the separation of the units may be associated with the difference in the 

haptic experiences. While the horizontal lines can be created only by touching the upper 

triangular area, one must touch the lower triangular area to create vertical lines. 

Pressing fingers to create parallel lines on one triangular area and then pressing down a 

finger on the opposite side to create a perpendicular line can be associated with 

Davydov’s notion of transfer of unit counts. In this case, the unit count is transferred from 

the parallel lines to the perpendicular line. This transfer results in Vergnaud’s notion of 

many-to-one correspondence between the units: many units represented by the parallel 

lines correspond to the new unit which is represented by the perpendicular line (see 

Güneş, 2021, for a more detailed explanation of how Zaplify can prompt multiplicative 

thinking). 

3.6. Theoretical Framework 

This study draws on Bartolini Bussi and Mariotti’s Theory of Semiotic Mediation (TSM). 

This theory focuses on the relationship between the representation systems and the 

human cognition. Human beings create representations through using artefacts and this 

has two consequences: the modification of the environment and the cognitive 

development. TSM is based on this double nature of artefacts. 

An artefact does not guarantee a specific use for the subject. Indeed, Rabardel 

(as cited in Bartolini Bussi & Mariotti, 2008) distinguishes artefacts from instruments. An 

artefact is a concrete or a symbolic object itself. It becomes an instrument by the subject 

through its particular use. For example, a glass is an object which is designed to carry 

liquid. If a cook uses it to crash some walnuts into smaller pieces by pressing the 

walnuts between the bottom of the glass and a cutting plate, the glass becomes an 

instrument. 

The instrumental approach to artefacts can be informative in analyzing the 

cognitive processes related to the use of a specific artefact and its semiotic potential. 

However, it is not adequate to analyze the more complex process of teaching and 
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learning mathematics through artefact use. At this point, Bartolini Bussi and Mariotti 

(2008) resort to Vygotsky’s approach to artefacts. 

Vygotsky talks about the difference between an individual’s developmental levels 

in two different situations: (1) when an individual is able to accomplish a task him/herself, 

and (2) when an individual can accomplish a task with the guidance of a more 

knowledgeable individual (as cited in Bartolini Bussi & Mariotti, 2008). This difference is 

called the zone of proximal development. 

Within this zone, the communication between the individual and the more 

knowledgeable one leads to the cognitive development of the learner. The theory of 

semiotic mediation elaborates more on the relationship between tasks, signs and 

mathematical meaning making within this process and distinguishes semiotic mediation 

of artefacts from teachers’ cultural mediation. 

Using an artefact in a social context, learners produce certain signs which are 

essential for semiotic mediation. These signs have a dual role: expressing the 

relationship between the task and the artefact on the one hand, and the relationship 

between the artefact and mathematical meaning on the other hand. The former is called 

an artefact sign and their meaning is associated with the operations conducted to 

achieve the task. The latter is called a mathematical sign and it is aligned with the 

existing mathematical culture. On the way to the evolution of artefact signs into 

mathematical signs, pivot signs are important. The pivot signs “may refer both to the 

activity with the artefact...and to the mathematical domain” and they are distinguished 

from the other signs based on the extent of generalization they carry (Bartolini Bussi & 

Mariotti, 2008, p.757). In this study I asked how the signs evolved during reciprocal use 

of a duo of artefact. 

3.7. Methods 

The data is created through the video-recording of two clinical interviews with a 5-year-

old child, whom I name Zach. Both interviews lasted for approximately half an hour. 

Zach used Zaplify and pencil-and-paper during the interviews. The interviews consisted 

of number-making tasks, drawing tasks, and what-happens task in which I (denoted as R 
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in the below transcripts) asked Zach (denoted as Z in the below transcripts) to anticipate 

how the number would change if I added more fingers. 

Clinical interviews conducted in this study could be described as the derivative of 

joint inquiry activities which naturally occur in every individual’s life (diSessa, 2007). I 

conducted the interviews at Zach’s home. Zach’s father (denoted as F in the below 

transcripts) was present during the first interview, and he participated in the interview by 

asking questions to Zach when he seemed hesitant to respond. My goal was to help 

Zach to make sense of Zaplify and to discover how he makes sense of it. Even though 

the interviews did not carry an instructional orientation (I avoided evaluative comments 

based on a normative response to the tasks), it would be problematic to deny that 

manipulating the artefacts while communicating with the interviewer did not contribute to 

Zach’s learning. 

The participant is recruited through convenience sampling. Multiplication is 

generally introduced in the second and the third grade of elementary schools. However, 

studies show that before formal schooling, young children can demonstrate some 

aspects of multiplicative thinking (Bakker et al., 2014), for example by extracting the 

invariant proportional relationship between two numerical magnitudes (McCrink & 

Spelke, 2010). Therefore, choosing a young participant, this study also contributes to the 

discussion of whether multiplicative thinking can be developed with instruction in 

younger ages (as per Askew, 2018) and whether the ordering of the mathematical topics 

in the curriculum documents that positions learning of multiplication after addition based 

on a hypothesized developmental learning progressions can be challenged (as per 

Bicknell, et al., 2016). 

In this analysis, I focused on the signs Zach created via the duo of artefacts, 

drawing from Arzarello et al.'s (2009) concept of semiotic bundle. There are two ways to 

analyze a semiotic bundle: synchronic and diachronic analysis. The former focuses on a 

specific moment where the subject produces different signs spontaneously. The latter 

focuses on the evolution of the signs produced by the subject in successive moments. I 

also analyzed different signs created by different artefacts at different time points in a 

synchronic manner in order to examine the relationship between the artefact signs. 
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3.8. Findings 

In the following, I highlight how Zach identified relationship between mathematical 

objects via duo of artefacts. I characterize the instances with excerpts from the 

interviews. 

At the beginning of the first interview session, Zach randomly made one orange 

disc on Zaplify. Zach described the orange disc as a dot. When I asked him to make one 

more, he could not make it. During the following 18 minutes, while Zach was holding 

HLs, I was adding VLs one by one, making 2, 4, 6, 8, 10, and 3, 6, 9, 12, 15 respectively. 

Then I asked Zach to make “one” again, assuming that creating numbers repeatedly on 

Zaplify might have helped Zach to identify the relationship between the lines and the 

discs. As I pointed to the upper right corner of the screen, I said: “I want to see the 

[numeral] one here and one orange ball”. After a few attempts, he could not make any 

disc. Then I asked him to draw one disc: 

1. R: In order to get one dot, what we should see? How does one 

dot appear? Can you draw one dot? How was it on the screen 

when we see one dot? 

2. Z: It was small and red [drawing a circle] 

3. R: Were there anything else other than the dot? 

4. Z: A yellow line 

5. R: Where was it? 

6. Z: … [drawing a curvy line which looks like a wave just below the 

circle] 

 

Figure 3.4. Horizontal curly line. 
Note: The author retraced the pencil marks in the pictures to improve visibility. 
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Zach used the words “small” and “red” in order to describe the dot. These 

artefact signs refer to physical features of the ball unlike its position, which might 

suggest a relationship between the other artefact signs such as lines and the 

intersection point. When I drew Zach’s attention to the other artefact signs (line 3), Zach 

uttered the word “yellow line”. This artefact sign includes a mathematical sign, which is a 

“line”, yet it also refers to the color of the line in order to describe it. Again Zach created 

signs related to the physical features of the objects rather than their orientation (e.g. 

horizontal/vertical), which is important in terms of multiplicative relationships. When I 

hinted the orientation by asking where it was (line 5), Zach created a sign in another 

modality. Rather than describing it with verbal signs, he created a visual sign with his 

drawing (see Figure 3.4). This sign illustrates the line in horizontal orientation as in the 

Zaplify, yet separate from the disc. So it seems that Zach did not relate the disc with the 

HL except for their quantities. For one disc, he created one line. 

The relationship between the signs appeared in our second trial. After Zach and I 

together made a disc the second time on Zaplify, I asked him to draw a disc on the 

paper. 

7. R: How did we do one dot? Can you draw it? 

8. Z: … [drawing a circle] 

9. F: Draw what you saw on the screen. Where were the yellow 

lines? 

10. Z: Where were the yellow lines? One is here and one is here. 

11. R: Why don’t you draw it here [pointing to the paper] 

12. Z: … [drawing one vertical curly line from top to the bottom of 

the paper, then another one from left to right of the paper 

crossing over the VL] 

13. F: [pointing to the dot on the paper] Is this dot on the same spot 

compared to the screen? 

14. Z: No. 

15. F: Draw the dot. Where should it be? 

16. Z: It should be in the middle of here [pointing the intersection of 

the lines] 
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Figure 3.5. (a) Dots and the intersecting lines, (b) pointing to the intersection of 
the lines. 

Note: The author retraced the pencil marks in the pictures to improve visibility. 

Compared to the first drawing, Zach produced more signs in this episode. First, 

he drew one disc and then two lines next to the disc, which intersected each other. So, 

this physical separation between the lines and the disc in Zach’s drawing indicates 

partial relationship between the artefact signs in that the lines are related to each other, 

but they are not necessarily related to the disc. 

Zach transferred the orientation of the lines from Zaplify to the paper directly. He 

drew two perpendicular lines as in Zaplify (see Figure 3.5a). When we made one disc 

together, Zach first held his finger and made a VL, and then I put my finger and made a 

HL. Similarly, first he drew the VL in this episode. While the order of the lines created in 

Zaplify was mirrored in his drawing, it was not the case for the order of the disc. In 

Zaplify, the disc appeared following the lines, but on the paper, he first drew the disc and 

then the lines. Thus, he did not transfer the location of the disc in relation to the lines in 

his drawing. Zach connected the disc with the lines (see Figure 3.5b) only after he was 

asked to compare his drawing of the disc with the diagram in the Zaplify (no. 13-16). 

Zach started to create the intersecting lines on the screen after he used his 

second drawing as a reference to make one disc in Zaplify. However, the relationship 

between the intersecting points and the discs became solid after we discussed the 

relationship between the lines at the second interview. Until this episode, Zach answered 

few “what happens” tasks correctly. After our discussion, he started to demonstrate a 

consistent strategy to answer these tasks correctly. The following episode presents one 

such discussion: 
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After Zach made one disc on the screen, I asked him: “What happens here?” as I 

pointed to the intersection of the lines. 

17. Z: One dot. 

18. R: What is happening to the lines here where the dot stays 

[pointing to the intersection]? 

19. Z: The dot stays in the middle [pointing to the dot] of these 

[tracing the VLs and the HLs] lines 

20. R: How did you make this [pointing to the dot] in the 
middle? 

21. Z: I put my finger here [pointing to the bottom of the VL] and 

make the line, and then I put my finger here [pointing the HL] 

and make the line, and then I make the dot with this line [tracing 

the HL back-and-forth] 

22. R: You made this line [pointing the VL] first, and this one 

[pointing the HL] second, right? 

23. Z: Yes. 

24. R: What did the second line do to the first line? What happened 

here [pointing the intersection]? 

25. Z: Second line crossed [tracing the HL] the first line [tracing the 

VL]. The dot is with the second line. 

 

Figure 3.6. (a) Pointing to the dot, (b) tracing the VL, (c) tracing the HL. 

Zach referred to the intersection point via a sign “the middle”, which he created 

during a drawing task in the previous interview (line 16). The verbal sign “the middle” 

and “these lines” are used together with gestures (line 19). They all together suggest 

that the orientation and the intersection point of the lines are both related to the location 

of the disc. The pointing gesture (see Figure 3.6a) and the word “middle” refer to the 

intersection point, and the tracing of the lines (see Figure 3.6b & 3.6c) refers to the 
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perpendicular lines. According to Zach’s verbal accounts, the intersection seems to be 

necessary for the disc to appear. He stated that he made the disc with the second line, 

which crossed the first line (line 25). Thus, the sign “cross” points to the relationship 

between the lines and it is an important sign to create the disc. 

3.9. Discussion and Conclusion 

In this study I examined the evolution of signs during the reciprocal use of a duo of 

artefact. The digital artefact was Zaplify which was an iPad application designed to 

develop multiplicative thinking. The non-digital artefact was pencil-and-paper. The tasks 

were designed for the duo to help a five-year-old child to identify relationships which can 

be associated with the two unit counts of multiplication (as per Clark & Kamii, 1996, 

Davydov, 1992, Schwartz, 1988, and Vergnaud, 1988) and the functional relationship 

between them (as per Davydov, 1992, and Vergnaud, 1988). So rather than to multiply 

two numbers correctly, the child was prompted to sense multiplicative notions by 

distinguishing HL’s and VL’s of Zaplify which represent two factors of multiplication and 

by making one object (the dot) out of two objects (the lines), which is contradictory to 

additive thinking. 

The findings show that after manipulating the digital artefact, the child first 

created the signs which were related to the individual characteristics of the objects such 

as their shape (e.g., curly lines), their size (e.g., small dot), and their colors (e.g., yellow 

line), instead of the spatial relationship between the objects. Moreover, the former signs 

illustrated more additive thinking. The child created one line next to the dot when asked 

to make the numeral 1. This might indicate that for the child the numeral which 

symbolizes the dot must be created with one object which is the single line. By 

interacting reciprocally with each element of the duo, the child started to create signs 

which expressed the spatial relationships among the Zaplify objects and to create 

quantities in a way which would challenge the additive relationships between the objects. 

The result of this study shows that a child as young as five years old can fluently 

identify the difference between the referents of the quantities and coordinate them to 

create a multiplicative product after interacting with a duo of artefact which is designed to 

prompt multiplicative thinking. Thus, it supports Askew’s (2018) finding that under the 

appropriate instruction younger children can also learn multiplicative concepts which are 
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assumed to be difficult for them. Even though the child might have been introduced 

some notions related to addition in the kindergarden or by his family, he has not been 

formally trained on addition which happens in the grade 1. Therefore, like Bicknell et al., 

(2016), this study also challenges the hypothetical learning trajectory which situates 

learning of multiplication after the formal introduction of addition. 

The findings show that creating dots in Zaplify was not enough for the child to 

right away identify the multiplicative relationships between the objects. At the beginning 

of the interview, while exploring the app, Zach created a dot right away probably by 

chance as he could not achieve it when the interviewer asked him to make a dot again. 

Then he made many dots with the interviewer for a relatively long time (18 minutes). He 

started to express the relationships between the Zaplify objects after drawing. However, 

moving from manipulating the digital artefact to drawing the screen configuration in one 

cycle was not effective to make the relationships between the objects salient, either. 

Zach created several pivot signs in different modalities via reciprocal use of this duo of 

artefacts in several cycles before he fluently answered the “what happens” questions 

which required identification of the relationships between the lines and the dots. 

This study does not propose that the digital artefact must be provided with the 

non-digital counterpart to develop multiplicative thinking. The child might have identified 

these multiplicative relationships after interacting only with the digital artefact for a longer 

time with additional tasks which prompt him to compare various configurations of his 

fingers with the resulting products. However, I propose that shifting between 

manipulating the digital artefact and drawing has a potential to speed up the process of 

identifying the multiplicative relationships. 

In addition to accelerating learning process, the reciprocal use of duo helped the 

child build various meanings for the lines. As soon as a finger is pressed on the screen, 

a line always appears as a complete discrete object. Whereas the child created a line on 

paper as the trace of a continuous hand movement. However, these varying meanings 

attributed to the Zaplify objects were not confined to the specific medium they were 

created. Zach’s verbal accounts that described the relationship between the Zaplify 

objects were accompanied with dynamic gestures that mirrored his drawings. These 

dynamic gestures were accompanied some verbal signs (e.g., “the second line crosses 

the first line”) which emphasized the relationship between the lines. 
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Mariotti and Montone (2020) describe this interaction as the synergy between the 

artefacts of the duo. So, the reciprocal use of the duo enriched the child’s experience of 

multiplicative relationships embedded in the digital artefact through this synergy. In this 

study pencil-and-paper provided the child with a medium to build and extend meanings 

in addition to record his interpretation of the digital artefact (de Freitas & Sinclair, 2012; 

Thouless & Gifford, 2019). 

While interacting with the duo of artefacts, Zach was communicating with the 

adults most of the time. Therefore, discussing with adults (both the researcher and the 

father) through specific signs seemed to play a role in mediating the relationship 

between one disc and the intersection point of two lines. While these discussions guided 

the child to attend to specific relationships, the child’s responses did not always indicate 

an alignment with the intended direction of the adults’ questions. For example, the 

interviewer asked “how” questions to direct the child’s attention to the process of making 

a dot. While the child responded to these questions by creating independent static signs 

(e.g., drawing of a single dot, saying “a yellow line”) at the beginning of the interview, his 

responses included multiple signs in relation to each other (e.g., tracing gesture on both 

lines in Zaplify) as his interaction with the duo of artefact progressed. 

This study presents the preliminary results of reciprocal use of a duo that is 

designed to develop multiplicative thinking. These tentative findings show that moving 

repeatedly back-and-forth between each element of the duo while communicating with 

others can accelerate students’ meaning making process and expand their meanings by 

prompting a synergy between the two media. The next step will be to analyse the 

relationship between the signs created through each element of the duo based on 

extensive data. 

Funding: This research was funded by Social Sciences and Humanities 

Research Council, grant number 435‐2018‐0433. 
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Postlude 

In the prelude, I stated that this manuscript extends the findings of the first manuscript of 

this dissertation. Since they were published independently, I want to use this postlude to 

elaborate on how this article extends the findings of the first one. Moreover, I want to 

make some clarifications about a specific finding that might have been misunderstood. 

In the first paper, I analyzed the semiotic potential of each artefact separately 

and proposed that each artefact had unique contributions to students’ meaning-making 

process: while Zaplify could help students experience the spontaneous actions involved 

in multiplication, the pencil-and-paper would allow learners to directly experience the 

relationship between the product and the factors. I want to remind the reader of that 

these contributions are hypothetical because the analysis is based on the potential, not 

actual, use (by learners) of an artefact. I created the data by recording my own 

interactions with the artefacts. 

In this study, I analyzed how a child actually used Zaplify and pencil-and-paper 

back-and-forth, rather than simply move from the non-digital to the digital. Thus, it 

illustrated how the semiotic potentials of two artefacts unfolded in an authentic, real-life, 

setting. The findings of this study showed that drawing Zaplify with pencil-and-paper 

allowed the child to attribute a dynamic, traversing movement to the lines, which, on the 

contrary, appeared in Zaplify as static objects extending from one side to the other. The 

child said that the second line crossed the first line and made a dot. This description 

portrays the dot with respect to an interaction between two lines. So, it can be related to 

the relationships between the multiplicative factors and the product. This is aligned with 

one of the semiotic potentials of pencil-and-paper which I identified in the previous 

manuscript. 

When I re-engaged with this paper, I felt that some of my statements sounded 

like I valued some signs over others, which was not my intention. Therefore, I want to 

present some clarifications. For example, I stated that “The findings show that after 

manipulating the digital artefact, the child first created the signs which were related to 

the individual characteristics of the objects such as their shape (e.g., curly lines), their 

size (e.g., small dot), and their colours (e.g., yellow line) instead of the spatial 

relationship between the objects.” This statement reports the initial signs in comparison 
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to the latter ones, which addressed the spatial relationships. This might portray the initial 

signs as being deficient spatial characteristics, so they are less important than the latter 

signs. However, I find initial signs as important as the latter ones because they refer to 

the differences between the Zaplify objects. Creating signs referring to different 

characteristics of the Zaplify objects indicates that these differences constitute a 

significant part in the child’s experience of Zaplify. Since these differences of the Zaplify 

objects might be associated with the difference between the referents of the 

multiplicative factors and the product, these initial signs are important for understanding 

multiplication as a binary operation (as opposed to the unary operation of repeated 

addition). 

Making the product 1 by using Zaplify is equivalent of multiplication by one and it 

might be argued that such a situation does not involve multiplicative thinking. Even 

though in this case the product is not large enough to illustrate the power of 

multiplication as an indirect measurement as Davydov (1992) proposed, the way the 

product is created various features of multiplicative thinking. First of all, it is counter 

intuitive to create a quantity of one by using two entities (line making fingers). When a 

child thinks additively, two fingers correspond to a quantity of two unlike in Zaplify. 

Secondly, when making the product 1 in Zaplify, each finger acts in a different way, 

unlike in addition. While one finger sets the stage by determining the functional 

relationship (one finger corresponds to one dot), the other finger actualizes this 

relationship by spreading it across the perpendicular line.   
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Prelude to Chapter 4 

The following manuscript is a research paper which examines two students’ interactions 

around/with Grasplify. More specifically, it studies how the students’ way of structuring a 

quantity changes and how this change unfolds during their interactions around/with TT. 

Compared to the first two manuscripts, this piece focuses on a different dimension of 

learning mathematics by using digital technology. In the first manuscript, I focused on 

the semiotic potentials of Zaplify and pencil-and-paper. In the second manuscript, I 

studied how these potentials unfolded when a young child used pencil-and-paper and 

Zaplify back-and-forth. In the following manuscript, I explore how a third grader 

structures a quantity in Grasplify while collaborating with a peer and a researcher. 

Rather than a student who uses a duo of artefacts, this study focuses on a duo of 

students who use a single artefact. 

As in the second study, this manuscript evolved from one of my comprehensive 

exam papers in which I explored enactivism by analyzing a video-recording. However, 

this time I did not recruit my participants myself. Instead, I used an existing video-

recording in which two third graders were using Grasplify to structure a specific quantity 

in a specific way. My fine-grained analysis illustrated the inseparable link between the 

learners and their environment. In other words, it shows how the students’ actions and 

Grasplify co-evolved through the reciprocal interactions between the students, TT and 

the researcher. I extended this analysis into an article which was published in the journal 

‘Digital Experiences in Mathematics Education’ on 24 September 2021 and reproduced 

with permission from Springer Nature. This article pursues to the following research 

questions; 

• How do children collaboratively structure quantities in order to solve a unitizing 
task in TouchTimes? 

• How do children couple with their environment, as well as with other 
individuals also engaged in this same environment, in order to solve a 
unitizing task in TouchTimes? 

This co-evolution of students and Grasplify results in the enactivist construct 

called natural drift. Maturana and Varela (1987) describe this theoretical construct as the 

process of change the different generations of the same species underwent with respect 

to the changes in the structure of the nature. These changes do not happen abruptly, 
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they take time. I argue that this theoretical construct can also be used to explain the 

changes in a learner’s behaviour in relation to the characteristics of his/her environment. 

I could not emphasize that idea in the article as much as I wanted to. Therefore, while 

engaging with the findings, I invite the reader to pay attention to that the structure of the 

students’ actions drifts towards a more multiplicative nature with respect to the changes 

in Grasplify.  
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Chapter 4.  
 
A Quantitative Shift towards Multiplicative Thinking 

Abstract 

When two third-graders collaboratively manipulated a multi-modal, digital learning device 

called TouchTimes (hereafter, TT), that introduces multiplication through visual, tangible 

and symbolic means, their thinking about quantity shifted from being additive to being 

multiplicative. In this study, I examine the children’s interactions around/with TT. My goal 

is two-fold: (1) to demonstrate the shift between the students’ additive and multiplicative 

thinking; (2) to explain how their multiplicative thinking emerged around/with TT. The 

emergence of multiplicative thinking does not refer to the students’ correct computations 

of multiplicative expressions as a response to verbal or number problems. Instead, 

drawing on an enactivist perspective, I identify the children’s thinking as their effective 

bodily reactions to a given unitizing task using TT—and I distinguish their multiplicative 

and additive thinking based on various researchers’ conceptions of multiplicative 

thinking. The data was created by video-recording the children’s interaction around/with 

TT. A retrospective analysis of the data reveals that the children’s effective action to 

solve the unitizing task developed through a history of recurrent interactions in this 

environment. 

Keywords: multiplicative thinking, touchscreen technology, enactivism, collaborative 

learning, TouchTimes 

One incident with one child, seen in all its richness, frequently has more 
to convey than a thousand replications of an experiment conducted with 
hundreds of children. Our preoccupation with replicability and 
generalisability frequently dulls our senses to what we may see in the 
unique unanticipated event that has never occurred before and may 
never happen again. That event can, however, act as a peephole through 
which we can get a better glimpse at a world that surrounds us but that 
we may never have seen in quite that way before. (Brown, 1981, p. 11) 

Multiplication is introduced to students at different grade levels within different 

number domains, such as natural numbers, rational numbers and integers. Studies show 

that students from varying grade levels have difficulties when they are faced with 

multiplicative situations (e.g., Brown et al., 2010; Clark & Kamii, 1996; Hackenberg, 
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2010; Hurst, 2017). Multiplicative thinking is important for students to navigate 

successfully at each grade level and, relatively recently, there has been wide interest in 

finding ways to improve it. 

Several researchers have attributed children’s subsequent difficulty to the intro- 

duction of multiplication as repeated addition and illustrated the difference between 

multiplicative and additive thinking through various models (e.g., Confrey, 1994; Greer, 

1992; Maffia & Mariotti, 2018; Schwartz, 1988; Vergnaud, 1988). Another attempt to 

improve students’ achievement in multiplicative situations was to design educational 

software to provide students with dynamic representations of multiplication (e.g., Kaput, 

1985). Thanks to the internet, one can easily access countless online games and apps 

about multiplication nowadays. However, most of them are based on practice and drill 

exercises, which strengthen the recall of multiplication facts, while only poorly 

encouraging students to think multiplicatively. 

This article reports on a study about a multi-touch digital device (TouchTimes, 

hereafter TT) that was designed to enable students to think multiplicatively. Its design 

draws on multiplication models that are different from repeated addition. At the beginning 

of a long-term research project, two third-graders and a researcher interacted 

around/with this technology and the children’s interaction demonstrated a shift in their 

approach to quantity. In this article, based on a smaller study which is somewhat 

tentative in nature, I examine the process of this shift by focusing on how children 

structured a target quantity in TT, how they interacted around/with TT and how these 

interactions played a role in the children’s approaches to structure quantity 

multiplicatively. 

4.1. Multiplicative Thinking 

Multiplication is introduced as repeated addition in the elementary school curricula in 

many countries, which can often lead students to remain in the mode of additive 

thinking. However, multiplicative thinking is different from additive thinking in terms of the 
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number of levels of abstraction4 and the number of inclusion relationships a child makes 

simultaneously (Clark & Kamii, 1996). Figure 4.1 demonstrates this difference explicitly. 

 

  Additive thinking:3+3+3+3               Multiplicative thinking: 3x4 

Figure 4.1. Additive and multiplicative thinking. 
Note: The figure is modified version of Fig. 1 in Clark & Kamii (1996, p. 42) 

When adding three repeatedly four times, the child operates on ones as the only 

unit count (see Figure 4.1a). Even though the repeating terms of addition are equal, the 

reason behind this equality is not explicit to the child. In other words, it is a pre-given 

condition (Davydov, 1992). According to Davydov, in multiplying three and four, the child 

considers two distinct unit counts, as illustrated in Figure 4.1b by the black dots (units of 

one) and the blue ellipses (units of three). Unlike the repeated term of addition, three 

refers to the established relationship between the two unit counts in multiplication, not a 

pre-given condition. This relationship constitutes a “many-to-one correspondence 

between the three units of one and one unit of three” (Clark & Kamii, 1996, p. 43). 

Askew (2018) called this correspondence “the functional relation” between the variables 

of the multiplication, drawing on Vergnaud’s multiplicative conceptual field. According to 

Davydov, this relationship is established when one unit of count is transferred to another 

unit of count in a measuring activity. According to Steffe (1994), this transfer constitutes 

the core of multiplication. 

The other difference comes from inclusion relations which play a role in the com- 

position of the product (Clark & Kamii, 1996). When learners add numbers, they 

combine the units along a single level: one is added to one to make two, one is added to 

two to make three, and so on up to twelve (see Figure 4.1a). Whereas in multiplication, 

simultaneous inclusion relationships are identified in two levels: (1) within the units and 

(2) between the units. Within the units of three, one three is included in two threes, and 

so on up to four threes (see Figure 4.1b). Similarly, within the units of ones, the child 

 

4 The term “level of abstraction” was used by Clark and Kamii (1996), but I interpret it here as the 
number of units to be operated on. 
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“includes one in two and two in three” (p. 42). As the child includes the smaller units 

within themselves, these units are also included in the larger unit simultaneously, such 

that “3 ones are included in each unit of three, and 4 units of three are included in the 

product” (p. 43), as represented by the bidirectional arrows in Figure 4.1b. 

Additive thinking in multiplicative situations may conceal the inclusion relation- 

ship between the units such that a change in one group may not be conveyed to all 

groups of threes at once. For example, if a child is given “6 × 17 is 102” and then asked 

how the product changes when 17 increases by 1, s/he might suggest that it also 

increases by one due to the repeated addition model of multiplication. However, when a 

child thinks multiplicatively, s/he can simultaneously consider the inclusion relationship 

between the units to evaluate the change in the product (Davydov, 1992). 

4.2. Teaching through Multiplication Models 

Multiplicative thinking plays an important role in a large number of mathematical 

situations found in upper grades (Brown et al., 2010). For example, ratio, rate, rational 

number, linear and non-linear functions, vector space and dimensional analysis are 

concepts that are all involved in a learner’s organization of actions relevant to 

multiplicative situations (Vergnaud, 1988). The repeated addition model is not sufficient 

to explain these concepts, because it lacks an emphasis on the relationship between the 

distinct units. Therefore, although learning multiplication as repeated addition may not 

pose a problem in the lower elementary grades, children may well have difficulty in the 

upper grades if their sole conception of multiplication is restricted to repeated addition 

(e.g., Siemon et al., 2005). 
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1 (1, 0) (1, 1) 

2 (2, 0) (2, 1) 

 

 

e) 

 

Figure 4.2. Models of multiplication: (a) a graph; (b) a T-table; (c) a tree diagram; 
(d) an array model; (e) a ratio comparison of lengths. 

Note: These images are based, respectively, on Schwartz (1988, p. 45); Vergnaud (1988, p. 146); 
Confrey (1994, p. 302); Maffia and Mariotti (2018, p. 31); Izsák and Beckmann (2019, p. 92) and 
Polotskaia and Savard (2021). 

Several representations are suggested in the literature to model multiplication as 

different from repeated addition. Schwartz (1988) defined multiplication as a mapping 

from “a quantity in one space to another quantity in another space” (p. 51) and 

suggested that multiplication could be introduced through a graph model, in which axes 

represent the distinct referents of multiplication (see Figure 4.2a). Vergnaud (1988) 

framed multiplication within a multiplicative conceptual field and suggested that T-tables 

(see Figure 4.2b) can explicitly illustrate the ratio between the multiplicative factors (if 

one unit has two parts, then three units have six parts). Confrey (1994) defined 

multiplication as, “an action of creating simultaneously multiple versions of an original” 

(p. 292) and proposed a tree diagram to illustrate this splitting action (see Figure 4.2c). 

Maffia and Mariotti (2018) offered the array model of multiplication as an intuitive 

counterpart of the more formal Cartesian product: for example, the array model 

describes the multiplication 2 × 3 as a rectangular array of three rows with two elements 

in each row (see Figure 4.2d). The ratio comparison of lengths (see Figure 4.2e) was 
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another representation suggested by various researchers (e.g., Izsák & Beckmann, 

2019; Lay, 1963; Polotskaia & Savard, 2021). 

Using alternative multiplication models indicated promising outcomes for 

developing children’s multiplicative thinking. Following Vergnaud’s functional aspect of 

multiplicative reasoning (MR)5, Askew (2018) suggested a cyclical and iterative 

instruction method to develop MR in young students. In this setting, the teacher first 

posed a multiplicative word problem and then observed which kinds of informal models 

students elicited for the problem. Next, the teacher identified which of these informal 

models could be connected to a mathematical model, such as the double number line or 

the ratio table, which was hypothesized to stimulate multiplicative reasoning. Lastly, the 

teacher taught these mathematical models explicitly to the students and encouraged 

them to solve a variation of the word problem they were given at the beginning by one of 

these means. Askew applied this instructional method to second- and fourth-graders and 

showed that the functional approach to MR was effective when the students were given 

appropriate conditions. 

In Venkat and Mathews’ (2019) study, seventh-graders were instructed to solve 

multiplication word problems using an abstract array model, a double number line and T-

tables. Their solution strategies were compared via pre- and post-tests. After the 

intervention, the students answered questions with more abstract models instead of their 

previous strategies, such as counting models. Even though the authors identified a shift 

in the students’ choice of models, and an increase in their achievement, the use of 

models did not guarantee success in multiplication word problems. Indeed, some 

learners could not solve the problems despite using appropriate abstract models for 

multiplication. Moreover, the modelling may not be transferred to other multiplicative 

situations. When bare multiplication sentences were given, the students did not make 

use of the models. 

 

5 Multiplicative thinking does not necessarily indicate any reasoning. Based on Clark and Kamii’s 
(1996) definition, multiplicative thinking involves identification of two units of multiplication and the 
two levels of inclusive relationships among them, not an expression of reasoning behind these 
structures, even though it might implicitly involve some reasoning. Therefore, I do not use the 
expressions “multiplicative reasoning” and “multiplicative thinking” interchangeably. Rather, I 
employ the specific terminology used by the authors cited. 
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Unlike static models created by pencil-and-paper, Kaput (1985) proposed 

dynamic models to develop MR. He attributed its absence to poor and inflexible 

cognitive representations of multiplication, division and intensive quantities, which refer 

to the ratio between two quantities, and suggested that students should be given the 

opportunity to manipulate multiple representations of these concepts in a co-ordinated 

window using a computer. Figure 4.3 shows the four different representations starting 

from the upper left-hand box in clockwise order: concrete iconic representations of the 

base set of objects; vertical data table in which entries are co-ordinated according to the 

number of base sets; a co-ordinate graph in which axes are connected to the number of 

base sets; a semantic calculator which makes the calculations via formal expressions of 

the number of base sets. 

 

Figure 4.3. Multiple representations of multiplication in a co-ordinated window. 
Note: This is based on Fig. 3 in Kaput & Pattison-Gordon (1987, p.13). 

Unlike static media, which commonly demonstrate the co-ordination of the 

representations simultaneously by presenting a table and a graph on the same page 

next to each other, digital software is open to manipulation and can demonstrate the 

change in the variables of a multiplication in four representations at the same time. Even 

though this approach can simultaneously translate the changes from one representation 

to others, presuming that students build a meaning for a mathematical concept which is 

invariant across the representations might be problematic (Thompson, 2013). So, in 

Kaput’s co-ordinated window, it is not clear how it draws children’s attention to the 

proportional relationship between the two operands of the multiplication. 
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For example, one can manipulate an iconic representation of a multiplicative 

situation by replicating or deleting copies of the base-set objects separately. However, it 

may not be obvious for the learners to identify the many-to-one correspondence 

between the variables from the spatial vicinity between the icons in each cell alone. For 

instance, in Figure 4.3a, changing the number of apple icons can be translated into the 

other representations. However, representing the ratio between the number of apples 

and the number of plates only by closely aligning the like icons may not allow children to 

experience many-to-one correspondence between them. 

Since Kaput (1985), few studies have examined dynamic digital technologies that 

combine different representations of multiplication. Paek et al. (2016) found that, when 

young children with no prior knowledge of multiplication manipulated the graphical and 

symbolic representations of multiplication facts in a touchscreen tablet application, they 

were able to answer multiplication facts they had not studied before. Participants only 

practiced the two- and three-times tables and they were subsequently asked for 

multiplication elements from the two-, three-, four- and five- times tables. The graphical 

representation involved blocks which could be stacked and combined in various ways, 

while the symbolic representation was in the form of a multiplication sentence. Even 

though this study suggested promising results in terms of learning specific multiplication 

elements, combining stacks with fingers via a tablet application does not seem to offer 

an alternative model to the repeated addition approach. On the other hand, Bolden et al. 

(2015) introduced young children to array and number-line models in addition to 

repeated addition. However, the children involved were not able to manipulate the 

models directly. They were shown multiplication facts with both graphical and symbolic 

representations using static slides on computer screens. 

In the present study, I examine a touchscreen iPad application called 

TouchTimes (Jackiw & Sinclair, 2019). TT provides dynamic and linked representations 

(as per Kaput, 1985) for students bodily to experience (as per Paek et al., 2016) the 

functional relations between the multiplicative factors (as per Askew, 2018). This 

functional relationship is important in learning multiplication, but it is not enough by itself. 

A multiplicative conceptual field consists of multiplicative situations, multiplicative 

schemes and symbols (Vergnaud, 1988). Drawing on Seymour Papert’s argument that 

programming through computers may not teach mathematics, but that it may bring a way 

of thinking that can make mathematics learnable (as cited in Noss & Hoyles, 1996, p. 
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66), this study aims at extending it to the potential of gesture-based TT in opening 

windows to make multiplication learnable by shifting students’ approach to quantity from 

being additive to being multiplicative. 

4.3. A Brief Description of TouchTimes 

TT is an iPad application designed to enhance multiplicative thinking. It comprises two 

verb elements, termed Grasplify and Zaplify. This paper will focus only on the unit-of-

units model in the Grasplify world, which draws both on Davydov’s (1992) notion of 

change in unit and on Vergnaud’s (1988) notion of functional relations between the 

variables. 

When opened, the layout of this world consists of a permanent vertical line which 

divides the screen into two equal parts (see Figure 4.4a). These parts contain two differ- 

ent kinds of objects (called “pips” and “pods”), based both on the initial temporality of the 

touches and then on the spatiality of the related sides of the screen. When one or more 

fingers first touch one side of the screen, this creates one or more coloured discs (see 

Figure 4.4b) that are called pips. Pips can stay on the screen only provided finger 

contact is maintained. If a pip-making finger is lifted, the related pip disappears. If a 

finger is pressed on the other side of the screen from the pips, this creates bounded 

collections of colour-matched pips. These collections are called “pods” and they 

preserve the number, colour and spatial configurations of the original pips (see Figure 

4.4c). Unlike pips, pods stay on the screen even if the pod-making fingers are lifted (see 

Figure 4.4d). 
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Figure 4.4. (a) Initial TT screen; (b) creating three pips; (c) creating four three-
pods; (d) pods after lifting the fingers. 

Note: A “three-pod” refers to a pod that includes three pips. In Figure 4.4c, the fingers were first 
placed on the left side of the screen, but if they had been placed on the right side of the screen, 
then the pods would appear on the left side of the screen.  

One can create multiple pods either by pressing multiple fingers at once or by 

tapping a single finger repeatedly on the opposite side from that of the pips. If one of the 

pip-making fingers is lifted, then each pod changes to contain one less pip (of the same 

colour). If one more pip-making finger is pressed down on the pip side, then each pod 

changes to contain one more pip (of the same colour). Once all the fingers that maintain 

the pips are lifted, all TT objects disappear and both sides of the screen become blank 

again. One can also drag any object around the screen by moving any pip-/pod-making 

finger without losing contact between the finger and the screen. The total numbers of 

both TT objects (pips and pods) are presented on the top of the screen as numerals (see 

Figure 4.4b) and any change in TT objects is mirrored in the numerals simultaneously. 

As soon as there are both pips and pods on the screen, a multiplication expression (that 

is generated aligned with the order of the TT objects) appears at the top (see Figure 

4.4c). 
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TT objects, the hand gestures6 that create these objects and the relationship 

between these objects are all associated with various aspects of multiplicative thinking. 

The pips and the pods represent the two unit counts of multiplication. Once pips are 

created on one side of the screen, a pod-making finger on the opposite side creates a 

new unit of count. Pressing down a pod-making finger after placing and holding a pip-

making finger corresponds to Davydov’s notion of transfer of unit counts. The transfer of 

configurations from pips to pods relates to Vergnaud’s notion of many-to-one 

correspondence between the units. A simultaneous adjustment in the size of each pod 

according to the number of pips reflects Clark and Kamii’s notion of the inclusion 

relationship between the units. 

As a multimodal digital learning environment, TT provides the users with an 

interactive platform that supplies direct and fast feedback to their gestures. It creates 

digital objects at the fingertips and adjusts these objects simultaneously according to the 

many-to-one correspondence between the factors. Thus, following body studies in 

mathematics education (see the next sub-section), the design of TT aims at enabling 

children to think multiplicatively as they literally embody the functional relationship 

between these factors. 

4.4. The Body in Mathematics Education Research 

Studies which emphasize the role of the body in learning mathematics are not rare in the 

literature. Having a participationist approach to cognition, these studies bring a new 

perspective to the meaning of mathematics learning and challenge the educational 

implications that result from presuming the body to be peripheral to mathematical 

thinking. The following survey presents studies that examine computerized technology 

use in the mathematics learning environment. 

Nemirovsky et al.’s (2013) theory of perceptuomotor learning shows the 

importance of integration between motor actions and perceptions in learning the 

mathematical concept of slope. In their study, two children were introduced to a 

mathematical instrument which consisted of a computer screen and a mechanical 

 

6 In this paper, the term “gesture” refers to the notion of the “tangible gesture” as discussed in 
Sinclair and de Freitas (2014). 
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apparatus including two handles, one controlling the x-axis motion and the other the y-

axis motion. The researchers showed that the children obtained fluency in using the 

mathematical instrument as they integrated their motor actions, which consisted of the 

movement of the body parts such as hand, arm and torso, in conjunction with their visual 

perception of the graphics on the screen. Attending both to the motor actions and to the 

perceptions in their microanalysis, the authors suggested a new meaning for 

mathematics learning: “a process in which the perceptual and motoric aspects of using a 

mathematical instrument become intertwined” (p. 406). 

Abrahamson and Trninic (2015) took one step further, in examining the evolution 

of perceptuomotor doing into disciplinary knowing from an anti-representationalist 

perspective. They proposed a view of conceptual learning which goes beyond the 

cognitive semantic theory of conceptual metaphor. Drawing on a non-dualist approach, 

they attended to and explained the dynamical, interactionist, emergent, sociocultural, 

distributed and developmental aspects of teaching and learning in a more 

comprehensive manner, compared with the construct of conceptual metaphor. According 

to this account, mathematics learning is based on two actions: (1) engagement in 

motoric problem solving through goal-oriented situated interactions within a particular 

ecology and (2) reflection on this engagement. They supported this account empirically 

by modelling two students’ goal-oriented sensorimotor actions in an instrumented field of 

promoted action, in which the students manipulated technological devices to develop 

proportional thinking. In order to model students’ actions, they conducted a microgenetic 

analysis which captured students’ actions in detail. The results showed that, as the 

students manipulated the artefacts, both their actions and their articulations co-evolved. 

As their actions shifted from local adjustments to global action plans, they started to 

include elements of the mathematics register in their discourse with the guidance of the 

instructor. 

Francis et al. (2016) examined children’s spatial reasoning as they used a laptop 

to program a LEGO Mindstorms EV3 robot. In contrast to other studies on the use of 

robots in the mathematics classroom, their enactivist approach shifted the focus from 

symbolic representations to the children’s moment-by-moment manipulations. The 

authors created their data through slow-motion video-recordings to capture the fine-

grained interactions between the computer screen and the children. This enabled them 

to show that enactive-iconic-symbolic representations, which are important aspects of 
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spatial reasoning, develop simultaneously, which, they claimed, conflicted with Bruner’s 

hypothesis of sequential development. As the children manipulated the symbolic 

representations on the screen to move the robot, their subtle bodily actions 

accompanied their symbolic manipulations. In other words, spatial reasoning appeared 

as, “the constrained co-occurrence of sensory flux (sensation), recognition/ 

discrimination (perception) and the situated movement of a body (or bodies) in the 

context of a goal-oriented situation” (p. 4). 

Unlike the above studies, Lozano (2017) examined learning over a longer time- 

span, attending to the relationships among tasks, classroom cultures and mathematical 

learning. Drawing from the enactivist idea that cognition is effective action (more on this 

in the next section), her method was based on identifying students’ effective 

mathematical actions on computerized mathematics tasks. One of the criteria to identify 

effective action was the frequency of the action, while the other criterion was the 

expansion of the actions across several mathematics classes. Mathematical learning 

was defined as the change in the learners’ effective actions when noticing mathematical 

task features. Lozano found that task characteristics triggered certain effective actions, 

which were not independent of teacher guidance and students’ individual histories. 

Overall, these studies challenged both the meaning of mathematics learning and 

the methods to study it. The majority in this survey focused on fine-grain body 

interactions through microgenetic analysis, yet the researchers did not discard analyzing 

bodily changes over relatively longer periods, as in the last example. Irrespective of their 

specific methodologies, all of these studies challenged the over-emphasis on discourse 

analysis as the only way to study mathematics learning (Nemirovsky et al., 2013). They 

showed that an emphasis on the body shifted the meaning of mathematical learning 

from being a mental action to being a bodily one, which is aligned with the main 

assumptions of enactivism, the theory this study also draws on. 

4.5. Enactivism 

Enactivism brings a participationist perspective to cognition, which depends on different 

epistemological assumptions from representationalist approaches. The latter assumes 

an objective world, whereas enactivism emphasizes several worlds that are brought forth 

by living beings—observers. While the representationalist approach associates cognition 
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with the representation of the environment, enactivism describes cognition as the 

effective action of organisms to maintain their unities in an environment. Such actions 

can be observed in organisms’ behaviour that is defined as, “the changes of a living 

being’s position or attitude which an observer describes as movements or actions in 

relation to a certain environment” (Maturana & Varela, 1987/1992, p. 136). If behaviour 

is related to a history of interactions between the organism and its environment, it is 

categorized as learned; otherwise, it is defined as innate behaviour. In this article, I focus 

on learned behaviour. 

Living beings as autopoietic unities are organized in a way that their actions 

produce themselves. In other words, as they do certain things, they become those 

things. One of the things that we, as humans, do is make distinctions. We necessarily 

and permanently indicate any being, object or unity as separate from its background 

based on a criterion of distinction. For example, looking closely at a tree, we might 

distinguish its leaves from the rest of its body, even though there is not a rigid separation 

between the leaf and the branch it emerges from. Also, looking at a landscape, we might 

distinguish the tree as separate from the soil it “occupies”, despite the blurred material 

separation between the soil and the roots of the tree. 

Similarly, looking at a quadratic equation 9 −  𝑏2 = 𝑎2 + 2𝑎𝑏, a student might 

distinguish the equivalence between 𝑎2 + 2𝑎𝑏 and 9 −  𝑏2 if attention were directed 

towards which terms the equation sign separates. On the other hand, when interacting 

with the same equation, it is possible to distinguish the equivalence between the square 

of 𝑎 +  𝑏 and 9, if attention is directed towards the relationship between the terms, 

irrespective of their position with respect to the equal sign. 

To explain the dynamics of any system, including those that lead a living being to 

make certain distinctions and act in certain ways, Maturana and Varela suggested that 

organisms as autopoietic unities should be considered as operating both in their internal 

dynamics and in their circumstances—in other words, within the context. Unities are 

born with an initial structure7 in a particular environment that also has a particular 

structure. This initial structure not only conditions how the unity responds to the changes 

 

7 Maturana and Varela define structure as, “the components and the relations that actually 
constitute a particular unity” (1987/1992, p. 43). 
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in its environment, but also determines what kind of changes the environment can trigger 

within it. 

 

Figure 4.5. Representation of (a) structural coupling and (b) social coupling. 
Note: The figure is taken from Maturana & Varela (1987/1992, p. 180). 

For example, a pottery master is a pottery master as long as s/he creates 

ceramics out of clay. The creation of a piece of ceramics depends both on the bodily 

configuration of the master and on the structure of the clay. Pottery masters with bigger 

hands would sense the clay differently from those with smaller hands, and also use their 

hands differently to create the same form of ceramics. Similarly, the hardness of the clay 

would influence how much pressure should be applied on the clay by the pottery artist. 

In a mathematical context, observing a student’s problem-solving process might 

demonstrate this relationship as well. For example, presenting an equation in two 

different forms 𝑎2  +  2ab +  𝑏2  =  9 and 9 −  𝑏2  = 𝑎2  +  2ab  and asking for the value of 

(a + b) might trigger two different approaches for its solution, unless the student brings 

forth the binomial (a +  b)2 in her/his world upon interacting with the second equation. 

Both the context of the problem and the structure of the learner at that moment, which 

emerged from a history of recurrent interactions, play important roles in explaining this 

interaction. 

For a unity to operate effectively in its environment, there must be a structural 

congruence between it and its environment. As the environment and the unity act as 

mutual sources of perturbation, which triggers changes within their structures, this 

history of recurrent interaction leads to structural congruence between them. This 

process is called structural coupling. Maturana and Varela (1987/1992, p.180) illustrated 

this process with a diagram (see Figure 4.5a) in which: (1) the closed curves represent 

the autopoietic unity and the nervous system; (2) the arrows attached to these closed 

curves represent their autopoietic organization; (3) the curly line represents the 
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environment; (4) the vertical arrows represent the interaction between the environment 

and the organism. 

When each organism constitutes a source of perturbation for the other 

organism’s structure (as illustrated in Figure 4.5b), this is called social coupling. If 

organisms demonstrate mutually triggered co-ordinated behaviour in a social unity, then 

they are said to be communicating. Organisms can communicate their knowing through 

chemical, visual or auditory interactions. 

In brief, enactivism theorizes cognition as living beings’ actions that are effective 

to maintain their unities in their environments. If these effective actions emerge from a 

history of recurrent interaction between the environment and the living beings, they are 

said to be learned. Drawing on this theoretical approach to learning, this study examines 

the interactions between the bodies, in addition to the individual bodies’ interaction with 

their environment, and explores the following research questions: 

• How do children structure quantities in order to solve a unitizing task in Touch 
Times? 

• How do children couple with their environment, as well as with other 
individuals also engaged in this same environment, in order to solve a 
unitizing task in TouchTimes? 

4.6. Methods 

I analyzed a 27-min video-recording8, which captured interactions between two third-

grade students (whom I call Jacy and Kyra) and a researcher9 around TT on a single 

iPad. The researcher described this recorded event as an exploratory conversation with 

the children as part of an iterative design experiment. According to the researcher, the 

aim of this conversation was potentially to help refine the TT prototype and to develop 

appropriate tasks for use with grade two and three children. Jacy and Kyra were 

purposely recruited in this study by their classroom teacher. Following the researcher’s 

request, the teacher chose them firstly because they had never used TT before. 

Moreover, the teacher found it beneficial to provide Jacy, who often ignored instructions, 

 

8 This particular video-recording was also analyzed, albeit differently, by Bakos and Pimm (2020). 

9 The author of this article was not present at this recorded event. 
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with a different kind of mathematical experience. The children had not formally learned 

multiplication in school yet. 

This interaction occurred in an elementary school in a culturally diverse and 

affluent neighbourhood in British Columbia, Canada. The conversation was conducted 

outside of their class time and separate from their teacher. The children were 

encouraged to play freely at the beginning of the session, which they did for some seven 

minutes. This pedagogical decision was aligned with local teaching practices which aim 

to allow children to explore and to elicit noticing. In addition, the girls interacted with TT 

during its design phase, so this free-play period would have helped to study how young 

children might interact with TT without any guidance. Following the free-play period, the 

researcher posed a unitizing task to direct the two children’s attention to specific features 

of TT. 

I analyzed the children’s responses to a mathematical task: “making seven at 

once”. This task was presented orally to the children by the researcher who asked, “I 

want [Jacy] somehow with one finger to make seven over here [pointing the right side 

(RS) of the screen which was closer to Jacy]. How can you do that?”. 

There is only one way to create seven with one finger in TT: first holding seven 

fingers down on one side of the screen to make seven pips, and then tapping a single 

finger on the opposite side of the pips to make a pod comprising seven pips. Creating 

just seven pips and creating one pod in addition to seven pips are two different actions 

which both produce seven. So, these two distinct actions might generate two different 

meanings for making seven. From a mathematical perspective, making seven by co-

ordinating seven pip-making fingers with one pod-making finger recalls several features 

of multiplication: operation with two units (Clark & Kamii, 1996), the transfer of unit 

counts (Davydov, 1992) and the many-to-one correspondences between the variables 

(Vergnaud, 1988). Thus, this unitizing action is important to challenge learners’ additive 

approach to quantity and to prompt them to embody multiplicative thinking. 

4.6.1. Data Analysis 

I conducted my analysis drawing on Abrahamson and Trninic’s (2015) method. They 

studied how students learned proportional relations via computer-supported inquiry 



131 

activity that required embodied interaction with the device, and were inspired by 

enactivism in their analysis, focusing on transitions among the students’ bodily actions 

which seemed to be key to identifying their learning. Therefore, I also focused on the 

moments of transition among the different kinds of gestures10 on the screen. In the 

analysis of these transition moments, I considered not only interactions between each 

child and TT, but also the interactions among the two children, the researcher, the iPad, 

TT and the task. 

Enactivism conceptualises cognition in terms of the organisms’ effective actions 

in relation to a specific task. In my analysis, the task was to make seven with one finger 

in TT. This task was given to the children at the seventh minute of the video. Analyzing 

their effective actions without studying their history of interaction would be incomplete in 

explaining their learning process. Indeed, Maturana and Varela distinguished learned 

from innate behaviour based on the history of interactions with the environment. 

Therefore, I followed a retrospective approach, also analyzing what happened before the 

task was given to the children. 

As I mentioned earlier, the children were prompted to explore TT before the 

researcher gave them the task. During the first four minutes of their free play, the girls 

demonstrated all types of gestures that they enacted in the rest of the interview. 

Therefore, I transcribed the video and audio recording of this episode to analyze the 

characteristics of the first transitions. I organized the data in a tabular form (as in Table 

4.1) and recorded each new object (pip/pod) and the pertinent action by freezing the 

screen. This fine-grained record of the data illustrates the density of the children’s 

interactions and the pattern of shift in their gestures. Therefore, I integrated relevant 

tables into the findings. 

 

10 For more discussion on certain aspects of gestures more generally, see Bakos and Pimm 
(2020). 



132 

Table 4.1. Records of actions 
 

Jacy’s gesture 
  

Kyra’s gesture 
  

 

Time 
Period 

Action type Object Side Action type Object Side Screen 
view 
number 

0:05-0:06 Drag “mmmm” 1 pod  RS Tap 1 pip LS 1 

0:05-0:06 Drag  - RS - - - 2 

0:07-0:08 Lift - - Tap 1 pip LS 3 

0:07-0:08 Tap 1 pip RS - - - 4 

0:07-0:08 Hold 1 pod RS Hold 1 pip LS 5 

 

In Table 4.1, “action type” refers to the way of touching on the screen, “object” 

shows what an action created on the screen and “side” denotes the specific part of the 

screen on which the children demonstrated their actions. RS is an abbreviation for “right 

side” (and LS for “left side”) according to each child’s point of view. The children’s verbal 

accounts are shown in the table within quotation marks. As it is impossible to record the 

verbal accounts by freezing the screen every other second, they are indexed at the 

moment when the verbal accounts start. Screen view numbers are used to index the 

screen shots of the relevant rows which are presented in Figure 4.6. 
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Screen View 1 

 
Screen View 2 

 
Screen View 3 

 
Screen View 4 

 

Screen View 5 

 

Figure 4.6. Records of screen views. 

Each row of the tabular record of the video refers to a distinct event, and each 

event is distinguished by freezing the video at each discrete screen touch of either child. 

Among them, eight different gestural action types were found, which are described as 

follows. 

1. Drag: Moving a finger (or fingers) on the screen without lifting. 

2. Lift: Removing a finger (or fingers) from the screen. 

3. Tap: Touching and immediately removing a finger (or fingers). 

4. Hold: Touching a finger (or fingers) on the screen and keeping it 
(them) on the screen more than one second. 

5. Stand Still: Continuing to hold a finger (or fingers) down. 
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6. Hold-and-tap: While holding a finger (or fingers), tapping with another 
finger (or fingers). 

7. Hold-and-add: While holding a finger (or fingers), touching on the 
screen with another finger (or fingers) and holding it (or them). 

8. Hold-and-lift: While holding a finger (or fingers), lifting it (or some of 
them) from the screen. 

4.7. Findings 

I have divided the findings into two sub-sections: the history and the task, respectively. 

The history sub-section explains the evolution of the children’s touches that were 

observed in the first four minutes of the video-recording, while the subsequent task sub-

section explains how the children responded to the given unitizing task. Before starting 

to present my analysis, I acknowledge Maturana and Varela’s assertion that, as an 

observer, my analysis is the description of the interactions between the children and the 

environment from my perspective: “Everything said is said by the observer” (1987/1992, 

p. 65). 

4.7.1. The History of the Recurrent Interactions 

The children made various types of gestures repeatedly during their free play. My 

analysis of the evolution of these gestures is in this sub-section. At the beginning of this 

episode, the researcher did not give the children any mathematical task. Therefore, 

there was not an explicit, extrinsic goal for the children that required certain effective 

actions to achieve it. However, Jacy repeatedly questioned how to make multiple objects 

and imitated Kyra, who was successful in creating them. Therefore, I distinguished this 

question as a self-generated task and focused on the shifts in Jacy’s gestures, which 

eventually created multiple objects. 

Episode 1: A Shift from Single Pip to Multiple Pips 

Both children started to touch the screen with a single finger and thereby created single 

objects. When Kyra created multiple pods on the screen and an additional pip on Jacy’s 

side at 0:12 for the first time (see Figure 4.7a), Jacy asked Kyra, “How did you do that?”, 

while she repeatedly tapped her finger. After this question, she either held her one finger 

on the screen while Kyra created multiple pods or she tapped on the screen with a single 
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finger only. Jacy started to hold her finger down at 0:18 again. Between 0:19 and 0:20, 

Kyra tapped her finger on the RS of the screen for a second time where Jacy was 

holding a pip. This created one more pip on Jacy’s side (see Figure 4.7b). 

  

Figure 4.7. Kyra’s taps on “Jacy’s side”. 

After this moment, Jacy made a new gesture, hold-and-tap, and repeated it (see 

Table 4.2). This new gesture was effective in creating more than one object on Jacy’s 

side. Then Jacy continued this gesture by adding one more finger as she held down the 

previous pips. As soon as she created an additional pip, she continued her hold-and-add 

gesture as she counted up: “two, three”. 

Table 4.2. Records of the children’s gestures from the 18th to the 23rd second 
 

Jacy’s Gesture 
  

Kyra’s Gesture 
  

Time Period Action type Object Side Action Type Object Side 

0:18-0:19 - 
  

Tap 1 pip LS 

0:18-0:19 Hold 1 pip RS (inaudible) - 
 

0:19-0:20 Hold 1 pip RS Tap 1 pip RS 

0:19-0:20 Hold "one" 1 pip RS Tap (inaudible) 1 pip RS 

0:19-0:20 Hold and tap 2 pips RS - - 
 

0:20-0:21 Hold 1 pip RS Tap 1 pod LS 

0:21-0:22 Hold and add 1 finger 
"two" 

2 pips RS Tap 1 pod LS 

0:21-0:22 Hold and add 1 finger 3 pips RS - - 
 

0:22-0:23 Hold "three" 3 pips RS Tap 1 pod LS 

0:22-0:23 Hold and add 2 fingers 5 pips RS - - 
 

 

The design of TT allowed Kyra to tap on the opposite side of the screen and to 

change the structure of the screen in a novel way. Jacy’s hold-and-add gesture (and the 

number words she uttered) immediately followed Kyra’s tap which changed the number 

of the pips. Both Jacy’s verbal account and the change in her gesture corresponded to a 
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change in Jacy’s structure. These changes reflect a synchronization: each number name 

matched the number of fingers she placed on the screen. Since Jacy repeated this 

gesture, and uttered consecutive number names as the number of pips increased one by 

one, although not for a long time, it constituted a history of recurrent interaction between 

Jacy and the screen. This history suggests that making multiple objects by using multiple 

fingers was a learned behaviour and the synchronization of Jacy’s gesture with her 

verbal accounts constituted a one-to-one correspondence. 

Episode 2: A Shift from Adding One Finger at a Time to Tapping Multiple 
Fingers at a Time 

Jacy touched the screen with multiple fingers at the same time for the first time during 

her interaction at 0:22. While she was holding three fingers on the screen, she added 

two more fingers at the same time. Table 4.A.1 (see Supplementary Material A) shows 

the evolution of this gesture into tapping multiple fingers at once. As Jacy held five 

fingers at 0:23, she started to add and lift one finger repeatedly fourteen times until 0:27. 

Then she lifted three fingers at once and tapped them all at once. Next, she first lifted 

four fingers at once and then the rest of her fingers all-together. Then, the next moment, 

she did a completely new gesture: tapping five right-hand fingers at once and tapping 

five left-hand fingers at once. She repeated this gesture at least three times and then 

tapped all her ten fingers at once creating multiple objects. 

Jacy’s actions gradually shifted from holding and adding to tapping multiple 

fingers at the same time. When Jacy started to hold-and-add her fingers one by one, the 

pips stayed on the screen and their number increased gradually. The changes in Jacy’s 

actions and on the screen followed each other in a cyclic manner. The change in her 

action triggered a change in the structure of the screen and this in turn created multiple 

objects. The change in Jacy’s gesture occurred right after these multiple objects 

appeared on the screen, and these reciprocal perturbations ended with a gesture that 

reflected a slight difference from Jacy’s holding-and-adding gesture. Thus, it suggested 

a distinct gesture, namely a discovery: holding and adding multiple fingers at once. After 

this discovery, she repeated this gesture for a few times with different variations, which 

resulted in multiple pips that simultaneously appeared on the screen. Then Jacy 

discovered another gesture: tapping multiple fingers at once. After this discovery, she 

repeated this gesture for a few times with either hand, too. At the end, Jacy tapped all 

her fingers at once and this created ten pips. This new gesture suggested a learned 
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behaviour which was also effective in creating multiple objects because it followed the 

structural coupling between Jacy and TT. 

Episode 3: Another Way to Make Many 

At 0:31, Jacy held five fingers at once and this created five pips. Then she tapped her 

left index finger and held it there while Kyra interchangeably tapped her multiple fingers 

between 0:32 and 0:33. At 0:33, Jacy asked, “How do you make those many ones?” 

After asking the question, her gestures changed from holding to repetitive tapping (see 

Figure 4.8 and Table 4.3). This repetitive tapping created a single pod of two pips. Then 

Jacy said “Oh” twice, as the pods appeared on the screen. Jacy held her finger on the 

screen just after a pod appeared, but it disappeared again when Kyra lifted her fingers at 

0:35. 

 

 

Figure 4.8. Jacy’s shift from holding a pip to tapping a pod. 
Note: Black circles added by the author to make the pods more visible 
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Table 4.3. The records of children’s gestures from the 32nd to the 36th second 

 Jacy’s gesture    Kyra’s gesture  

Time period Action type Object Side  Action type Object Side 

0:32–0:33 Hold five fingers 5 pips RS  Tap right index 5 pods LS 

0:32–0:33 Hold left index 1 pip RS  Tap two right two left 4 pods LS 

0:33–0:34 Stand still 1 pip RS  Tap two right two left 7 pods LS 

0:33–0:34 Stand still 1 pip RS  Tap four right one left 9 pods LS 

0:33–0:34 Stand still 1 pip RS  Tap three right two left 9 pods LS 

0:33–0:34 Standstill “how do you 1 pip RS  Tap one right one left 9 pods LS 
 get those many ones?”       

0:33–0:34 Tap left middle 1 pod RS Hold left LI and RI 2 pips LS 

0:34–0:35 Tap left middle “oh” 1 pod RS Stand still 2 pips LS 

0:34–0:35 Tap left middle “oh” 1 pod RS Stand still 2 pips LS 

0:35–0:36 Hold left middle / RS Lift / / 

0:35–0:36 Stand still / RS Hold LI and RI 2 pips LS 

0:35–0:36 Lift / / Stand still 2 pips LS 

Note: LI, left index finger; RI, right index finger. 

Jacy’s question suggested visual and auditory interactions between the girls. Her 

reference to Kyra’s pods constituted a visual interaction among Jacy, Kyra and the 

screen. Even though, in the previous episode, Jacy could create multiple objects by 

tapping multiple fingers, holding multiple fingers down at once was not effective to create 

“those many ones” that referred to Kyra’s pods. This suggested that Jacy distinguished 

the pips visually from the pods. The transition in Jacy’s gestures from holding to tapping 

followed Kyra’s repetitive taps. After Jacy asked the question, she changed her gesture 

from holding to tapping like Kyra did. This suggested that Jacy imitated Kyra to create 

pods. As Jacy tapped repetitively, Kyra was holding her fingers on the screen. Thus, 

Kyra and Jacy socially coupled as they exchanged their previous gestures. Kyra’s pip-

holding gesture allowed Jacy to create the pods. As soon as the pods appeared on the 

screen, this triggered a change in Jacy’s structure. She said “Oh” and kept her finger on 

the screen. In this episode, tapping repetitively was effective in creating “many ones”. 

This gesture suggests a learned behaviour, because it followed the history of Jacy’s 

visual interaction with Kyra: Jacy’s tapping followed Kyra’s repetitive tapping. 

After Jacy shifted her gesture from holding to tapping, this created single pods. 

She kept tapping her single finger repetitively until she created another pod at 0:40. As 

soon as this pod appeared on the screen, she held the pod-making finger still. Then she 

said, “Oooooh” once again, as the pitch of her voice increased gradually in an excited 
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manner. During this time, Kyra was changing the number of pips. Then she held her 

finger on the screen and the pod stayed there until Kyra cleared the entire screen by 

lifting her finger. At 0:42, Jacy tapped, and this gesture created a pod again. Then she 

held the pod for five seconds (see Table 4.A.2 in Supplementary Material A) while Kyra 

was changing the number of the pips (see Figure 4.9). This change in the number of 

pips was mirrored in the pod and at 0:47 Jacy said, “Wait, get as much as you can” as 

she held the pod. However, Kyra did not respond to this request. 

 

 

Figure 4.9. Kyra changes the pips while Jacy holds the pod. 

Like in the previous episode, Jacy uttered “Oh” as soon as a pod appeared on   

the screen. This time, her utterance lasted longer, and it was enacted with a higher- 

pitched tone. During her utterance, Jacy’s pod underwent several changes, even though 

Jacy did not make anything else other than keeping the pod-making finger still. Rather 

than the pod itself, the spontaneous changes within the pod might have triggered this 

exclamation, one that was different from the previous ones. Holding a pod allowed Jacy 

to observe recurrent changes in her pod during the following five seconds. The request 

from Jacy to Kyra to “get as much [sic] as you can” suggested a visual interaction among 

Jacy, Kyra and TT, and constituted a call for a co-ordinated action to achieve a goal that 

might be growing her pod via “as much [sic] as” pips. She did this request as she was 

holding her pod. This suggests another distinction to make many. 
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Episode 4: Changing Pods with Pips 

At 3:32, there were thirteen five-pods on the screen (see Figure 4.10a). Kyra was 

holding one pod, and Jacy was dragging the pods one by one as she held five pips (see 

Figure 4.10a). 

  

  

Figure 4.10. Dragging pods and pips. 

At 3:40, she made a pip and dragged it across the screen for four seconds, 

creating circular paths (see Figure 4.10b and c). During this time, Jacy said, “Whaaat” 

and Kyra said, “Woooooow”. At 3:44, Kyra lifted her pod-holding finger, held a pip on the 

RS (see Figure 4.10d) and dragged it in a circular motion like Jacy. Then the following 

conversation emerged as they dragged the pips across the screen. 

[3:46] Jacy: Oh wait, I can change the shape. 

[3:54] Jacy: Look [points to one of the pods.], look here [touches the 

pod]. I am doing the exact same thing [drags her two pip-making fingers 

towards each other and further away repeatedly]. 

[3:57] Kyra: Yeaah, and I am doing it with the pink [drags the pink pip 

with a circular motion]… green and yellow [drags green and yellow pips]. 

Dragging individual pods across the screen allowed Jacy to discern a change 

within the pods that resulted from Jacy’s making of another pip. Dragging pods required 

close eye contact with the pod: to drag the pod, she must have grabbed it, and to grab 

the pod she must have seen it. So, this eye contact allowed Jacy to discern a change 
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within the pods. This distinction was evident both from the changes in Jacy’s gestures 

and in her verbal accounts. This new pip Jacy created at 3:40 (see Figure 4.10b) halted 

her pod-dragging gesture and triggered a pip-dragging one instead. The change in 

Jacy’s gesture, the change in the configuration of the pods and the girls’ exclamations 

co-emerged, suggesting a social coupling. In the following conversation, the girls 

brought forth a connection between the pips and the pods as Jacy “changed the shape” 

while she dragged the pips and Kyra “did it with the pink, green and yellow” pips. 

Following this episode, at 4:25, Jacy said to Kyra, “Wait, do just one”. Kyra made 

one pip and Jacy made seven one-pods. Then they created several more one-pods by 

taking turns for thirty seconds. At 4:55, Jacy said to Kyra, “Wait, press a lot…press your 

whole hand”. Kyra made five pips and Jacy tapped the pods one by one until Kyra lifted 

her fingers. 

In this episode, Jacy achieved the task that she posed at 0:47. While Kyra did not 

respond to Jacy’s request back then, in this episode their social coupling allowed Jacy to 

create multiple objects with single touches. This behaviour emerged after each girl 

created several one-pods. These multiple attempts to create pods constituted a history 

of recurrent interaction among the girls, the pips and the pods. Therefore, this pod-

making gesture suggested a learned behaviour. 

4.7.2. The Task Session 

After seven minutes of free play, the researcher asked the children to make seven with 

one finger. This was the first time that they were given a unitizing task to solve. In this 

episode, I identified three different approaches to structure a quantity based on various 

researchers’ distinctions of additive and multiplicative thinking. These approaches follow 

a chronological order. Therefore, I share the findings within three sub-sections 

respectively. 

An Additive Approach 

Jacy’s first response to this question was to tap her left index finger and to hold it there 

for four seconds. This gesture made one pip on the RS. Then Jacy started to add her 

thumb, middle and ring finger respectively as she held her index finger. This created four 

pips on the RS. 
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Pressing the index finger was ineffective to create seven because it only created 

one pip on the screen. Even though in the previous episodes I observed that Jacy had 

created multiple objects either sequentially or simultaneously, as a response to create 

seven she touched the screen with only one finger. The emphasis on the “one finger” in 

the researcher’s question might have triggered this ineffective action. After one pip 

appeared on the screen, Jacy added more pip-making fingers as she had done in 

“Episode 1: A Shift from Single Pip to Multiple Pips”. The single pip on the screen might 

have triggered Jacy to use her other pip-making fingers to increase the quantity. Since 

Jacy had already conducted this gesture before this episode, her structure allowed 

enactment of this behaviour in this episode as well. 

Jacy’s consecutive touches only created pips on the RS. This gesture created a 

temporal and spatial separation between the pips, indicating them as a single unit of 

counts (Davydov, 1992), which suggested an additive approach to make a given quantity 

because the pips were the only referents (Schwartz, 1988) that were combined only on 

one level (Clark & Kamii, 1996): the second pip was added to the first pip, the third pip 

was added to the previous two pips and the fourth pip was added to the previous three 

pips. There was no pod that would include them all. 

Spreading Pips Across the Pods 

When Jacy lifted her pip-making fingers, Kyra said “one finger” and pointed to the RS of 

the screen. After Jacy tapped her right index on the RS, and held it there, Kyra started to 

tap seven times consecutively on the LS. This created one pip and seven one-pods. The 

researcher said, “Well, you made seven over there, Kyra, but I want Jacy to make seven 

coming out of her one finger”, as she pointed to Jacy’s index finger, which was holding 

the sole pip. As soon as the researcher said, “Well, you made seven over there”, Jacy 

started to tap her thumb twice as she held her index finger (see Figure 4.11a and b). 

This created another pip in each existing pod. Then, one of the children said, “Hmmm” 

with a pitch which increased and then decreased, indicating distinctions. 
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Figure 4.11. (a) Holding a pip; (b) adding another pip. 
Note: Black circles added by the author to make the pods more visible. 

Both Jacy and Kyra used their single fingers to create seven at the beginning of 

this episode. The researcher’s and Kyra’s repeated reference to “one finger” might have 

triggered the children’s co-ordinated, single-fingered gestures to create seven. Even 

though the children socially coupled with the researcher as they co-ordinated their 

gestures in relation to her verbal account, they were not effective in making seven 

coming out of one finger, as the researcher stated. 

After making Jacy create a pip with her one finger, Kyra created seven pods 

sequentially. Increasing the number of pods one by one might recall an additive manner 

for an observer, but this gesture embodies a multiplicative relationship in many aspects. 

First, the children operated on two levels (Clark & Kamii, 1996) as they manipulated both 

pips and pods. Second, making seven from pod-making fingers creates the target 

quantity indirectly with the new unit of count (Davydov, 1992). Even though the pip-

making finger was fixed on the screen, seemingly playing a passive role in quantifying, it 

was involved in the creation of pods. Every single pod is created through the joint action 

of pip-making and pod-making fingers. Thanks to this joint action, the single pip was 

transferred to the pods, thereby expanding the inclusion relationships to a second level 

(Clark & Kamii, 1996). This expansion became more obvious when Jacy added another 
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pip: while the second pip was being added to the first one, it was simultaneously 

included in every pod. Rather than being a random act, this gesture embodied the 

connection among the pip, the pod and the product, as was the case in “Episode 4: 

Changing Pods with Pips”. 

Here Comes the Multiplicative Action 

Just before this episode, Jacy was holding five pips on the RS and Kyra tapped her right 

index finger on the LS. This created one five-pod (see Figure 4.12a). When the children 

created a five-pod, the researcher said, “Ooooh, Kyra made five with one finger”. Then 

Kyra tapped her index again and this created two five-pods. Then the researcher said, 

“Then she made another five”, as Jacy was dragging her right hand in a circular path 

(see Figure 4.12b). 

 

 

Figure 4.12. (a) One five-pod; (b) two five-pods. 

As soon as the researcher finished her sentence, Jacy lifted her right hand immediately 

and said, “Wait” with a high pitch. Jacy grabbed Kyra’s right hand, pushed Kyra’s right 

index on the LS of the screen and said, “You start one”. This created one pip on the 

screen (see Figure 4.13a). Then she lifted Kyra’s finger (see Figure 4.13b) and said, 

“No, you tap seven fingers”, as she pushed Kyra’s right hand on the screen (see Figure 

4.13c). Then Kyra added two left-hand fingers while she also held her five right-hand 
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fingers on the LS and said, “I did it and then you…”. Finally, Jacy tapped her left index 

finger and created a seven-pod (see Figure 4.13d). 

 

Figure 4.13. (a) Making one pip together; (b) starting from the beginning; (c) 
holding five pips at once; (d) making one seven-pod. 

Even though making a five-pod was not an effective action to create seven with 

one touch, it was an important action in terms of unitizing the multiple pips. Kyra’s 

gestures suggested a distinction between pod-making and pip-making, as in “Episode 4: 

Changing Pods with Pips”. Instead of increasing the number of pips to get closer to the 

target number, Kyra tapped on the LS and created a five-pod, whose organization was 

different from the five pips. Kyra’s pod-making fingers created another unit of count at a 

second level (Clark & Kamii, 1996). Creating a pod, Kyra made a multitude not directly 

with multiple pip-making fingers, but indirectly with a single pod-making finger, as 

suggested by the researcher. 

Kyra had already created one five-pod before this episode. However, the 

researcher named this gesture as “five with one touch” only in this episode. The 

children’s gesture, the image on the screen and the researcher’s verbal and emotional 

exchange supplied visual, verbal and haptic interactions simultaneously, and this 

created a communication domain among the researcher and the two girls. The 

researcher also created a distinction among the TT objects by naming the five-pod, 

which triggered the girls’ structures to make the same distinction. 
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After Jacy said, “You start one” and pushed Kyra’s index finger on the screen, 

this created one pip. Again, Jacy’s verbal account and her gesture reflected the 

researcher’s emphasis on using “only one finger”. However, seeing one pip on the 

screen, Jacy immediately lifted Kyra’s finger and said, “No, you tap seven fingers”. Even 

though Jacy started with one finger, after she saw the single pip on the screen, she 

acted differently. Consequently, seeing a single pip on the screen might have triggered 

Jacy to push Kyra’s seven fingers at once. Jacy learned this gesture in “Episode 2: A 

Shift from Adding One Finger at a Time to Tapping Multiple Fingers at a Time”. 

The creation of seven pips was neither sequential nor simultaneous. After 

pushing Kyra’s index finger, Jacy started to create pips from scratch (see Figure 4.13b) 

instead of adding six more fingers next to Kyra’s index finger. Jacy lifted Kyra’s index 

finger immediately and pushed all her five fingers at once onto the screen. By resetting 

the screen, and creating five pips at once, Jacy created the five not as the combination 

of separate five objects, but as a single object which was congruent with the notion of a 

composite unit. This demonstrated a transition from sequential (adding multiple pips one 

by one) to simultaneous (adding multiple pips at once) action. 

After Kyra added two more pips, Jacy placed a pod-making finger onto the 

screen, thereby creating seven with one touch. Both pressing pips at once and making a 

pod via these pips were not random movements. Kyra emphasized the temporal order of 

the touches by saying, “I did this, now you do…”. This suggested that the children 

communicated a particular order for their gestures, as in “Episode 4: Changing Pods 

with Pips”. Moreover, after the meaning of making five with one finger was 

communicated between the girls and the researcher, they were able to create seven in 

the same way. Therefore, in making seven with one touch, the children embodied the act 

of unitising and they changed the unit count from one to seven. This indirectly created a 

quantity that was congruent with Davydov’s (1992) brief description of multiplication: 

“arriving at the result of a count indirectly” (p. 16). 

4.8. Discussion 

This study examined how children structure quantities when they are given a unitising 

task in TT. The “how” question was directed to two things: (1) the specific way the 

children embodied quantities and (2) the process that led to this specific embodiment. 
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Rather than suggesting a new theoretical construct, this discussion draws on the main 

theoretical constructs of enactivism to respond to these questions. 

The unitizing task requested students make seven with one finger. This task 

must be solved by making a single pod after making seven pips, which can be described 

as a unitizing action. The children’s response to this task indicated a shift in how they 

embodied the quantities. First, they responded to this task by creating a collection of 

single pips using one hand, which was additive. Then they made a single multitude out 

of pips and a pod by collaboratively using their hands, which was more aligned with the 

multiplicative structures, as explained in the task sub-section of the findings section. This 

shift emerged from on-going interactions among the bodies (TT, the children, the 

researcher), each of which participated in the multiplicative embodiment of the quantity 

differently. 

The children’s unitising act did not emerge as soon as they encountered TT. 

Their subjective sense of unitising developed through many repeating interactions, 

thanks to the nature of TT, which allowed children easily to create numerous quantities 

with varying structures through their fingertips over a brief period. During their free play, 

the children’s actions revealed a pattern: once they shifted a gesture, they repeated it for 

a while until they shifted it again. (The tabular representation of the data explicitly 

captures this pattern.) This pattern in the children’s body movements constituted what 

Maturana and Varela suggested was a necessary condition of learned behaviour: the 

history of recurrent interaction. As this history unfolded, the children’s verbal accounts 

that accompanied their gestures revealed certain distinctions, both of objects and of 

gestures. 

The distinct organization of pips and pods triggered children to distinguish 

between the TT objects that represent the dissimilar roles of multiplicative factors. This 

distinction was evident in Jacy’s self-set goals during their free play to structure the 

quantity in a specific way that was more aligned with multiplicative structures. Although 

they were not given a particular task, interacting freely with TT in collaboration with Kyra 

triggered Jacy to pose a task of “making many ones”, which was closely aligned with the 

underlying aim of TT. Moreover, she was interested not only in the number of objects, 

but also in the way she created them: pods proved more interesting than pips in terms of 

“making many ones”. 
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The design of TT is consistent with Kaput’s (1985) argument: manipulating 

multiple representations of multiplication in a co-ordinated window might help learners 

understand the invariant nature of functional relationships between the multiplicative 

factors through the simultaneous transfer of changes across the representations. The 

iconic representation of TT objects and the symbolic representation of the multiplication 

equation that mirrored the number of TT objects were present simultaneously. However, 

this co-ordination feature may not be enough in itself to help learners make meaning of 

multiplicative relationships out of graphics. As Thompson (2013) wrote, “the core 

concept of ‘function’ is not represented by any of what are commonly called the multiple 

representations of function, but instead our making connections among representational 

activities produces a subjective sense of invariance” (p. 79). In enactivist terms, this 

might be explained through the phrase “bringing forth a world”. The functional 

relationship is not a pre-given concept that can be represented in the students’ mind; 

rather, students bring forth this relationship through structural coupling with the visual 

and symbolic representations on a co-ordinated window. 

The findings of this study show that, rather than the simultaneous transfer of 

changes across the multiple representations (iconic TT objects and the equation), the 

simultaneous transfer of changes within a specific type of representation (iconic TT 

objects) might also prompt students to experience a correspondence between the 

number of pips and the size of individual pods. TT is designed to help students bring 

forth this correspondence by transferring any change in the number, colour and spatial 

configurations of the original pips to each pod. In addition to engaging with this transfer 

visually, the major muscle movements of individual bodies played an important role 

when the children distinguished the correspondence between pips and pods. 

Unlike Kaput’s design, TT’s haptic and temporal affordances allowed these types 

of major bodily engagement, which were manipulated through the computer mouse. 

When Jacy and Kyra said they “changed the shape [of the pods] by doing the exact 

same things [with the pips]”, they were dragging the pips. While any change in the pips 

is visually transferred to each pod since the beginning of the children’s engagement with 

TT, they distinguished pods as objects controlled by pips by moving pips with their 

hands and tracking pods with their eyes, which can be described using Nemirovsky et al. 

(2013) term of “perceptuomotor integration”. 
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In addition to structural coupling between the individual bodies and the 

environment, the social coupling between the individual bodies contributed to the 

emergence of a unitizing act. The social coupling with a more knowledgeable person 

also triggered new distinctions that led to effective unitizing action. Jacy intentionally 

created multiple objects with single touches once she and Kyra had related the pips to 

the pods during their free play. However, once they were given the unitizing task, they 

did not “make seven with one finger” by immediately re-enacting this gesture. They did 

so right after the researcher, as a more knowledgeable person, triggered the girls to 

distinguish “five with one finger” on TT through her verbal and visual interaction with the 

girls. 

The findings of this study also verify that children can learn through social 

coupling with a person who is not more knowledgeable, as shown in the previous studies 

(e.g., Abrahamson et al., 2011; Kelton & Ma, 2018; Nemirovsky et al., 2012, 2013). 

Among them, I identified only in Nemirovsky et al. (2013) a brief explanation about how 

the peer’s body contributes to one’s learning. Below, I extend this explanation. 

Social coupling with the peer’s body allowed the children to amplify the 

multiplicative relationships through other’s body. When the unitizing task was given, they 

re-enacted the gestures they had learned during the free play. However, I do not 

suggest that, in engaging with TT, the children simply reproduced the same gestures 

that they had used during their free play. The instruction of the task and the girls’ 

structure at that moment might have allowed what Nemirovsky et al. (2013) called, “a 

non-trivial transformation of actual motor actions” (p. 405). 

When Jacy was asked to create seven with her single finger, she held Kyra’s 

fingers and pressed them onto the screen to make pips instead of touching the screen 

herself. Until this task, the children had not interacted with each other physically. This 

indirect interaction with the screen suggested that Jacy avoided using more than “one 

finger to make seven”, following the researcher’s request. Instead of using her own body 

to make pips, Jacy used her hand to manipulate Kyra’s hand to act on the screen 

effectively within the restrictions of the task. Thus, by distancing her unitizing finger from 

the other unit counts, Jacy amplified the distinctions between the multiplicative factors 

and the functional relationship between them through the other’s body. 
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This is similar to Nemirovsky et al. (2013) account in which the other’s body 

reveals the differences: when two children collaboratively used handles to manipulate 

the cursor on the screen, “the unidirectional nature of Kayla’s left-to-right movement 

provides a backdrop against which the bidirectional nature of Ivan’s upward and 

downward movements may be made salient” (p. 393). 

In addition to amplifying the multiplicative relationships, during social coupling, 

the other’s body changed the individual’s environment and triggered discovery of novel 

gestures that embodied the quantity in a novel way. In Abrahamson et al. (2011) piece, 

the educator as a more knowledgeable person had a pivotal role in such changes. This 

study shows that students as “not more knowledgeable” ones also played such a role by 

making critical changes in the environment. When Kyra broke the boundary between 

“her side” and “Jacy’s side”, by pressing her finger on the RS of the screen where only 

Jacy was making single pips, this innovative gesture increased the number of pips. Only 

after this change did Jacy start to use her multiple fingers. As Maturana and Varela 

suggest, each girl’s structure determined different courses of interaction with their 

environments. Kyra’s structure enabled her to trigger a change on the other side of the 

screen. Without Kyra’s interaction with the screen, Jacy may not have been able to use 

her multiple fingers on it. This incident reflected the importance of innovative actions in 

learning, yet it was unclear what had caused Kyra to break the routine and pass the 

border between the sides. 

When individuals socially coupled with others, TT objects were always involved 

in these interactions. When the researcher and the children socially coupled to 

communicate distinctions, the researcher was referring to the TT objects that the 

children were holding. Similarly, when Kyra crossed “the border” and touched Jacy’s 

side, she created an additional pip. After Kyra’s gesture, Jacy’s body did something 

totally different from Kyra’s, which served to her self-set goal of “making many ones”. 

Instead of pressing her one finger on the opposite side, as Kyra had, she increased the 

number of fingers she pressed on the screen. This gesture increased the number of the 

TT objects. Seeing Kyra’s finger had created an additional pip, Jacy interacted with TT in 

a novel way. 

Based on these incidents, and Maturana’s (2020) recent clarifications of the 

notion of “organism”, I propose a new interpretation for “social coupling” and argue that 
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children were coupling not with one another’s bodies, but rather with the other 

individual’s interaction with TT. Maturana described an organism as, “a living system as 

it operates as a totality integrated in its ecological niche” (p. 16), and named this 

operational unity as the ecological organism-niche unity. Therefore, when Maturana and 

Varela earlier had defined social coupling as structural coupling with another organism, 

they might have been referring to coupling with the ecological organism-niche unity, not 

with the other’s body as an autopoietic unity separated from the environment through its 

molecular border. For this reason, it may be more appropriate to distinguish these 

incidents as socio-structural couplings, in order to emphasize the integration between 

the ecological organism-niche unities, and re-present this theoretical construct as in 

Figure 4.14. 

 

Figure 4.14. Re-presentation of socio(-structural) coupling. 
Note: Modified from Maturana & Varela (1987/1992, p. 180). 

4.9. Towards a Conclusion 

This study aimed to examine two children’s interactions around/with TT when they were 

asked to create a quantity in a specific way. In particular, the focus was on the process 

that preceded the emergence of a specific gesture, which was the first unitising in 

multiplication. The findings show that engaging with touchscreen technology allowed 

students literally to be in contact with a world which was designed based on 

multiplicative relationships. The children’s approach to creating a target quantity shifted 

from being additive towards being multiplicative through such an engagement. 

Therefore, in addition to providing multiple representations of multiplication, allowing 

students to engage haptically with the transfer of changes within a specific type of 

representation is important for them to distinguish the multiplicative factors and the 

many-to-one correspondence between them. 
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In addition to TT’s structure that embeds various aspects of multiplicative 

relationships and the children’s individual bodies, others’ bodies also participated in the 

children’s enactment of a quantity in a multiplicative way by triggering mutual 

distinctions, by changing one’s environment in a way that otherwise would not be 

possible and by amplifying the multiplicative relationships. All these actors were 

interwoven into the structural and socio-structural couplings among the children, the 

researcher and TT. Therefore, it would be unfair to hold one of them alone responsible 

for the shift in the children’s approach to quantity. 

Making seven with one touch was not a traditional multiplication task that 

required calculations or simply a recall of multiplication facts. It offered these students an 

activity of exploration that triggered a shift from additive thinking and encouraged them 

to think multiplicatively. The girls still have a long journey to make until they will feel 

comfortable navigating within the multiplicative conceptual field that consists of various 

multiplicative situations and symbols in addition to multiplicative thinking. A next step 

could be to include these situations, as well as the symbols, into the children’s 

interaction around/with TT. 
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Supplementary Material A 
 
The Records of Children’s Gestures 

Table 4.A.1. The records of children’s gestures from the 21st to the 30th second 

Jacy’s Gesture     Kyra’s Gesture  

Time Period Action Type Object Side  Action Type Object Side 

0:21–0:22 Hold and add 1 finger 3 pips RS  - -  

0:22–0:23 Hold 3 pips RS  Tap 1 pod LS 

0:22–0:23 Hold and add 2 fingers 5 pips RS  - -  

0:22–0:23 Hold and lift “four” 4 pips RS  - -  

0:23–0:24 Stand still “five” 5 pips RS  Tap 1 pod LS 

0:24–0:25 Hold and add “six” 6 pips RS  Tap 1 pod LS 

0:24–0:25 Hold and lift “two aah” 5 pips RS  Tap 1 pod LS 

0:25–0:26 Hold and add 6 pips RS  Tap right index 1 pod LS 

0:25–0:26 Hold and lift 5 pips RS  Tap right index 1 pod LS 

0:25–0:26 Hold and add 6 pips RS  Tap right index 1 pod LS 

0:26–0:27 Hold and lift 5 pips RS  Tap right index 1 pod LS 

0:26–0:27 Hold and add 6 pips RS  Tap right index 1 pod LS 

0:26–0:27 Hold and lift 5 pips RS  Tap right index 1 pod LS 

0:26–0:27 Hold and add 6 pips RS  Tap right index 1 pod LS 

0:26–0:27 Hold and lift 5 pips RS  Tap right index 1 pod LS 

0:26–0:27 Hold and add 6 pips RS  Tap right index 1 pod LS 

0:27–0:28 Hold and lift 3 pips RS  Tap right index 1 pod LS 

0:27–0:28 Hold and add 6 pips RS  Tap right index 1 pod LS 

0:27–0:28 Hold and lift 2 pips RS  Tap right index 1 pod LS 

0:27–0:28 Lift both hands -   Tap -  

0:27–0:28 Tap right five fingers 5 pips RS  Tap right index / / 

0:27–0:28 Tap left five fingers 5 pips RS  Tap right index / / 

0:28–0:29 Tap right five fingers 5 pips RS  Tap right index / / 

0:28–0:29 Tap left five fingers 5 pips RS  Tap left index / / 

0:28–0:29 Tap right five fingers 5 pips RS  Tap right index / / 

0:28–0:29 Tap left five fingers 5 pips RS  Tap left index / / 

0:29–0:30 Tap ten fingers 3 pods RS  Tap 1 pip LS 
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Table 4A.2 The records of children’s gestures from the 41st to the 47th second 

Jacy’s Gesture     Kyra’s Gesture  

Time Period Action Type Object Side  Action Type Object Side 

0:40–0:41 tap RI “oooooohhh” 1 pod RS  Tap RM & RR 2 pips LS 

0:40–0:41 hold RI 1 pod RS  Tap RI 1 pip LS 

0:40–0:41 Hold RI 1 pod RS  Tap RI 1 pip LS 

0:40–0:41 Stand still 1 pod RS  Hold RI and add RM & 3 pip LS 
     RR “look what I did”   

0:41–0:42 Stand still / / Lift / / 

0:41–0:42 Stand still / / Hold RI, RM, RR 3 pips LS 

0:41–0:42 Stand still / / Hold RI & RR, lift RM 2 pips LS 

0:42–0:43 Tap and hold RI 1 pod RS Hold RI & RR, add RM 3 pips LS 

0:42–0:43 Hold RI 1 pod RS Drag RI, RR & RM 3 pips LS 

0:42–0:43 Stand still 1 pod RS Drag, RI, RR, lift RM 2 pips LS 

0:43–0:44 Stand still 1 pod RS Drag RI, RR 2 pips LS 

0:43–0:44 Stand still 1 pod RS Drag RI, RR 2 pips LS 

0:43–0:44 Stand still 1 pod RS Drag RI, RR 2 pips LS 

0:44–0:45 Stand still 1 pod RS Drag RI, RR 2 pips LS 

0:44–0:45 Drag RI 1 pod RS Drag RI, RR 2 pips LS to RS 

0:44–0:45 Drag RI 1 pod RS Drag RI, RR 2 pips RS 

0:45–0:46 Drag RI 1 pod RS Drag RI, RR 2 pips RS 

0:45–0:46 Drag RI / / Lift / / 

0:45–0:46 Drag RI / / Hold RI & RR 2 pips LS 

0:46–0:47 Hold RI “ wait get as 1 pod RS Stand still 2 pips LS 

Note: RI, right index finger; RM, right middle finger; RR, right ring finger 

Funding This research was funded by Social Sciences and Humanities Research 

Council, grant number 435‐2018‐0433. 

Declarations 

Conflict of Interest The author declares no competing interests. 



155 

References 

Abrahamson, D., & Trninic, D. (2015). Bringing forth mathematical concepts: Signifying 
sensorimotor enactment infields of promoted action. ZDM: The International 
Journal on Mathematics Education, 47(2), 295–306. 

Abrahamson, D., Trninic, D., Gutiérrez, J., Huth, J., & Lee, R. (2011). Hooks and shifts: 
A dialectical study of mediated discovery. Technology, Knowledge and Learning, 
16(1), 55–85. 

Askew, M. (2018). Multiplicative reasoning: Teaching primary pupils in ways that focus 
on functional relations. The Curriculum Journal, 29(3), 406–423. 

Bakos, S., & Pimm, D. (2020). Beginning to multiply (with) dynamic digits: Fingers as 
physical–digital hybrids. Digital Experiences in Mathematics Education, 6(2), 
145–165. 

Bolden, D., Barmby, P., Raine, S., & Gardner, M. (2015). How young children view 
mathematical representations: A study using eye-tracking technology. 
Educational Research, 57(1), 59–79. 

Brown, M., Küchemann, D., & Hodgen, J. (2010). The struggle to achieve multiplicative 
reasoning 11–14. In M. Joubert & P. Andrews (Eds), Proceedings of the British 
Congress for Mathematics Education (April, pp. 49–56). University of 
Manchester. 

Brown, S. (1981). Sharon’s Kye. Mathematics Teaching, 94, 11–17. 

Clark, P., & Kamii, C. (1996). Identification of multiplicative thinking in children in grades 
1–5. Journal for Research in Mathematics Education, 27(1), 41–51. 

Confrey, J. (1994). Splitting, similarity, and rate of change: A new approach to 
multiplication and exponential functions. In G. Harel & J. Confrey (Eds.), The 
development of multiplicative reasoning in the learning of mathematics (pp. 291–
330). State University of New York Press. 

Davydov, V. (1992). The psychological analysis of multiplication procedures. On 
Learning Problems in Mathematics, 14(1), 3–67. 

Francis, K., Khan, S., & Davis, B. (2016). Enactivism, spatial reasoning and coding. 
Digital Experiences in Mathematics Education, 2(1), 1–20. 

Greer, B. (1992). Multiplication and division as models of situations. In D. Grouws (Ed.), 
Handbook of research on mathematics teaching and learning (pp. 276–295). 
Macmillan. 



156 

Hackenberg, A. (2010). Students’ reasoning with reversible multiplicative relationships. 
Cognition and Instruction, 28(4), 383–432. 

Hurst, C. (2017). Children have the capacity to think multiplicatively, as long as …. 
European Journal of STEM Education, 2(3), 1–14. 

Izsák, A., & Beckmann, S. (2019). Developing a coherent approach to multiplication and 
measurement. Educational Studies in Mathematics, 101(1), 83–103. 

Jackiw, N. & Sinclair, N. (2019). TouchTimes [iPad application software]. Burnaby, BC: 
Tangible Mathematics Group. (https://apps.apple.com/ca/app/TT/id1469862750). 
Accessed 22 Nov 2019. 

Kaput, J. (1985). Multiplicative word problems and intensive quantities: An integrated 
software response. Technical Report 85–19. Educational Technology Center. 
(https://eric.ed.gov/?id=ED295787). Accessed 30 Jan 2019. 

Kaput, J. J., & Pattison-Gordon, L. (1987). A concrete-to-abstract software ramp: 
Environments for learning multiplication, division and intensive quantity. 
Educational Technology Center. https://files.eric. ed.gov/fulltext/ED294713.pdf. 
Accessed 22 Nov 2019. 

Kelton, M., & Ma, J. (2018). Reconfiguring mathematical settings and activity through 
multi-party, whole-body collaboration. Educational Studies in Mathematics, 98(2), 
177–196. 

Lay, C. (1963). Times of the times. The Arithmetic Teacher, 10(6), 334–338. 

Lozano, M. (2017). Investigating task design, classroom culture and mathematics 
learning: An enactivist approach. ZDM: The International Journal on Mathematics 
Education, 49(6), 895–907. 

Maffia, A., & Mariotti, M. (2018). Intuitive and formal models of whole number 
multiplication: Relations and emerging structures. For the Learning of 
Mathematics, 38(3), 30–36. 

Maturana, H. (2020). Reflections in relation to the article of Villalobos and Razeto. 
Adaptive Behavior, 28(1), 15–17. 

Maturana, H., & Varela, F. (1987/1992). The tree of knowledge: The biological roots of 
human understanding (Trans.R. Paolucci). Shambhala Publications. 

Nemirovsky, R., Kelton, M., & Rhodehamel, B. (2012). Gesture and imagination. 
Gesture, 12(2), 130–165. 



157 

Nemirovsky, R., Kelton, M., & Rhodehamel, B. (2013). Playing mathematical 
instruments: Emerging perceptuomotor integration with an interactive 
mathematics exhibit. Journal for Research in Mathematics Education, 44(2), 
372–415. 

Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures 
and computers. Kluwer Academic Publishers. 

Paek, S., Hoffman, D., & Black, J. (2016). Perceptual factors and learning in digital 
environments. Educational Technology Research and Development, 64(3), 435–
457. 

Polotskaia, E., & Savard, A. (2021). Some multiplicative structures in elementary 
education: A view from relational paradigm. Educational Studies in Mathematics, 
106(3), 447–469. 

Schwartz, J. (1988). Intensive quantities and referent transforming arithmetic operations. 
In J. Hiebert   & M. Behr (Eds.), Number concepts and operations in the middle 
grades (pp. 41–52). Lawrence Erlbaum Associates. 

Siemon, D., Breed, M., & Virgona, J. (2005). From additive to multiplicative thinking: The 
big challenge of the middle years. In J. Mousley, L. Bragg & C. Campbell (Eds.), 
Proceedings of the Annual Conference of the Mathematical Association of 
Victoria. The Mathematical Association of Victoria. 
(https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.531.7487&rep=rep1&
type=pdf). 

Sinclair, N., & de Freitas, E. (2014). The haptic nature of gesture: Rethinking gesture 
with new multi-touch digital technologies. Gesture, 14(3), 351–374. 

Steffe, L. (1994). Children’s multiplying schemes. In G. Harel & J. Confrey (Eds.), The 
development of multiplicative reasoning in the learning of mathematics (pp. 3–
35). State University of NewYork Press. 

Thompson, P. (2013). In the absence of meaning. In K. Letham (Ed.), Vital directions for 
mathematics education research (pp. 57–92). Springer. 

Venkat, H., & Mathews, C. (2019). Improving multiplicative reasoning in a context of low 
performance. ZDM: Mathematics Education, 51(1), 95–108. 

Vergnaud, G. (1988). Multiplicative structures. In J. Hiebert & M. Behr (Eds.), Number 
concepts and operations in the middle grades (pp. 141–161). Lawrence Erlbaum 
Associates. 



158 

Postlude 

After re-engaging with this article, I want to emphasize a few points about the linguistic 

contrast between the phrases “mental action” and “bodily action”, Kaput’s (1987) 

argument about how children can understand intensive quantities to develop 

multiplicative thinking, and TT’s affordances with respect to simultaneous gestures.  

When I compared the participationist and representationalist approaches in the 

field of mathematics education, on page 126 I stated that the former one “shifted the 

meaning of mathematical learning from being a mental action to being a bodily one”. 

This might sound as if I support the mind/body split by contrasting them. On the contrary, 

since enactivism associates effective action with cognition, for me the phrase “bodily 

action” already conveys cognition, not disassociates it. Therefore, I chose to drop the 

term “mental” because the existence of both terms in my languaging makes me feel like 

there is a separation between the two.    

In the discussion section, I argue that TT’s affordance of simultaneously 

translating the changes in the pips to the pods constitutes an alternative way to enable 

students to understand the intensive quantity, the constant ratio between the two 

quantities which have different referents. I want to clarify that, rather than being an 

alternative tool to prompt students to experience intensive quantities, it is a tool to 

prompt students to experience the co-variance between the two unit-counts of 

multiplication.  

In Kaput’s (1987) design of multiple representations of multiplicative structures, 

the two unit-counts of multiplication are represented as independent icons. Even though 

these icons are placed close to each other, and the ratio between their quantities is 

constant, it is not clear why such a proportional relationship exists. Whereas in TT, the 

two unit-counts have an organic link between them. Pods are created though pips. This 

organic link is made visible by the fact that the pods take on the same configuration as 

the pips. Therefore, unlike deciphering a pre-given relationship between the unit counts 

(as per Davydov, 1992), if we apply Kaput’s (1987) model to TT, users experience co-

variance between the two quantities by identifying the organic link between them. I 

propose that, before students are expected to understand the relationship between the 

two unit-counts as a fixed ratio, students should be prompted to experience a co-variant 
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relationship between the unit-counts. When students create multiple pods and 

experience the size of each pod as the same, they can identify the relationship between 

the unit counts as a constant.  

The findings of this study illustrate the importance of the dual analysis I 

presented in the first article. The analysis of the semiotic potentials of Zaplify and pencil-

and-paper revealed how different ways of creating similar images were related to 

different mathematical meanings. Drawing multiple lines on paper sequentially and 

creating them in Zaplify simultaneously would relate to the ideas of (1 + 1 + 1 + 1 … + 1) 

and M, respectively. This study shows that students might create quantities in Grasplify 

sequentially, too. When Jacy created multiple pips for the first time, her fingers touched 

the screen sequentially while she recited the number words as if she was counting up. 

This action is aligned with (1 + 1 + 1 + 1 … + 1). However, the structure of Grasplify 

allowed this gesture to gradually evolve into simultaneous tapping of multiple fingers. 

Before the target action (making seven with one finger) emerged, transition from ‘tapping 

single pips’ to ‘hold and add pips’ to ‘tap multiple pips’ happened. This transition was 

important because it allowed the first step of unitizing action. Jacy re-enacted 

simultaneous taps while she was making seven with one finger. Unlike counting, this 

gesture and the utterance of “seven” without reciting the previous number names 

suggested that Jacy experienced the pips with respect to cardinality which is aligned 

with M. The transition from counting up to creating a specific quantity was related to the 

idea of a composite unit which was finally crystallized with her single unitizing finger.  

While Jacy was re-enacting simultaneous tapping during the unitising task, she 

asked Kyra to tap seven fingers as she pushed Kyra’s right hand on the screen. This 

episode was interesting in terms of the relationship between the children and their 

fingers. Pressing Kyra’s whole hand, no matter how many fingers it has, seemed to be 

effective for Jacy to create seven in TT. It is likely that Jacy felt Kyra’s hand like the 

‘container’ of fingers (singletons), suggesting a composite unit. Moreover, Jacy’s asking 

Kyra to press her multiple fingers first suggested that she avoided pressing more than 

one finger on the screen even though there was not such an explicit instruction in the 

task. It seemed like Jacy felt her index finger as a unitizing operator. These feelings 

seem to participate in students’ multiplicative thinking. So, I wonder what kinds of 

feelings emerge around children’s bodies while they use TT. I will elaborate on the 

question of affect in the following chapter. 
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Chapter 5. Conclusion 

This dissertation sought to study young learners’ multiplicative thinking around/with a 

touchscreen educational technology called TouchTimes (TT). My motivation to conduct 

this research emerged as the result of the following: 

1. The existing literature on students’ difficulties in multiplicative thinking. 

2. The variety of attempts—sometimes quite different one from the 
other—by researchers to propose alternatives to the model of 
repeated addition, in order to help students think multiplicatively. 

3. A worldwide interest in the benefits of integrating educational 
technologies in mathematics teaching and learning. 

4. An increased awareness of the important role of body in cognition. 

I was particularly interested in the semiotic potential of TT to engage young 

learners with multiplicative thinking in a way that is different from the repeated addition 

model. Moreover, I was interested in how this semiotic potential unfolded during the 

young learners’ interactions around/with the TT. The aim of this multi-layered qualitative 

study was to examine what type of bodily engagement TT triggered in students and how 

these bodily engagements enabled them to experience multiplicative structures. This 

final chapter first summarizes the key findings in relation to the research questions; 

provides theoretical, methodological, and educational implications; and ends with 

limitations, challenges, and future directions for research. 

5.1. Summary of the Key Findings 

The first study “The Analysis of a Model–Task Dyad in Two Settings: Zaplify and Pencil-

and-Paper” explored the added value of a digital tool that constitutes a new model to 

introduce students to multiplication. Zaplify is the name of one of the two TT models. 

Some features of its interface are similar to arrays, which are suggested in curriculum 

documents, textbooks and the research literature as an alternative model to introduce 

multiplication different from repeated addition. The motivation behind this study came 

from the question I was asked repeatedly when I introduced this model in various 

contexts: What can Zaplify do that we can’t do with pencil-and-paper?  
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I drew on the TSM’s (Bartolini Bussi & Mariotti, 2008) notion of semiotic potential 

to explore the added value of Zaplify with respect to pencil-and-paper. The focus of the 

study was on the potential signs created as the result of the artefacts’ different modes of 

use to solve a task. This task required creating array-like diagrams to model a 

multiplicative situation. The research questions driving this study were:  

• Which signs might emerge when students use pencil-and-paper to solve a 
multiplication task? 

• Which signs might emerge when students use Zaplify to solve a multiplication 
task? 

• Which meanings of multiplication do these signs relate to?  

I reported my fine-grained micro genetic analysis of how I used Zaplify and 

pencil-and-paper to make 198 by making M-ples (a Zaplify term that was created to help 

students experience composite units). In order to achieve this task in both settings, one 

must create circular objects at the intersections of perpendicular linear objects. I found 

that the images created in each setting looked similar. So, both artefacts had potential to 

prompt the same signs to describe the images. However, bodily actions that created 

these images differed significantly. While my single hand interacted with pencil-and-

paper continuously as I drew with a pencil, I used both my hands in Zaplify as I tapped 

my fingers on the screen. My analysis showed that these differences in the qualitative 

characteristics of interactions might also prompt different signs that are related to the 

different meanings of multiplication. 

Zaplify and pencil-and-paper have the potential to prompt common signs that can 

be related to the same aspects of multiplication. Perpendicular linear objects and 

intersections, whether created by Zaplify or with pencil-and-paper, might prompt 

common signs such as “vertical”, “horizontal”, “dots”. These signs could be related to two 

distinct unit‐counts and the product of multiplication, respectively. In addition, the 

number of circular objects on a linear object might also be associated with common 

signs such as “M-ple” which might be related to the functional relationships between the 

two unit counts of multiplication.  

Each setting also might prompt different meanings related to multiplication. The 

circular objects emerged one by one on an M-ple when pencil-and-paper was used to 

solve the task. Therefore, the temporal aspects of the signs might emphasize a 
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sequential nature for unitizing action and might prompt students to experience 

multiplication as combining multiple single units. Whereas in Zaplify, intersections were 

created all-at-once with a single finger touch. This was a simultaneous action which was 

aligned with Davydov’s (1992) notion of transfer of unit count. Thus, an M-ple might be 

associated with the idea of a single multitude. While the former idea prompts 

multiplication as repeated addition, the latter one relates multiplication to splitting 

(Confrey, 1994). Moreover, it was possible to draw different number of intersections on 

each line with pencil-and-paper and this allowed M-ples with different sizes to emerge 

side by side. Therefore, the functional relationship between the unit counts may not 

mean a constant entity, unlike happens in Zaplify.  

The second study “Reciprocal influences in a duo of artefacts: Identification of 

relationships that serves to multiplicative thinking” explored how a child made sense of 

the relationships between the Zaplify objects when he reciprocally used the pencil-and-

paper and Zaplify. When a physical pedagogical artefact used with its digital counterpart, 

it is called a duo of artefact. Duos are mostly presented in a certain order: non-digital 

artefact is followed by the digital counterpart. In this case, the digital artefacts are 

assumed to add on to the affordances of its non-digital counterpart. My study explored 

an alternative use of duo to exploit the unique contribution of each artefact to the child’s 

meaning-making process. The child used the artefacts in a back-and-forth way, rather 

than in an ordered manner.  

I drew on the TSM’s (Bartoloni Bussi & Mariotti, 2008) notion of pivot signs to 

explore the child’s meaning making process. The focus of the study was on the signs the 

child created to explain the genesis of the Zaplify objects and the child’s understanding 

of them. The research questions driving this study were:  

• How do signs evolve when a child reciprocally uses a duo of artefact? 

• How does a child experience the relationships between the Zaplify objects?  

The analysis of the data showed that the child first produced signs related to 

physical features of the Zaplify objects. These signs were potentially the pivots to 

connect the difference between the Zaplify objects to the difference between the 

referents of a multiplicative situation. The spatial relationship between the Zaplify objects 

were not signified at the beginning of the episode, even though the adults around the 
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child asked questions that addressed these relationships. The signs related to spatial 

relationships are important because they might constitute critical pivot signs: they can be 

related both to the relationship between the Zaplify objects and to the functional 

relationship between the factors of multiplication.  

Findings illustrated two types of transition of signs as the child moved back-and-

forth between the two artefacts. The signs were first connected to visual characteristics 

of the objects and then to the spatial relationships between the objects. This is resonant 

with Duval’s (2006) ‘treatments’ (see below). Some signs which were created in one 

setting were re-created in another setting later. This is like Duval’s (2006) ‘conversions’ 

(see below). It seemed that these transitions together allowed the learner to enrich his 

meaning-making experience and to identify various aspects of multiplicative structures.     

The third study “A Quantitative Shift Towards Multiplicative Thinking” explored 

how two third graders learned to structure the quantities multiplicatively in TT. My aim 

was to demonstrate the shift between the students’ additive and multiplicative thinking 

and to explain how this shift emerged around/with TT. Unlike in many studies, I did not 

operationalize multiplicative thinking based on the students’ correct computations of 

multiplicative expressions as a response to verbal or number problems. After all, using 

multiplication algorithms properly does not necessitate multiplicative thinking (Carrier, 

2014). Instead, drawing on enactivism, I operationalized thinking as the students’ bodily 

reactions to a given TT task. The task is called unitizing and it requires students to 

create a quantity indirectly by coordinating their two hands. This way of creating a 

quantity is aligned with the multiplicative structures conceptualized by various 

researchers (e.g., Confrey, 1994; Davydov, 1992; Vergnaud, 1988). The research 

questions of this study were:  

• How do children collaboratively structure quantities in order to solve a unitizing 
task in TouchTimes? 

• How do children couple with their environment, as well as with other 
individuals also engaged in this same environment, in order to solve a 
unitizing task in TouchTimes? 

The children first explored Zaplify without being given any specific task. I 

examined the children’s thinking process by focusing on the transitions among the 

students’ bodily actions both before and after the unitizing task was given. This followed 
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the enactivist assertion that learning can be described based on the history of 

interactions with the environment (Maturana & Varela, 1987). I distinguished additive 

thinking from multiplicative thinking by examining the structural relationships among the 

hands and TT objects with respect to various researchers’ conceptualization of additive 

and multiplicative structures (e.g., Confrey, 1994; Davydov, 1992; Vergnaud, 1988).  

The result of the analysis showed that the child’s engagement with TT shifted 

dramatically from the beginning until the end of the free exploration session. At first, Jacy 

(one of the two children) pressed her single finger on the screen without coordinating her 

gestures with her peer Kyra. This created “independent” objects on the screen. Single-

finger-pressing gesture gradually evolved into multiple-finger-pressing gesture through 

the interactions between Jacy and Grasplify. It seemed that the peer’s finger, which 

created another object on “her” side, triggered these iterations. The relationship between 

the pips and the pods emerged after the pods Jacy was holding changed based on how 

she or Kyra used their pip-making fingers. The analysis of the task session also 

suggested a similar transition in Jacy’s gestures. However, the shift from single finger 

use to coordinated use of multiple fingers happened faster compared to the free 

exploration session.  

This shift in Jacy’s gestures indicated a shift in the structure of the quantity. While 

Jacy first created quantities by making multiple single objects (pips) herself, later she 

created quantities as single multitudes (pods) with Kyra who set the size of the 

multitudes by making multiple single objects. While the former gestures and the objects 

they created were aligned with additive relationships, the latter ones were aligned with 

multiplicative structures. In the former case, only one type of object was used to create 

quantities. The latter case involved two types of objects, one of whose size depended on 

the amount of the other. This difference was aligned with the contrast between the single 

independent unit-count of addition and two unit-counts of multiplication which were 

related to each other through a many-to-one correspondence.  

5.2. Implications 

This section presents the contributions of this dissertation to the mathematics education 

literature. I first introduce the methodological and theoretical implications and then 

conclude the section with the educational ones.  
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5.2.1. Methodological and Theoretical Implications 

I drew on two theoretical frameworks in this dissertation. The way I used them is a 

method recently emerged in a field different from mathematics education. However, 

applying it in mathematics education is not common. For this reason, as a whole this 

dissertation illustrates an example of a method to use multiple theories to examine 

learning mathematics by using tools. Moreover, each manuscript I included in this 

dissertation has certain methodological or theoretical contributions. The third manuscript 

proposes a new interpretation for a theoretical construct of enactivism. The second 

manuscript extends Arzarello et al.’s (2009) analysis methods of semiotic bundles. The 

first manuscript presents an explicit documentation of how to create data for the analysis 

of the semiotic potential of an artefact.  

Several researchers who study learning mathematics by using technology have 

proposed networking theories in the field to examine this complex phenomenon in a 

more wholistic way. This way, one theory would help to explain what the other theory 

cannot. Following this proposition, I used certain theoretical constructs of enactivism and 

TSM. While enactivism as a broad, philosophical frame explains cognition in general by 

taking a participationist approach, TSM as an educational frame draws on social 

constructivist perspective to explain learning mathematics by using a tool. Enactivism 

focuses on the body, which has been mostly considered as periphery to learning by 

other theories. Therefore, it enabled me to attend to various bodily actions to study the 

process of learning which has multiple dimensions. However, the theoretical constructs 

of enactivism are inadequate to match the particularities of learning mathematics by 

using an artefact. TSM allowed me to attend such particularities. Instead of networking 

these two theories, which have very different epistemological assumptions, by using 

their theoretical constructs together like in a bricolage, I adopted a different approach to 

alleviate epistemological conflicts.  

As I explained in the introductory chapter, I was heavily influenced by 

enactivism’s emphasis on the individual actions as the constituent of cognition and 

started not only to interpret the data I created, but also the world I brought forth for 

myself based on its assumptions. As a result, I also read TSM through enactivism and 

interpreted its constructs based on enactivism’s assumptions. Jackson and Mazzei 

(2013) described this method of reading one text through the other as diffractive reading 
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which was first introduced to the literature by new materialist Karen Barad. In the same 

book they explicitly stated that this approach works against “the stance of the bricoleur 

and push[es] the concepts with the data to exhaustion” (p. 139).   

To my knowledge, this diffractive reading method has not been widely practiced 

in the field of mathematics education. The only example I came across was Schvarts et 

al.’s (2021) study in which they proposed the theoretical construct of embodied 

instrumentation. As an alternative to networking theories as they are, this method might 

allow mathematics education researchers to use a duo of frames that are theoretically 

inclusive and epistemologically coherent.  

Using theoretical constructs from two theories also helped me make a theoretical 

contribution in the field by reinterpreting the notion of social coupling, which one of the 

constructs of enactivism. According to enactivism, social coupling happens when one 

organism constitutes a resource for perturbations in another organism’s structure. In 

Maturana and Varela (1987) this phenomenon is depicted such that the resource of 

perturbation is the organisms’ body, which is bounded by the skin that surrounds it. 

However, in Chapter 4, I identified some incidents in which it was not only the others’ 

body but the interactions between the other’s body and the environment that constituted 

a source for perturbations in the learner’s structure. My simultaneous focus on body (as 

per enactivism) and the artefact (as per TSM), allowed me to identify these incidents as 

different from social couplings. Since both the other’s body and the environment take 

part in these couplings, I name these incidents as socio-structural couplings which have 

slightly different nature than social couplings. 

In Chapter 3, I analyzed the semiotic bundles that emerged while a 5-year-old 

manipulated Zaplify and pencil-and-paper. I used Arzarello et al.’s (2009) method of 

analysis by extending it. Semiotic bundles refer to “a system of signs—with Peirce’s 

comprehensive notion of sign—that is produced by one or more interacting subjects and 

that evolves in time” and they can be analyzed either synchronically or diachronically (p. 

100). In the former method, the focus is on the relationships among the signs that are 

created synchronously (such as gesture-utterance). Synchronic analysis helps to 

understand the role of signs in learners’ meaning-making activities. Diachronic analysis 

considers the relationship between the signs that are produced at different times (such 
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as Duval’s conversions11) and allows the researcher to gain insight on the evolution of 

signs. 

I attended to the signs that were produced both synchronously and successively 

as Arzarello et al. (2009) suggested. Moreover, I applied a hybrid method in my analysis 

by combining aspects of synchronic and diachronic analysis: I treated the conversions, 

which were produced successively, as if they were produced synchronously. I did this 

because my aim was not only to gain insight of the evolution of signs, but also to 

understand how conversions participate in the child’s experience of Zaplify. My re-

thinking of Duval’s conceptualization of conversions prompted this method.  

Duval (2006) argued that semiotic representations are essential for mathematical 

thinking. They stand for mathematical objects, however, he warned that “mathematical 

objects must never be confused with the semiotic representations that are used” (p.107). 

The significance of the signs does not rely on their capacity to stand for mathematical 

objects, but on their capacity to be substituted for other signs. Mathematical processing 

always involves this activity of transforming signs. It is necessary to use different 

semiotic systems (registers) as each one provides specific possibilities for different 

mathematical processing.  

There are two types of transformations of semiotic representations: treatment 

and conversion. While treatments happen within the same register, conversions happen 

between registers. Duval assumed that when a sign in one register is transformed into 

another sign in another register, the mathematical object that the signs denote stays the 

same. This assumption indicates a representational approach to mathematical thinking. 

It depicts mathematical objects as abstract, fixed entities waiting to be accessed by 

learners through signs. At this point, I propose re-thinking conversions from an enactivist 

perspective.  

I argue that learners bring forth mathematical objects as they interact with their 

environments. I agree with Duval that each register provides learners with specific 

possibilities for action. Thus, the way a sign is created in one register allows a different 

 

11 Duval (2006) described a conversion as one type of transformations of semiotic 
representations “that consists of changing a register without changing the objects being denoted” 
(p. 112). 
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interaction with the object than the one in another register. Each type of interaction 

allows one to bring forth a new meaning for the object, not necessarily demolishing the 

previous ones. Therefore, when a sign is converted from one register to the other, the 

mathematical object that is brought forth changes. In order to examine the child’s 

understanding of Zaplify objects more holistically, I analyzed the conversions which were 

produced in different settings at different time points synchronically. This hybrid method 

can be called a di-chronic analysis. 

In Chapter 2, I used two different methods to create data for the analysis of 

semiotic potential of artefacts. To my knowledge, I have not encountered any explicit 

documentation of how data should be created to conduct this analysis. I assumed that 

the researchers who presented such analyses (e.g., Bartolini Bussi & Baccaglini-Frank, 

2015; Falcade, Laborde, & Mariotti, 2007; Mariotti, 2010) created a description of using  

artefacts to solve a task based on their imagining. Instead, I used two other methods. In 

one of them, I video-recorded my hands while I solved the mathematical task in Zaplify. 

In this event, I described my actions verbally as I conducted them and then transcribed 

the video-recording including the bodily, verbal and Zaplify actions.  

In the other method, I took photos of each type of action I conducted to solve the 

mathematical task (such as drawing horizontal lines, drawing vertical lines, drawing dots 

at the intersection points) and described the events in written language based on these 

photos. Thus, this dissertation proposes an explicit account of a data creation process 

for the analysis of semiotic potential of artefacts. Moreover, the comparison of these two 

methods indicates that creating by using video-recording provides the researcher with a 

tool to consider the dynamic dimensions of incidents that might not be salient when 

described based on a photo.  

This may also increase the accuracy of the analysis. For example, when I re-

engaged with my analysis, I realized that it was impossible to create Mx1 with pencil-

and-paper because each line had to be created sequentially. However, the static image 

which illustrated all lines simultaneously prompted me to see that incident as the 

depiction of M, while the sequential emergence of them was more aligned with (1 + 1 + 1 

+ … + 1). The way of experiencing these lines is critical as it may influence how a 

learner experiences a quantity (as a single multitude or a multiple of singles).  
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5.2.2. Educational Implications 

After working on my dissertation, I realized how strong the association between repeated 

addition and multiplication is. This definitive link had been strong for me as well, up until 

my engagement with this research. However, it did not prevent me from acting 

effectively in multiplicative situations I had encountered so far. This may not be the case 

for most learners as many students tend to structure quantity additively in situations 

which are multiplicative (van Dooren, de Bock, & Verschaffel, 2010). Many researchers 

attribute the difficulty in thinking multiplicatively to the introduction of multiplication 

through the repeated addition model (e.g., Confrey, 1994; Greer, 1992; Maffia & Mariotti, 

2018; Schwartz, 1988; Vergnaud, 1988). In alignment with their proposition, the findings 

of this dissertation suggest that TT constitutes an alternative model to help learners 

engage with multiplicative thinking in a way different than the repeated addition model 

does.  

In addition to the repeated addition model, multiplication is strongly associated 

with abstract equations, which do not express spatio-temporal meanings of the 

operation. Both research and my personal experience indicate that for most people 

multiplication is all about abstract equations. The research shows that many people 

resort to verbal recall of multiplication facts when they conduct multiplication operations, 

while they use their fingers to subtract numbers (Berteletti & Booth, 2015). When I share 

my research topic within my community, the first reaction generally happens to be “Oh, 

four times two is eight what else is there to study”. Even though this comment carries 

humour, my repeated encounter with similar comments suggests that this joke is not 

random (or funny!). When we asked teachers about teaching multiplication, one of their 

first responses was that students had difficulty with multiplication facts. In this 

dissertation, I have focused less on the learning of multiplication facts and more on the 

development of spatio-temporal meanings of multiplication, which involved using their 

bodies in new ways to produce multiplicative relationships. 

The way the students use their body to structure quantity is quite different from 

the most common use of hands in our daily mathematical practices. In TT, the product 

must be created with the coordination of two hands, and it emerges as a result of indirect 

influence of singletons. The use of fingers for counting and even adding is not 

uncommon.  We use an index finger to point at the objects when counting them. We 
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count on our fingers as well, and sometimes use them to add numbers. But the hand 

actions required to create a product in TT involves a new bodily practice, one that 

corresponds to a multiplicative structure. Therefore, TT still allows students to make use 

of their hands, which are powerful tools for arithmetic, but in ways that are more 

multiplicative than additive.  

The necessity of coordinating representations in different registers to develop 

mathematical thinking is emphasized by many researchers. Duval (2006) proposed this 

idea for any mathematical concept and Kaput and Pattison-Gordon (1987) illustrated 

how it can be achieved with respect to multiplicative thinking. According to Kaput, 

learners must identify the intensive quantity in multiplicative situations to think 

multiplicatively. He proposed to provide students with multiple representations of 

multiplication through the use of a computer program. When they manipulate one type of 

representation, the computer program would simultaneously transfer this change in all 

other representations system.  

Thus, this co-ordinated transformation would help learners understand the 

intensive quantity which is the invariant ratio between the two unit-counts. However, 

before identifying this ratio as a constant entity, it is necessary to understand the co-

variance between the unit counts: a change in one unit count depends on the change in 

the other unit count. At this point, the findings of this dissertation suggest that TT 

provides students with another way to identify this co-variance: through monitoring the 

transformations within the same register. This verifies Sinclair’s (2018) proposition about 

affordances of dynamic geometry environments, which allow users to manipulate images 

in a continuous manner as if they play with a single object that changes in time. These 

temporal dimensions might engage students with the concepts of invariance and co-

variance.  

The findings of this dissertation also suggest that while using touchscreen 

technologies like TT, teachers should encourage pair work not only to promote peer 

learning through verbal interaction, but also to amplify the children’s experience of the 

in/co-variant relationships embedded in the multiplicative structures through the other’s 

body. For example, in Chapter 4, one child was continuously holding the pods while the 

other child changed the number of pips with discrete tapping gesture. This was the initial 

event that triggered them to identify the co-variance between the pods and the pips. 
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Unlike the on-going debate in the literature about whether phenomena are fundamentally 

discrete or continuous, this pedagogical approach uses both continuity and discreteness 

with respect to individuals’ phenomenological experience of the screen contact.    

Last but not least, after working on this dissertation I realized the importance of 

using relational language while using dynamic models to teach multiplication. When 

describing specific incidents, three different approaches are possible to take on. The first 

is to attend only to our body movements, such as: “I pressed my fingers down”. Second, 

it is possible to describe the same incident as “multiple pips appeared in the pods after I 

press my multiple fingers on the screen”.  

Compared with the first one, this account emphasises relation between the 

individual action and the environment. Third, it is also possible to separate the self as a 

controlling unity by saying, “multiple pips appeared in pods as soon as fingers contacted 

the screen”. Each account might influence learners’ experience by bringing forth a 

different environment aligned with the description. Since it is the structural coupling 

between the bodies that allowed children to act effectively in multiplicative situations, a 

relational approach should be prompted to help learners bring forth multiplicative 

structures.  

5.3. Limitations, Challenges and Future Directions for 
Research  

Writing a manuscript-based dissertation is advantageous for many reasons, yet it also 

involves some challenges, not just for the dissertation as a whole, but for the individual 

studies.  

In terms of the dissertation as a whole, the studies do not follow one from the 

other. They all started as a practice of getting familiar with different theories and evolved 

into their final versions after sharing them with my colleagues and doing more thinking 

on them as I continued to read. As a whole, they help me understand different aspects of 

students’ engagement with an alternative model of multiplication that is different from the 

repeated addition model. However, they do not provide various perspectives on one 

single event or phenomenon. Across the studies, both the multiplication tasks, the 

interface of the multiplication model, and the participants varied. Since the context is 
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important in learning, I would be interested in answering the same research questions I 

asked in three studies by analyzing a single case. I wonder how the new findings would 

compare to the current ones. This would also allow me to re-conduct the studies by 

considering the limitations and challenges of each study, which I will articulate below.  

In the first study, when I reviewed the literature to learn a method to conduct the 

analysis of semiotic potential of artefacts, I did not find an explicit description of a 

specific method. Therefore, I devised two methods to create data for the analysis of 

semiotic potential of artefacts: (1) video-recording my actions and (2) taking the photos 

of each type of actions. As I explained earlier, I found that the video-recording method 

might present the data in a way that makes it less likely that the analyst will miss the 

dynamic aspects of the events. Those aspects might be critical for the analysis of the 

semiotic potential of the artefacts. Therefore, I recommend using video-recording for 

future studies.  

I also felt another challenge in the first study. Like the lack of description of a 

method for data creation, the literature lacks the documentation of an explicit method to 

analyse the semiotic potential of an artefact. I have focused on the mode of use of the 

artefact to identify potential pivot signs, which function both as artefact and mathematic 

signs, and help users make mathematical meanings out of the specific use of the 

artefact. However, it was challenging to decide how to analyze these signs. First, I coded 

each sign separately by using Nvivo. Even though this method allowed me to identify the 

potential artefact signs, I found it more useful to analyze the signs by focusing on the 

interplay between them to identify which mathematical meanings they might be 

associated with. I believe that I identified the semiotic potentials of each artefact to a 

great extent by using this method of analysis. However, I think that the field might benefit 

from the documentation of an explicit methodology to help other researchers engage 

with this type of research.  

The second study was challenging in terms of participant recruitment and the 

monitoring of the participant’s interaction with TT. I used convenience sampling for this 

study. The participant was the child of my landlord who was also present during the 

interviews and participated in the child’s interactions with TT by asking questions. These 

questions played a similar role as the ones I was asking: to direct the child’s attention to 

the specific features of TT. In addition, I felt that his questioning might have influenced 
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the child emotionally because even I experienced some tension when I heard the 

intonation of the father’s voice and the child’s hesitant actions (e.g., answering with a low 

voice). Therefore, how this emotional atmosphere played a role in students’ engagement 

with TT remains an unanswered question with respect to the findings.  

This study also poses another unanswered question that might explain the child’s 

engagement with TT. After the child encountered TT for the first time and engaged with it 

while I and the father asked specific questions, I lent the iPad to the child so that he 

could explore it himself without the social pressure he might feel under the surveillance 

of adults. However, this prevented me from observing his interactions during this period. 

It is possible that the father continued to train the child so that he could successfully 

respond to my future questions. Therefore, a question arises as to what role the parent 

played in the child’s use of the duo of artefacts?  

In the third study, we have seen that children discovered new gestures as they 

structurally coupled with their environment which included both TT and the other 

individuals who also engaged with TT. TSM was useful to identify these gestures as 

pivot signs, which were important in developing multiplicative thinking. Enactivism was 

useful to understand how those gestures emerged. However, these two theories are 

limited in terms of explaining how the new emerges. For example, how come Kyra 

stopped continuously pressing her single finger only on “her side” which created pods 

and crossed the boundary between “her side” and “Jacy’s side” which created pips? This 

question can’t be answered completely by either of these theories. At this point, theories 

on affect would perhaps provide an appropriate frame for future research on learning 

mathematics (with educational technologies) to explore the emergence of the new.    

What I meant by affect is different from “a disposition or tendency or an emotion 

or feeling attached to an idea or object” (Philipp, 2007, p. 259). This type of framing 

associates affect with “hypothetical psychological constructs internal to an individual that 

can become active under specific social conditions… and govern a student’s in-the-

moment engagement for minutes (or even seconds) at a time during a class period” 

(Goldin, Epstein, Schorr, & Warner, 2011, p. 548). Therefore, unlike participationist 

approaches, this conceptualization of affect assumes that individuals act based on static 

psychological states, which would not explain how the new emerges.  
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McLeod’s (1992) conceptualization of the affective domain is also ineffective in 

theorizing the new. According to this frame, the affective domain consists of 

psychological constructs such as beliefs, attitudes and emotions. While beliefs and 

attitudes are described as more stable constructs that are largely cognitive in nature, 

emotions are associated with processes that involve physiological responses to the 

aversive situations. Emotions are depicted as temporary and less cognitive in nature, 

and they serve as a survival mechanism. Among these constructs, McLeod’s 

conceptualization of emotions seems to be compatible with participationist approaches 

to cognition because they are explained as a bodily, temporal and relational 

phenomenon: they involve physiological responses that emerge with respect to 

situations and they transit from one to another. However, this framing does not explain 

how the new emerges, either.  

I refer to affect as framed in Sinclair and Ferrara (2021), which drew on Alfred 

North Whitehead’s work to explore the affective dimensions of a child’s encounter with 

arithmetic tasks in TouchCounts (TC)—a digital tool. The affect was framed in the sense 

of “the ways he was affecting and being affected by TC, but not necessarily through 

intentional, sensory perception” (p.22). Focusing on a non-sensuous activity of 

encountering a world opens space for potentialities, unlike studying the restrictive power 

of conscious act which presumes a set of a priori rules controlling one’s actions. 

Therefore, Sinclair and Ferrara’s perspective might be helpful for future research to 

explain how novice gestures emerge when students manipulate digital mathematical 

artefacts. 
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