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Abstract

In this work, we consider the Multi-Agent Pickup and Delivery (MAPD) problem, where
agents constantly engage with new tasks and need to plan collision-free paths to execute
them. To execute a task, an agent needs to visit a pair of goal locations, namely the pickup
location and the delivery location. To solve an MAPD instance, we need to decide which
agent executes which tasks (task-assignment), and plan collision-free paths for agents to
execute these tasks (path-finding). Existing MAPD methods either assign an agent’s next
task only, which can lead to bad schedules of the entire task set, or plan agents’ paths
segment by segment, which can lead to larger path costs. Therefore, we propose a method
that improves the state-of-the-art MAPD methods in both aspects. Our method assigns a
sequence of tasks to each agent using the anytime algorithm Large Neighborhood Search
(LNS), and plans paths through a sequence of goal locations using the Multi-Agent Path
Finding (MAPF) algorithm Priority-Based Search (PBS). Specifically, two variants of this
method are proposed: LNS-PBS and LNS-wPBS. Theoretically, we prove that LNS-PBS
is complete for well-formed MAPD, a realistic subclass of MAPD instances. Empirically,
LNS-PBS produces better solutions than the existing complete method CENTRAL. The
second variant LNS-wPBS is more efficient and stable (but has no completeness guarantee).
Empirically, LNS-wPBS can scale to thousands of agents and thousands of tasks in a large
warehouse, and produce better solutions than the existing scalable methods. Lastly, the
proposed method applies to a more generalized variant of MAPD, the Multi-Goal MAPD
(MG-MAPD) problem, where tasks can have a various number of goal locations.

Keywords: Multi-Robot Systems; Path Planning for Multiple Mobile Robots or Agents;
Task and Motion Planning
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Chapter 1

Introduction

In many real-world multi-robot systems, robots have to constantly attend to new tasks and
plan collision-free paths to execute them. Examples include autonomous aircraft-towing
vehicles [24], delivery drones [6], manufacturing robots [4], video game characters [23], and
robots for automated warehouses [32]. Take an automated warehouse as an example, robots
need to move inventory shelves to workstations, where human workers can pick products
from the shelves to fulfill customers’ requests. This problem has been studied as Multi-
Agent Pickup and Delivery (MAPD) [21]. In MAPD, each task has a release time and a
sequence of two goal locations, namely the pickup location and the delivery location. The
pickup location indicates the storage location of an inventory shelf in a warehouse, and
the delivery location indicates the location of a workstation that requests a product stored
on the inventory shelf. To execute a task, a warehouse robot needs to first visit its pickup
location at or after its release time, and then visit its delivery location.

To solve a MAPD instance, agents need to decide which tasks they are going to execute,
and plan collision-free paths to execute them efficiently. Most existing solvers isolate the
task-assignment part and the path-finding part, i.e., they first assign tasks to the agents
based on an estimation of the actual path cost, and then use a Multi-Agent Path Finding
(MAPF) [29] solver to plan actual paths for agents. Such decoupled solvers can be further
categorized into: (1) assigning only one task to each agent and planning paths for the agents
segment by segment [21], i.e., each call of the path planner only computes a plan that moves
agents from their current locations to their next goal location; (2) assigning only one task
to each agent, but planning a path through a sequence of goal locations for each agent [10];
(3) assigning a sequence of tasks to each agent and planning paths for the agents segment
by segment [18, 5]. Assigning only one task to each agent can lead to a bad task assignment,
since it only optimizes the cost of a subset of the existing tasks, and planning paths segment
by segment can cause a larger path cost [10].

In addition, there is some work that focuses only on the path-finding part of the problem.
For instance, Surynek [31] proposes two optimal Multi-Goal MAPF solvers HCBS and SMT-
HCBS that can plan paths for a sequence of goal locations (where the ordering of the goal
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Table 1.1: Research related to MAPD. “lifelong” represents that agents can constantly
engage with new tasks. “online” represents that the entire task set is not known at the
beginning, and new tasks can enter the system at any time. “assign tasks (seq. task)”
represents that a solver can assign one task sequence (vs. assign only one task) to each
agent. “find paths (seq. goals)” represents that a solver can plan a path through a sequence
of goal locations (vs. plan a path segment by segment). “complete (well-formed)” represents
that a solver is complete for well-formed instances.

lifelong online assign tasks find paths complete
(seq. tasks) (seq. goals) (well-formed)

CENTRAL [21] ✓ ✓ ✗ ✗ ✓

TA-Hybrid [18] ✓ ✗ ✓ ✗ ✓

HBH+MLA* [10] ✓ ✓ ✗ ✓ ✓

RMCA [5] ✓ ✓ ✓ ✗ ✗

(SMT-)HCBS [31] ✗ N/A ✗ ✓ ✓

WHCR [17] ✓ ✓ ✗ ✓ ✗

LNS-PBS ✓ ✓ ✓ ✓ ✓

LNS-wPBS ✓ ✓ ✓ ✓ ✗

locations is not specified). However, these solvers can only solve one-shot problems where
each agent has only one task, and their scalability is limited. Li et al. [17] propose an
efficient lifelong MAPF solver Rolling-Horizon Collision Resolution (WHCR) to plan paths
for a sequence of goal locations. It uses a rolling-horizon framework to repeatedly call
a Windowed MAPF solver that resolves collisions only for a few timesteps ahead. Such
Windowed MAPF solvers run significantly faster than regular MAPF solvers but usually
lose the completeness guarantee as they can lead to deadlocks due to their shortsightedness.

The main contributions of this work are as follows: We propose a decoupled method that
assigns a sequence of tasks to each agent using the anytime algorithm Large Neighborhood
Search (LNS), and plans paths through sequential goals using the MAPF algorithm Priority-
Based Search (PBS). More specifically, two variants of this method are proposed: LNS-
PBS and LNS-wPBS. The first variant focuses on completeness and effectiveness. PBS
is in general not complete. Combined with the idea of “reserving dummy paths” from
[18], we prove that LNS-PBS is complete on the well-formed MAPD instances, a realistic
subclass of MAPD instances. Empirically, LNS-PBS can produce better solutions than the
existing complete method CENTRAL. The second variant focuses on efficiency and stability.
LNS-wPBS reserves the Windowed MAPF solver in WHCR, therefore the computation
time of LNS-wPBS is controlled by the user-specified time window [17] and the anytime
task assignment algorithm. Empirically, LNS-wPBS can produce better solutions than the
existing scalable method HBH+MLA*, and can scale to thousands of agents and thousands
of tasks in a large warehouse.

As a further contribution, we study two extensions of MAPD. Firstly, our method can
extend to a generalized variant of MAPD, namely the Multi-Goal MAPD (MG-MAPD)
problem, where tasks can have a various number of goal locations. This problem models
the scenario where a warehouse robot may need to deliver an inventory shelf to multiple
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workstations because they all request products stored on the same inventory shelf. We prove
that LNS-PBS is complete for the MG-MAPD problem. Secondly, our method can handle
different MAPD settings. This includes the online setting [21], i.e., the entire task set is not
known at the beginning and new tasks can enter the system at any time, the offline setting
[18], i.e., the entire task set is known at the beginning, and the semi-online setting (which
has not been studied before), i.e., the system has partial knowledge about future tasks that
it can plan ahead for. We compare the existing MAPD-related works against our methods
in Table 1.1.
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Chapter 2

Related Work

Existing MAPD solvers consist of two components: task-assignment and path-finding. In
this section, we discuss several research that relates to them.

2.1 Multi-Agent Task Assignment

In the task-assignment part, agents need to decide which tasks they are going to execute.
This problem is related to the Multi-Robot Task Allocation (MRTA) literature. The problem
of MRTA is: Given m robots, n tasks, and estimates of how well each robot can perform
each task, we need to assign robots to tasks so that the overall expected performance is
maximized [8].

Gerkey et al. [9] and Korsah et al. [15] provide a comprehensive taxonomy for this topic.
According to Gerkey et al. [9], MRTA can be categorized into three axes: (1) single-task
robots (ST) vs. multi-task robots (MT), (2) single-robot tasks (SR) vs. multi-robot tasks
(MR), and (3) instantaneous assignment (IA) vs. time-extended assignment (TA). The first
axis describes that each robot is capable of executing at most one task (vs. multiple tasks) at
a time. The second axis describes that each task requires exactly one (vs. multiple robots)
to execute it. In the third axis, IA means that the available information only allows an
instantaneous allocation of tasks to robots, while TA means that more information (e.g., a
model of how tasks will arrive) is available, which allows for planning for future allocation.
Hungarian [16] is a combinatorial optimization algorithm that finds the maximum-weight
matching in a bipartite graph with polynomial time; it finds the optimal allocation for the
ST-SR-IA problem in O(mn2) time. The ST-SR-TA problem is to find a time-extended
schedule of tasks for each agent, and this problem is NP-hard to solve optimally [9].

Consider the online MAPD, where the entire task set is not known at the beginning and
new tasks can enter the system at any time [21]. How to assign tasks can be categorized
as an online variant of the ST-SR-IA problem, i.e., the robot-task performance is revealed
only when the task is released. This is known as an online assignment problem [14]. Under
this setting, the Hungarian method can repeatedly find an optimal task allocation for new
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tasks [21], or new tasks can be assigned to the most fit robot that is currently available in a
greedy fashion [10]. If the entire task set is known at the beginning, i.e., offline MAPD [18],
then the task assignment can be categorized as an ST-SR-TA problem. In this work, we
also study a novel semi-online setting, i.e., the system has partial knowledge about future
tasks that it can plan ahead for, and there are no theoretical studies about this setting as
far as we know.

Some other related problems include the Traveling Salesman Problem (TSP), Vehicle
Routing Problem (VRP) and Dial-a-Ride Problem (DARP) [1, 2]. For example, Liu et al.
[18] formulate the task assignment problem as a TSP, and uses an anytime TSP solver
LKH3 [12] to find one task sequence for each agent. The VRP is to find an optimal set of
routes for a fleet of vehicles, such that all the customers are delivered to the same given
location. Shaw [27] introduces a local search algorithm Large Neighborhood Search (LNS)
to construct a customer schedule for VRP. The idea is to start with an initial schedule,
and iteratively replace it with a better schedule. In every iteration, some customers are
removed from the schedule based on a removal heuristic; these customers are then inserted
back to the schedule with a simple greedy approach. An adaptive LNS heuristic is used in
the Pickup and Delivery Problem with Time Windows [25] to construct a schedule such
that the transport requests are fulfilled and the total travel distance is minimized. These
classic problems are generally NP-hard to solve optimally, and therefore the existing MAPD
solvers usually have limited scalability to work on large instances, e.g., thousands of tasks
and thousands of robots.

This literature only considers how to assign tasks based on an estimate of the actual
path cost (e.g., the cost of the shortest path without collision avoidance), in the following
we will discuss how the actual paths are planned when multiple robots are present.

2.2 Multi-Agent Path Finding

The path-finding problem is related to the Multi-Agent Path Finding (MAPF) literature.
The problem of MAPF is to find a set of collision-free paths, following which agents can
move from their start locations to their pre-assigned goal locations. The quality of a MAPF
solution is measured by the flowtime, i.e., the sum of the arrival times of all agents at their
goal locations, or the makespan, i.e., the maximum of the arrival times of all agents at
their goal locations. MAPF is NP-hard to solve optimally for both flowtime and makespan
minimization [33, 22].

Many MAPF solvers exist, such as the complete and optimal solvers Conflict-Based
Search (CBS) [26] and its improved variant Improved CBS (ICBS) [3], the prioritized solvers
Cooperative A* (CA*) [28] and Cooperative Partial-Refinement A* [30]. The prioritized
solvers are based on the idea of Prioritized Planning [7]: Given a total priority ordering,
each agent computes its shortest path (in the order of priority) without colliding with
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the paths of all higher priority agents. Prioritized Planning is very efficient, but a pre-
defined total priority ordering can lead to a bad solution quality or result in the failure of
finding solution for solvable MAPF instances. Priority-Based Search (PBS) [20] is a two-level
prioritized algorithm that attempts to address this issue: The high level of PBS performs a
depth-first search to construct a priority ordering and builds a priority tree (PT), and the
low level of PBS calls space-time A* [28] to plan optimal paths for agents that are consistent
with the priority ordering generated by the high level. Since PBS introduces a new ordered
pair to the priority ordering of the child PT node whenever it splits a parent PT node, the
depth of the PT is O(M2), where M is the number of agents and M2 is the number of all
possible ordered pairs [20].

A* [11] is a best-first search algorithm. The priority function of A* takes into account
both the cost function, i.e., the cost of reaching the current state from the start state, and
the heuristic function, i.e., the estimated cost of reaching the goal state from the current
state. A* is guaranteed to return the cost-minimal path when the heuristic underestimates
the real cost (i.e., the heuristic is admissible). For example, consider moving an agent from
the start cell to the goal cell on a 2D four-neighbouring grid, one of the admissible heuristics
is the Manhattan-distance heuristic.

When multiple agents are present, space-time A* [28] is a single-agent pathfinding solver
that can plan a time-minimal path. Consider a 2D four-neighbouring grid world. Two agents
collide if they are occupying the same cell at the same time step (called vertex collision), or
they are moving to the cell of the other agent at the same time step (called edge collision).
Space-time A* searches in the cell-time space, where the vertexes are pairs (x, t) of cell x

and time step t. Vertex (x, t) has a directed edge to vertex (x, t + 1) if and only if the agent
can wait at cell x at time step t, and vertex (x, t) has a directed edge to vertex (y, t + 1) if
and only if the agent can move from cell x to cell y ̸= x from time step t to time step t + 1.
Space-time A* searches a collision-free path by removing the edges that will cause vertex
or edge collisions with other agents.

Multi-Label A* (MLA*) [10] is an extension of space-time A* that can plan a time-
minimal path for a pair of ordered goal locations. Traditional methods use two sequential
calls of space-time A* to plan a path that goes through two goal locations. The drawback
is, when A* computes an agent’s path from the current location to the goal location, it
assumes that the agent will stay at the goal indefinitely. Under this assumption, if the first
goal location is another agent’s second goal location, A* will fail; if the first goal location
will be visited by another agent in the near future, A* will plan a longer path that allows
the other agent to pass through this goal location first. In both cases, this agent can actually
pass through the first goal location and immediately proceed to the second goal location
before the other agent arrives [10]. To plan a path that goes through two goal locations,
MLA* introduces a “label” dimension to indicate the current state of the vertex: If “label”
is 1 then the agent is seeking a path to the first goal location, and if “label” is 2 then the
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agent is seeking a path to the second goal location. The algorithm returns a solution only
when the current vertex has a “label” 2 and it reaches the delivery location.

Li et al. [17] generalize MLA* to plan paths for agents with a varying number of goal
locations. In addition to this, they propose Rolling-Horizon Collision Resolution (WHCR),
an efficient solver for lifelong MAPF, where agents are constantly engaged with new goal
locations and we need to plan collision-free paths for them. WHCR uses a rolling-horizon
framework to repeatedly call a Windowed MAPF solver that resolves collisions only for a
few time steps ahead. Such Windowed MAPF solvers run significantly faster than regular
MAPF solvers but usually lose the completeness guarantee as they can lead to deadlocks
due to their shortsightedness.

2.3 Multi-Agent Pickup and Delivery

In Multi-Agent Pickup and Delivery (MAPD) [21], agents are constantly engaged with new
tasks and we need to assign tasks and plan collision-free paths for the agents. Each task in
MAPD consists of two goal locations, namely the pickup location and the delivery location.
To execute a task, an agent needs to first visit its pickup location and then visit its delivery
location; a task is completed when the agent arrives at its delivery location. The quality of
a MAPD solution is measured by the service time, i.e., the average time needed to finish
executing each task after it was released to the system, or the makespan, i.e., the maximum
of the completion times of all tasks. MAPD is NP-hard to solve optimally for both service
time and makespan minimization [19].

Ma et al. [21] present a complete algorithm CENTRAL for well-formed MAPD, a sub-
class of MAPD instances that are widely used in many real-world applications. CENTRAL
considers MAPD in a online setting. At each time step, it first uses the Hungarian [16]
method to assign each agent one goal location, and then uses CBS to plan paths for all
agents from their current locations to their assigned goal locations. Finally, all agents move
along their planned paths for one time step and the procedure repeats. TA-Hybrid [18]
considers the offline setting. It formulates the task assignment problem as a TSP and uses
an anytime TSP solver LKH3 [12] to find one task sequence for each agent. At each time
step, TA-Hybrid plans paths for two groups of agents from their current locations to their
next goal locations.

Grenouilleau et al. [10] propose an H-value-Based Heuristic (HBH) that takes into ac-
count the distance between an agent’s current location and the task’s pickup location, and
the distance between the task’s pickup and delivery location; they then sort the list of agent-
task pair in a non-decreasing order of HBH. For each agent-task pair, they use MLA* to
plan an agent’s path that goes through a pair of goal locations from their current location,
and they remove the corresponding agent and task from the available agent set and the
unassigned task set if MLA* returns a path successfully.
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The above are decoupled MAPD solvers, i.e., they first assign tasks to the agents based
on an estimate of the actual path cost, and then use a path finding solver to plan actual paths
for agents. Chen et al. [5] propose a coupled MAPD solver RMCA that assigns tasks and
plans paths simultaneously, therefore their task assignment decision can be informed by the
actual path cost. The idea of RMCA is to maintain a task assignment heap that sorts all the
potential assignment in a specific order. A potential assignment includes the updated path
and cost after inserting an unassigned task into an agent’s current task sequence. Whenever
we select the top assignment and assign the task to the corresponding agent, we need to
update all the remaining assignment in the heap that are affected by this new assignment.
This includes the potential assignments on the selected agent, and the paths of other agents’
potential assignments that are colliding with this agent’s updated path. For the path finding
part, RMCA uses the Prioritized Planning with sequential A* calls to plan a single agent’s
path that avoids collisions with the existing paths of other agents. Furthermore, Chen et al.
[5] use an LNS anytime improvement strategy: They first use RMCA with a standard regret-
based marginal-cost heuristic to construct the initial solution, then they iteratively remove
a subset of tasks using a greedy heuristic, and reassign these tasks using RMCA. Henkel
et al. [13] propose a Task Conflict-Based Search (TCBS) solver to solve the combined task
allocation and multi-agent path finding problem optimally. However, their optimal solver
can only scale to 4 robots and 4 tasks.
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Chapter 3

Problem Definition

In this section, we formalize a generalized variant of the MAPD problem, namely the Multi-
Goal MAPD problem. MAPD is a special case with only two goal locations (i.e., pickup
and delivery location) in one task.

A Multi-Goal MAPD (MG-MAPD) instance consists of a set of M agents {a1, a2, ..., aM }
and an undirected graph G = (V, E), where vertices V represent the set of locations and
edges E represent the connections between locations that agents can move along. Let pi(t)
denote the location of ai at time step t. Agent ai starts at its start location pi(0); at each
time step, it either moves to an adjacent location or waits at its current location. A vertex
collision occurs between ai and aj if pi(t) = pj(t); an edge collision occurs if pi(t) = pj(t+1)
and pi(t + 1) = pj(t).

At each time step, the system releases new tasks (if any). Each task τi is characterized by
a sequence of goal locations and a release time ri; we let si denote its first goal location and
gi denote its last goal location. To execute τi, an agent needs to visit all the goal locations
in sequence. When an agent arrives at si, it starts to execute τi and cannot execute other
tasks; the completion time of τi is the time when the agent arrives at gi. We let T denote the
set of all unexecuted tasks. Agents that are assigned tasks are called task agents; otherwise,
they are called free agents.

Not all MG-MAPD instances are solvable; in this work, we consider the well-formed
MG-MAPD, a realistic subclass of MG-MAPD instances [21, 18]. We specify two types of
endpoints on our map: (1) all the goal locations of tasks are called task endpoints, and (2)
the start locations of the agents are called non-task endpoints. A MG-MAPD instance is
well-formed if each agent’s start location is different from all the task endpoints, and for
any two endpoints, there exists a path between them that traverses no other endpoints. In
a well-formed MG-MAPD instance, agents can stay at the non-task endpoints indefinitely
to avoid collisions with other agents.

The problem of MG-MAPD is to assign tasks to agents and plan collision-free paths
for them such that the tasks are executed effectively and efficiently. The effectiveness of a
MG-MAPD solver is measured by the average service time. The service time of a task is
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the difference between its completion time and its release time, i.e., the waiting time a task
spends in the system. The efficiency is measured by the computation time per time step.
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Chapter 4

Method

Algorithm 1 without the blue parts (i.e., Lines [6-8]) shows how LNS-PBS works: when
the system releases new tasks or when a task agent finishes executing its task sequence,
LNS is triggered to (re)assign all the unexecuted tasks to agents. This will destroy agents’
current task sequences (except for the tasks they are currently executing) and replan new
task sequences for them. Then we update the goal sequence of each agent based on its task
sequence constructed by LNS, and use PBS to (re)plan paths for the agents from their
current locations. We will explain Line [3] in Section 4.1 and Lines [4-5] in Section 4.2. We
will then prove the completeness of LNS-PBS for well-formed MG-MAPD in Section 4.3
and last introduce LNS-wPBS (i.e., Lines [6-8]) in Section 4.5.

4.1 Large Neighborhood Search

LNS is a local search algorithm that starts with an initial solution and iteratively replaces
it with a better solution. In each iteration, LNS selects a subset of variables, re-optimize
their values, and accept the resulting solution if it is better than the old one.

Hungarian-Based Insertion We apply the Hungarian algorithm [16] to construct
agents’ initial task sequences (i.e., the initial solution). Each call of the Hungarian algorithm
adds one task to the end of the task sequence of each agent. We repeatedly call it until all the
unexecuted tasks are assigned. In each call, the Hungarian algorithm takes a cost matrix as
input and outputs an agent-task assignment with the minimum cost. Previous works define
each element of the cost matrix as the estimated cost of the shortest path from an agent’s
current location to the first goal location of a task. This choice prioritizes those tasks whose
first goal locations are near agents’ current locations, without considering the tasks’ release
and completion time. Instead, we propose to define the cost between an agent ai and a task
τi as the estimated completion time of τi executed by ai. To compute this, we assume τi

is inserted at the end of the existing task sequence of ai and estimate the completion time
using the shortest path distance without considering collision avoidance.
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Algorithm 1 LNS-PBS (with time window)
1: while true do
2: if system releases new tasks or any task agents finish their tasks then
3: Assign all unexecuted tasks using LNS;
4: Update goal sequence;
5: Plan paths for all agents using wPBS;
6: else if agents have moved w timesteps then
7: Update goal sequence;
8: Plan paths for all agents using wPBS;
9: end if

10: Agents move one timestep following their paths;
11: end while

Shaw Removal After the construction of the initial task sequences, we use the Shaw
removal operation [25] to remove a group of tasks from the current sequences. The idea
is that when inserting related tasks back into the sequence, we are more likely to obtain
different task sequences since related tasks are more easily to be exchanged. When the tasks
are not related to each other, they are more likely to be inserted into their original position
and therefore the sequence won’t change. We let d(u, v) represent the estimated cost of the
shortest path from u to v without collision checking. The Shaw removal operation defines
the relatedness between two tasks τi and τj as

r(τi, τj) = ω1(d(gi, gj) + d(si, sj)) + ω2(|t(si) − t(sj)| + |t(gi) − t(gj)|),

where t(si) represents the estimated time when an agent starts to execute τi (i.e., when the
agent reaches the first goal location si of τi), and t(gi) represents the estimated completion
time of τi (i.e., when the agent reaches the last goal location gi of τi). Both distance and
time measurements are considered and weighted by ω1 and ω2 respectively. To compute the
relatedness, we still use the shortest path distance without collision checking to estimate
the actual path cost. The Shaw removal operation works as follows: we first choose a task
τ∗ randomly and compute the relatedness of all the other tasks with τ∗. We then remove a
group of tasks (including τ∗ itself) in decreasing order of the relatedness.

Regret-Based Re-insertion We then use a re-insertion operator to insert the removed
tasks back to the task sequences. Specifically, we use the regret-based heuristic from [5][25].
Let f denote the estimated total service time of the current task sequences (that do not
contain the removed tasks). Let f j

i,k denote the estimated total service time of the task
sequences obtained by inserting task τi into the jth position of agent ak’s task sequence. Let
f

(1)
i denote the estimated total service time of the task sequences obtained by inserting task

τi to its best position that increases the estimated total service time the least, i.e., f
(1)
i =

min{f j
i,k |, k ∈ {1, ..., M}, j ∈ {0, ..., lk}} where lk is the number of tasks in ak’s current

task sequence. Let f
(2)
i denote the estimated total service time of the schedule obtained
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by inserting task τi to its second-best position that increases the estimated total service
time the second-least. The regret value of a task τi is defined as ri = f

(2)
i − f

(1)
i , i.e., the

difference in the estimated total service time of inserting task τi to its best position and the
second-best position. The regret-based re-insertion operation works as follows: we greedily
choose the task with maximum regret value and insert this task to its best position. We also
need to update the regret value for the remaining tasks based on this new assignment. Then
we repeat the process until all the removed tasks are inserted back to the task sequences.

In each iteration, we remove a group of tasks from the sequences and insert them back
to the sequences. If there is an improvement on the estimated total service time, we will
replace the original solution with the new one; if there is no improvement, we will reserve
the original solution. This procedure is repeated until we hit the time limit. We call the
number of tasks we remove and re-insert in each iteration the size of the neighborhood.

4.2 Priority-Based Search

Priority-Based Search (PBS) [20] is a two-level MAPF algorithm. On the high level, PBS
performs a depth-first search to construct a priority ordering and builds a priority tree (PT).
PBS starts with a root node that contains an empty priority ordering and an individually
optimal path for each agent. When resolving a collision between two agents, PBS generates
two child nodes and adds an additional priority order to each of them that indicates one of
the agents involved in the collision has a higher priority than the other agent. On the low
level, PBS calls A* to plan optimal paths for agents that are consistent with the priority
ordering generated by the high level (i.e., lower-priority agents do not collide with higher-
priority agents). Li et al. [17] generalize the low level of PBS so that it can plan collision-free
paths for agents with a sequence of goal locations. PBS is in general incomplete; we introduce
dummy endpoints and modify the low level of PBS in a way such that it is complete for
well-formed MG-MAPD instances.

Formally, when LNS is triggered to (re)assign tasks at timestep t, we need to specify a
goal sequence for each agent, and plan agents’ paths starting from their current locations
at timestep t. To avoid planning a path for a long task sequence, we will truncate the task
sequence with a user-specified variable C. For a task agent, its goal sequence consists of all
the goal locations of the first C tasks in this agent’s task sequence, and a dummy endpoint
in the end; for a free agent, its goal sequence contains no goal locations except the dummy
endpoint.

Dummy Endpoints Whenever we plan new paths for agents to go through their goal
sequence, we also plan paths from agents’ last goal locations to their dummy endpoints.
We assign one dummy endpoint to each agent and require the agents to hold their dummy
endpoints, i.e., agents can stay at their dummy endpoints indefinitely. We assign the dummy
endpoints in two steps: (1) assign dummy endpoints to task agents one by one, and these
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dummy endpoints should be pairwise different and different from all the task endpoints
in T ; (2) assign dummy endpoints to free agents one by one, and these dummy endpoints
should be pairwise different and different from all the endpoints assigned in first step and
all the task endpoints in T . When choosing a dummy endpoint for an agent, we consider the
task endpoints in increasing order of their estimated distance to agents’ last goal location.
If there are no available task endpoints to assign, we will the closet non-task endpoint as its
dummy endpoint. In the next iteration, we do not assign those tasks whose goal location is
already used as a dummy endpoint in this iteration. The paths that start from agents’ last
goal locations to their assigned dummy endpoints are never executed by the agents, but
we still need to reserve these old paths (including the dummy paths) so that in the worst
case agents can follow their old paths and stay at their dummy endpoints as long as needed
without colliding with other agents.

PBS Low-Level Search Before PBS starts, we save the old paths computed from
last iteration. For the first iteration, the old paths are the paths that agents stay at their
start locations indefinitely. These old paths might not visit the goal locations in the current
goal sequences, but they are guaranteed to be collision-free. When PBS generates the root
node, it plans a shortest path for each agent that avoids the other M -1 agents’ old paths.
When PBS resolves a collision between two agents, for each child node generated, PBS
plans a shortest path for an agent that avoids collisions with the new paths of all higher
priority agents and the old paths of the other agents. When the given MG-MAPD instance
is well-formed, this modification enables every high-level node to always successfully find a
feasible path for each agent (which we will prove later), and therefore, the number of PT
node expanded is no larger than the maximum depth of the PT, which is O(M2) [20].

4.3 Completeness of LNS-PBS

Now, we prove the completeness of LNS-PBS for well-formed MG-MAPD.

Theorem 1. Given a well-formed MG-MAPD instance with a finite number of tasks, LNS-
PBS is guaranteed to plan collision-free paths for the agents to execute all the tasks in finite
timesteps.

Proof. We first prove that all tasks will be assigned to the agents in finite time. Assume in
the T th iteration, a new task τi is added to T . Task τi is not assigned to any agent since
one of its goal locations is used as a dummy endpoint in the (T − 1)th iteration. Then task
τi will be assigned in the (T +1)th iteration. This is because the dummy endpoints assigned
in the T th iteration are different from all the task endpoints in T . So in the (T + 1)th
iteration, task τi will be assigned to an agent since none of its goal locations are used as a
dummy endpoint in the T th iteration.

We then prove that, LNS-PBS will return paths successfully for all agents such that
their assigned tasks are executed in finite time. In the first iteration, for the root node, PBS
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can plan a path for each agent that does not collide with the other M − 1 agents’ old paths.
We can do this since our instances are well-formed, which implies that there exists a path
between any two endpoints that avoids the start locations. For each child node, PBS can
plan a path for an agent since, in the worst case, this agent can stay at its start location,
and let all higher priority agents move along their new paths and stay at their dummy
endpoints. Then this agent can plan a path through its goal sequence without using the
dummy endpoints of higher-priority agents and the start locations of the other agents. We
can do this since the assigned dummy endpoints are pairwise different and different from
all the task endpoints.

In the next iteration, LNS-PBS is also guaranteed to return paths successfully for all
agents. For the root node, in the worst case, an agent can move along its old path and wait
at its old dummy endpoint until all other agents move along their old paths and arrive at
their old dummy endpoints. Then this agent plans a path to visit its goal sequence and stay
at its new dummy endpoint. We can do this since, in this iteration, we don’t assign those
tasks whose goal locations are used as dummy endpoints in the previous iteration. For each
child node, PBS can successfully plan a path since, in the worst case, the planned agent can
first move along its old path and stay at its old dummy endpoint, and let higher-priority
agents move along their new paths and stay at their new dummy endpoints, and let the
other agents move along their old paths and stay at their old dummy endpoints, then this
agent plans a path through its goal sequence and stay at its new dummy endpoint.

4.4 LNS-wPBS

In this section, we consider a variant of LNS-PBS, called LNS-wPBS, that is more effi-
cient but is not complete. Compared with LNS-PBS, LNS-wPBS is different from three
perspectives:

First of all, LNS-wPBS reserves the “time window” in WHCR, i.e., wPBS plans collision-
free paths of length w timesteps, and paths are planned again when agents have moved for
w timesteps. By comparison, LNS-PBS always plans the entire paths, ensuring that agents
will fully execute the first C tasks in their task sequences. Secondly, the low level of wPBS
is the same as the original PBS (that do not need to avoid collisions with the old paths of
agents): for the root node, PBS plans an individual optimal path for each agent without
any constraints; for the child node, PBS plans a shortest path that does not collide with
the paths of higher priority agents. Thirdly, the dummy endpoints assigned to the agents
only need to satisfy the condition that they are pairwise different from each other. The blue
parts in Algorithm 1 are the differences between LNS-PBS and LNS-wPBS.

LNS-wPBS is not complete. This is because wPBS only plans a path of length w

timesteps, so there is no guarantee that agents can reach their goal locations in finite
timesteps. Nevertheless, LNS-wPBS always successfully finds solutions in our experiments.
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Figure 4.1: A MG-MAPD instance at timestep 0 and 2 (left and right). Solid circles represent
the existing tasks from previous timesteps and dash circles represent the new task released
at the current timestep.

4.5 Look-Ahead Horizons

In this section, we study the semi-online setting, i.e., the system has partial knowledge
about the future tasks that it can plan ahead for. To handle this, LNS needs to consider all
the known tasks when generating task sequences. We divide tasks into batches, where the
tasks in one batch are released at the same timestep. Here we define a look-ahead horizon as
the number of batches of tasks we can know in advance. For example, if the system releases
0.2 tasks per timestep (i.e., releases one task per five timestep), a look-ahead horizon of 1
means that, at timestep 0, we know the tasks that will be released at timestep 0 and 5. The
problem becomes offline if the horizon is infinite.

If the system knows the incoming tasks ahead of their release time, we can send an
agent to the pickup location and wait for the task to be released. For example in Figure 4.1,
we assume that task τ1 is released at timestep t = 0 with pickup location s1 and delivery
location g1. At timestep t = 2, the system releases another task τ2 = (s2, g2). If the system
has no knowledge about this incoming task, we will first assign τ1 to the agent at timestep
0 and then assign τ2 when it is released at timestep 2. Thus, the completion time of τ1 is
timestep 5 and the completion time of τ2 is timestep 11. Since τ1 is released at timestep 0
and τ2 is released at timestep 2, the average service time is (5 − 0 + 11 − 2)/2 = 7. However,
if our system has a look-ahead horizon of 1, we can let our agent first move to s2 and wait
for one timestep. It then starts to execute τ2 at timestep 2 and then execute τ1 at timestep
5. Thus, the completion time of τ2 is timestep 4 and the completion time of τ1 is timestep
8. This produces an average service time of (8 − 0 + 4 − 2)/2 = 5.
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Chapter 5

Experiments

In this section, we compare our method with other MAPD methods on MAPD instances.
We also compare different task assignment heuristics on MG-MAPD instances and test our
method in a semi-online setting. Our experiments are performed on a macOS 2.3 GHz Intel
Core i5, with an 8 GB RAM environment. All the methods are implemented in C++, and
the implementation of our method is based on the codebase provided by WHCR [17].

In all experiments, we choose a neighborhood size of 2 for LNS procedure and set the
optimization time to 1 second. We use the same parameters ω1 = 9 and ω2 = 3 as in
[25] to compute the Shaw removal heuristic. Our experiments are performed on two 2d
4-neighbouring grids, as shown in Figure 5.1. For MAPD instances, the pickup and delivery
locations are randomly generated from all the task endpoints; for MG-MAPD instances, we
sample tasks from 1 to 5 goal locations, and each goal location is randomly generated from
all the task endpoints. We set C = 2 in small warehouse, which allows PBS to plan paths
for agents to execute two tasks at a time; we set C = 1 in large warehouse, which allows
PBS to plan paths for agents to execute only one task at a time. We set the time window
of wPBS to be 5 timesteps in a small warehouse environment and 10 timesteps in a large
warehouse environment. Since the method is deterministic, a single execution is sufficient.
For each instance, we report the average service time and the runtime (ms) per timestep in
a small warehouse:

Small Warehouse In a small warehouse environment, we test seven task frequencies
in the online setting: 0.2 (system releases 0.2 tasks every timestep), 0.5, 1, 2, 5, 10 (10
tasks are released every timestep) and 500 (all 500 tasks are released at the beginning).
For each task frequency, we test with 10, 20, 30, 40 and 50 agents. We compare LNS-PBS
with CENTRAL, since they are both complete methods for well-formed MAPD, and we
compare LNS-wPBS with RMCA, which is the state-of-the-art MAPD method that has no
completeness guarantees.

Table 5.1 shows that LNS-PBS produces a smaller service time than CENTRAL in
almost every instance. When task frequency increases (≥2), the average improvement is
above 10% and the largest improvement is 26% (for a task frequency 2 and 50 agents
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Figure 5.1: Two simulated warehouse maps borrowed from [18]. Left: a small warehouse
environment with 50 agents. Right: a large warehouse environment with 180 agents. The
blue cells represent task endpoints, the orange cells represent non-task endpoints and the
black cells are blocked.

Table 5.1: Compare CENTRAL and LNS-PBS, RMCA and LNS-wPBS in a small warehouse
environment

CENTRAL LNS-PBS (C = 2) RMCA LNS-wPBS (w = 5)
f agents service time runtime service time runtime service time runtime service time runtime

0.2

10 29.77 28.16 27.92 313.45 26.74 200.08 27.87 316.08
20 26.70 136.21 25.33 294.94 24.28 200.74 25.67 316.50
30 25.56 305.78 25.10 292.04 23.27 201.88 24.69 298.29
40 25.46 415.25 24.30 286.58 22.62 202.98 24.58 291.88
50 25.05 757.40 24.09 277.72 22.37 205.00 24.39 292.96

Avg. Gap -4.2% +206.2% +6.7% +50.0%

0.5

10 109.71 51.23 116.59 400.44 101.62 438.57 117.44 382.50
20 27.99 172.36 26.91 646.19 25.44 496.28 27.52 617.43
30 26.23 512.04 25.26 667.61 23.66 501.24 25.72 635.44
40 25.39 1017.49 24.65 667.25 22.73 503.49 24.84 657.18
50 24.94 1736.7 23.94 666.01 22.44 508.45 24.76 645.86

Avg. Gap -1.6% +178.1% +10.4% +19.1%

1

10 285.75 65.70 273.48 448.81 269.766 464.67 266.77 419.59
20 75.13 266.76 67.21 880.60 59.12 851.97 67.20 762.55
30 31.41 492.12 28.82 1030.93 25.59 974.76 28.05 947.47
40 28.33 1381.56 25.28 1042.05 23.67 987.04 25.62 960.76
50 27.38 3238.17 24.42 1055.77 23.01 995.00 25.30 958.01

Avg. Gap -8.8% +166.1% +8.0% -5.8%

2

10 388.21 81.35 361.59 258.75 371.272 231.32 356.90 229.33
20 162.00 424.18 140.27 477.73 146.816 444.33 140.22 420.59
30 85.89 702.22 75.45 749.36 77.75 635.75 74.30 597.24
40 57.53 1440.2 44.55 1307.76 43.49 798.31 44.70 752.98
50 41.43 2206.7 30.46 1249.02 28.88 927.25 31.01 893.02

Avg. Gap -16.2% +36.9% -0.6% -4.3%

5

10 455.16 85.32 412.75 157.27 435.70 99.57 408.77 109.84
20 229.55 422.41 197.28 244.39 209.558 184.11 197.51 187.50
30 147.76 1012.82 126.41 373.18 132.06 268.07 123.95 272.18
40 108.28 1745.05 90.01 627.75 96.81 362.65 91.01 364.22
50 86.90 2686.08 70.31 914.49 74.32 425.26 72.25 422.82

Avg. Gap -14.7% -30.1% -5.3% +2.7%

10

10 478.17 92.96 438.71 117.76 458.23 56.68 431.76 65.62
20 242.18 375.23 217.33 168.63 228.9 101.20 215.74 110.00
30 165.13 869.85 146.56 254.68 154.28 152.34 144.11 163.94
40 128.39 1723.1 110.41 381.89 115.04 208.32 109.10 203.33
50 106.70 7442.20 88.75 602.85 94.29 246.96 89.33 243.87

Avg. Gap -12.0% -5.7% -5.7% +5.6%

500

10 501.11 76.03 447.59 76.60 N/A N/A 456.41 15.18
20 263.55 374.87 234.72 92.18 N/A N/A 234.88 31.80
30 187.31 19471.88 165.09 127.70 N/A N/A 162.52 47.03
40 N/A N/A 128.87 180.36 N/A N/A 129.72 61.30
50 N/A N/A 110.04 246.96 104.01 259.34 109.40 65.82

Avg. Gap -11.5% -57.9% +5.1% -74.6%
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Table 5.2: Compare HBH+MLA*, RMCA, LNS-wPBS and LNS-PBS in a large warehouse
environment with 1000 tasks and 100, 200, 300, 400, 500 agents. 50 tasks are released in
one timestep.

HBH+MLA* RMCA LNS-wPBS (w = 10) LNS-PBS (C = 1)
agents service time runtime service time runtime service time runtime service time runtime

100 362.70 1.99 329.58 565.76 300.90 (-17.0%, -8.7%) 87.35 301.78 345.36
200 207.76 6.75 192.67 2072.98 176.81 (-14.8%, -8.2%) 220.28 176.13 3065.95
300 157.11 14.89 147.42 4734.94 139.33 (-11.3%, -5.4%) 465.78 137.97 8844.98
400 136.40 32.59 126.44 9906.40 123.32 (-9.5%, -2.4%) 806.54 N/A N/A
500 125.42 65.79 N/A N/A 113.78 (-9.2%) 1385.9 N/A N/A

instance). The only instance in which our method produces a larger service time than
CENTRAL (+6.2%) is when the task frequency is 0.5 and the agent number is 10. In terms
of the runtime comparison, we observe the limited scalability of CENTRAL. For the task
frequency 500 instances, CENTRAL requires almost 20 seconds per timestep to solve for
30 agents, and it takes even longer to solve for 40 and 50 agents, while the runtime for
LNS-PBS is still less than 1 second per timestep. However, when the task frequency is small
(≤2) and the agent number is small (≤30), CENTRAL is more efficient than LNS-PBS.

When task frequency is small (≤1), RMCA produces a solution with smaller service time
and runtime than LNS-wPBS. However, LNS-wPBS outperforms RMCA when there are
more tasks to plan, e.g., when task frequency is 5 and 10, the average improvement produced
by LNS-wPBS is about 5%. We also test RMCA in the task frequency 500 instances, but
their program only succeeded in one instance (50 agents). The service time produced by
LNS-wPBS is very close to the service time produced by LNS-PBS, however, the runtime
required for LNS-wPBS are all below 1000 ms per timestep. We will observe a larger gap
in the runtime when running both methods in the large warehouse.

Large Warehouse We perform two set of experiments in the large warehouse. In first
experiment, the task set is fixed: the system releases 50 tasks every timestep and there are
1000 tasks in total. We test 5 instances: 100, 200, 300, 400, 500 agents. In second experiment,
the agent set is fixed: the system releases 100 tasks every timestep and there are 1000 agents
in total. We test 5 instances: 1000, 2000, 3000, 4000, 5000 tasks. The runtime limit is 1.5
hours for each instance.

Table 5.2 shows that LNS-wPBS produces a solution of smaller service time than
HBH+MLA* for every instance (more than 9%). However, HBH+MLA* runs faster since
it assigns tasks in a greedy way and uses prioritized planning algorithm to plan paths for
agents sequentially. Both RMCA and LNS-PBS has timeout issues when the number of
agents increases (≥ 500 and ≥ 400 respectively). LNS-wPBS outperforms RMCA when the
agent number decreases, and the maximum gap between their service time is 8%. Even
though LNS-wPBS produces comparable results with RMCA when the agent number is
large, LNS-wPBS still runs faster and has better scalability.
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Table 5.3: Compare HBH+MLA* and LNS-wPBS in a large warehouse environment with
1000 agents and 1000, 2000, 3000, 4000, 5000 tasks. 100 tasks are released in one timestep.

HBH+MLA* LNS-wPBS (w = 10)
tasks service time runtime service time runtime
1000 162.98 373.10 155.00 (-4.8%) 9288.45
2000 209.89 468.74 193.22 (-7.9%) 7792.24
3000 258.74 346.44 233.99 (-10.5%) 8173.96
4000 307.59 400.26 274.54 (-10.7%) 7730.04
5000 356.60 487.90 314.42 (-11.8%) 5038.37

Figure 5.2: Total computation time per timestep. The charts are generated for 40 agents
and task frequency 1, 2, 5 and 10 instances (from left to right and top to bottom).

A similar trend is observed in Table 5.3, where we only compare LNS-wPBS with
HBH+MLA* since the other two methods cannot scale to thousand of agents and thou-
sands of tasks. HBH+MLA* still runs faster, however, LNS-wPBS produces a solution with
smaller service time, and the gap increases when there are more tasks to plan; the maximum
gap we achieve is 11%. Notice that the runtime of LNS-PBS is decreasing when the number
of tasks is increasing. This is because here we are computing the runtime per timestep,
which is the total runtime divided by the makespan, and the makespan is longer when there
are more tasks to plan.

Runtime and Throughput Figure 5.2 shows that the computation time of LNS-
wPBS is more stable than the computation time of LNS-PBS and CENTRAL. This is
because the computation time of LNS-wPBS can be controlled by the user-specified time
window of wPBS and the user-specified time limit of LNS. Notice that for all three methods,
the computation (of task assignment and path finding) is only triggered under certain
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Figure 5.3: Task planning time and path finding time per timestep. The charts are generated
for 40 agents and task frequency 0.2, 0.5, 1 and 2 instances (from (a) to (d)). The orange
dots are hidden by the green dots since the task planning time of LNS-PBS and LNS-wPBS
are very close.

circumstances, e.g., when new tasks are released, so the computation time is close to 0 for
some timesteps and the variance is very high in the charts. However, we can still see that
the computation time of LNS-wPBS is always around 1 second (which is the time limit of
we set for LNS), while the computation time of the other two methods deviate significantly
over the timeline.

We further divide the total computation time into two parts: task planning and path
finding. In Figure 5.3. We can see that LNS-PBS and LNS-wPBS both take about 1 second to
assign tasks, whereas the computation time of task planning in CENTRAL is unpredictable.
We also notice that the path planning time for LNS-wPBS is more evenly distributed than
LNS-PBS and CENTRAL. Therefore, the total computation time for LNS-wPBS is under
control, whereas it is difficult to predict the total computation time for the other two
methods.

Figure 5.4 shows the number of tasks added and completed by 50 agents in a time
window [t − 99, t] as a function of timestep t. When task frequency is 0.2, 0.5 and 1, these
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Figure 5.4: Throughput and the number of tasks added per timestep. The charts are gen-
erated for 50 agents and task frequency 0.2, 0.5, 1, 2, 5 and 10 instances (from left to right
and up to bottom).

three methods perform equally well, and they all produce a throughput that is close to the
number of tasks added. When task frequency increases, i.e., more tasks are added at each
timestep, LNS-PBS and LNS-wPBS behave similarly and produce higher throughput than
CENTRAL.

Task-Assignment Heuristics In this experiment, we compare the performance of
Hungarian-LNS with two other task assignment heuristics in assigning multi-goal tasks.
Hungarian heuristic assigns at most one task to an agent, whereas Greedy-LNS and Hungarian-
LNS can assign a sequence of tasks to an agent. Hungarian uses the completion time of a
task executed by an agent as the cost of each agent-task pair, instead of the distance be-
tween an agent’s current location and the first goal location of a task. Greedy-LNS uses
a standard regret-based heuristic to construct the initial solution (as in [25, 5]), whereas
Hungarian-LNS uses a sequence of Hungarian calls to construct the initial solution; they
both iteratively optimize the solution using LNS as we describe in the previous section.

The results are summarized in Table 5.4. The gap is calculated based on the solution
produced by Hungarian and Hungarian-LNS. We can see that for a few instances, Hungarian
outperforms the other two with a small margin, e.g., for the instance with task frequency
0.5 and 30 agents; in most cases, Hungarian-LNS produces smaller service time than the
other two heuristics. We also notice that Greedy-LNS produces a solution with smallest
service time when there are fewer agents to plan, e.g., for the instances with task frequency
2, 5 and 10 agents.

Look-Ahead Horizons In this experiment, we explore the semi-online setting when
a look-ahead horizon is applied and we test in MG-MAPD instances. The results are sum-
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Table 5.4: Service time of MG-MAPD instances produced by three task assignment methods:
Hungarian, Greedy-LNS and Hungarian-LNS

f agents Hungarian Greedy-LNS Hungarian-LNS Gap (%)

0.5

10 382.95 370.84 369.47 -3.5
20 88.74 90.43 87.57 -1.3
30 47.04 47.4 47.11 +0.1
40 45.87 46.32 45.82 -0.1
50 45.81 45.67 45.40 -0.8

1

10 527.51 521.25 514.93 -2.3
20 204.63 210.22 197.31 -3.5
30 111.57 114.17 108.80 -2.4
40 70.67 68.37 67.98 -3.8
50 48.32 49.07 48.69 +0.7

2

10 623.87 590.54 597.05 -4.2
20 283.83 277.65 269.87 -4.9
30 173.15 177.21 170.07 -1.7
40 122.21 129.57 122.24 +0.0
50 98.10 99.58 95.94 -2.6

5

10 683.50 637.66 645.21 -5.6
20 332.23 327.57 318.55 -4.1
30 224.21 221.70 218.27 -2.6
40 168.11 173.47 164.8 -1.9
50 141.61 141.95 139.86 -1.2

10

10 683.60 654.26 650.63 -4.8
20 343.88 341.56 336.97 -2.0
30 239.39 239.20 229.76 -4.0
40 184.94 187.55 178.19 -3.6
50 157.01 156.07 149.91 -4.5

Table 5.5: Service time for different look-ahead horizons: “LA1” represents look one batch
of tasks ahead.

f agents LNS-wPBS LA1 LA5 LA10

0.2

10 58.93 54.07 (-8.2%) 48.89 (-17.0%) 65.25 (+10.6%)
20 46.52 41.85 (-10.0%) 37.94 (-18.4%) 38.12 (-18.0%)
30 45.36 41.59 (-8.3%) 38.30 (-15.5%) 38.41 (-15.3%)
40 45.17 41.99 (-7.0%) 38.80 (-14.1%) 38.84 (-14.0%)
50 45.00 41.57 (-7.6%) 39.11 (-13.0%) 39.31 (-12.6%)

0.5

10 369.47 372.88 (+0.9%) 367.23 (+0.6%) 388.17 (+5.0%)
20 87.57 86.22 (-1.5%) 81.77 (-6.6%) 80.35 (-8.2%)
30 47.11 44.88 (-4.7%) 39.92 (-15.2%) 38.76 (-17.7%)
40 45.82 44.60 (-2.6%) 39.76 (-13.2%) 38.82 (-15.2%)
50 45.40 44.13 (-2.7%) 39.97 (-11.9%) 39.01 (-14.0%)

marized in Table 5.5. “LA1” represents look one batch of tasks ahead and we test three
look-ahead horizons: 1, 5 and 10. We can see that knowing future tasks allows us to plan
in advance and therefore obtain a smaller service time, but this benefit diminishes as we
extend the horizon. For example, for instances whose task frequency is 0.2, extending the
horizon from 1 to 5 can almost double the improvement on the service time. However, the
improvements are very close (or even worse) when we further extend the horizon from 5
to 10. For example, for instances whose task frequency is 0.2, planning 10 batches of tasks
ahead leads to a solution with a larger service time (+10%). We suspect the reason is: in
order to optimize the entire task sequences, we need to sacrifice the service time of the first
few tasks, and since the task sequences change frequently, the agents will never execute the
whole task sequences as planned.
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Chapter 6

Conclusions

In this work, we propose a decoupled MAPD method that assigns task sequences to agents
and plans agents’ paths through a sequence of goal locations. Two variants of this method
are proposed: The first variant LNS-PBS is complete for well-formed MAPD instances,
and the second variant LNS-wPBS is more efficient and stable (but has no completeness
guarantees). The computation time of LNS-wPBS can be controlled by the anytime LNS
task assigner and the user-specified time window in the path finding solver. Empirically,
both LNS-PBS and LNS-wPBS produce a solution with smaller service time than the state-
of-the-art methods, and LNS-wPBS can scale to thousands of agents and thousands of
tasks in a large warehouse. As a further contribution, our method extends to MG-MAPD,
a generalized variant of MAPD where tasks can have a varying number of goal locations.
We also study the performance of our method under the online with look-ahead setting.

In our experiments, RMCA shows its great success on small instances, which indicates
the advantage of assigning tasks based on the actual path cost. Motivated by their work, a
future improvement of our work is to use a more informed heuristic, e.g., the actual path
cost to help LNS escape from the local minimum and continue to optimize the task sequence.
Another future direction is to use a 3D physics simulator to demonstrate the potential to
run our method in actual robots.
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