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Abstract

The immersed boundary method (IBM) simulates the interaction between a flexible elas-
tic structure and a surrounding incompressible fluid in which it is immersed. This method
is particularly useful in modelling biological phenomena, ranging from human organ sys-
tems to the swaying seagrass on the sea bottom. One fascinating application of immersed
boundaries is the study of fluid mechanics within the cochlea or inner ear, which transforms
external sound waves into electrical impulses that are transmitted to the brain. An integral
component of the cochlea is a flexible structure called the basilar membrane (BM) which
is excited by oscillatory fluid motions induced within the cochlear duct. We implement a
2D immersed boundary model for the cochlea and study the BM oscillations that arise due
to periodic forcing over a variety of frequencies that cover a subset of the range of human
hearing. The results are compared with other model simulations.

Keywords: Immersed boundary method, fluid-structure interaction, cochlear mechanics,
basilar membrane
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Chapter 1

Introduction

Nature is full of examples of fluid-structure interaction (FSI) problems in which a fluid
comes in contact a solid or deformable structure and interacts with it. FSI problems occurs
at different scales in biological settings, from cell scale problems to larger ones, such as blood
flow in the heart. One interesting category of FSI problems is systems where a deformable
elastic structure is immersed in a viscous incompressible fluid. This phenomenon is common
in biofluid systems such as red blood cells deforming in a capillary, or seagrass that sways
in response to ocean currents [32, 26]. Mathematical modelling is a useful tool to better
understand these type of interactions.

In computational fluid dynamics, different methods can be used to describe the motion
of a fluid interacting with the mentioned elastic structures. One of these methods that
has demonstrated good performance for complicated FSI problems is called the immersed
boundary method (IBM) [43]. This method was first introduced by Charles Peskin to study
blood flow around valve leaflets of the heart [42] and has been used since to model many
different biological phenomena. Another application of the immersed boundary method
is the model introduced by Rejniak [51] for the growth of individual cells. Rejniak used
this method to show how a single cell grows and divides. When they are fed, these cells
proliferate and form a tumor. One other example of the IBM in bio-fluid problems is the
study of the swimming dynamics of different organisms. For instance, Cortez et al. modelled
the interaction of internal molecular motor mechanisms of beating cilia and flagella with a
fluid using immersed boundary method [12].

In the mathematical formulation of the IBM, a combination of Lagrangian and Eulerian
variables are used to represent the spatial discretization of the flexible structure and the
fluid. The interaction between quantities on the Eulerian and Lagrangian grids is facili-
tated by: (1) spreading the IB forces onto the fluid grid, and (2) interpolating the fluid
velocity onto the IB. Both spreading and interpolation operations are specified in terms of
convolutions with Dirac delta functions. This method also incorporates a numerical scheme
where the Eulerian variables are defined on a fixed Cartesian mesh and the deformable
immersed boundary is parameterized using Lagrangian points that can move freely through
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the Eulerian mesh. For the numerical implementation of the interaction equations, a smooth
approximation of the Dirac delta function is employed [43].

The standard immersed boundary framework [43] is used in different implementations
of this method. One example is this implementations is IBIS [15] which is developed in
FORTRAN. IBAMR, an adaptive and parallel implementation of IB developed by Griffith
[20], is another package which dynamically adapts the mesh size for higher resolution near
critical areas. This software is written in C++ and it is very efficient for highly complicated
3D problems. However, installation and utilization of this software is not easy and requires a
high level of programming experience. IB2d [7, 6] on the other hand, is a 2D implementation
of this method implemented in both MATLAB and Python, which follows Peskin’s frame-
work and incorporates different choices of fiber models to connect the Lagrangian grids. It
also includes a wide variety of examples in order to illustrate its applicability to a wide range
of problems and make it easy for a new user to apply the code to study a new application.
In this package, the user can construct the geometry and assign the suitable fibers and
modify different parameters to better model an immersed boundary problem. Compared to
IBAMR and IBIS, IB2d provides the tools to implement different 2D immersed boundary
problems in a user-friendly environment. Other open source IB codes are also available,
but they do not include the wide range of fiber force models and examples that IB2d does,
which makes IB2d an ideal platform with which to implement a new problem [61, 37].

This thesis will focus on studying fluid-structure interactions that take place within the
cochlea, which is one of the key elements in mammalian hearing systems. The main function
of this organ, which is part of the inner ear, is to transduce the sounds entering the ear
into some electrical impulses that the brain can understand. Scientists have been studying
cochlear mechanics for almost a century, starting with the pioneering work of von Békésy
in 1928 [58], who proposed a traveling wave theory for propagation of sound waves within
the cochlea. This has been expanded on in a major way by other notable people like Gold
[19], who was an experimentalist, and Lighthill [33], who was the first mathematician to
study cochlear behavior. Allen and Neely [4] explained the cochlear mechanics in a readable
manner for non-experts. Steele et al. [54] provided a recent review of different types of
passive and active cochlea models. Finally, the work of Champneys et al. [11] and Keener
and Sneyd [23] both provided in-depth summaries of the various mathematical models that
have been applied to study cochlear mechanics.

Another interesting approach for modelling the cochlea is the immersed boundary method.
FSI in the cochlea consists of the interaction between the perilymphatic fluid that fills the
cochlear duct and a flexible membrane that runs down its center, known as the basilar
membrane. The first two dimensional IB model of cochlea was introduced by LeVeque,
Peskin and Lax [31], in which they provided both numerical and asymptotic results that
approximate the cochlear dynamics. Following their work, Beyer [8] developed a 2D model
in which the cochlea is represented as two fluid chambers separated by an elastic membrane.
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His model simplifies the cochlea while maintaining the key features of it, leading to results
comparable with the asymptotic results of LeVeque, Peskin and Lax.

In this thesis, we presented a 2D immersed boundary model of the cochlea based on
the work by Beyer [8] using the IBM scheme developed by Peskin [43] and implemented in
the IB2d package [7, 6]. We demonstrate that the IB model is capable of reproducing BM
behavior observed in experiments as well as other numerical simulations.
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Chapter 2

Immersed boundary method

The immersed boundary method introduced by Peskin [42, 43] for fluid-structure interaction
problems is both a mathematical model and a numerical scheme. The model can be sepa-
rated into three components: fluid motion equations, interaction equations and immersed
boundary force equations. The fluid variables are represented at Euler grid points and the
IB quantities at Lagrangian points as illustrated in Figure 2.1.

• Fluid motion equations: The fluid dynamics of many bio-fluid problems is governed
by the incompressible Navier-Stokes equations:

ρ

(
∂u

∂t
+ ~u · ∇~u

)
+∇p = µ∆~u+ ~f, (2.1)

∇ · ~u = 0 for ~x ∈ Ω, (2.2)

where ~u(~x, t) is the fluid velocity, p(~x, t) is the pressure and ~f(~x, t) is the external
force per unit area in 2D (or force per unit volume in 3D). Density and viscosity are
constant and the fluid domain Ω is a subset of R2 or R3. These equations can be
solved using standard fluid solvers.

• Interaction equations: The interaction between fluid and IB can be modeled as follows:

~f(~x, t) =
∫

Γ
~F (s, t)δ(~x− ~X(s))ds, (2.3)

∂ ~X

∂t
(s, t) =

∫
Ω
~u(~x, t)δ(~x− ~X(s))d~x, (2.4)

where ~X(s, t) ∈ Γ is the position of the elastic structure and s is is a Lagrangian
coordinate that parameterizes the immersed boundary. Equation (2.3) shows how the
force from IB deformations is spread onto fluid grid points through the Dirac delta
function and equation (2.4) acts to interpolate the fluid velocity onto adjacent IB grid
points. The 2D Dirac delta function is assumed to be separable into a product of two
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Ω

Γ

Figure 2.1: Schematic diagram of IBM discretization: Eulerian grid points (black nodes)
discretizing the fluid domain Ω and Lagrangian points (red nodes) discretizing the immersed
boundary Γ which is the blue curve.

1D delta functions:
δ(~x) = δ(x)δ(y).

• Immersed boundary force equations: The deformable elastic nature of the immersed
boundary is captured by treating it as a combination of individual 1D fibers, pa-
rameterized by s. The force density F (s, t) is a functional of the current immersed
boundary’s configuration which can be defined as

~F (s, t) = F( ~X(s, t), t), (2.5)

where F( ~X(s, t), t) is a combination of all the fiber components modeling the desired
material properties of the immersed structure.

Equations (2.1)-(2.5) make up the IBM framework introduced by Peskin. In the IB2d pack-
age, Battista [7] implements this scheme for 2D problems and introduces different fibers to
represent the elastic structure.

2.1 Spatial discretization

Our numerical implementation of the IBM is formulated using the same spatial and temporal
discretization as introduced in Peskin [43]. We start by describing the spatial discretization
in 2D and assume that {~e1, ~e2} are the standard basis of R2, φ is a scalar function and ~u is
a vector function. The central difference operator in each direction α = 1, 2 is then defined
as:

(Dαφ)(~x) = φ(~x+ h~eα)− φ(~x− h~eα)
2h . (2.6)
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where ~x is used in this section to refer to discrete points ~xij = (i∆x, j∆y) on an N × N
fluid grid with i, j = 1, . . . , N . However, we will suppress the subscripts i, j for simplicity
of notation.

Based on this definition, we can write the discrete gradient and divergence operators as

~D = (D1, D2), (2.7)
~Dφ = (D1φ,D2φ) ≈ ∇φ, (2.8)
~D · ~u = D1u1 +D2u2 ≈ ∇ · ~u. (2.9)

For the Laplacian that appears in the viscous term, we have:

(L~u)(~x) =
2∑

α=1

~u(~x+ h~eα) + ~u(~x− h~eα)− 2~u(~x)
h2 ≈ ∆~u. (2.10)

Finally, we want to discretize the nonlinear advetion term. Because ∇ · ~u = 0, we have

~u · ∇φ = ∇ · (~uφ). (2.11)

where φ is a scalar representing the velocity in each direction. While continuously this
equality holds, the two terms will not always be equal discretely. That is why current scheme
chooses the discretization of the nonlinear term to be the average of the discrezations of
these two terms which is

S(~u)φ = 1
2~u ·

~Dφ+ 1
2
~D(~uφ), (2.12)

This operator ends up being skew-symmetric, which means ST = −S (proof provided
by Peskin [43]). The important feature of skew-symmetric schemes is that they conserve
kinetic energy [50]. Now, since this operator is applied to a vector by being applied to each
component of that vector, we have

S(~u)~u ≈ ~u · ∇~u. (2.13)

where
(S(~u)~u)α = S(~u)uα, (2.14)
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Applying these approximation to the spatial derivatives in the model equations, we have:

ρ

(
∂~u

∂t
+ S(~u)~u

)
+ ~Dp = µL~u+ ~f, (2.15)

~D · ~u = 0, (2.16)

~f(~x, t) =
N−1∑
k=0

~F (k∆s, t)δh(~x− ~X(k∆s, t))∆s, (2.17)

∂ ~X

∂t
(k∆s, t) =

∑
~x

~u(~x, t)δh(~x− ~X(k∆s, t))h2, (2.18)

where equation (2.18) sums over all points in the support of the delta function. This delta
function in the spreading/interpolation steps is replaced with a regularized (or smoothed)
approximation:

δh(~x) = 1
h2φ

(
x

h

)
φ

(
y

h

)
, (2.19)

where h is the fluid grid spacing and

φ(r) =


1
4
(
1 + cos

(
πr
2
))
, |r| ≤ 2,

0, otherwise,
(2.20)

where r is a dimensionless spatial coordinate [43]. This regularized delta function has com-
pact support and was the approximation in the original IBM proposed by Peskin. Note
that the sums in (2.17) and (2.18) are performed only over those points (k∆s and ~x re-
spectively) that lie within the support of the discrete delta function. Since then, improved
delta regularizations have been derived that yield improved accuracy in the smoothing and
interpolation steps, such as the following [28]:

φ(r) =


1
8(3− 2|r|+

√
1 + 4|r| − 4|r|2), |r| ≤ 1,

1
8(5− 2|r|+

√
−7 + 12|r| − 4|r|2), 1 ≤ |r| ≤ 2,

0, otherwise,

(2.21)

which is the approximation we use in our numerical simulations.

2.2 Temporal discretization

For the temporal discretization of equations (2.15)-(2.18), Peskin uses a second order accu-
rate Runge-Kutta scheme based on the midpoint rule [43], where we have

un+ 1
2 − un

∆t/2 = f(un), (2.22)
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un+1 − un

∆t = f(un+ 1
2 ). (2.23)

This scheme incorporates a mixture of forward and backward Euler for the first substep
(n→ n+ 1

2), which is first-order accurate. Then, for the next substep, (n+ 1
2 → n+ 1), the

scheme uses a combination of midpoint rule and trapezoidal rule (for the viscous term) result
in a second-accurate scheme. The temporal discretization is designed in a way that improves
the numerical stability by handling terms implicitly wherever possible, while keeping the
discrete equations linear.

Applying this scheme to the current method, the forces and positions for IB grids are
updated to the half time step tn+1/2. Using this data, the velocity at the half time-step is
calculated. Using all this information from the half-time step, the final velocity is calculated
at the next time step tn+1. In summary, the solution update for velocity and pressure
proceeds in two half time steps as follows:

• Solve for ~un+ 1
2 and p̃n+ 1

2 :
ρ

(
~un+ 1

2 − ~un

∆t/2 + S(~un)~un
)

+ ~Dp̃n+ 1
2 = µL~un+ 1

2 + ~fn+ 1
2 ,

~D · ~un+ 1
2 = 0,

(2.24)

where p̃n+ 1
2 is not the physical pressure but rather plays the role of a Lagrange mul-

tiplier that calculates ~un+ 1
2 to satisfy the discrete incompressibility condition. The

position of the IB points is updated similarly using the velocity at the half time-step.

• Solve for ~un+1 and pn+ 1
2 :

ρ
(
~un+1 − ~un

∆t + S(~un+ 1
2 )~un+ 1

2

)
+ ~Dpn+ 1

2 = µL

(
~un + ~un+1

2

)
+ ~fn+ 1

2 ,

~D · ~un+1 = 0.
(2.25)

where pn+ 1
2 is again another Lagrange multiplier for calculating the velocity at the

end of time-step and is not the actual pressure.

In both substeps, after rearranging the equations, we need to solve linear systems of the
form 

(
1− ∆t

2
µ

ρ
L

)
~u+ ∆t

ρ
~Dq = ~w,

~D · ~u = 0.

(2.26)

where ~w is a vector of known values and we have to solve for ~u and q.
For the first half time-step (n→ n+ 1

2) we have:

~u = ~un+ 1
2 , q = 1

2 p̃
n+ 1

2
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~w = ~un − ∆t
2 S(~un)~un + ∆t

2ρ
~fn+ 1

2

and for the second half time-step (n+ 1
2 → n+ 1):

~u = ~un+1, q = 1
2p

n+ 1
2

~w = ~un −∆tS(~un+ 1
2 )~un+ 1

2 + ∆t
ρ
~fn+ 1

2 + ∆t
2
µ

ρ
L~un

Finally, the linear system in equation (2.26) can be solved using the discrete Fourier
transform (DFT) since the equations now have constant coefficients due to their linearization
and the domain is square with periodic boundary conditions. Now by applying DFT to the
linear system, we will end up with the following equations:(

1− ∆t
2
µ

ρ
L̂

)
~̂u+ ∆t

ρ
~̂Dq̂ = ~̂w, (2.27a)

~̂D · ~̂u = 0. (2.27b)

Now if we apply ~̂D· to the first equation (2.26a), all terms with a factor of ~̂D · ~̂u will
be equal to zero. Thus, the first equation reduces to an expression for q̂ in terms of ŵ only.
Next, by rearranging the final equation, we can obtain q̂ as

q̂ =
~̂D · ~̂w

∆t
ρ
~̂D · ~̂D

, (2.28)

and then ~̂u is

~̂u =
~̂w −

~̂D ~̂D · ~̂w
~̂D · ~̂D

1− ∆t
2
µ

ρ
L̂

, (2.29)

Here, the DFT diagonalizes the linear system. So in Fourier space, the denominator
in both (2.28) and (2.29) is simply a constant which greatly simplifies the calculation of
q̂ and û. Finally, the pressure and velocity will be found by applying the inverse DFT to
the transformed unknowns q̂ and ~̂u [44]. In most immersed boundary implementations, the
DFT is calculated using the fast Fourier transform (FFT).

One other important point about this scheme is that analytically, the pressure Poisson
equation with periodic boundary conditions is only determined up to a constant; so the
solution is not unique. In terms of the DFT variable q̂, this introduces an arbitrary shift
between solutions values on even and odd numbered grids, which results in an oscillatory
behavior in pressure. However, these oscillations don’t affect û because the ~̂D · q̂ operator
eliminates the constant shift.
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2.3 IBM algorithm summary

The numerical scheme described in the last section is designed in a way to obtain second-
order accuracy in time and space for problems that have smooth solutions. Based on this
numerical scheme, for solving an IBM problem, the following algorithm should be applied:

• Compute the force density ~Fn(s, t) on the immersed boundary from the current bound-
ary configuration, ~Xn.

• By equation (2.3), calculate the effect of these deformation forces from the Lagrangian
nodes to the adjacent fluid grid points.

• Solve the Navier-Stokes equations (2.1) and (2.2) on the Eulerian domain and update
~un+1 and ~pn+1 form ~un and ~pn.

• Update the location of the Lagrangian points on the IB, ~Xn+1, using the local fluid
velocities, ~un+1 and equation (2.4).

We will apply this algorithm as implemented in the open-source IB2d software package [7],
for which a description will be provided in the next chapter.
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Chapter 3

Cochlea model and IB2d
implementation

3.1 Cochlear physiology

The ear is the organ in the body that is responsible for hearing and is divided into three
major sections: outer ear, middle ear and inner ear. Each section has evolved to perform a
specific function in the hearing process. Sound waves are oscillations in air pressure which
enter the outer ear and travel down the ear canal, which channels and amplifies the waves
until they reach the eardrum or tympanic membrane as shown in Figure 3.1. These vibra-
tions are then transferred to a series of three bones or ossicles within the middle ear that
further amplify the vibrations. The third and final bone (called the stapes) is connected to
another membrane called the oval window, which transfers the sound waves to the cochlea
or inner ear. The purpose of the cochlea is to transform these vibrations into electrical nerve
impulses that are transmitted to the brain and recognized as individual sound frequencies.
[10, 1].

The cochlea is a spiral-wound cavity located in the inner ear that is filled with fluid.
As pictured in Figure 3.2, this organ is divided into three liquid-filled chambers: the scala
vestibuli, the scala media, and the scala tympani. The first two chambers are separated by
Reissner’s membrane (RM), which is very flexible. The scala media and the scala tympani
are separated by a structure called the cochlear partition (CP). The CP mainly consists
of an elastic membrane known as the basilar membrane (BM), which has a variable elastic
stiffness that decreases along its length, from base to apex. Two other important structures
that sit on the BM are called the tectoral membrane and the Organ of Corti, the latter
which contains the mechano-sensitive hair cells that are the main sensory receptors in the
ear.

As mentioned before, in the process of hearing, the primary function of the cochlea is
to convert the vibrations entering the inner ear into electrical nerve impulses. When these
vibrations enter the cochlea through the stapes, they excite the fluid in the cochlear duct.
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Figure 3.1: Diagram showing the structure of the human ear. Sound travels down the hearing
canal to the tympanic membrane, which are then transferred by the bony stapes to the oval
window (at the base), which then enters the cochlea (inner ear). The cochlea and basilar
membrane are depicted here as unrolled to illustrate the location of peak amplitudes for
different sound frequencies. Source: [25, Figure 2] (CC BY 4.0).

This excitation causes the formation of a pressure wave which then travels through the fluid
along the basilar membrane from base to apex, deflecting the BM. The deflection of the
basilar membrane then stimulates the hair cells due to the motion of the Organ of Corti.
These hair cells are tuned to respond to different sound waves based on their frequencies
[13]. High-frequency waves stimulate the hair cells closer to the base while low-frequency
waves stimulate the ones closer to the apex as shown in Figure 3.1. This is known as cochlear
tuning. When the hair cells detect the frequency they are sensitive to, they generate electrical
impulses which then travel along the auditory nerves to the hearing centers in the brain
[13].

3.2 Mathematical models of the cochlea

Mathematical models for the cochlea can be divided into two categories: passive and active
models [54]. In the passive models, the sensory processing in the cochlea is assumed to have
two separate steps. In the first step, the peak “place” for each frequency is defined by the
interaction of the BM and the fluid. Then, the Organ of Corti and its frequency-sensitive
hair cells perform a further sharpening and amplification.

The first type of passive models assumed the ear to be a group of tuned resonant cavities.
The first famous resonance theory was introduced by Helmholtz in 1875 [60]. He developed
a model in which the BM is made of a set of resonating fibres under tension, acting like the
strings in a piano. The fibres close to the base are stimulated by high frequency sounds while
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Figure 3.2: Diagram showing the cross-section of cochlea. Source: [62] (CC BY-SA 3.0).

the ones near the apex respond to low frequencies. This feature is called the place principle.
However, a major defect in Helmholtz’s theory is that it requires the BM to operate under
a very high tension, which is not actually observed in experiments.

The next class of passive models was developed by von Békésy [59] in 1928 and is known
as the travelling wave theory. Von Békésy observed travelling waves along the cochlea in
human and animal cadavers. In his experiments, a place principle still holds, meaning that
the peak still migrates further from the base as the frequency decreases, but the ampli-
tude is not very localized in this theory. Also, von Békésy’s model simplifies the cochlea
greatly by reducing it to a straight tube containing only the BM. Nonetheless, travel-
ling wave models have been the prevailing approach used to understand how the cochlea
works. Initially, the models based on traveling wave theory assumed that the fluid motion is
one-dimensional [53], which introduces some physically undesirable side-effects for several
reasons. First, they assume that BM has a significant mass which was in contrast with von
Békésy’s observations that the BM mass is negligible in comparison with the surrounding
fluid and the significant mass is mainly from the fluid. In addition, different measurements
illustrated dispersive effects within the cochlea that are incompatible with the simple 1D
traveling wave approximation [33].

The next class of passive cochlea models, incorporating a 2D fluid motion, was intro-
duced by Ranke [47] where he mentioned that 1D non-dispersive models are not consistent
with the experimental data. After that, several 2D models were introduced where the BM
is assumed to be built out of a collection of damped mass-spring systems and the fluid dy-
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namics are simplified to a linear potential flow [3, 29, 38]. A couple of years later, Steele [22]
provided a thorough analysis of 2D fluid motion without any a priori assumption of long
or short wavelengths. In all these models, an external forcing that is a given sinusoidal
function of time is applied to the BM, as the effect of sound waves on the stapes motion.
Pozrikidis [45] replaced this forcing with a point source at the stapes and a point sink at
the round window and solved the model using a boundary integral method. All of these 2D
models allow the assumption of a mass-less partition (BM) which better approximates the
physiological properties of the BM.

To more accurately reproduce the behavior observed in experiments, some works devel-
oped 3D models which include the component of fluid motion in the transverse direction
across the basilar membrane [46, 9, 27] As shown by [55, 41], the 3D fluid dynamic effects
have a significant influence on the pressure distributions within the cochlear duct.

In contrast with passive models, the second class of active models attempt to capture the
experimental observation that BM vibrations appear to induce a compressive nonlinearity.
This provides a positive feedback locally along the CP, which results in higher sensitivity
and frequency selectivity. This is often referred to as the cochlear “active process”. Gold [19]
was the first person to recognize this active process and suggest that some active mechanism
might play an important role in cochlear mechanics. This was also seen in the measurements
of Rhode [52] who recognized that a significant degree of nonlinearity exists in the BM where
the maximum amplitude occurs. Kemp [24] discussed that sound pulses entering the ear can
result in echoes generated by the cochlea that are delayed relative to the source signal (called
“tinnitus”), meaning that the ear itself can generate sound. Many active models have since
been introduced that incorporate the electromotility of the outer hair cells, which is their
ability to contract or elongate due to changes in the intracellular potential, and its feedback
into the BM [14, 16, 56]. Experimental measurements have confirmed that damaged or
dead cochleas exhibit a response similar to that of passive models whereas normal cochleas
must generate some active forcing that cannot be captured using passive models. More
recent efforts in cochlea modelling combine von Békésy’s travelling wave theory and some
active cochlear process to better understand how cochlear mechanics contributes to sound
sensation [40, 48, 5].

The immersed boundary method has been exploited in different works to provide a
realistic model of the fluid dynamics in the cochlea and the interactions between the fluid
and basilar membrane. First, LeVeque et al. [30, 31] developed an IB model of the cochlea in
which the elasticity of the BM is approximated using simple springs and the fluid obeys the
unsteady Stokes equation. Their papers derived an asymptotic solution for traveling waves
along the BM. A couple of years later, Beyer [8] provided a cochlea model in which the fluid
obeys the full Navier-Stokes equation, including the nonlinear term. He also performed
numerical simulations of his model and showed that his results are consistent with the
asymptotic solution provided by LeVeque et al. for low frequencies. In all these models,
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cochlea is assumed to be a straight, rectangular duct. While this approximation has a small
effect on fluid dynamics [17], in the apical region of the BM which is densely coiled, the
effect of cochlea curvature cannot be neglected [35]. A 3D IBM model of cochlea has also
been developed to represent a more detailed cochlea geometry [18].

3.3 Our cochlea model

Here we consider a simple 2D model, as illustrated in Figure 3.3, which is developed based
on the model that Beyer [8] introduced. In our model, the cochlear duct is treated as a
rectangular strip Ω = [0.5, 4.5]× [0.5, 2] and a 3.5 cm BM lies in the middle of this rectangle,
which is the actual cochlea length in humans. In this model, the walls of the cochlear duct
are assumed to be rigid structures while the BM is treated as an elastic structure. The
stapes is the location where the waves enter the cochlear duct, travel along the BM from
the base to the apex, enter the lower channel and finally exit from the round window. The
stapes and round window are assumed to have the same cross-sectional area.

Different assumptions and simplifications have been made to reduce the complexity of
this problem, while keeping the key elements of the cochlea. A very common simplification is
that the spiral coiled cochlea is approximated with a straight tube. Different works discussed
that this simplification only has a slight impact on the BM motion [57, 59]. Next, the
structural components of the Organ of Corti in the CP are often neglected and only the
BM is included. The three channels of cochlea will also be reduced to two channels, the
scala vestibuli and the scala tympani by ignoring the very flexible Reissner’s membrane
(RM). This assumption is valid since the RM has shown to have little impact on the BM
and fluid motion [21, 34]. The fluid in the cochlea is assumed to be incompressible and the
BM mass is neglected. According to von Békésy’s observations [59] that cochlea tuning did
not happen when the fluid was drained from the ear, the BM resonance as the mechanism
for this tuning is eliminated which justifies neglecting the inertial effects.

In the 3D straight tube representation of the cochlea, as shown in Figure 3.1, the BM
is depicted as a narrow plate which is fixed at its edges in the transverse (out of plane)
direction. To represent this structure in 2D, we assume this narrow plate is made of a set
of disconnected beam elements, with stiffness that acts only in the radial (y) direction. It
has been discussed by Allen and Sondhi [2] that excluding the longitudinal stiffness gives
better results in comparison with experiments. The coupling of each of these beams to its
edge is shown in the 2D model as a restoring force that is independent at each point along
the BM. The magnitude of this force depends on the BM stiffness at that point. According
to von Békésy’s experiments [59], the stiffness of the BM beam elements (represented as
points in 2D) has the following form:

K(x) = S0e
−λ(x−0.5) (3.1)
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Figure 3.3: Geometry of the 2D immersed boundary model for the cochlea. The dashed line
represents the fluid domain Ω.

where S0 and λ are positive constants which is different in humans and animals, and (x−0.5)
represents the distance from the base along the BM. As it was mentioned, stiffness decreases
along the BM from base to apex.

Based on the mentioned assumptions and simplifications, the 2D IB model of the cochlea
can be described as follows:

ρ

(
∂u

∂t
+ ~u · ∇~u

)
+∇p = µ∆~u+ ~f, (3.2)

∇ · ~u = 0 for ~x, (3.3)

∂ ~X

∂t
(s, t) =

∫
Ω
~u(~x, t)δ(~x− ~X(s))d~x, (3.4)

where the fluid equations are solved for x ∈ Ω = [0, 5] × [0, 2.5], which fully encloses the
cochlear duct. Here, the elastic force imposed on the fluid by the basilar membrane is given
by

~f(~x, t) =
∫ 3.5

0
K(s)( ~X0 − ~X)δ(~x− ~X(s))ds, (3.5)

where ~X(s, t) is the position of the BM, s ∈ [0, 3.5] is the Lagrangian coordinate (equal to
distance along the BM), ~X0 = [x, 1.25] is the rest state of the BM and the stiffness is given
as

K(s) = S0e
−λs (3.6)
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Variable Value
Fluid viscosity (µ) 0.01 g cm−1 s−1

Fluid density (ρ) 1 g cm−3

Elastic stiffness decay rate(λ) 1.4 cm−1

Elastic stiffness (S0) 1× 106 g cm−2 s−2

Forcing frequency (ω) [31.25, 250] s−1

Forcing amplitude (Umax) 0.05 cm s−1

Table 3.1: Physical parameter values in cgs units from [31, 8] for human cochlea.

where S0 is the elastic stiffness constant and the exponent λ captures the exponential rate
of decrease for the BM stiffness along its length.

In this setting, the external force imposed on the fluid boundary is caused by the sinu-
soidal fluid velocity imposed at the stapes, which has the following form:

~Uflow(0.5, y, t) = [Umax (1− cos(2πωt)) , 0] for 1.4375 ≤ y ≤ 1.8125. (3.7)

where Umax is a constant and ω is the frequency of the entering wave. Due to conservation
of mass, eventually fluid will exit the round window with the negative of this velocity. This
target velocity is imposed by applying a penalty force at points along the stapes as described
in the next section. The no-slip condition on the solid walls of the cochlear duct is imposed
by using IB points that are connected to stationary target points with a very large spring
stiffness, Ks = 107dyne/cm3.

This cochlea model incorporates a number of physical parameters that should be defined.
In the experiments by von Békésy [59], he observed that in a human cochlea, the BM
stiffness at the apex is almost two orders of magnitude smaller than the stiffness at the
base. Based on his observations, von Békésy proposed the value for decay rate of stiffness
to be λ ≈ 1.4 cm−1. The perilymph fluid in the inner ear has a density and viscosity almost
equal to that of water. These and other physical parameters are taken from the papers
[8, 31] which we use to compare our simulation results with. All these parameters that are
used in our model are listed in Table 3.1. All parameter are from Beyer’ paper [8] except
for Umax which is scaled by 5 as he reports this value in a nondimensional setting.

3.4 IB2d framework

The IB2d package [7] uses the IBM scheme discussed in chapter 2 to solve FSI problems.
For the fluid solver section, this package assumes that periodic boundary conditions are
imposed on all sides of the rectangular fluid domain. the fluid domain. For the immersed
boundary part of the model, IB2d provides a wide range of different fiber models that can
be assigned to the boundary points in order to represent the desired material properties for
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different applications. Based on the chosen fiber model, the total deformation energy of the
BM can be calculated by adding the energy of all fiber models that are used:

E( ~X(s, t), t) =
M∑
k=0

Ek
(
~Xk,1, ~Xk,2, . . . , ~Xk,N

)
(3.8)

where ~X(s, t) is the location of immersed boundary points, N is the number of Lagrangian
points andM represents the number of fiber models used to model the immersed boundary.
After calculating the deformation energy, the elastic force of the the boundary points is
derived as

~Fk,c
(
~X(s, t), t

)
= −∂E( ~X(s, t), t)

∂ ~Xk,c

(3.9)

where k represent the fiber model and c is the Lagrangian point for which the force is being
calculated. The negative sign comes from the restoring behavior of the force, meaning that
this force will drive the system towards a minimal energy state. Finally, the forces from all
fibers are added together at each point on the immersed boundary using equation (2.6).

The different fiber models available for use in IB2d are summarized below:

• Target points: boundary points that have a preferred position or motion are defined
using a target point model. In this fiber model, each of these immersed boundary
points are assumed to be connected to a virtual point via a stiff spring with a resting
length equal to zero. The motion of these target points are then controlled by their
respective virtual point and the stiffness of the spring that connects the two points.

• Springs: when the elastic structure requires resistance to changing the distance be-
tween each successive pair of Lagrangian points, the fiber connecting these two points
is modeled using Hookean or non-Hookean springs with resting length RL and spring
stiffness ks.

• Torsional springs (beams): When the immersed boundary requires resistance to bend-
ing, it can be modeled using this fiber model. Here, the model assumes a desired angle
θ and a recommended curvature between three successive Lagrangian points and a
bending stiffness of kB which restores the the structure to its resting form to model
the desired property.

• Massive points: The approach in this fiber model is that the massive points do not
directly interact with the fluid flow, but they act as virtual points connected to the
Lagrangian points of the IB. When the IB points move due to fluid motion, they move
away from their respective massive points. This will cause a restoring force to move
the massive points closer to the IB points.
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• Porosity: If the model requires permeability of the immersed boundary, this fiber
model would be a good choice since it allows fluid to flow through the immersed
structure.

• Muscle-fluid-structure model: A simple muscle model which incorporates both force-
velocity and length-tension relationships in the muscle. In this model, the underlying
cellular processes of the muscles are excluded from the model and only the mechanical
behavior of the muscle is incorporated.

Based on these definitions, the potential energy and elastic force for each fiber model
can be computed. Our cochlea model uses only the target point model, for which the energy
calculation is discussed next.

The elastic potential energy for target points is

Etarget = 1
2kT ||

~XM − ~XT
M ||2 (3.10)

where kT is the target point stiffness, ~XM is the position of physical target points and ~XT
M

is the coordinate of their respective virtual points. The corresponding elastic force at target
points is

~Ftarget = −∂Etarget
∂ ~XM

= −kT
(
xM − xTM
yM − yTM

)
(3.11)

When the target point force model is being used to mimic a solid rigid boundary then the
stiffness constant kT should be chosen very large so that IB points do not deviate very far
from their target locations.

In the IB2d package, besides the various possible fiber models used to handle different
types of immersed boundaries, it is also possible to add a couple of other physical features,
such as an additional body force term in the fluid equations (gravity, for example) or tracer
points that move with the fluid velocity without affecting the fluid motion. One other IB
forcing type that is particularly useful for our cochlea model is a penalty force that is used
to impose a target velocity at certain locations in the flow, such as the stapes velocity along
the oval window described in the previous section. This force acts as a penalty term that is
added to the external forcing term in the Navier-Stokes equations of the fluid motion. Here,
we define a desired velocity profile ~Uflow(~x, t) on a subset of Eulerian fluid grid points and
a force will be imposed on these fluid grid points due to deviation of their velocity from
this desired profile. This penalty force has a form similar to that of the spring force for
Lagrangian points, but is instead imposed on velocities as:

~Farb = karb
(
~u(~x, t)− ~Uflow(~x, t)

)
(3.12)
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where karb is the penalty-strength coefficient, which is an artificial parameter that is sim-
ply chosen large enough so that the target velocity is approximately attained during the
simulation.

IB2d is a Matlab and Python implementation of the fluid and immersed boundary
forcing scheme described above. Here, we will explain the IB2d work flow in the MATLAB
implementation. When setting up a model in IB2d, first all the chosen parameters of the
model are defined in a file called input2d. Then the geometry of the immersed structure
and the fiber models associated to its Lagrangian points are implemented in a MATLAB
script under the name of the structure, e.g. cochlea.m. By running this file, the IB geometry
is constructed in a collection of data files and all the fiber models will be assigned to
their corresponding nodes. Next, the simulation is started by calling the main2d function.
This function reads all the information from input2d and pass them to the IBM_Driver.m
function, where the spatial and temporal discretization of IBM is implemented and the
model will be simulated there. When the simulation is finished, the structure of the updated
IB will be saved along with any other desired properties as a series of .vtk files which can
be visualized using different software like ParaView or VisIt.

IB2d provides a comprehensive and integrated environment for simulating IBM prob-
lems, but there exist some restrictions that may cause trouble while working with this pack-
age. First, it is only accurate for problems with Reynolds number in the range [0.01, 1000].
It is also restricted to 2D models where the incompressible flow assumption for the fluid is
valid. For the fluid domain with grid dimensions exceeding 512× 512 points, the computa-
tional cost can become too excessive for normal desktop computers.

3.5 Implementation of cochlea in IB2d

We next describe the IB2d implementation of our cochlea model described in section 3.3,
for which the cochlea geometry is shown in Figure 3.4. First, the physical parameters used
in this implementation (Table 3.1) are defined in the input2d file. In the same file, the
rectangular fluid domain for this problem is chosen to be [0, 5]× [0, 2.5] in order to contain
the entire cochlear duct and also capture the fluid motion in and out of the oval and round
windows. The fluid mesh size and time-step are also defined in input2d. Next, the geometry
of the cochlear duct is constructed in cochlea.m as a rectangular duct with rigid walls and
an elastic membrane in the middle to represent the BM. The stapes and the round window
are defined as two holes where the sinusoidal forcing is imposed on the fluid grid points
of the hole representing the stapes. The rigid walls making up the outer boundaries of
the cochlear duct are defined as target points with large stiffness of kT = 107 gcm−2s−2.
Because of this large stiffness, the motion of these points is very tightly restricted and so
they behave collectively as if they approximate a rigid, stationary wall.
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Figure 3.4: IB2d implementation of the cochlea: black nodes represent rigid target points,
blue nodes show elastic target points along the BM with varying stiffness. The green arrows
represent the fluid velocity ~Uflow at the oval window driven by the stapes, and the red
arrows depict the corresponding velocity −~Uflow at the round window.

For modelling the basilar membrane, its Lagrangian points are assumed to be target
points as well, but with a smaller stiffness that decreases along the BM from base to apex.
Here, due to smaller stiffness of target points,the flows induced by the imposed stapes
motion is sufficient to cause these points to move. In this 2D model of the cochlea, virtual
points associated with the BM target points represent the fixed edges of the deflected beams
in the BM plate in 3D. Since the BM plate has a solid connection at its basal and apical
ends, 10 Lagrangian points at each end of the BM are assumed to be rigid adjacent to the
base and apex.

After defining this cochlear duct geometry in cochlea.m, the external forcing is im-
plemented in a separate function called please_Compute_External_Forcing.m. The target
velocity function is defined based on equation (3.7) and is used to impose this external force
at each fluid grid point lying along the stapes.

In the next chapter, we perform a number of numerical simulations using this IB model
and compare with other asymptotic and numerical results.
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Chapter 4

Numerical simulations

In this chapter, we will present numerical simulations of the cochlea model described in
Chapter 3 for different frequencies of the external forcing corresponding to the input sound
signal and compare the results with other numerical and asymptotic results.

The physical parameters are based on the values from Table 3.1. The time step has
been set as ∆t = 0.51× 10−4 s, since for the fluid mesh size that we have, the scheme will
be stable. In the forcing function, the penalty-strength coefficient is karb = 103. To ensure
that the ends of the BM are anchored and to minimize nonphysical oscillations near the
endpoints, 10 nodes at each end of this membrane are treated as fixed target points with
a large stiffness equal to that for the target points making up the cochlear duct. When
modelling the cochlea, many physical and computational parameters combine together to
affect the cochlear tuning. Choosing these parameters in order to achieve the tuning that
we expect from cochlea is quite a challenge, since a small change in one parameter may
result in unusual behaviour or an imperfectly tuned basilar membrane oscillations. In this
work, different parameters have been tested from various works in order to determine the
values that produce the closest fit with experimentally observed BM behaviour.

Our first simulation uses a forcing frequency of ω = 125 Hz on a 256 × 256 fluid grid.
The result is shown in Figure 4.1. The maximum amplitude at each point along the BM is
shown as upper (or lower) “envelope curves”, that represent the maximum (or minimum)
extent over time of the BM displacement reached at every point. In other words, all BM dis-
placement curves for a given simulation are bounded between the upper and lower envelope
curves. The raw max/min values computed from the IB2d simulation data are shown as
two curves in the figure. A smoother envelope function is then computed, based on a least-
squares cubic spline fit through the tangent points based on the algorithm introduced by
McClain et al. [36], that is plotted as a black curve in this figure. This smoother curve helps
with eliminating the noisy, high-frequency features to better understand the BM behavior.

As expected, this input frequency excites an oscillation that has a peak or local maximum
in the amplitude at a distinct location along the BM called the “place”, which for this
frequency is at a BM location of roughly 2 cm. Based on the behavior of the cochlea, we
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Figure 4.1: BM envelope curves for forcing frequency ω = 125Hz on 256×256 fluid domain.

expect that when the envelope curve reaches its peak, the amplitude damps out quickly.
What we see here, which is not consistent with our expectations, is the increase in amplitude
at the apical end of the BM, which we call an “end bump”. The cochlear tuning works in a
way that after the peak location for each frequency, the fluid viscosity damps out the wave
and the amplitude of this wave will decay rapidly. However, due to the lower stiffness of
the points after the peak location, if even a small part of this wave survives, we will not
observe the decaying amplitude. This means that a balance between the cochlear stiffness
and the fluid viscosity is required for the system to be perfectly tuned. Different factors can
can disrupt this expected cochlear tuning. One scenario that could cause this odd behavior
is the simplifications and assumptions that we made to develop the model. There may
exist some physics that are not incorporated into the model, which cause the end bump
to happen. We have gone through most of these changes to obtain more accurate results,
but there may be some that we missed. One other scenario might be the geometry of our
cochlea model. The actual cochlea is a is a tapered duct that decreases in height from base
to apex and which might cause the pressure waves to die out more rapidly towards the
apex. So, in the rectangular geometry that we picked, the waves possibly do not vanish
as fast as they should. Another possible cause is the BM stiffness function, which in our
model only depends on the distance from the base along the BM. This function is only
an approximation of the actual stiffness and there may be other parameters effecting this
stiffness that are not captured by this function.
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Other than this end bump, the peak location for this frequency occurs near the middle
of the BM roughly 2 cm from the base, which is consistent with Beyer’s result for this
frequency [8, Figure 7] after converting his dimensionless plot to dimensional variables. The
amplitude of this peak is also in the range of both physically measured amplitudes (which
are on the order of 10’s of nm) [59] and other numerical simulations [39].

The velocity field for this simulation is illustrated in Figure 4.2 at the final time. Ac-
cording to this figure, the fluid behavior is what we would expect at an instant in time
when the stapes is deforming the oval window inwards. The fluid is forced towards the right
along the basilar membrane and makes a turn at the apical gap or helicotrema. The flow
then continues to the left along the lower duct where it ultimately causes the membrane
at the round window to deform outwards. Near the peak location (pictured in the bottom
plot of Figure 4.2) we can see a circular motion of the fluid near the point of maximum
amplitude. This is also consistent with Beyer’s results depicted in [8, Figure 6]. Note that
despite the velocity vectors pointing inward at the stapes (oval window) and outward at
the round window, there is no fluid flowing into or out of the cochlear duct; instead, our IB
model captures the effects of the solid deformable membranes that cover the two window
openings.

In Figure 4.3 the same configuration has been solved on a 512 × 512 fluid grid. As we
can see, the peak location occurs almost at the same place as what we saw in Figure 4.1
and the maximum amplitude has the same order, despite the different behavior of the plots
at the right end. By comparing the two results, we observe that the solution appears to be
relatively independent of mesh size at this resolution. So for the remaining simulations, we
will use a 256× 256 fluid grid. The results of these simulations for different frequencies are
depicted in Figure 4.4.

In order to validate the results with other methods, other than showing that the peak
amplitude has the same order of magnitude with other works, a useful comparison is pro-
vided by the plot of BM peak location versus forcing frequency. For this purpose, the local
maximum of the BM amplitude at the peak location is plotted for seven frequencies in
the range [31.25, 250] Hz in Figure 4.5. This figure shows that, as frequency increases, not
only the peak location keeps getting closer to the base at the beginning of the BM but
also the amplitude of this peak keeps getting smaller. Most importantly, there is a clear
linear dependence between the peak location and the logarithm of the forcing frequency.
This behavior is also consistent with the results from LeVeque et al. [31, Figure 2], where
the peak location is calculated using the following asymptotic formula [31]

xp = 1
4λ log

(
S4

0λ
2

8ρ3µ

)
− 7

4λ log(ω), (4.1)

where ω is the forcing frequency.
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Figure 4.2: Velocity field forcing frequency ω = 125Hz on 256 × 256 fluid domain. Bottom
figure shows a zoomed in picture at peak location.

According to [8, Figure 8], Beyer also reports an increasingly oscillatory behavior of the
envelope curve for higher frequencies. This shows that he also observe some odd behavior
for frequencies beyond 250 Hz. This may be the reason that he restricted his study to
frequencies in the range [31.25, 250]Hz, while the actual range of frequencies that human
can hear is much wider, from 20 Hz to 20 kHz. Figure 4.5 also includes a comparison of the
peak BM locations along with an asymptotic solution derived by LeVeque et al. [31], which
shows the our results are consistent with the asymptotic solution. Since Beyer [8] presented
his results in terms of a normalized BM amplitude, it is not possible to make a direct
comparison of amplitude, but qualitatively, our work is consistent with his. In addition,
since he verified his results with the asymptotic solution provided by LeVeque et al. [31] as
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Figure 4.3: BM envelope curves for forcing frequency ω = 125Hz on 512×512 fluid domain.

well, it is safe to say that our work is consistent with Beyer’s [8]. The asymptotic solution
of LeVeque et al. [31] is also verified with experimental data provided by von Békésy [59].

In Figure 4.6, we can easily see the decaying behavior of peak amplitude for higher fre-
quencies, where the amplitude is also roughly proportional to log(ω) . This is also consistent
with the results in [31, Figure 3].
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Figure 4.4: BM envelope curves for different forcing frequencies. The peak location moves
towards the base as frequency increases.
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Figure 4.5: Peak location as a function of stapes frequency compared with the asymptotic
solution provided by LeVeque et al. [31].
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Figure 4.6: Upper envelope curve for different frequencies is shown in the top plot. Bottom
plot depicts the exponential decay of the peak amplitude with respect to frequency increase.

29



Chapter 5

Conclusion

In this thesis, we presented a 2D IB model of the cochlea using the immersed boundary
method developed by Peskin [43]. In this model, we approximated the cochlea to be a
rectangular duct with the basilar membrane located in the middle. This model is then
implemented in IB2d [7], which is a package for the 2D simulation of immersed boundary
problems. Simulation results for different frequencies are then presented, showing that the
peak locations corresponding to these frequencies and their peak amplitudes are consistent
with other works. We also observe the well-established result that the peak amplitude
decreases at a rate that is roughly proportional to − logω, where ω is the forcing frequency.
However, there exists an “end bump” at the apical end the BM which is not consistent with
the observed behavior of BM where the fluid motion should be more rapidly damped out
after the peak location due to viscous effects. Various reasons such as the geometry of the
model or the chosen stiffness function, have been discussed for the occurrence of this end
bump.

After the “end bump” issue has been resolved, this IB model for the cochlea provides
an excellent platform for further investigations of cochlear mechanics. One extension that
can be included is the Reissner’s membrane, which is a spatially uniform elastic structure
that is much less stiff than the BM and has been connected with otoacoustic emissions from
the inner ear [49]. It would also be interesting to incorporate other aspects of the cochlea
structure such as the frequency-sensitive hair cells that are embedded within the BM and
Organ of Corti.
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