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Abstract

With Dennard scaling ending, architects are turning to domain-specific accelerators (DSAs).
Emerging DSAs work with sparse data [40] and indirectly-indexed data structures [20,32].
They introduce non-affine and dynamic memory accesses [8, 38], and require domain-specific
caches. DSA caches need to support custom tags, data-structure walks, multiple refills, and
preload for the datapath. Prior works include ad-hoc caches, but they’re inseparable from
the underlying DSA and do not implement the cache controller.

This research proposes X-Cache, a reusable caching idiom for DSAs. There are three key ideas:
i) DSA-specific Tags: The designer can use any combination of fields from the DSA-metadata
for the tag. Meta-tag eliminates the overhead of walking and translating metadata to global
addresses and improves load-to-use latency. ii) DSA-programmable walkers: It has been
observed that a common set of microcode actions can be used to implement the DSA-specific
walking, data block, and tag management. A programmable microcode engine has been
developed to execute the data orchestration efficiently. iii) DSA-portable controller: We use
a portable abstraction, coroutines, to let the designer express walking and orchestration.
Coroutines capture the block-level parallelism, remain lightweight, and minimize controller
occupancy. X-Cache outperforms address-based caches by 1.7 times and remains competitive
with hardwired DSAs. Also, meta-tags save 26—79% energy compared to address-tags.

Keywords: Domain-specific accelerators, Domain-specific cache, Modular architecture,
Coroutine execution model
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Chapter 1

Introduction

Before the degradation of Moore’s law and Dennard scaling, the rate of the increase in the
performance efficiency of the general-purpose processing units was promising. The perfor-
mance of the emerging processors has been escalating while exploiting the new technologies
has been lowering power consumption. However, this exponential growth was hard to be
maintained. After 2005, the end of the Dennard scaling, and also with the recent sharp decline
in the performance increment rate, architects sought new approaches to solve the problem.
Instruction-level and data-level parallelism, done by increasing the number of cores in the
processors and vectorization of the execution stage, could not postpone the degradation for
more than a few years. So, specialization became the only path to cope with the slow rate of
performance efficiency improvement [15]. The main idea was designing a domain-specific
architecture (DSAs) for a single application instead of general-purpose designs. It helps
the architects remove the overhead of generalization while designing hardware focuses on
efficiently accelerating the execution of just one task. The mentioned efficiency is caused by:
i) exploiting the domain-specific knowledge for designing architecture with an optimized
resource allocation and utilization. ii) optimizing the data management on the memory side
of the DSA, as they tend to lower the memory traffic by finding the optimal storage idiom
while maximizing usage of the bandwidth of the DRAM.

This chapter will discuss the concept of domain-specific architecture and the characteris-
tics of the emerging DSAs (§1.1). Then, X-Cache would be introduced, and its modularity
will be elaborated (§1.2). And finally, we will discuss the contributions of this dissertation
(§1.3).

1.1 Domain-Specific Architectures

General-purpose processors have to endure the cost of the generality. Though their ar-
chitecture allows being extremely programmable to cover a broad range of applications,
the generalization would expose such an architecture to some overheads to support this
characteristic. The cost is mainly caused by the stages of fetching the instruction, decom-
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Text

Algorithm 

1. #define HASH(X) ( ( (X) & MASK) ? BIG_NUM)
2. idx = Hash(key)
3. bucket_addr = ht.buckets+idx
4. head = *bucket_addr
5. node_addr = head->next
6. node = *node_addr
7.  while node:
8.      if key == node.key:
9.         break
10.    node_addr = node.next
11.  return node.rid 
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Traversing
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Figure 1.1: CPU VS DSA

posing the instruction, and extracting the information in it. All of these overheads have
been imposed on general-purpose processors because of their generality. On the other hand,
domain-specific architectures specifically focus only on one application. The general idea is
to use knowledge related to one domain and exploit it to design efficient and to-the-point
accelerators. Targeting one domain and taking benefit from prior knowledge of it directly
affects resource allocation, resource utilization, and optimizations in the design process. With
this in mind, not only DSAs completely eliminate all of the overheads imposed on the design
because of the generality, but also, they are much more performance efficient. Moreover,
architects tend to break down the application into smaller pieces and design a specialized
architecture for each of these pieces. Figure 1.1 shows an example to elaborate on this idea.
As depicted, an algorithm applies the hashing function on a single key and then traverses
the hash-table to find the corresponding node. This algorithm will be compiled down to the
binary. Then the binary code would be fed into the CPU and be run one instruction at a
time. On the other hand, a specialized architecture could be designed for this application.
The algorithm will be divided into three main stages, similar to the approach implemented
in the [20], and one specific architecture will be designed to execute each of these pieces.

Furthermore, Dally et al. [9] and Hennessy-Patterson [16] note that while parallelism
and arithmetic intensity are essential, the key to energy efficiency is exploiting extreme
locality, making fewer DRAM accesses, and maximizing bandwidth utilization. Thus, most
of the resources in current DSAs are dedicated to walking data structures, packing them in
SRAMs, and orchestrating data movement and computation.

Existing DSAs [7, 22] predominantly work with dense data and organize them into
scratchpads with explicit DMA. However, emerging DSAs target a broader set of applications
characterized by: i) Non-affine data structures: DSAs typically organize data in DRAM
with a minimal footprint. Hence, they employ sparse data structures [40], indirect-indices [32],
or hash tables [20] for minimizing the footprint. In this light, getting an element’s global
address could not be done by simple addition, as it would have been possible if the data
structure was dense. So, the DSA requires data structure traversal for calculating the global

2
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Figure 1.2: Dynamic data structure in emerging DSAs

1.   RB = Row_i dB 

2.  r ow_addr  = B. r _pt r  + RB

3.  end_addr  = r ow_addr  +1

4.  st    = * r ow_addr  

5.  l en  = * end_addr - * r ow_addr

6.  val _addr  = B. val  + st

7.  f or  i  i n l en 

8.    b_val s[ i ]  = * ( val _addr  + i )

9.  r et ur n B. val [ st : st +l en]

Pr ef et ch a r ow of  B wi t h Row_i dB = Col _i dA
( Col _i ndA:  Col umn i nd i n A)  

Figure 1.3: Walker in SpArch

address. Figure 1.2 illustrates the CSR/CSC format used for storing the sparse matrices. As
shown, for accessing the value of one single element, reading from val array, the two other
arrays should be read first to get the correct index of val. While using this form of storage
inflicts the mentioned overhead on the DSAs, it is vital for the algorithm. In Figure 1.2, the
algorithm of outer-product matrix-matrix multiplication is depicted. As it shows, using the
CSR/CSC format is necessary to take benefit from this algorithm. As if the data is stored
in the dense format, multiple index matching, proportionate to the dimension of the matrix,
is required to produce one single partial matrix. ii) Dynamic accesses: Both of the data
structure and loop pattern cause emerging DSAs to have dynamic (i.e., indirectly addressed)
and irregular non-linear accesses. Figure 1.2 elaborates on this matter. As the algorithm
shows, the row index that DSA should fetch from matrix B depends on the element’s column
index in matrix A. So the process of address calculation should be done dynamically as the
elements of matrix A are streaming in. For capturing the reuse, emerging DSAs, which have
dynamic access patterns, use cache. [38] iii) Walkers: Since data is stored in non-linear
data structures, a walker is required. Walker is a data-structure-dependent logic dedicated
to traversing the data structure to find the needed data. The logic of the walker could be
simply an addition if the data structure is an array. Alternatively, when the data structure is

3



a linked-list, the logic traverses the linked-list nodes until it gets to the requested node. The
walker shown in Figure 1.3 traverses the data stored in CSR/CSC format. Also, in some cases,
the walker should preload the cache [32], or even execute multiple nested preloads [38,40].
iv) Data orchestration: Finally, DSAs need to orchestrate cache replacement and refill
with the compute datapaths explicitly.

1.2 Overview of X-Cache

In this dissertation, we present X-Cache, an architectural template for domain-specific
caches and a toolflow to achieve DSA-specialization through the cache controllers. X-Cache
deconstructed the caches into some primary aspects. It allows the toolflow to remain DSA-
agnostic. At the same time, it covers all of the characteristics listed previously to be adaptable
to target different DSAs with caches designed specifically for that domain. Some prior DSAs
include cache-like structures [8, 38, 40] that are inextricably tied to the underlying DSA and
do not implement the cache controller.

DSA Datapath

Address 
Generator

x00..

x01..

Address-based Cache X-Cache

Tag

X-Routines 

Meta-Tags DSA-specific
Tags  

DSA-programmed
 miss walkers

Global
Address

Hardwired
Walk

DSA Datapath

x01..

Rowid

Rowid

DRAMDRAM

Figure 1.4: Address-based Cache vs. X-Cache

Figure 1.4 illustrates the challenges of incorporating a conventional cache in a state-
of-the-art sparse matrix DSA: i) Metadata to address translation (Wasted energy): The
domain-specific notions that DSAs use are usually more abstract than the global addresses.
For example, the sparse GEMM DSA works with row/col indices, while the address-based
caches are based on the global addresses. So, for converting the abstract notions, row/col in
this example, to addresses, logic would be required to take extra steps; in sparse matrices,
this would require processing CSR/CSC metadata. ii) Address-based tags (High load-to-use
latency): Conventional caches are tagged by blocks’ addresses. So, even when the requested
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data is residing in the cache, or in other words, it is a hit, it could not be determined
immediately. Since the DSA works with domain-specific notions, the process of converting
the abstract notion to address might take several cycles. E.g., even if the required row/col is
cached, the request cannot be determined to be a hit until the address corresponding to the
row/col is found out. It means that some extra accesses to the cache or even the DRAMs
are required to traverse the vectors stored in CSR/CSC format to get the addresses of the
elements. This would lead to much higher load-to-use latency. iii) Walker logic (High NRE):
Finally, significant design effort is required for creating custom walkers and implementing
them for each DSA, which leads to high non-recurring expenses (NRE). Walkers also might
need to handle parallel refills, nested walks, and pipelining. Additionally, the common
attributes of walking, tag management, and data orchestration between different DSAs could
not be easily exploited since each logic is tightly coupled with the targeted DSA.

X-Cache removes the memory layout and address-generation concerns from the DSA.
It dispenses with the flat address space abstraction and prevents DSA from reading on
manipulating raw addresses. X-Cache’s architecture includes multiple novel ideas: DSA-
specific tags (Meta-tags): X-Cache permits any combination of metadata fields to serve
as the cache tags. In contrast to the conventional caches, which strictly use a part of the
global address for tagging an entry, X-Cache allows the user to use the domain-specific
knowledge to find the proper sets of the domain-specific notions to be used as the meta-tag
of the entry. For example, in sparse GEMM, the (Row, Col) in CSR/CSC representations
will serve as the meta-tag. So, the compute datapath can use meta loads/stores and put
the onus of locating the data on-chip on X-Cache. In this light, X-Cache is able to use
global addresses only on misses, which requires walking the DRAM for the requested data.
While prior DSAs [32,38,40] include fields that mirror the functionality of meta-tags, this
dissertation is the first to define and generalize the concept. DSA-programmable walking
(X-Routine): On a miss, X-Cache implicitly walks the data structure and finds the relevant
data. As the targeted data structure of each DSA varies, each DSA probably requires a
different walking logic. For supporting this characteristic, in X-Cache, each DSA can specify
a custom walker. The key observation was that the walker could be implemented using a
common set of microcode actions for walking and also for data and tag management. DSA-
agnostic controller architecture: X-Cache exploits the observation that the walking
and data orchestration of non-overlapping requests could be done simultaneously and as
short-lived, non-blocking tasks. This observation has been captured by defining each task as a
coroutine. Coroutines conveniently process multiple meta-tags in parallel (like cache blocks),
are lockup-free, and schedule away controller conflicts. Also, the underlying controller and
the abstraction used for defining the coroutines could be designed DSA-agnostic, which
offers the opportunity of having a portable design across different DSAs.

5
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Figure 1.5: X-Cache Toolflow

1.3 Contributions

X-Cache is a toolflow for rapidly constructing domain-specific cache controllers. There
are three parts to X-Cache (Figure 1.5): i) A configurable hardware generator that lets
the architects rapidly create domain-specific tags and expose domain-specific loads/stores
to interface with compute datapath. ii) A compiler that combines DSA-specific walking
and cache management FSMs, and translates them into a microcode binary that runs on
a programmable controller. iii) A coroutine model that helps designers specify the data
orchestration in DSAs. Coroutines conveniently capture the underlying parallelism across
meta-tags and help schedule operations in the controller while minimizing occupancy.

X-Cache has been evaluated by creating domain-specific caches for five different DSAs,
SpArch [40], GraphPulse [32], Widx [20], DASX [24], and Gamma [38]. Both SpArch
and Gamma can use the same X-Cache microarchitecture. And to achieve specialization,
the controller was the only component that had to be changed, and it is possible by
reprogramming it. It has been demonstrated that the meta-tags across different DSA
families, vertex ids (GraphPulse), database keys (Widx), data structure indices (DASX),
Compressed-matrices (SpArch and Gamma), could be auto-generated. Overall, X-Cache’s
performance was comparable to the hard-coded caches in existing DSAs. In the case of Widx,
X-Cache even improved performance by 50% by reducing the load-to-use latency. Compared
to the best-performing address-based cache for each DSA, X-Cache improved performance
by 1.7X. Between 66—89% of X-Cache’s energy was spent on data; only 1.5—6.6% required
for tags. The energy penalty of a programmable controller is less than 7%, i.e., the minimal
penalty for being reusable compared to a hardwired design. Dissertation’s contributions:

• A reusable caching idiom for domain-specific architectures supports dynamic access
patterns and irregular data structures in emerging DSAs.

• A generalized concept of domain-specific tags (Meta-tags) and creating a high-performance
programmable cache controller. It has been demonstrated that DSA walkers and or-
chestration can be expressed as a common set of microcode actions.

• A domain-specific cache targeting five different DSAs from three domains sparse-matrix
computation, databases, and graph processing.

6



• Open-sourcing the Chisel generator, microcode compiler, and X-cache designs.

• Domain-specific caches improve performance 1.7× by short-circuiting data structure
walks and reducing memory accesses by 2—8×. The cache controller requires 7% of
on-chip energy, and tags only require 1.5–6.5% of data RAM energy.
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1.4 Publications

This dissertation also includes our published paper at a peer-reviewed conference. For this
paper, I have collaborated with my supervisor Dr.Shriraman and my colleagues, Milad
Hakimi and Reza Hojabr.

• ISCA 2022 — X-Cache: A Modular Architecture for Domain-Specific
Caches [33]. Ali Sedaghati, Milad Hakimi, Reza Hojabr, Arrvindh Shriraman

Construction of the toolflow, designing an architecture to support the reusable caching
idiom, and implementation of the five DSAs using our toolflow, have been done by me. Also,
Milad Hakimi, contributed to setting up the workloads and collaborated with me to evaluate
them.

7



1.5 Dissertation Outline

The dissertation is organized as follows: Chapter 2 describes the related works and the
motivation behind the work. Chapter 3 represents X-Cache and goes over a few examples
to elaborate on the architecture and its usage. The evaluation of the work and describing
the toolflow will be presented in Chapter 4. And Chapter 5 will outline the conclusion and
future works. Figure 1.6 elaborates on the materials covered by each section.
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Chapter 2

Scope and Related Works

In this section, we first discuss the vital criteria which should be paid attention to by the
storage idioms targeting emerging DSAs. Then X-Cache would be compared against popular
storage idioms in literature (§2.1). Also, we discuss why existing idioms do not support the
dynamic access patterns exhibited by emerging DSAs, while that is the approach which
X-Cache took (§2.2). Additionally, we elaborate on the related storage idioms discussed in
the literature (§2.3)

2.1 Taxonomy

State-of-the-art approaches have sought to create storage idioms for static access patterns.
Figure 2.1 captures the most popular storage idioms, scratchpads with decoupled DMAs,
scratchpads with access-execute, and FIFOs. There are two fundamental limitations of
other idioms i) they require metadata to address translation since they introduce additional
address spaces. ii) they do not support dynamic access patterns and indirectly-indexed
data structures. iii) they include a fixed-function or a hardwired walker. The walkers vary
across DSA families since the underlying data structure is different, and even within family
depending on computation order. The DSAs we study in this paper cannot incorporate these
storage idioms; they require domain-specific caching. We also include address-based caches
to help contrast.

We use the following classification: i) Implicit vs. explicit The walking and orchestration
tasks are broken down into sub-tasks (e.g., miss refill, eviction). Each of these sub-tasks can
be implicitly triggered by memory accesses or may be explicitly invoked by the datapath. ii)
Coupled vs. decoupled: Coupled lacks domain-awareness and refills only a single data
element. Decoupled models have domain-awareness and preload multiple data elements.
Prior work support decoupled fetches for static access patterns. However, emerging DSAs
require support for dynamic-decoupled accesses. iii) Dynamic vs. Static In DSAs with
static access patterns, the data access order is fixed, and the addresses can be calculated
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using affine functions. Emerging DSAs exhibit dynamic data-dependent access pattern; the
access order of global addresses are determined by the data distribution in the input.

Moreover, Table 2.1 thoroughly compares different approaches proposed for the data
storage of the DSAs, against each other and X-Cache. Various criteria have been categorized
into two main categories, the targeting domain, and the design perspective. The criteria are
listed as follows:
Granularity indicates the smallest size of the data which the storage idiom manages. While
other storage idiom works with a fixed granularity, X-Cache’s granularity could be tuned by a
domain expert to increase the on-chip memory utilization. Meta-to-Address Translation
points out if the storage idiom is required to translate the domain-specific notions into
the global addresses to respond to a load request. X-Cache eliminates it by exploiting the
domain-specific tag for storing the data on-chip. This allows us to directly use the mentioned
tag for responding to a hit request when the data is already available on-chip. Behavior is
related to the access pattern of the targeted DSA. Similar to the storage idioms of caches,
X-Cache targets dynamic access patterns. Domain shows how the data with which the
DSA works is accessed. In contrast to the other storage idioms, X-Cache flexibly adapts itself
to support different types of accessing the data, based on the requirements of the targeted
DSA. Coupling indicates if the storage idiom is tangled with the DSA. While conventional
caches are tightly coupled with DSA, e.g. the onus of address generation is completely on
the DSA, X-Cache works in a decoupled fashion. So, the stages of generating the address,
traversing the data structure, and fetching the data are managed by X-Cache. In this light,
we can take benefits of being decoupled, similar to the scratchpad-based storage idioms, like
Buffet [30], and also at the same time, target the DSAs they cannot support efficiently.

Trigger states how the DSA triggers the storage idiom. X-Cache is able to support
different types of communication with DSAs. The concept of the event explained in §3, allows
X-Cache to be initiated with various forms of triggers. Walker shows if the storage idiom
is responsible for walking the data structure. Coroutines explained in Chapter 3.3, make it
possible to implement walking logics as a part of the X-Cache’s controller. Control is related
to the level of flexibility for implementing the control logic. Most of the existing storage
idioms, use a hardwired and non-changeable controller in their design. For targeting a broader
range of DSAs, some emerging storage idioms, moved toward allowing limited flexibility,
using Fixed FSMs as their controllers. In contrast, X-Cache’s controller is programmable
by a set of pre-defined actions, mentioned in §3, to support a broad range of DSAs while
remaining efficient. Energy points out the energy usage of the storage idioms. As explained
in §4.5, the energy usage of X-Cache is significantly lower than a fixed address-based cache.
Also, the programmability of X-Cache imposes an extremely small overhead on the power
usage. Preload shows if the controller supports the preloading before the data is needed
for the DSA. Conventional caches need a separate controller for managing the preloading.
Also, Scratchpad-based and FIFO-based approaches, support a limited form of preloading,
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Figure 2.1: X-Cache vs. state-of-the-art storage idioms

Table 2.1: X-cache vs. state-of-the-art storage idioms (shaded cells indicate limitations)

Caches Scratch+DMA Scratch+DAE FIFOs X-Cache

[3, 12, 25, 28,
29]

Buffets [30] CoRAM [7] Spatial [21,22]

Stream [13,27] DAE [6] Pipeline [10,
17]

Stash [23]

Ta
rg

et

Granularity Blocks Tiles Word Elements DSA-specific

Meta-to-
Addr

Yes. Walking and translation always required. No (only on misses)

Behavior Dynamic Static pattern (affine) Dynamic (DSA-spec.)

Domain — Linear data structure Stream Flexible

Addressing Implicit Explicit Implicit Implicit Implicit

Coupling Coupled
(load/store)

Decoupled Coupled Decoupled Decoupled

D
es

ig
n

Trigger Implicit (load-
/store)

Explicit (datapath) Implicit
(push/pop)

DSA-specific

Walker No. DSA has to walk metadata. Only FIFO Yes (coroutine)

Control Hardwired Fixed FSM Hardwired Hardwired Programmable

Energy High Low High (threads) Low Low

Preload — (separate) Limited (credit) Limited (cred-
its)

Yes (FSM driven)

Orch. Simple (load-
to-use)

Ready/Valid. Fill or gather Simple (load-to-use)

mainly for the linear data structure. On the other hand, X-Cache can take benefit of an
FSM-driven preloading logic, defined as a routine, which can target a broad range of DSAs
which need preloading. In the end, Orchestration focuses on when the data would be
accessed. X-Cache, similar to the address-based caches, uses a simple load-to-use approach.
Basically, one single event, mainly load, triggers a sequence of events required for responding
to the request.

The shaded cells indicate the limited ability of different storage idioms to cover the
corresponding criterion.
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2.2 X-Cache’s storage idiom

In this section, we elaborate on our observation that for our targeted DSAs, which exploit
all of the characteristics mentioned in §1.1, an implicit-decoupled storage idiom is the best
approach. Also, we justify using the domain-specific notions instead of the global address for
storing in X-Cache.

Why caches and not scratchpads

Summary: Multiple DSAs in recent literature exhibit dynamic access patterns, require
domain-specific caches, and cannot use scratchpads.
State-of-the-art DSAs that we explore (e.g., SpArch, GraphPulse, Widx, Gamma) exhibit
dynamic access patterns. We are not aware of any work supporting dynamic access patterns
on scratchpads. Emerging DSAs address a broader scope of algorithms and work with sparse
data (e.g., graphs, sparse matrices. Thus the computation’s spatial-temporal mapping varies
based on the inputs. The order in which data is fetched from the DRAM, the order in which
the datapath accesses them, and the address access pattern all vary during runtime. Figure
2.2 plots the ratio of static to dynamic accesses in the DSAs we study. State-of-art scratchpad
controllers ease the burden for static patterns [30]. A decoupled DMA engine refills data
from DRAM in rounds or tiles and is responsible for pushing data into the compute units.
Unfortunately, they only support dense data, which are iterated over with affine functions.
Past proposals also include support for implicitly gathering and packing in data from the
DRAM. Unfortunately, it is not clear how to support dynamic access patterns. Further, they
require the DSA to use local addresses.

Figure 2.3 illustrates the walker of an inner-product sparse GEMM DSA. Matrix A is
stored in CSR format and matrix B in CSC. As the DSA streams in matrix A, it fetches the
non-zeros from the corresponding column in matrix B. There are multiple metadata (META)
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accesses, e.g., for A[0,0] we consider non zeros from column 0, but for A[0,1] we refill B’s
column 1. Since B is sparse, DSA traverses indices (IDX) that store the coordinates of the
non-zeros. We then check for matches (MATCH) and find non-zero elements for which A is
also non-zero. The accesses to matrix B are: i) dynamic, i.e., the tile of matrix B refilled
from DRAM depends on the coordinates of matrix A’s non-zero element. ii) conditional, i.e.,
elements in a column may be skipped over depending on A’s non-zero pattern, and iii) the
reuse depends on the sparsity pattern.

[start,end] = B.col_pt[A.col]
 for i in [start,end]   
     row = B.row_id[i]
     if A.col == row:
        FILL(B.val[i])

MATCH
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FILL
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Figure 2.3: Walkers in Sparse GEMM DSA (Inner Product)

Why not addresses?

Summary: Caches and scratchpads are challenging to incorporate in emerging DSAs since
they require metadata to address translation.
Both conventional caches and scratchpads work with addresses. Caches require global
addresses for the tag. Scratchpads [1,7] augment the address space with a local address range
and eliminate the tags. Unfortunately, the use of addresses (global or local) wastes energy on
multiple layers of translation from DSA-specific metadata and look-ups. The data-structure
walks may trigger nested translations between metadata and data and may require multiple
table look-ups. Caches also tie in data orchestration (e.g., what to fetch from DRAM?), the
on-chip storage, and tags (how to look for the data). In the case of scratchpads, the DSA
also needs to manage the data between multiple address regions. While support exists for
static patterns [30], no solution exists for dynamic access patterns.

2.3 Related Works

There has been a long history of work on decoupled engines for shuttling dense tensors
from DRAM onto on-chip SRAMs. This includes scatter/gather engines [11, 14, 19, 34],
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memory controllers [5], and tiled DMAs [1,7, 30]. All designs introduce additional address
spaces, either local [19, 30], carved from the global DRAM [34] or virtual [5] address. Thus,
DSAs [38,40] that include unordered and dynamic accesses would need to implement address-
translation from meta-tags to these local addresses. Further, they can only support access
patterns driven by affine loops and strides. We focus on indirect indexes, sparse tensors, and
algorithms with conditional accesses. Also, the optimizations proposed by some of these
works, cannot be applied to our explored DSAs, e.g., in [14] they assume all of the addresses
are already available, but in some DSAs, i.e. SpArch, FiberCache, they have to be generated
from the streamed data.

There have also been works on augmenting scratchpads in GPUs [23] and FPGAs [6, 7].
Scratchpad-AE targets DSAs, which can split into coarse-grain access-execute regions. The
access patterns have to be regular, i.e., the order of accesses has to be known statically
upfront and cannot be conditional. They are also heavyweight since the access engine is
mapped to an FPGA kernel or GPU threads. They target tile-granularity reuse (e.g., dense
GEMM) and cannot support fine-grain misses and refills. Since the access engine walks
elements in a specific order, they cannot accommodate dynamic input-dependent reuse
behaviour (e.g., indirect indexes).

There has been extensive work in combining the benefits of DMAs and scratchpads. Most
recently, buffets [30] and Ax-DAE [6] developed a merged scratchpad-DMA storage idiom
that can be reused and ported across DSAs. Both can achieve high performance when the
access pattern is static, and the order of accesses is known upfront. While they lack good
performance, when targeting applications dependent on the dynamic address generation,
they studied DSAs that work only on tile-based data structures. Additionally, the underlying
orchestration pattern is hardwired. Ax-DAE is also limited by high-level-synthesis tools
that do not support parallel accesses to indirectly indexed data. Finally, prior proposals are
closely coupled and target static access patterns, affine types, and regular computation.

Stash [23] attempts to merge the scratchpads and caches while exploiting the benefits of
both of them. It manages it by carving out portions of the address space. All of the hit to
the scratchpad portion directly accesses the data RAMs; misses implicitly fetch the data.
Jenga [36] and Hotpads [37] organize the hierarchy of caches as a collection of SRAM banks
in a hierarchical fashion. And manages orchestration of the data between different levels by
adding some extra bits, or entries.

GPUs [18] and many cores use software-managed scratchpads. These approaches target
CPUs or GPUs that role in address-translation and walking into the software. Also, prior
approaches need to translate metadata to addresses (either local or global). Our observation
is that if the on-chip data tags can be explicitly set to DSA-specific metadata, we can
eliminate address generation (similar to a TLB).

In addition to these, some of the emerging DSAs mainly focused on walking the data
structure. For instance, Widx [20] decoupled the hashing stage from the walking stage to
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reduce the critical path of their design significantly. And then they created an enhanced
2-stage RISC pipeline and compiled down hashing and walking logic to imperative binary.
Doing so, allows them to target a wide range of hash-tables, while their design still remains
specialized for this domain. Moreover, DASX removes the overhead of the walking from the
DSA and manages it in its controller. Basically, they collect all of the required data ahead of
time. So, during the computation phase, all of the DSA accesses could be responded with the
on-chip data. They have Ax-DAE leverage FPGA high-level-synthesis. Widx stored data in
an address-based cache, and DAE kept the data in a scratchpad. In both cases, the storage is
decoupled separately from the walker logic. The walkers interface with the storage through
an address-based interface, either explicitly (Ax-DAE) or implicitly (Widx). In either case,
this leads to loss of locality for metadata accesses, and multiple address generations are
required during the walking phase.

Furthermore, some new approaches explored replacing the global address for tagging
cache lines, with more flexible and domain-specialized notions. Patch memory [8] targeted
image processing pipelines that need tiling, and it specialized the storage idiom for 2-D and
3-D tiles. Yet they lack a high-level approach for walking the targeted data structures. In
their work, the DSA-expert has to define the loop order, and the patch runs ahead in a
decoupled manner. It cannot be employed for the DSAs we explore, as the loop pattern of
these DSAs is highly data-dependent. LEAP [1] and CoRAM [7] targeted BRAMs on an
FPGA. Leap unified logically separate scratchpads into a tagged cache-like structure with
implicit accesses. CoRAM created a framework for defining custom refill engines. Both do
not include support for decoupled refill engines to prefetch data. They do not incorporate
DSA-specific tags and require multiple accesses to satisfy a load/store.

Also, the coherency controller is another aspect supported by the cache storage idioms.
GEM5 [4] and their programmable coherency controller, using SLICC format [35], is an
example of it. While the concept of the coroutine in X-Cache and defining walker within
it, and SLICC, share some common characteristics, e.g., both rely on state-machine-based
controllers and both exploit quite the same level of programmability, they’re different in
some major grounds. Not only they target two thoroughly different aspects of cache storage
idioms, X-Cache focuses on walking and data orchestration whereas SLICC focuses on
keeping the caches coherent, but also, some optimization is required for implementing the
hardware-controller, which are not the main concern of SLICC, e.g. parallelism.
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Chapter 3

X-Cache: Microarchitecture and
Execution Model

In this section, the design choices we made while implementing X-Cache will be discussed
(§3.1). Then, we go over the architecture of the X-Cache and elaborate on it(§3.2). In §3.3,
the execution model of the X-Cache will be explained. Finally, we thoroughly explain the
usage of X-Cache, using two examples on Widx [20] and SpArch [40] in §3.4.

3.1 X-Cache Overview: Deconstructing DSA Caches

We deconstruct the architecture of domain-specific caches and discuss the design decisions
behind X-Cache. Emerging DSAs have exhibited considerable interest om caches [6,32,38,40],
but are understandably cautious. Our thesis is that we should facilitate the adoption of
domain-specific caches by deconstructing them into modular components. Deconstructing
permits us: i) to be selective about which components in the cache should we make fixed-
function (e.g., tag checks) and ii) achieve portability by enabling programmability in specific
modules (e.g., walking).

3.1.1 Design choice 1: Address Tags vs. Meta Tags

In X-Cache, the DSA uses meta loads/stores that directly reference the elements in the data
structure. X-Cache is responsible for implicitly figuring out the addresses and moving the
data between DRAM and on-chip. Once the data is brought on-chip, X-Cache tags the data
with actual DSA-specific metadata fields so that subsequent accesses can directly reference
the on-chip data. Figure 3.1 plots the load-to-use latency using a domain-specific meta-tag
vs. address-based tag. Meta-tags notably improve the load-to-use latency. In some sense,
domain-specific tags are similar to TLBs tags; they short circuit the metadata-to-address
translation and eliminate the nested data-structure walks. In contrast, the address-tags
require many times more access for walking, even when the required element is cache resident.
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Figure 3.2: Walkers for two DSAs in Sparse GEMM Family

Implication: We need to create a framework that can rapidly create cache tags support-
ing the metadata specific to each DSA family. A DSA-family is a set of DSAs that share the
same data structure e.g., sparse GEMM accelerators [31,38,40].

3.1.2 Design choice 2: Fixed vs. Programmable Walker

A central design consideration in X-Cache’s controller is whether to hardwire the walkers. To
understand this, we consider two DSAs from the same family, sparse GEMM: inner-product
and Gustavson product [38] (Figure 3.2). Both DSAs work with the same data structures
(CSR/CSC compressed matrices) and use the same meta-tag, (row,col) of the non-zero
element. In both DSAs, the multiplicand, matrix A, is streamed in. However, matrix B
requires a walker, and this varies between the DSAs due to the compute loop order.

The inner product performs dot product between matrix A and a tile of columns from
matrix B. For each row in matrix A, the walker finds non-zero elements from corresponding
col e.g., Row 0 in matrix A has non-zero at A[0,0] and A[0,2]. The walker traverses column
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0 finding B[0,0]:a and B[2,0]:c. They are reused when the datapath works on subsequent
rows of matrix A, e.g., B[0,0]:a when considering matrix A’s row 1. Reuse depends on the
sparsity pattern within matrices A and B. In the Gustavson product DSA [38] we perform
an outer product between elements of matrix A and the corresponding row of matrix B, e.g.,
here we multiply A[0,0]:m by B[0,:]. The walker pre-loads all the non-zeros in B[0,:]. There
is minimal reuse.

Implication: Specialization across a DSA family can be achieved by varying only
the walker. A programmable cache controller will enable design reuse and portability.
Consequently, we make it feasible for the designer to compile down the state machines to
controller microcode.

3.1.3 Design choice 3: Threads vs. Coroutines
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Figure 3.3: Walker Implementation.

Here we consider the question of how to decouple the walkers and run multiple in parallel.
Past approaches have explored the use of threads for static access patterns [6, 7, 20]. Each
walker is assigned to a hardware pipeline and fetches a tile into an on-chip buffer. The main
problems are caused by the data-dependent branches (MATCH, IDX), indirect memory
operations (META), and DRAM accesses (FILL) in the walker logic (see Figure 3.2 and
Figure 3.3). They lock up the pipeline, reduce the number of active walkers, and minimize
memory-level parallelism.

This paper expresses the walkers as a coroutine and multiplexes them on a pipeline.
(see FSM shown in Figure 3.2). Coroutine breaks up a sequential program into regions and
enables multitasking. Here, we break up the walker logic into stages/states and yield the
thread at annotated long-latency operations, e.g., memory accesses (FILL), dependence
chains (AGEN), and data-dependent branches (MATCH). When the long latency event
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Figure 3.5: X-Cache Architecture

completes, the walker is rescheduled from where it has been left off. Multiple benefits with
coroutines: i) we can have multiple walkers and consequently refills from DRAM active, and
ii) we can minimize pipeline stalls, and lockups require less hardware. Figure 3.4 compares
the occupancy of controller when walker implemented with coroutine vs. threads. Occupancy
is measured as #active-reg × size(bytes) × lifetime(cycles). With threads, we experience
1000× more occupancy since resources are allocated/freed at a coarse granularity. As the
fraction of data residing off-chip increases, long latency transactions increase, and thread
occupancy increases.

Implication: Walking and data orchestration need to be implemented as a coroutine to
minimize controller occupancy and maximize parallel refills from the DRAM. Coroutines are
a portable abstraction for representing different walkers, and we need a compiler to translate
it into controller microcode.

3.2 X-Cache’s Microarchitecture Modules

Figure 3.5 illustrates the modules in X-Cache. y1 Meta-Tag It is created by our Chisel
generator based on the parameters set by the DSA architect. The architect defines the
metadata fields that the controller should write explicitly to the tag entry when a refill is
completed. These fields will be used for tag matches and determining hits. We also maintain
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a bitmap to track the active meta-tags, i.e., metadata for which a walker is already active.
This helps to continue the execution of a transaction from the stalled point (e.g., on receipt
of the DRAM response).y2 Meta-tag State and Event Triggers The fetch or starting point of the pipeline is
the message queues at the controller. The trigger table provides a mapping from the incoming
set of messages to events in the protocol. Also, in a conventional cache controller, states are
for maintaining coherence. However, in X-Cache the states represent the status of blocks in
the walker. And, pairing it with the incoming event leads to sequencing through the walking
logic. So, the current state of an entry is maintained along with the meta-tags. The default

is the starting state for misses, i.e., no entry in the meta-tag array. The combination of the
input event and the current state triggers a routine, determined by the Routine Table. y3
Routine Table Similar to cache coherence protocols [35], we have developed a table-based
specification. The table encodes the walker logic’s states, events, and transitions. Each cell
is a pointer to a routine in the microcode RAM.

There are multiple benefits: i) it supports highly parallel pipelines since X-Cache can
process the routines of different meta-tags in parallel. ii) it naturally eliminates structural
hazards since routines are not triggered until all the hazard conditions are eliminated. So, it
simplifies the pipeline implementation. y4 Routines and µ-coded RAM X-Cache compiles
the actual procedures implementing the walking and orchestration down to a microcode
binary and stores it in the routine µ-code RAM. The RAM is partitioned into multiple
routine handlers. Each routine would be programmed as a sequence of microcode actions
finalized with an update to the state. Based on the sequence of the actions, routines can
support multiple tasks, i.e., walking the DSA metadata in memory, arbitrating among
accesses to the data, calculating addresses and updating the meta-tag arrays.y5 Actions The controller can only invoke a predefined set of memory and communication
primitives. Actions are low-level microcode that specifies the control signals of each internal
structure. An important consideration, what is the “proper” granularity for the actions.
We adopt actions that can be implemented atomically in hardware with fixed latency in 1
cycle. There are five different categories of actions targeting each hardware module: address
generation, message queue, Meta-tag, control flow, and data RAMs. The table in Figure 3.5
summarizes the list of actions. An action’s operands can be explicit (e.g. immediate operand
for add or shift), implicit (e.g., queuing request to DRAM), or DSA-specific (e.g., data size).y6 Data RAMs The data RAM is physically banked based on the number of words
supplied to the compute datapaths. Logically, the data RAM is organized as fixed-granularity
sectors. Each data element can occupy multiple sectors depending on the size (e.g., number
of non-zeros in a row). The meta-tag organization is completely decoupled from the data
RAM. Meta-tag only serves to determine whether the data is in the cache or not, i.e., a miss
map. Each meta-tag entry includes explicit pointers to start and end sectors within the data
RAM (like decoupled sector-caches). On a hit, we use the pointers to retrieve the sectors
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Figure 3.6: X-Cache Execution Model.

and pipeline them through a crossbar switch to the datapath. Since the miss walkers are
programmable, they copy the DRAM response sector-by-sector into the data RAM.

3.3 Execution Model: Coroutines + Decoupled

We illustrate using an example. X-Cache walks over a hash-table bucket maintained as a
linked list. On a meta access, X-Cache first checks the meta-tags for a hit. On a hit, X-Cache
short-circuits the search and returns the data from the cache. The meta-tag hit is handled
by a dedicated read port in the data RAMs; it’s fully pipelined and supports a 3-cycle
load-to-use latency. On a miss, X-Cache needs to trigger the walker. First, we consider the
programmer’s view (Figure 3.6) of the walker.

3.3.1 Programmer’s view

In the walker’s C code, there is one potentially expensive memory operation, specifically, on
the first access to current.key, the condition that checks to see if the key at the current
node matches the meta key. Once the cache-block corresponding to this node is loaded,
the subsequent access to current.next and current.payload are accessed with minimal
latency. We break the C code into a series of coroutines at the long-latency events (see Figure
3.6:FSM). The main purpose of this step is to convert stalling events into yields. Yields
release the controller pipeline, enabling us to multiplex multiple walkers cooperatively. We
provide a table-driven template to help the programmer develop walkers. Each line in the
coroutine description specifies a transition. It includes the current phase/state of the walker,
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the event that triggers the transition, the set of actions that need to be executed, and the
next phase/state of the walker. The action sequence is run in program order (left-to-right).
We compile this specification to a routine table and microcode RAM. The routine table is
a two-dimensional array (see Figure 3.6:Execution Model). The rows of the routine table
correspond to the coroutine states; the columns correspond to the events that can occur.
Each entry is a pointer to a routine in the microcode RAM.

3.3.2 Execution sequence

From the programmer’s view, each meta access is driven by a logically separate walker, and
within each walker, the execution is event-driven. All walkers are physically multiplexed
on a single hardware pipeline. The hardware pipeline (see Figure 3.5:Pipeline) consists of
two parts. The front-end serves as the event loop. It monitors the message buffers (internal
and external) for events and wakes up one active walker per cycle. The current state of the
walker is held by a combination of structures: the meta-tag array and the X-registers (a set
of temporaries allocated for the duration of the walker).

The back-end serves as the routine execution pipeline; it is a conventional in-order
pipeline. On wake-up, the [state,event] pair index into the routine table, and retrieve a
pointer to microcode RAM. Each routine, once triggered, will run in a non-blocking fashion.
It starts execution from the pointer provided by the routine table, the logical ”PC”. It
runs each action in order and terminates with an update to the next state in meta-tag or
X-register.

We now describe the execution step-by-step. y1 As it is a miss, we kickstart from the
default state. The MISS routine allocates an entry in the meta-tag and the data RAMs for
the data element, enqueues a Ptr (calculate pointer) event, and transitions to the Agen
state. In this state y2 the walker is ready to check if the current node contains the key.
However, the required access to current->key will be expensive (might be a cache miss).
The step, therefore, issues a DRAM fill on current and yields a hardware pipeline. To
track intermediary state while dormant, routines allocate temporary X-register to store the
access key and the address of the DRAM refill being waited on. Active walkers, on other
meta elements, can proceed to use the hardware pipeline. In y3, when Current block arrives
from the DRAM, the walker peeks and extracts the block’s key. In y4, the match checks
the block’s key against the meta-tag in X-register. If the key matches, the walker copies
the block into the data RAM, releases the X-register’s entry, and terminates. Otherwise,
updates current and continues. Note that the match condition determines the next state.

3.4 DSA Walker Examples

In this section, we provide an overview of how the walkers are specified. Table 3.1 summarizes
the features of X-cache that are most relevant to each DSA. Each DSA we study uses an
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Table 3.1: X-Cache features benefiting DSAs

DSA Meta-tag Preload Coupling Data DS
Widx [20] Key No Coupled Rid Hash Table

DASX-Hash [24] Key Yes Decoupled Rid Hash Table
GraphPulse [32] Node Idx No Decoupled Event Graph

SpArch [40] Col Idx Yes Decoupled B.Row CSR
Gamma [39] Col Idx Yes Decoupled B.Row CSR

indirectly accessed data structure that uses explicit metadata to identify the element. We
make the key observation that the metadata provides a namespace on which loads/stores
can be performed and clearly separates out non-overlapping elements. In this section we
present the details for the walkers of two families: i) Widx [20]: a DSA for relation-database
hash indices. and ii) SpArch [40]: a DSA for outer-product sparse GEMM. We walk through
their data orchestration pipeline and discuss their access patterns. We then identify common
attributes that motivate the need for X-Cache.

3.4.1 Widx: Meet the Walkers [20]

1. idx = Hash(key)
2. head = table[idx]
3. addr = head.next
4. node= DATA(addr)
5.  while node:
6.     if key == node.key:
7.         return node.RID
8.     addr = node.next
9.   node = DATA(addr)   DATA

MATCH
DONE

META

AG
DATA

AG

IDX

AG

MATCH

DATA
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IDX
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Figure 3.7: Demonstration of Widx

The data structure that X-Cache has to walk is a hash-index in the database. In
hash-indexes, each bucket is a chained list. The original Widx paper did not employ a
domain-specific cache; it relied on an address-based cache and, hence, always walked. X-
Cache makes a key improvement over Widx (see X-Cache in Figure 3.7); it caches the actual
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nodes in the hash table and tags them with the hash keys. The DSA datapath interfaces
with X-Cache by issuing meta-loads and stores the keys in the hash table. On a hit, X-Cache
eliminates the hashing (which could be up to 60 cycles in some TPC-H queries) and short
circuits the walking. On a miss, the walker uses the address of the hash table (table) and a
key to search for the Rid (row id). Note that X-Cache itself is caching the actual hash-index
entries (not the row in the database). We break down the walker into multiple coroutines:
i) In the first state walker hashes the key to obtain the index of the bucket (IDX). With
the index and table of bucket root nodes, it uses a simple function to access the bucket
root(META). Then it iterates over its nodes and loads them (AREF, state: DATA) to find the
matching record (MATCH). Representing the walker as a state machine has two benefits i)
each state explicitly indicates the type of hardware module required (e.g., IDX and AGEN
require ALUs, while META and AREF RAM ports). This helps schedule away port conflicts
within the controller, ii) we can improve memory-level parallelism with multiple keys actively
walked independently.

3.4.2 SpArch: Outer-product sparse GEMM [40]

1. [st, end] = B.row_pt[RB] 

2.  len  = end - st

3. DATA(B.val[st], len)

4.  return B.val DONE

META

AG

DATA

DONE

RB

1 st, endRB

st, len 3

AG

META

B.val[st: st+len]

DATA

B.val[st: st+len]4

1

R0 R1 ...

v0 v1 ...
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vst vend... ...

RB ...RB+1
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Data Meta-tag

Vst Vend...

Memory
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MatrixPrefetched 

Matrix

Vector R for Mat A
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Figure 3.8: Demonstration of SpArch

SpArch implements an outer-product-based matrix-matrix multiplication between two
sparse matrices (A×B). In each multiplication round, SpArch streams in a subset of columns
of the multiplier matrix, A, stored in the CSC format. The multiply phase consists of a
set of cross products on the pairs of columns (from A) and rows (from B). In SpArch, the
data path uses the row index of an element in the multiplier matrix to index and fetch
the corresponding row of the Matrix B, stored in the CSR format, from memory. As the
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non-zero pattern in matrix A varies, the rows of B required to be kept on-chip also varies.
Thus, SpArch needs a preload walker that runs ahead in decoupled fashion and caches the
required rows. X-Cache caches a variable number of rows based on the number of non-zeros
in the matrix A’s column. The walker logic is quite similar to tiled DMAs, except the tile
size varies based on the number of non-zeros in the required row. We initially read the
row_ptr metadata of corresponding row (META) and set up a tiled refill. The walker generates
addresses (AG) and fetches the consecutive elements from DRAM (DATA), and stores them
in cache blocks. The meta-tag, in this case, is row ids of matrix B. There are certain key
differences with Widx’s walker i) The data fill (DATA) fetches an entire row of matrix B,
which consists of multiple elements, while in Widx’s case, it is a single node. ii) The number
of blocks to be cached depends on the number of non-zeros in the row. iii) There could be
multiple potential hits (a row split across multiple cache blocks), and all blocks are serially
returned to compute datapath.

3.5 X-Cache Hierarchies

In this section, we consider the composability of X-Cache and its interactions with address-
based caches. We present three systems i) Multilevel X-Cache (MX) ii) X-Cache with Address
cache (MXA), and iii) X-Cache with streaming (MXS).
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In practice, X-Cache with streaming (MXS) is perhaps the most common. Many DSAs
we studied employ this approach. In this case, the DSA explicitly partitions the data based
on the access pattern. For instance, in SpArch (Figure 3.8), matrix A is streamed in from
the DRAM, while matrix B exhibits dynamic accesses and needs X-Cache. DSAs use global
addresses for matrix A while using meta-loads (row-col ids) for the latter. Leveraging access
pattern knowledge to partition the data structures is more area and energy efficient than
using only X-Cache.

Multiple levels of X-Cache can also be hierarchically organized (MX). This is made
feasible cause the metadata in a DSA is a global space (just like addresses). Each data
element has a unique meta-tag associated with it that is common across the X-Cache
hierarchy. The upstream L1’s X-Cache includes no walker. Similar to a conventional cache,
it requests a meta-tag at a time from the downstream X-Cache. Only the last-level X-Cache
includes a walker and address-translation, since it interfaces with the DRAM.

X-Caches can also compose with address-caches (MXA). In this case, X-Cache is the
closest level to the DSA datapath, and address-based caches complete the lower levels.
X-Cache will walk and generate addresses at the boundary. The address-cache simply sees a
stream of cache line requests. The address cache itself handles a block at a time, while the
X-Cache could proactively refill multiple blocks (e.g., entire matrix row). The address-cache
is non-inclusive with X-Cache, since they use different namespaces.
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Chapter 4

Evaluation

We use TSIM shorturl.at/iBIJ2 to drive cycle-accurate RTL simulation. TSIM is a library
that manages communication between a host machine and the DSA RTL model. It provides a
simple API to reset, send messages, and load/run programs on the DSA RTL. It also attaches
the DSA to the DRAMsim model. We enclose our DSAs in an AXI shell to communicate with
the DRAM. TSIM and Verilator provide a flexible interface that enables the integration of
simulation models at multiple levels of abstraction. W implement the controller and X-cache
in Chisel and generate the Verilog. Verilator translates the Verilog into a cycle-accurate
simulator and exposes the memory bus ports through the direct-programming interface.
This interface permits us to implement the DSA’s functional behaviour at a higher level of
abstraction (python/c++) and interface only the loads and stores. The DRAM is modelled
as an another layer that is attached to the TSIM driver.

4.1 X-Cache Setup

X-Cache is a toolflow for constructing domain-specific caches, which exploit domain-specific
meta-tags, walkers and data orchestration. Three major parts in the toolflow of the X-Cache
are the generator, programmable coroutine model, and the compiler. The generator has been
implemented as a Chisel library. It hides all the implementation details of the controller
microarchitecture while exposing a simple architectural model that the designer can tune.
Also, we use a table-based approach for programming the walker. The programmer uses
our model for mapping different pairs of (event,state) to start the pointer of routines. Also,
the compiler has been implemented in Scala. It compiles down the table-based definition to
microcodes so it could be loaded to the programmable RAMS. The details of the configuring
and programming X-Cache would be discussed in the Appendix A.

X-Cache targetting different DSA families (§4.2) and compare against the hardwired
memory system of each DSA. Table 4.1 summarizes the pareto-optimal cache geometries we
evaluate for each DSA. They have been obtained by sweeping different cache configurations
and studying the hit rate and average memory access latency. Figure 4.1 depicts sweeping
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DSA #Active #Exe #Way #Set #Word
DASX(Hash) 16 4 8 1024 4

SpArch 32 4 8 512 4
Gamma 32 4 8 512 4

GraphPulse 16 4 1 131072 8

Table 4.1: X-Cache design parameters per DSA.

cache size for observing changes in the hit-rate and the read latency of the on-chip memory.
Since, Widx and DASX, and SpArch and Gamma share the same data structure, we only ran
the analysis for one of them and used the result for the other one as well. Also, since we’re
replacing the event queue in the GraphPulse design, we’re using the exact configuration as
they mentioned. Note that it is not our goal to find the best controller configuration for
each DSA. Here we simply want to isolate the performance impact of walker and controller
implementation without being influenced by geometry variances. We maintain the same
geometry for the address-based cache, X-Cache, and baseline DSA to ensure a fair comparison.
X-Cache’s chisel generator is highly parameterized, permitting us to generate different cache
geometries.
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Figure 4.1: Sweeping Cache Size for different DSAs. Left Y-axis: Hit rate for different cache
sizes. Right Y-axis: Read access-time of the on-chip SRAMs, normalized to the access-time
of the 1 kB SRAM.

4.2 DSA Workload Setup

Widx [20]. Workload: MonetDB and TPC-H. Queries TPC-H 19/20/22. Dataset:
100GB Widx is a DSA for in-memory DBMSs hash index lookups. In hash index look-ups,
the critical path is comprised of a key hashing followed by a series of pointer chasing in
the key’s corresponding bucket. To achieve high performance, Widx decouples key hashing
from the linked-list traversal and processes multiple keys in parallel. We run DSS queries
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Figure 4.2: Left Axis: X-Cache Runtime vs Other DSAs (Lower is better). Right Axis: #
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makes more accesses. N/A: Graphpulse cannot be supported by address cache and we only
compare against baseline DSA.

from TPC-H benchmarks on MonetDB and hijack the hash-joins. X-Cache replaces the
hash-index table. The meta-loads to X-Cache include the keys needed to be searched in the
index table. If the key is not found in the meta-tag, X-Cache hashes and walks to search for
the RID (primary keys) in the corresponding index tables.

GraphPulse [32]. Workload: PageRank. Inputs: p2p-Gnutella08: N = 6.3K,
NNZ = 21K, Web-Google: N = 916K, NNZ = 5.1M This is an event-driven ac-
celerator for asynchronous graph algorithms. It uses a cache for maintaining the event queue.
Each event contains a node id and a payload. The event queue keeps track of the unprocessed
events. The event queue makes sure that for each destination node, there is only one event
in the queue. If an incoming event violates this rule, the cache coalesces the conflicting event.
A scheduler walks through the events in the cache and feeds them to the arithmetic units
that perform a series of reductions. The result of these reductions updates the cache entry.
The event Queue is substituted by the X-Cache. The incoming events are generated by the
PEs from outside. These Events hold an id (row, bin, column) and a payload. The id probes
the meta-tag memory. If the id does not exist, we insert the event by putting the payload in
the Data Memory. Otherwise, we merge the payload of the incoming event and the existing
entry using an add operation.

DASX [24]. Workload: MonetDB and TPC-H DASX [24] is a data structure iterator.
The DSA references the keys for each object while hardwiring the address generation. The
execution proceeds in refill-compute-update rounds. DASX’s collector runs ahead of the
compute unit to refill multiple objects into a hardwired object cache. Subsequent accesses
are cache hits. The cache is reloaded once a round is complete. We study the hash table
which uses the collector for key searches. We evaluate hash using the dataset from MonetDB.
The rest of the methodology is similar to the method we used for Widx.
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Sparse GEMM: SpArch [40] and gamma [38]. Input: p2p-Gnutella31. N = 67K,
NNZ = 147K The input to the X-Cache would be the row number of matrix B. The
walking is comprised of accessing the B.row_pt array to determine which elements from
B.value array should be loaded and bringing them to the cache. Gamma uses the Gustavson
algorithm to calculate the matrix-matrix multiplication, the pre-loading and walking Matrix
B is very similar to the SpArch.

4.3 Evaluation

We answer the following questions: i) How does X-Cache compare in performance to address-
based caches and the baseline DSAs that employ a customized on-chip RAM? ii) What is the
power overhead of caching compared to an ideal scratchpad? Note that these DSAs cannot
use scratchpads. Hence, we isolate the cost of data RAMs only (which even a scratchpad
would require). iii) What is the power overhead of a programmable cache controller? What
is the overhead for the different controller components when synthesized on an FPGA and
ASIC? A summary of our findings:

• X-Cache can be ported and reused across multiple DSA families. We create caches for
four different DSA families: Sparse GEMM [38,40], GraphPulse [32], DASX [24], and
Widx [20]. We are the first to provide a common storage idiom for these DSAs.

• Our RTL cycle-accurate simulations reveal that X-Cache is competitive with the
hardwired DSAs; no performance loss and up to 50% gain (compared to specific DSAs).
X-Cache outperforms sized address-based cache by 1.7×

• An address-based cache consumes 26 — 79% more power than X-Cache. The cache
controller itself requires ≃ 24% of the total cache power (including the walking logic).
Note that the walking logic is accounted for within the datapath in the baseline DSAs.

• The programmable controller that enables X-Cache to be portable across DSAs requires
between 1.4% — 8% of on-chip power. The tags on the cache require between 1.4—6.5%
of the data SRAMs.

• We synthesized our design on the FPGA and ASIC, all the way to GDS. It required less
than 7% of a moderate-sized FPGA making it applicable to DSAs mapped to FPGA
as well. At 45nm, the controller occupies 0.1mm2 (a 256K cache requires 1.1mm2 just
for the data RAM and tags).

4.4 Performance Evaluation

Result: X-Cache delivers 1.7X improvement over address-based caches. X-Cache short-
circuits the walks with meta-tags and reduces the number of nested memory accesses by 2—8×.
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Result: On DSAs with expensive hash calculations, X-Cache delivers a 1.2× performance
improvement relative to the baseline DSA. Meta-tags directly cache the keys in a hash table.
On hits, they eliminate the need for hashing to find the buckets entirely.

Figure 4.2 compares the runtime of X-Cache against different DSAs under two scenarios.
First, we compare the speedup of X-Cache against the baseline DSA that uses a hardwired
custom on-chip RAM (black bar). We also compare X-Cache address-based cache of the
same size. We assume the address-based cache includes an ideal walker, i.e., the walker makes
orchestration decisions similar to X-Cache or DSA but incurs zero cost, i.e., all performance
differences are a consequence of meta-tags, not orchestration logic.

X-Cache’s performance is competitive with baseline DSAs. In the case of Widx, it can
even achieve a 1.54X speed up. X-Cache achieves speedup in all the target database queries
compared to Widx. On TPC-H-19 and TPC-H-20, X-Cache exhibits an even higher speedup.
This is because of the cycles required for bucket index calculations. TPC-H-19 and 20 include
string-based keys, their indexing stage, which is hashes this string and would require 60
cycles. In X-Cache on a hit, the load-to-use latency is 10× lower than Widx; since it does
not require any hashing. DASX is similar to the Widx, except the hashing is coupled with
walking, so X-Cache’s gains are higher.

In comparison to address-based caches, X-Cache improves performance by 1.7X on
average. Address tags encounter a significant increase in the number of DRAM accesses
as a result of nested walks; ≃ 6.5× more than X-Cache(see Figure 4.2:Memory Accesses
Y-axis). The extra accesses result from nested walks, which increase the footprint of the
DSA and cache miss rate. Address-caches walk even when the data is already in the cache.
In the case of the Widx and DASX, the root node of a bucket has to be loaded to find any
element. On a miss, X-Cache will be limited by memory bandwidth and latency. However, it
will minimize the number of DRAM accesses and achieve higher bandwidth utilization. In
Gamma and SpArch, even though the meta-data itself is more regular (an array of index
pointers), an extra DRAM access is required to load the start pointer of the Row.

4.5 Power Breakdown

Result: Address-based caches require 26—79% more power than X-Cache. Result: The
X-Cache controller expends 24% of the cache power (including walking and tags. Result:
The programmable RAM within the controller only require 6%, the meta-tags ≃7%. The
remaining 11% is required by the walking logic; which would be accounted for within the
datapath of the baseline DSA.

In this section, we study the power consumption of X-Cache. To calculate the power
usage, we split up X-Cache into logic, registers and RAM components. The primary RAM
components in X-Cache are the data array, meta-tag array, and the routine ROMs. For these
components, we used a modified version of CACTI that models RAM arrays accurately https:
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//github.com/bespoke-silicon-group/bsg_fakeram [26]. For modelling logic, routines
and actions, we used numbers from validated logic synthesis. We use an event-driven model
to estimate the power of the controller datapath. The activity factors were obtained from
the RTL simulation. The details of the modelled logic using an open-source 40nm standard
cell library are listed in 4.2. The L1 cache power was modelled using CACTI 6.5; we use
serial mode to ensure fair comparison against X-Cache.

We also compare the power consumption of X-Cache against an address-based cache. As
it shows in Figure 4.3, address-based caches consume 26—79% more power than X-Cache.
The main reason is that we eliminate the walking and reduce the number of on-chip accesses.
Figure 4.3 compares the power usage of on-chip RAMs against the controller and address
generator. We find this to be 2–8% in the DSAs we study. This effectively measures the
overheads of a reusable idiom, since the programmable controller is a central requirement for
portability across DSA (each requiring a specialized walker). This is a conservative estimate
since we are assuming the cost of a hardwired walker to be zero.
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Figure 4.4 breaks down the power consumption of the RAM components and the controller
in X-Cache. As it shows, the central portion of the power is being used with on-chip data
storage. Also, on average, 24% of the power consumption of X-Cache is consumed by the
controller. Moreover, the cost of the Routine Rom, which is the primary difference between
a programmable controller and a hardwired cache, is less than 4.2%.

Parameters Energy usage per bit[pj]
Register 8.9e-03
Add 2.1e-01
Mul 12.6
Bitwise Op 1.8e-02
Shift 4.1e-01
Memory Energy usage per access to Byte [nj]
Tag 6.4e-01
L1 Cache 7.7e-02

Table 4.2: Energy parameters (timing: 1GHz)

4.6 Performance Exploration

Result: As the hit rate increases, X-Cache will achieve higher performance relative to the
DSAs by eliminating address-generation and walking. Also, design exploration shows that
access pattern influences whether a DSA can take benefit of a larger X-Cache.

In Figure 4.5, the runtime of X-Cache has been compared against the Widx for TPC-
H:22 for different percentages of the on-chip data. As it depicts, as the percentage and,
consequently, hit rate, goes higher, the benefit of using meta-tag against address-tag would
be more evident. A higher hit rate reduces the latency for the accesses to the DRAM,
which comprises the dominant portion of the runtime. Besides, using meta-tag reduces the
load-to-use latency in comparison with the address-tag.
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Figure 4.5: X-Cache Runtime Vs Widx (runtime normalized to data in DRAM)
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Figure 4.6: Sweeping Design Parameters. Y-Axis: Speedup of different configuration, nor-
malized to the #Active=8 and #Exe=2
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Figure 4.7: FPGA Synthesis

Apart from the memory-related parameters, the number of ways and the number of sets,
X-Cache has two primary parameters that should be set for each benchmark. Figure 4.6
demonstrates the sweeping of these two parameters for two different datasets of GraphPulse
and Widx. For GraphPulse: p2p-Gnutella08, increasing the #Active and #Exe could diminish
the runtime by half in comparison with the baseline design. However, for Widx: TPC-H-22,
increasing mentioned parameters results in at most 10 percent of speedup. This observation
could be explained by the behaviour of these two DSAs. As it has been elaborated in 3.4, the
bottleneck of the performance of Widx is DRAM access. In addition to this, even for higher
hit rates, meta hit is being used for returning the requested data. Consequently, increasing
the parallelism in X-Cache would not have a significant impact on the overall runtime. On
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Figure 4.8: ASIC Layout. X-Cache controller (no RAMs).

the other hand, GraphPulse takes benefit of higher #Exe in X-Cache. Although the DRAM
access is still the dominant part of the latency, increasing the parallelism in X-Cache brings
down the latency in the event generating stage of GraphPulse.

4.7 Synthesis Results

Result: Synthesis results are extracted from Quartus II V.13 for #Exe=4 and #Active=8.
We synthesized the generated X-Cache controller using Quartus II version 13.0. For this

synthesis, we set the #Exe on 4 and #Active on 8. In Figure 4.7, we have breakdown the
register utilization and logic utilization of the generated RTL. As it shows, X-Reg uses the
most register, and Action-Executor units use the majority of the logic in X-Cache.

We also, used OpenROAD [2], an open-source RTL-to-GDS tool for ASIC synthesis
X-Cache. Figure 4.8 depicts the controller with #Exe=4 and #Active=8. Under 45nm

technology, the total area required is 0.11mm2 and 65K cells. A 256K RAM under 45nm

technology require 0.8mm2.
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Chapter 5

Conclusion

5.1 Conclusions

We develop X-Cache, a reusable caching idiom for domain-specific-architectures. There are
two key ideas in X-Cache i) Meta-tags: DSA-specific tags implicitly cache the elements in
the indirectly-indexed data structure. Meta-tags reuse the elements and short-circuit the
data structure traversals. ii) Routines: a programmable microcode engine that runs the
walkers and orchestration state machines. We are the first to create a high-performance
cache controller targetting DSAs, with support for implicit accesses, decoupled miss walkers,
parallel refills, and pipelined data and tag management. We will be open-sourcing the chisel
generator, a compiler to translate walkers to microcode, and cache designs for five DSAs.

5.2 Future Works

Further Optimization

Although X-Cache focuses on supporting walking and orchestration for DSAs with dynamic
access patterns and reducing the load-to-use latency, we believe that an area of research
could focus on optimizing other aspects of our design. i) Replacement policy: Optimizing
the replacement policy based on the targeted DSA could be explored for further optimizing
X-Cache. While we provide a decoupled replacement-policy logic for facilitating further
optimization, our research does not focus on this aspect. X-Cache uses LRU replacement
policy by default, and our decoupled logic will allow programmers to further optimize this
logic without interfering with the rest of the design. ii) Design parameters: An opportunity
exists for further optimizing X-Cache by analysis on the targeted DSA and configuring it
with the best set of parameters.

Mutation

X-Cache provides a modular-programmable framework for supporting a wide range of DSAs,
exploiting data structure with complex access patterns. However, our modular architecture
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gives the DSA’s developers the opportunity to fine-tune our architecture based on their
needs. The fact that X-Cache leverage a modular architecture and it would be available as
an open-source tool, facilitate further optimization, or even mutation, based on the DSA’s
requirements. Take binary-tree as an example. If a hypothetical DSA works with binary-tree
as its primary data structure, a special entry in the X-Registers could be manually allocated
by the developer for storing the root. This allows the X-Cache to reduce a significant amount
of DRAM accesses. Note that X-Cache’s architecture allows the developer to add this feature
with minimum overhead.
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Appendix A

Toolflow

A.1 Configuration

Figure A.1 summarizes the top module of X-Cache generator. There are two major segments:
i) IOs: X-Cache interfaces with other components through a set of parameterized message
bundles, i.e., latency-insensitive queues. X-Cache includes a base set of I/O to interface with
the DSA datapath (MetaIO), DRAM bus, and other X-Cache or address caches. Based on
system configuration and hierarchy, we instantiate the required I/Os. ii) Modules: X-Cache
also exposes the parameters of the individual components from Figure 3.5. The parameters
in these modules are optimized for specific target patterns.

We now provide intuition on how each of these parameters influences the design: i) #nExe
(line 22): This defines the number of action executors and consequently the number of actions
that X-Cache can run concurrently in each cycle across all of the walkers. It determines the
throughput of the controller under an ideal memory setup. The #nExe should be set to
maximize the number of DRAM refills. ii) #nActive (line 23): Routines suspended on long
latency events rely on X-registers to maintain the walker state. The number of the X-register
determines the number of concurrent walkers. This, in turn, affects the number of refills
in-flight and memory-level parallelism. iii) Meta-tag and Data RAM geometry: The meta-tag
and data RAMS are decoupled and independently parameterized. Meta-tags are only needed
for associative searches and optimized for underlying search patterns. For instance, in the
case of the GraphPulse [32], a direct-mapped cache suffices. The cache is preloaded once,
and then the accesses happen in arbitrary order. iv) #wlen: We bank and stripe a data
entry across multiple sectors based on the number of words to be supplied on each hit. v)
The rTable, trigger and microcode RAM (line 15,17,19) sizes are implicitly set based on
the walker coroutines. When we compile them down and encode them, we determine the
number of entries required. The structures implicitly scale up or down based on walker FSM
complexity.
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1 class XCacheIO () extends Bundle with MsgParams{
2 val meta = MetaIO()
3 val fill = DRAMIO()
4 val msg = MsgIO()
5 val address = AddressIO()
6 }
7 class XCache (triggers,transitions,routines) {
8

9 /*** IO Ports ***/
10 val io = IO( new XCacheIO())
11 ...
12 /*** Data ***/
13 val dataRAM = Memory([dbanks,dsets,dways],wlen)
14 /*** Tags ***/
15 val metaRAM = MetaTag([tbanks,tsets,tways],tag,width)
16 /*** Programmable RAM ***/
17 val rTable = RAM(transitions.compile())
18 val microcode = RAM(routines.compile())
19 /*** Modules ***/
20 val exe = Executor(nExe)
21 val xReg = XRegister(nActive,nWidth,tag)
22 ....
23 }

Figure A.1: X-Cache parameterized design

1 object RoutineTable{
2

3 val transitions = Array[Transition](
4 //Transition ( Routine(DST_Routine), Trigger(Event, State))
5

6 Transition ( Routine(MISS), Trigger(Miss, Default)),
7 Transition ( Routine(AGEN), Trigger(Ptr , Agen)),
8 ...
9 )

10 }

Figure A.2: Programming the Routine Table

A.2 Programming

Apart from the configurability, X-Cache allows the developer to program several parts of
the generated design, in order to provide a different walking and orchestration logic. There
are two main components in the programmability of X-Cache: i) Transition: For creating a
table-based transition in X-Cache, the programmer should define states, events, and valid
pairs of them which lead to routine triggering. As Figure 3.5 showed, the Routine Table is in
charge of holding these definitions. In Figure A.2 these definitions are depicted. ii) Routine
RAM: In Figure A.3, the definition of the routines and actions within them has been shown.

43



1 object microcodeRoutine{
2

3 val routines = Array[Routine](
4

5 // Routine (Name , Seq(Actions))
6

7 Routine ("MISS", Seq( allocD, allocM, enq "Ptr", state "Agen"))
8 Routine ("AGEN", Seq( allocR, add, enq DRAM, state "Wait"))
9 ...

10 )
11 }

Figure A.3: Programming the Microcode RAM

For each entry, a string, containing a name the same as the one used in transition-definition,
would be passed, along with the actions forming it. The allowed actions are the same as the
Table in Figure 3.5.

Compilation

Then, the objects defined in Figure A.2 and Figure A.3 would be compiled down to microcodes
and filled the routine table and µ-coded RAM respectively. Basically, the compiler maps the
events and states to binary values and concatenates them in order to form an address for
the routine table. Also, the routines and their actions would be translated to an array first,
and the index of the beginning of each routine fills the entries inside the routine table.
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