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Abstract

In sports science, critical power and related critical velocity models have been widely inves-
tigated, and are being increasingly applied to field-based team sports. A challenge associ-
ated with these models is that laboratory experiments which yield accurate measurements
of maximal sustainable velocity are expensive. Alternatively, inexpensive field data (from
training and matches) are being used to fit such models. However, with field data, the de-
pendent variable concerning maximum sustainable velocity is reliably calibrated only for
short time durations. This paper develops methods where field data based on short time du-
rations is combined with prior knowledge to fit the three-parameter critical velocity model.
This is accomplished in a Bayesian framework where Markov chain methods are required
for model fitting and inference.
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Chapter 1

INTRODUCTION

1.1 Sports Analytics at SFU

As the data collection technologies such as wearable devices, computer vision, are develop-
ing fast in the modern world, more complex data in sports can be obtained, and different
research opportunities in sports are emerging. In particular, Bayesian methods have shown
multiple advantages in sports analytics. For instance, we can incorporate sports science
knowledge and update the learning as new data come in. At SFU, the sports analytics
group (SAG) works on sports-related problems using knowledge from various disciplines in-
cluding business, biomedical physiology, kinesiology, mathematics, statistics, and computer
science.

As a big fan of sports analytics, I participated in an interdisciplinary sports analytics
course during my undergraduate study. Our analysis on training and performance data of a
diving athlete in the course grew into the paper “Bayesian inference for the impulse-response
model of athletic training and performance” (Peng et al. 2021). The paper demonstrated
and discussed the benefits of applying Bayesian methods in data-driven athlete development
monitoring.

My MSc project is an expansion of another SAG project (Peng, Clarke and Swartz 2021)
which also uses Bayesian methods but in the context of critical velocity models.

1.2 Background

Critical velocity and critical power models are widely researched models in sports science.
Critical velocity models investigate the relationship between the maximum speed that an
athlete can sustain in a given time duration versus the time duration. Knowledge of critical
power and critical velocity relationships are useful for optimizing athletic training programs
and pacing strategies. The models have been studied across various sports including cy-
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cling, running, rowing and swimming (Poole et al. 2016). Critical power models have also
been identified as potential tools in the detection of doping in sport (Puchowicz et al. 2018).

The two-parameter critical power model was first introduced by Monod and Scherrer
(1965) who referred to it as the CP model. The CP model has since been utilized in the
context of critical velocity where it is known as the CV-2 model. The original CP model
has further been generalized through the introduction of additional parameters to improve
model fit (Jones and Vanhatalo 2017). A limitation of the CV-2 model is that it yields an
infinite maximal sustainable velocity as the time duration t → 0. Our focus will mainly
concern the CV-3 model proposed by Morton (1996) which provides a more realistic rela-
tionship between maximum sustainable speed and time duration.

In this work, we are explicit about the statistical assumptions that arise in the context
of critical velocity models. In particular, we explore the types of data that arise and how
this impacts the reliability of calibration. Statistical independence and correlation are in-
vestigated, as well as the distributional assumptions associated with measurement error.
All of these topics impact the estimation of parameters in critical velocity models. Incorrect
model assumptions can lead to biased parameter estimates. Statistical insight has proven
valuable to problems arising in sports science and sports analytics (Albert et al. 2017).

Careful consideration of the features and limitations of critical velocity data leads to
modelling opportunities. A primary contribution of this paper is the development of the CV-
3 model in a Bayesian setting. In this case, the Bayesian framework is applied by synthesizing
prior knowledge from laboratory settings with inexpensive data obtained from training ses-
sions. The inexpensive data are conveniently obtained from athletes during training sessions
through the inconspicuous use of wearable devices. It is recognized that maximal speeds
when extracted from training data are only reliable for short time durations. Consequently,
in our proposed method only short time duration data are utilized, and the information
shortfall is supplemented by prior information gathered from gold standard laboratory test-
ing based on data collected from an independent sample of athletes.

Therefore, a main focus of the paper concerns situations where no laboratory measure-
ments are available and critical velocity parameters for an athlete cannot be estimated. Yet,
by introducing unintrusive training data, reliable critical velocity parameter estimates may
be obtained. Our careful consideration of model assumptions (including the correlations
between observations) is taken into account. Another contribution of the paper is the de-
velopment of a framework to study the adequacy of the “maximal moving average” formula
(Lord et al. 2020) as an estimator of maximal sustainable velocity. In the Chapter 6, we
decribe how this problem can be addressed via simulation studies where the design of the
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training session impacts the adequacy of the estimation procedure. We confirm the intuition
that the maximal moving average formula does not work well for large time durations.

In a sports science application, Peng et al. (2021) have proposed Bayesian methods and
elicited priors in the context of the impulse-response model. Clarke and Skiba (2013) empha-
size the pedagogical importance of performance modelling in exercise physiology; discussion
is provided in the context of critical power models and the impulse-response model.

In Chapter 2, we discuss how data are typically collected in the context of fitting critical
velocity models. We specifically highlight the pitfalls of measuring maximal sustainable
velocities for large time durations using wearable devices. In Chapter 3, the CV-2 and CV-3
models are presented from a statistical perspective. The assumptions related to the models
are clearly specified, and the impact and relevance of these assumptions are discussed. In
Chapter 4, Bayesian formulations of the CV-3 model are presented. The motivation is that
prior knowledge based on laboratory testing can be combined with field data to provide
adequate estimates of the CV-3 parameters. Computational and inferential aspects are
discussed. The methods are illustrated via an example in Chapter 5. In Chapter 6, we use
point processes and simulation studies to explore the adequacy of the “maximal moving
average” formula to estimate the maximal sustainable velocity from field data. Chapter 7
provides a short discussion and outlines future research opportunities.
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Chapter 2

DATA IN CRITICAL VELOCITY
MODELS

Critical velocity data are collected in various formats. Gold standard data which are con-
sidered the most reliable measurements are obtained in laboratory settings. Such data are
naturally time consuming and expensive.

Laboratory data are collected using various schemes including treadmill tests and shut-
tle run tests. For example, in a shuttle run test, two physical endpoints are constructed m

metres apart, and an athlete is requested to run continuously and alternatively, from one
endpoint to the other within s seconds. The athlete is asked to continue the exercise as long
as possible, and upon exhaustion, completes x traversals. The response variable yt = m/s is
the maximum speed (measured in metres per second) that the athlete sustains during the
time duration t = xs seconds.

Due to fatigue, it is intuitive that yt ought to be modelled as a decreasing function of t.
It is also clear that an athlete cannot be asked to repeat the exercise for different values of
t without recovery periods. Therefore, the collection of yt for different values of t may take
place over multiple sessions. This contributes to the expense of gold standard data collec-
tion. Laboratory testing also distracts from training, and may not be entirely welcomed by
athletes and coaches.

A much less expensive data collection method involves the use of wearable sensing
systems during training and matches. Prominent sensing systems are based on GPS (global
positioning system) technology for which there are various commercial providers. For a
given athlete, a “wearable” sensing device provides positioning data from which velocities
are obtained. Typically, GPS sensors capture data at a sample rate of 10-20 Hz. Let

v1, v2, . . . , vN (2.1)
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denote the velocity data during a training session where the observations are dependent.
For illustration, and without loss of generality, vi in (2.1) refers to the instantaneous speed
of the athlete in metres/second at second i of training, and the training session consists of
N seconds. For example, in a 1.5-hour training session, N = 5400. Therefore, sensing data
may be considered “big data”, and are inexpensive in the sense that athletes simply carry
out normal activities. Wearable devices can provide much more information in addition
to instantaneous speed measurements. For example, location data, acceleration data and
physiological measurements may also be recorded through wearables. A review of various
wearable devices including an assessment of measurement accuracy is given by Lutz et al.
(2020). Since measurement errors may be present in the recording of instantaneous speeds,
we recommend a pre-processing step in which a maximum velocity threshold is determined
for the raw data in (2.1). The threshold may be set by looking at the data, identifying out-
liers and assessing what may be reasonable upper bound for a given athlete. Pre-processing
techniques for GPS data are more generally discussed by Abbruzzo, Ferrante and de Cantis
(2019).

In the context of critical velocity models, an immediate question concerns the relation-
ship between the field measurements vi in (2.1) to maximal sustainable velocities. A common
approach defines a response variable yt referred to as the maximal moving-average (Lord et
al. 2020) as

yt = max

⎧⎨
⎩

t∑
i=1

vi/t,
t+1∑
i=2

vi/t, . . . ,
N∑

i=N−t+1
vi/t

⎫⎬
⎭ (2.2)

where again for illustration, t = 1, . . . , N is the time duration measured in seconds. Each
component in (2.2) is an average speed taken over a period of t seconds. What is not entirely
clear is why yt in (2.2) is thought to be a good approximation of maximal sustainable speed
for time duration t. For large values of t, one could realistically imagine an athlete slowing
down and taking a rest for portions of every component interval; in this case yt in (2.2)
underestimates maximal sustainable velocity. Figure 2.1 shows the instantaneous speeds
vt calculated from the tracking data measured in m/sec for a forward during a Chinese
Super League (CSL) match. The athlete slows down and takes a rest for portions of every
component interval. Figure 2.2 shows the maximal sustainable speeds yt from (2.2) measured
in m/sec. The plot suggests that the maximal sustainable speed for a long duration of this
athlete is less than 2.5 m/s, this can leads to the underestimate of the critical velocity.

On the other hand, for small values of t, one might expect that there is some period of
time duration t where an athlete is running at a nearly constant speed, nearly as fast as
possible, and the average over the period reasonably captures maximal sustainable velocity.
This provides the motivation for the proposed methods that follow. Specifically, we will
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Figure 2.1: Instantaneous speeds vt calculated from the tracking data measured in m/sec
for a forward during a CSL match.

assume that training (field) data yt in (2.2) collected through wearable devices provides
reliable information on maximal sustainable speeds for short time durations t. Again, we
emphasize that unlike laboratory data, field data are easy to collect.

In the Chapter 6, we use point processes and simulation studies to explore the adequacy
of the maximal moving average formula (2.2) as an approximation to maximal sustainable
velocity. This appears to be the first investigation of the adequacy of this widely used
approximation. As anticipated, the formula is not a good approximation for large time
durations.

6



Figure 2.2: Calculated maximal sustainable speeds yt from (2.2) measured in m/sec for a
forward during a CSL match.
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Chapter 3

MODEL DEVELOPMENT

Since the CV-2 model (Monod and Scherrer 1965) provides the foundation for all critical
power and critical velocity models, we begin by examining modelling issues with respect to
this simple model. We then transition to the CV-3 model (Morton 1996) which provides
a more realistic description of the relationship between maximum sustainable velocity and
time duration. The CV-3 model is developed in Section 4, where short duration field data
measurements are supplemented with prior knowledge under the Bayesian framework.

3.1 The CV-2 Model

The simplest of the critical velocity models is a decreasing rational function referred to as
the CV-2 model. Using the notation presented in Section 2, we write the CV-2 model for a
particular athlete as

yt = θ1 +
θ2
t

+ εt . (3.1)

Using conventional statistical notation, the two unknown parameters in (3.1) are the
quantities of interest and are expressed using the Greek symbols θ1 > 0 and θ2 > 0, respec-
tively. The variable yt is observed data, the time duration t is an observed covariate, and
the unobserved εt term denotes random error. For probabilistic assessment of the model,
distributional assumptions concerning εt need to be introduced. In the above formulation,
t is fixed (i.e. not random) and yt inherits randomness from the error term. Burnley and
Jones (2018) provide a detailed discussion of the physiological aspects of model (3.1). Using
laboratory data, Patoz et al. (2021) investigate the bias associated with various weighted
least squares fitting procedures for the CV-2 model.

In the sports science literature, θ1 is typically referred to as critical velocity and is writ-
ten as CV . In the critical power setting, θ1 is referred to as critical power and is written
as CP . Mathematically, θ1 is the value of the limiting asymptote corresponding to large
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time durations t. Immediately, we see a theoretical failing in the CV-2 model (3.1), since
it is physiologically implausible for athletes to sustain a threshold of performance for un-
bounded periods of time. For moderate time durations, the critical velocity model may be
both practical and adequate.

In the sports science literature, the parameter θ2 is typically written as D′ in the crit-
ical velocity setting and W ′ in the critical power setting. In the critical velocity setting,
under the common assumption E(εt) = 0, we can express the parameter θ2 as a product of
time and speed via θ2 = t(E(yt) − θ1). Therefore, θ2 has an interpretation as the expected
distance that can be travelled in excess of the distance travelled at critical velocity for any
time duration t. We also note that in the sports science literature, the recognition and the
assumptions concerning εt are not typically made explicit. Typically, the εt are assumed to
be independent, normally distributed with mean zero and a common variance. However, as
previously discussed, with data arising from training sessions, there is dependence in the
response variable (2.2). Such assumptions are important as they impact statistical inference
involving the parameters θ1 and θ2.

An immediate limitation of the fitted CV-2 model ŷt = θ̂t + θ̂2/t is that the estimated
instantaneous speed of the athlete limt→0 ŷt is infinite. Importantly, this limitation is not
just a mathematical curiosity corresponding to t = 0. If we take a typical estimate (θ̂1, θ̂2) =
(4m/sec, 200m) obtained from Dicks et al. (2018), we observe that even for time durations
as large as t = 20 seconds, the estimated sustainable velocity for the athlete would be 14.0
m/sec corresponding to an impossibly fast 50.4 km/hour.

3.2 The CV-3 Model

Again, we prefer to use conventional notation for statistical models where the response vari-
able is on the left hand side of the equation and model parameters are denoted using Greek
symbols. Doing so and re-parametrizing, Morton’s three-parameter CV-3 model (Morton
1996) can be expressed as

yt = θ1 + θ2/(t + θ3) + εt (3.2)

The parametrization (3.2) provides a simplification of what one typically sees in the
sports science literature and aids in the interpretation of parameters. For example, the θ3

parameter provides a leftward shift of the CV-2 model (3) by θ3 units in the variable t.
Moreover, the CV-2 model can be viewed as a special case of CV-3 model, as θ3 → 0,
the CV-3 model reduces to the CV-2 model. In this parametrization, θ1 > 0 maintains
the same interpretation as in the CV-2 model and θ2 determines the curvature. Although
the CV-3 model (3.2) is not linear in the parameters θ1, θ2 and θ3 and consequently does
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not benefit from linear model theory, the parametrization has various appealing properties.
First, as logic involving maximal sustainable speeds would suggest, it can be shown that
ŷt = θ̂1+θ̂2/(t+θ̂3) is a decreasing function of t. Second, instantaneous speed ŷ0 = θ̂1+θ̂2/θ̂3

is necessarily finite, and unlike the CV-2 model, the CV-3 model provides sensible maximal
sustainable speeds for short time durations t. In the parametrization specified in equation
(3.2), we also impose the restriction θ1 > 0, θ2 > 0, and θ3 > 0.

10



Chapter 4

A BAYESIAN VERSION OF THE
CV-3 MODEL

In Bayesian frameworks, classical statistical models are augmented with prior knowledge
of parameters through the use of prior distributions. The synthesis of the two components
results in a posterior distribution which gives the complete probabilistic description of the
parameters.

4.1 Initial Model

Let [A | B] generically denote the density function corresponding to A given B. Then based
on (3.2), and the introduction of the parameter σ which characterizes variability in the
data, the Bayesian paradigm expresses the posterior density of (θ1, θ2, θ3, σ) as

[θ1, θ2, θ3, σ | y1, . . . , yn] ∝ [y1, . . . , yn | θ1, θ2, θ3, σ] [θ1, θ2, θ3, σ] (4.1)

where y1, . . . , yn are field data as specified in (2.2). The n is chosen sufficiently small such
that yt accurately measures maximal sustainable velocity for time duration t. The term
[y1, . . . , yn | θ1, θ2, θ3, σ] is referred to as the likelihood, where the precise form of the likeli-
hood is determined by the distributional assumptions assigned to the εt terms in (3.2). The
term [θ1, θ2, θ3, σ] specifies the prior distribution concerning the parameters θ1, θ2, θ3 and σ.

We begin with some strong but standard assumptions involving the initial model. First,
we assume that the error terms ε1, . . . , εn are independent with εt ∼ Normal[0, σ2]. The
consequence of the distributional assumption is that the field data y = (y1, . . . , yn)T are
conditionally independent and that yt ∼ Normal[θ1 + θ2/(t + θ3), σ2]. We further assume
that θ = (θ1, θ2, θ3)T is statistically independent of σ, where we assign Jeffreys reference
prior [σ] ∝ 1/σ. We assign the multivariate normal distribution θ ∼ Normal3[μ, Σ] where
μ = (μ1, μ2, μ3)T and Σ are specified hyperparameters. Under all of these assumptions, the
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posterior density (4.1) reduces to

[θ1, θ2, θ3, σ | y] ∝ exp
{

n∑
t=1

− 1
2σ2 (yt − θ1 − θ2/(t + θ3))2

}

exp
{

−1
2

(θ − μ)T Σ−1(θ − μ)
}

σ−(n+1) . (4.2)

There is a remaining detail that needs to be overcome in the specification of the posterior
density (4.2). That is, we require the mean vector μ and the variance-covariance matrix
Σ which convey prior opinion concerning the parameter vector θ. Imagine that we have
estimates (θ̂11, θ̂12, θ̂13), (θ̂21, θ̂22, θ̂23), . . . , (θ̂m1, θ̂m2, θ̂m3) for m athletes whose estimates
were obtained from gold standard laboratory testing. Recall again that such estimates are
expensive but are thought to be reliable. It would be sensible if the athlete in question
resembled this population of athletes. For example, if the athlete was a high-level rower, you
would prefer laboratory data involving rowers of the same gender, comparable competitive
levels and similar ages. In this case, all that one needs to do is average the estimates to obtain
μ, i.e. μj = (1/m)

∑m
i=1 θ̂ij , for j = 1, 2, 3. Similarly, Σ = (σij) is specified by calculating

sample variances and sample covariances; i.e. σij = (1/m)
∑m

k=1(θ̂ki − μi)(θ̂kj − μj).

4.2 A More Complex Model

We now weaken some of the assumptions introduced in the initial model.
We first recognize that the observations y1, . . . , yn obtained through training sessions

are not likely to be conditionally independent. Referring to (2.2), it is plausible that the
interval vk, vk+1, . . . , vk+t−1 which yields yt overlaps with the interval which yields yt−1. In
other words, it is plausible that field data yt and yt+Δ are more likely to be similar when
the time difference Δ is small.

This insight may be modelled by introducing greater structure on the likelihood term in
(4.1). Specifically, we model [y1, . . . , yn | θ1, θ2, θ3] as a multivariate Normaln[λ, W ] density
where λt = θ1 +θ2/(t+θ3) and where W is defined as a first order autoregressive covariance
matrix whose (i, j)th element is σ2ρ|i−j| and the correlation parameter ρ ∈ (0, 1). The conse-
quence is that field data yt and yt+Δ are more positively correlated when the time difference
Δ is small. The proposed approach has the benefit of “smoothing” the data y1, . . . , yn. This
idea has been used in the analysis of substitution times in soccer (Silva and Swartz 2016).
The additional parameter ρ is assumed independent of the remaining parameters and we
assign ρ ∼ Uniform(0, 1).
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The net effect of the additional modelling is that the posterior now takes the form

[θ1, θ2, θ3, σ, ρ | y] ∝ [y | θ1, θ2, θ3, σ, ρ] [θ1, θ2, θ3, σ, ρ]

∝ [y | θ1, θ2, θ3, σ, ρ] [θ1, θ2, θ3] [σ] [ρ]

∝ exp
{

−1
2

(y − λ)T W −1(y − λ) − 1
2

(θ − μ)T Σ−1(θ − μ)
}

σ−(n+1) (4.3)

where we note that the vector λ is a function of (θ1, θ2, θ3) and the matrix W is a function
of (σ, ρ).

4.3 Computation and Inference

Based on the synthesis of data and prior knowledge, the posterior distributions (4.2) and
(4.3) fully describe the uncertainty in the parameters. However, as written, these densities
are complex, are not recognizable as familiar parametric distributions and are not readily
interpretable. Therefore, it would be instructive to obtain posterior summaries of the param-
eters of interest θ1, θ2 and θ3. Examples of posterior summaries are posterior means and
posterior standard deviations which themselves are not analytically tractable quantities.
The remedy is to generate the parameters from the posterior distributions using Markov
chain Monte Carlo (MCMC) methods.

Here, MCMC is carried out using JAGS software (Plummer 2003). A feature of JAGS
is that the experimenter does not have to derive full conditional distributions which are re-
quired to implement Gibbs sampling (a basic version of MCMC). Rather, the experimenter
needs only to provide the data, and specify both the sampling and prior distributions. With
this information, MCMC variate generation is carried out by JAGS in the background. Upon
practical convergence of the MCMC algorithm, the experimenter is provided with posterior
samples from the posterior distribution. The samples are then used for inferential purposes.
For example, a user may average the samples of a parameter to approximate its poste-
rior mean. It is also possible to create density plots based on the samples to approximate
posterior density functions.
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Chapter 5

EXAMPLE

It is good to provide an overview of our problem. Imagine an athlete for whom we want
estimates of critical velocity parameters, but there is no laboratory data. Perhaps the best
that can be done is to simply reason that his parameters are similar to the average values of
comparable athletes. Our belief is that we can do better than that. We can take data from
unintrusive training sessions and use the reliable short duration measurements to modify
the average values. The method for doing this is not arbitrary - it is the well-established
Bayesian approach.

The test case that we consider is based on field data arising as in (2.1) and converted
to yt measurements as specified in (2.2). In this case, the field data corresponds to a single
90 minute soccer match by an anonymous forward in the Chinese Super League during the
2019 season(See Figure 2.1). The data were acquired via cameras and optical recognition
software by the provider TRACAB.

The measurements yt are recorded in Table 5.1 and correspond to time durations
t = 1, 2, . . . , 15 seconds. In soccer matches, players do not run full out for 15 consecu-
tive seconds. The sport involves frequent starts, changes of direction and periods of rest.
Therefore, we expect the measurements in Table 5.1 to be less reliable for larger values of t.
Note that y1 = 9.41 m/sec nearly represents maximal speed and corresponds to 33.9 km/hr.
For reference, the maximum speed attained by Usain Bolt over a 20 metre section at the
IAFF World Challenge in Zagreb 2011 was 43.7 km/hr (Coh et al. 2018). We utilize short
time durations y1, . . . , y5 as our measurements in fitting CV-3 models. Note that the yt are
decreasing, although according to the construction in (2.2), this does not mathematically
need to be the case. Therefore, our aims are remarkable; we are attempting to fit useful
3-parameter models based on limited data points. The key addition is that we incorporate
prior knowledge to supplement the field data. And we repeat, a main feature of the approach
is that the field data are obtained inexpensively.
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t yt t yt t yt

1 9.41 6 7.17 11 5.62
2 8.92 7 6.69 12 5.42
3 8.50 8 6.37 13 5.38
4 8.08 9 6.12 14 5.34
5 7.67 10 5.88 15 5.28

Table 5.1: Values yt from (2.2) measured in m/sec for a forward during a CSL match.

The next step involved in the implementation of the Bayesian analyses requires the
specification of the hyperparameters μ and Σ which are common to both models (4.2) and
(4.3). Referring to Morton (1996), we can reparametrize the fitted parameters corresponding
to the six long distance runners in Table 8 (middle three columns). Then following the
discussion at the end Section 4.1, we obtain hyperparameters

(μ1, μ2, μ3) = (5.82, 396.00, 198.21)T (5.1)

and

Σ =

⎛
⎜⎜⎝

0.11 −22.86 −8.85
−22.86 18891.60 13208.13
−8.85 13208.13 12833.37

⎞
⎟⎟⎠ . (5.2)

From (5.1), the prior estimate of critical velocity μ1 = 5.82 m/sec corresponds to 21.0
km/hr. This may overestimate critical velocity and highlights the importance of having
good prior information. Using (5.1), we also obtain the prior estimate μ1 + μ2/μ3 = 7.81
m/sec of instantaneous velocity which corresponds to 28.1 km/hr. Using the relationship
between covariances and correlation, we calculate from (5.2) that there are meaningful
prior correlations between the parameters. Specifically, we obtain Corr(θ1, θ2) = −0.50,
Corr(θ1, θ3) = −0.24 and Corr(θ2, θ3) = 0.85. Recognizing that reliable prior information
is important and that the long distance runners studied by Morton (1996) may differ from
soccer players, we introduce a cautionary procedure and inflate Σ in (5.2) using kΣ where
k > 0 is a tuning parameter. The k > 1 adds more uncertainty to the prior distribution.
For illustration, we set k = 1.5.

With observations y1, . . . , y5 from Table 5.1 and prior knowledge as expressed in (5.1)
and (5.2), we fit various models. For computation in JAGS, 20,000 iterations were carried
out where practical convergence of the chain was quickly achieved. From the MCMC output,
5,000 iterations were discarded as burn-in, and 15,000 iterations were used for inference.
The MCMC iterations required less than 1.0 seconds of computation on a laptop computer.
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Note that a feature of simulation output is that it facilitates estimation of functionals. For
example, we can readily estimate the instantaneous velocity MaxV = θ1 + θ2/θ3 via the
output involving θ1, θ2 and θ3.

The estimated parameters are provided in Table 5.2. From Table 5.2, we immediately
observe that maximum likelihood estimation (MLE) based on only 5 observations do not
provide realistic CV-3 estimates. For example, the estimate of θ1 is negative. Therefore,
it is apparent that field data on its own with only five data points cannot be used to
estimate CV-3 parameters. Instead, we supplement the field data with prior knowledge in a
Bayesian framework leading to the estimates corresponding to Model (4.2) and Model (4.3).
An important observation is that the field data impact estimation. Although the parameter
estimates in Model (4.2) and Model (4.3) are in keeping with prior knowledge, there are
differences between the parameter estimates and the prior means given in (5.1). We also
observe that Model (4.2) and Model (4.3) provide comparable and believable values. For
example, instantaneous maximal velocities of 8.39 m/sec and 8.27 m/sec correspond to 30.2
km/hr and 29.8 km/hr, respectively. Relative to the magnitude of the data in Table 5.1, the
estimates of σ in Model (4.2) and Model (4.3) appear large. This may be explained by the
discrepancy between prior knowledge and the data, a difference that is reduced with more
reliable prior information as specified in (5.1) and (5.2). When comparing the estimates
involving Model (4.2) and Model (4.3), it is difficult to ascertain the truth. However, the
correlation ρ = 0.66 in Model (4.3) provides strong evidence that the observations y1, . . . , y5

are dependent. This suggests that the enhanced Model (4.3) is the preferred model.

Parameter MLE Model (4.2) Model (4.3)
θ1 -3.26 5.92 (000.41) 5.90 (000.38)
θ2 320.38 365.28 (126.82) 376.79 (137.45)
θ3 24.29 154.84 (068.14) 175.96 (089.32)

MaxV 9.93 8.39 (000.41) 8.27 (0.68)
σ 0.01 0.84 (000.42) 0.99 (0.64)
ρ 0.66 (0.25)

Table 5.2: Estimates of CV-3 model parameters (and standard errors) based on maximum
likelihood estimation, the initial Bayesian model (4.2) and the enhanced Bayesian model
(4.3) when n = 5 observations yt are utilized. The parameter MaxV = θ1 + θ2/θ3 denotes
maximum instantaneous velocity.

An important talking point throughout this investigation is that field data do not pro-
vide reliable measurements yt for larger time durations t. To check the sensitivity of the
estimates in Table 5.2, we repeat the analyses based on a larger sample size of n = 15
observations y1, . . . , y15. Table 5.3 provides the estimation results with the larger sample
size. We now observe that CV-3 estimates are unreasonable in each of MLE, Model (4.2)
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and Model (4.3) contexts. For example, the critical velocity θ1 is too low under MLE, θ2

and θ3 are inconsistently large in Model (4.2), and MaxV is impossibly large for Model (4.3).

Parameter MLE Model (4.2) Model (4.3)
θ1 1.04 5.55 (000.36) 5.98 (00.36)
θ2 106.32 500.70 (169.01) 158.25 (62.53)
θ3 11.49 316.57 (112.38) 15.94 (04.20)

MaxV 10.30 7.14 (000.30) 15.61 (01.42)
σ 0.19 1.48 (000.30) 4.39 (03.43)
ρ 1.00 (00.00)

Table 5.3: Estimates of CV-3 model parameters (and standard errors) based on maximum
likelihood estimation, the initial Bayesian model (4.2) and the enhanced Bayesian model
(4.3) when n = 15 observations yt are utilized. The parameter MaxV = θ1 + θ2/θ3 denotes
maximum instantaneous velocity.

A drawback of the illustration in this section is that long distance runners (upon which
the prior is based) most likely have different critical velocity characteristics than the soccer
player of interest. In practice, it is important that the prior describes a realistic probabilistic
description of the athlete of interest. We have tried to mitigate the shortcomings of our
dataset by using a more diffuse prior.
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Chapter 6

EXPLORING THE ADEQUACY
OF THE "MAXIMAL MOVING
AVERAGE" FORMULA USING
SIMULATION

In the context of field data, we investigate the adequacy of the widely used maximal moving
average formula (2.2) given by

yt = max

⎧⎨
⎩

t∑
i=1

vi/t,
t+1∑
i=2

vi/t, . . . ,
N∑

i=N−t+1
vi/t

⎫⎬
⎭

as an approximation to maximal sustainable velocity for time duration t. In (2.2), vi refers
to the instantaneous speed of the athlete measured in metres/second at second i of training.
In a training session of duration N seconds, we therefore have measurements v1, v2, . . . , vN .

We begin the investigation under the assumption that the CV-3 model (3.2) is an accu-
rate description of maximal sustainable velocity. Therefore, we define the expected maximal
sustainable velocity for time duration t as

E(yt) = θ1 + θ2/(t + θ3) (6.1)

Our approach will compare realizations of formula (2.2) via simulation experiments
with the benchmark expected maximal sustainable velocities (6.1). If there is agreement, it
is suggestive that the maximal moving average formula (2.2) is a good proxy for maximal
sustainable velocity.
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Our realizations from formula (2.2) arise from a behavioural model based on a point
process intended to resemble a training session. In this behavioural model, we assume that
athletes exert maximal effort (i.e. velocity) for tasks - training sessions may be designed
accordingly. Further, we assume that athletes approach each task so that nearly constant
effort is applied throughout the task. In this framework, we have m start-stop intervals
for the tasks where m is odd, s0 = 1, sm+1 = N and s1 < s2 < · · · < sm are generated
according to a point process. This leads to active task periods

(s0, s1), (s2, s3), (s4, s5), . . . , (sm−1, sm)

and rest periods

(s1, s2), (s3, s4), (s5, s6), . . . , (sm, sm+1) .

Suppose now that i ∈ (sj , sj+1). Then according to the CV-3 model with independence,
and following the behavioural assumptions, we randomly generate the instantaneous speed
vi according to

vi ∼
⎧⎨
⎩ 0 j odd (rest period)

Normal
(
θ1 + θ2

ti+θ3
, σ2

)
j even

(6.2)

where ti = sj+1 − sj .

The generated vi’s in (6.2) then permit the calculation of the maximal moving average yt

given by (2.2). However, we are interested in the general properties of the maximal moving
average formula. Therefore, we repeat the simulation procedure M times. Specifically,

(1) generate s1, s2, . . . sm → generate v1, . . . , vN → calculate y
(1)
t

(2) generate s1, s2, . . . sm → generate v1, . . . , vN → calculate y
(2)
t

.

.

.

(M) generate s1, s2, . . . sm → generate v1, . . . , vN → calculate y
(M)
t

The iterative procedure allows us to calculate the average

ȳt =
1

M

M∑
k=1

y
(k)
t (6.3)

for t = 1, 2, . . . , N .
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The simulation procedure attempts to set realistic values. For the CV-3 model, we set
θ1 = 6.0, θ2 = 400.0 and θ3 = 200.0 (see equation (5.1)). We also consider two settings
of the CV-3 parameter σ = 0.1 and σ = 0.5. Note that σ takes into account variability in
measurements due to the athlete and also variability in the measurement device. We let
N = 5400 which corresponds to a 1.5 hour training session and we let m = 181 and m = 21
which leads to training sessions with 90 and 10 tasks, respectively.

The point process is the component of the simulation for which widely different settings
may be chosen. We illustrate with a very simple point process. In particular, we generate
m independent points according to the discrete uniform distribution on (1, N). We then
reorder the points such that s1 < s2 < · · · < sm. Although one particular set of points
(s1, s2, . . . , sm) may lead to unrealistic start-stop times, the average pattern over M = 100
iterations is intended to be reasonable. Of course, one may consider generating alternative
point processes according to particular training sessions. For example, one may introduce
constraints in the point-process such that there is a minimum rest period between tasks.
Part of our intention in this exploratory analysis is the development of a framework for
which the maximal moving average formula may be investigated.

Again, we are interested in the comparison of the simulated ȳt values in (6.3) according
to the behavioural model and the expected sustainable velocity values E(yt) given by (6.1).
Figure 6.1 provides plots of E(yt) − ȳt versus t under the four settings (tasks, σ) = (90, 0.5),
(90, 0.1), (10, 0.5) and (10, 0.1). The simulations required approximately 13 hours of com-
putation on a laptop computer. When the differences are tightly scattered about zero, this
is evidence that the maximal moving average formula (2.2) provides accurate estimation of
maximal sustainable velocity. When σ is large (i.e. σ = 0.5), we observe that ȳt tends to
overestimate the intended estimand E(yt) by roughly 1.0 m/sec when t is small. This may
occur when we have a measuring device that is inaccurate. The best approximations occur
when there are few tasks (i.e. 10) and σ is small (i.e. σ = 0.1). In this case (the bottom right
hand plot), the maximal moving average seems to be good for reasonably wide intervals of
t, say 1 < t < 500. As anticipated, it is clear in all four cases that the approximation is
inadequate for large values of t and can be biased by roughly 2.0 m/sec. The explanation is
that athletes tend to have periods of rest that reduce the ȳt values. Consequently, increased
numbers of periods of rest tend to negatively affect the approximation A message here is
that training sessions ought to be designed to elicit good approximations.

Finally, the reader may notice that whereas the simulation study with (task, σ) =
(10, 0.1) provides reasonable approximations for the interval t ∈ (1, 500) seconds, our ex-
ample in Table 5.1 used duration intervals t = 1, . . . , 5 seconds. The reason for the large
discrepancy is that the behavioural model in the Chapter 6 was based on a training session
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with the prescribed point process. In the example, data was collected from an actual match
where players rarely sprint continuously for extended periods.

Figure 6.1: Plots of E(yt) − ȳt versus time duration t.
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Chapter 7

DISCUSSION

The main contribution of this paper is the estimation of CV-3 parameters with inexpensive
field data. The challenge is that field data are unreliable for larger time durations t. There-
fore, only minimal field data are used (based on smaller time durations) where the data are
supplemented with prior information.

Moving forward, how might one improve estimation? An obvious strategy involves the
improvement of prior knowledge, and this may be accomplished by setting hyperparam-
eters based on athletes who are more similar to the athlete in question. Another avenue
is through improved models. We have provided careful investigation of model assumptions
including the conditional independence of the data yt. One may consider alternative models
that have been proposed in the critical power literature. Another possibility involves the
design of training sessions where athletes are required to move at maximal speeds for longer
time durations. This would permit the inclusion of data yt for larger values of t.

In the context of field data, we have also investigated the use of the ubiquitous max-
imal moving average formula (2.2) as an approximation to maximal sustainable velocity
(see Chapter 6). We have observed that the formula may not be ideal for larger time dura-
tions. There is also the suggestion that modified training schedules may help improve the
approximation.
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