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Abstract

During my PhD studies I have worked on two projects. The first is about speeding up a
recursive algorithm, so-called FK-B, that certifies whether two given monotone Boolean
functions in the form of Conjunctive Normal Form (CNF) and Disjunctive Normal Form
(DNF) are dual or not and in case of not being dual it returns a conflicting assignment
(CA), i.e. an assignment that makes one of the given Boolean functions True and the other
one False. The FK-B algorithm is the core of the dualization procedure where it generates
the dual of a given monotone Boolean function. In this regard, we propose six improve-
ments/techniques applicable to the FK-B algorithm as well as the dualization process.
Although these improvements/techniques do not reduce the time complexity, they con-
siderably reduce the running time in practice that is important because of a wide range
applications of the FK-B algorithm and dualization procedure. Here, to evaluate how ef-
fective the proposed improvements are, we apply them to the metabolic network analysis
field where we find the minimal cut sets given elementary flux modes. The obtained results
show a considerable speed up in comparison with the original dualization procedure.

In the second project, we investigate different data representations to predict drug resis-
tance in Tuberculosis (TB). TB is an airborne disease which mostly affects the lungs. TB is
treated using antibiotics, however, it has been revealed that some TB strains have become
resistant to the drugs. Drug resistance in TB is usually diagnosed using a time-consuming
and expensive laboratory experiment that is not always available. Nowadays, it has been
discovered that mutations are mostly responsible for emergence of drug resistance. Consid-
ering this, a machine learning model, that is faster and cheaper than laboratory techniques,
can be designed to predict drug resistance based on the detected mutations. In our study,
we use deep neural networks to predict drug resistance in TB. To this end, we first detect
the Single Nucleotide Polymorphisms (SNPs) in TB isolates. Then, we reconstruct gene
and protein sequences and two other related data types. We design and experiment several
neural networks with different input(s) and settings to get an insight on efficacy of each
data type. The results show that protein sequence data as well as SNP data are the most in-
formative data sources for predicting drug resistance. However, it is notable that processing
sequence data requires so much computational resources.
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Summary of Contributions

In this thesis we considered two problems: speeding up Fredman-Khachiyan algorithm B

(FK-B) to generate dual of a monotone Boolean function and predicting drug resistance in
tuberculosis using deep neural network.

For the first problem, we developed several techniques/modifications to speed up the
FK-B algorithm. The techniques/modifications include:

• Reducing the number of redundancy tests,

• Finding multiple conflicting assignments,

• Using a hash table,

• Using weighted approach to select the splitting variable,

• Choosing order of settings for a non-µ-frequent splitting variable and

• Shrinking the Boolean functions in the intermediate steps of FK-B.

It is worth mentioning that we are the first ones to propose these techniques/modifications.

For the second problem, we used deep neural network with different input types and
different architectures to predict drug resistance in tuberculosis.

• In addition to SNP absence/presence data that is usually used in literature, we used
new data types like protein sequence data as well as mutation type data for the first
time.

• While we considered common architectures like fully connected, wide-n-deep and resid-
ual networks and tried to find the best hyperparameters using Bayesian optimization,
we utilized background knowledge like gene-pathway information and binary patterns
of resistance labels to modify the architectures.

• We tried data fusion, i.e. integrating multiple data sources, aiming to improve the
prediction performance.

xii
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Chapter 1

Introduction

Boolean functions, defined as functions whose input is a vector x ∈ {0, 1}n and whose
output is f(x) ∈ {0, 1}, are a powerful modeling tool in a variety of settings. In many
applications, such as those described in [1], the relevant Boolean functions have a natural
monotone structure, meaning that x ≤ y =⇒ f(x) ≤ f(y), with the vector inequality
interpreted component-wise. For this reason, they can be fully represented and analyzed in
terms of either their minimal true settings or their maximal false settings. The dualiza-
tion problem for monotone Boolean functions, which consists of translating between these
two representations, is both a deep theoretical question as well as a practically important
challenge. It is closely related to the generation problem, which consists of enumerating
all the minimal true and maximal false settings of a monotone Boolean function specified
as an oracle, i.e. providing the value of f(x) given an input x [2].

The dualization problem has numerous applications in subfields of mathematics such as
graph theory (computing the transversal of a hypergraph), combinatorics (finding minimal
hitting sets), and machine learning (model-based fault diagnosis), as well as more applied
fields, including security, networking, distributed systems and computational biology. Our
interest in the problem stems from computational biology, where we seek to perform a
complete structural analysis of a metabolic network model by generating its elementary
flux modes (EFMs) and minimal cut sets (MCSs), following [3].

The verification version of the dualization problem, also called the duality problem
in the literature, consists of deciding whether a list of maximal false settings and a list
of minimal true settings define the same monotone Boolean function. The computational
complexity of the duality problem is not tightly characterized. Fredman and Khachiyan [4]
found two novel algorithms for this decision problem that also extend to oracle-based gen-
eration of both the main function and its dual [5]. These algorithms, called FK-A and
FK-B, either certify the duality or generate a new minimal true or maximal false setting in
quasi-polynomial time in the joint size of the two lists. Their behaviour in practice is poorly
understood. The only available open-source implementation for oracle-based generation is
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cl-jointgen [6] for FK-A, though some experiments on FK-A and FK-B are described in [7],
and an FK-A based dualization algorithm is also available [8].

In this project, we address some computational challenges of using the FK-B algorithm
for dualizing a monotone Boolean function. Our techniques can also be directly applied to
the setting of jointly generating the minimal true and maximal false settings of a monotone
Boolean function given as an oracle. While motivated by metabolic networks, our techniques
are completely general.

A preliminary version of this work [9] includes results on three basic modifications to
improve the performance of the FK-dualization procedure. These are producing multiple
conflicting assignments in a single iteration, substantially reducing the number of redun-
dancy tests during the execution of FK-B, and using a memoization technique to speed
up dualization. We showed that each improvement alone produces a substantial speed-up,
and in combination, they result in an order of magnitude speed gain relative to a naive
(unoptimized) implementation.

Here we extend that work by introducing three additional improvements that speed up
the FK-B dualization algorithm. Briefly, these are choosing the splitting variable based on
information learned in the previous stages, choosing whether to first set a variable to true
or false when the the variable is almost equally frequent in both the CNF and DNF, and
shrinking the CNF and DNF during dualization. The first two improvements are heuristics
that use previous information to make a decision at the current state, while the third one is
an exact test, but only applies in a special case. Our results show that these modifications
further improve the performance of the FK-B dualization algorithm, speeding it up by up
to an additional order of magnitude.
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Chapter 2

Definitions

Let n ∈ N be fixed. We write B to denote the set {0, 1}. A Boolean function f : Bn → B is
monotone if f(s) ≤ f(t) for any two vectors s ≤ t ∈ Bn, where the inequality is interpreted
component-wise. In other words, replacing a 0 with a 1 in the input cannot decrease f ’s
value. Monotone functions are precisely those that can be constructed using the OR and
AND operations, without using any NOTs (negations). We denote the negation of any x ∈ B
by x̄.

The dual of a Boolean function f is the function fd defined by:

fd(x) = f(x) (2.1)

for all x = (x1, x2, . . . , xn) ∈ Bn, where x̄ = (x̄1, x̄2, . . . , x̄n).
A monotone Boolean function f is said to be in Disjunctive Normal Form (DNF) if it

is represented as an OR of ANDs, i.e. as

f =
m∨
j=1

Mj , whereMj =
∧
i∈Tj

xi (2.2)

for a collection of m sets T1, T2, . . . Tm.
Here, the monomials Mj are called implicants of f . If the underlying sets Tj satisfy the

Sperner property, i.e. Tj 6⊂ Tk whenever j 6= k, then each Mj is a prime implicant of f and
m is called the size of f . In this case, the point x ∈ Bn defined by

xi =

1 if i ∈ Tj
0 otherwise

(2.3)

is a minimal true point of f ; indeed, for this x we have f(x) = 1 and f(y) = 0 for any
y < x, where y < x means that y ≤ x and y 6= x.

Similarly, a monotone Boolean function f is said to be in Conjunctive Normal Form
(CNF) if it is represented as an AND of ORs, i.e. as

4



f =
m∧
j=1

Cj , where Cj =
∨
i∈Sj

xi (2.4)

for a collection of m sets S1, S2, . . . Sm.
Here, the clauses Cj are called implicates of f . Once again, if the underlying sets Sj

satisfy the Sperner property, then each Cj is also called a prime implicate of f and m is
called the size of f . In this case, the point x defined by

xi =

0 if i ∈ Sj
1 otherwise

(2.5)

is a maximal false point of f ; indeed, for this x we have f(x) = 0 and f(y) = 1 for any
y > x.

Lastly, we define the support of x, denoted supp(x), as the set {i ∈ {1, 2, . . . , n} | xi = 1}.

We focus on two related problems for monotone Boolean functions, duality and dualiza-
tion:

1. Duality: are two monotone Boolean functions defined by a DNF and a CNF equiva-
lent?

2. Dualization: compute the CNF equivalent to a given monotone DNF.

These two problems can be easily transformed into one another, as we explain below.
The dualization problem is equivalent to Transversal Hypergraph Generation, also called
the Minimal Hitting Set Enumeration problem. For background on these problems and
applications, we refer the reader to [1, 7, 10,11] and references therein.

The algorithm with the best known worst-case performance guarantee for the dualization
of a monotone Boolean function f , called the FK-B algorithm, has incremental quasi-
polynomial running time [4]. More precisely, starting from a description of f in DNF, each
iteration obtains an additional clause or verifies duality of the equivalent CNF, in No(logN)

time, where N is the total size of the DNF and the current, possibly incomplete, CNF.

2.1 The FK-Dualization Algorithm

Algorithms 1 and 2 show the FK dualization and FK-B duality checking procedure respec-
tively, following the presentations of [11] and [12].

Algorithm 1 starts with an empty CNF, called C, and a complete DNF, called D. In a
loop, it checks the equivalence of C and D using the FK-B algorithm. This algorithm either
certifies duality, in which case the dualization is complete and the CNF is returned, or it
returns a conflicting assignment (CA), that is, an assignment X∗ on which the CNF and the
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Algorithm 1 Fredman-Khachiyan Dualization
Input: A monotone Boolean function f on Bn expressed by its complete DNF D.
Output: The complete CNF of C = Dd.

1: function FK-Dualization(C)
2: C = ∅;
3: Call FK-B on the pair (C,D);
4: if the returned value is ∅ then
5: return C
6: else
7: let X∗ ∈ Bn be the point returned by FK-B;
8: compute a maximal false point of C, say Y ∗, such that X∗ ≤ Y ∗;
9: C = C ∧

∨
j∈supp(Y ∗)xj ;

10: Go to Step 3.

DNF take different values, i.e. either CNF (X∗) = 1 and DNF (X∗) = 0, or CNF (X∗) = 0
and DNF (X∗) = 1. It then identifies a maximal false point Y ∗ greater than X∗, and adds
its complement to the current CNF as a new clause.

Algorithm 2, FK-B, takes two Boolean functions in the form of one CNF and one DNF,
and checks if the inputs are equivalent for all possible Boolean assignments via a recursive
approach. If they are not equivalent, it returns a conflicting assignment. The first step in
this algorithm is to remove redundant clauses from both the CNF and the DNF, which is
accomplished by comparing every pair of clauses c, c′ separately in the CNF and the DNF,
and eliminating c′ whenever c ≤ c′.

Line 3 checks three necessary conditions for a CNF and DNF to be equivalent. These
are:

1. Existence of a non-empty intersection between every clause in CNF and every mono-
mial in DNF; if this condition is violated, a conflicting assignment is a monomial m
from the DNF that does not intersect some clause of the CNF.

2. The presence of exactly the same variables in the CNF and the DNF; if this condition
is violated, with x being a variable in the DNF that does not appear in the CNF, a
conflicting assignment is obtained by m − {x}, where m is a monomial of the DNF
that includes x. Alternatively, if x is a variable in the CNF that does not appear in the
DNF and c is a clause of the CNF that includes x, a possible conflicting assignment
is obtained by {V − c} ∪ x, where V is the set of all variables.

3. The maximum length of a monomial in the DNF is at most the number of clauses in
the CNF, and the maximum length of a clause in the CNF is at most the number of
monomials in the DNF. In a case that there is a monomial m ∈ DNF that contains
more variables than there are clauses in CNF, if m′ ⊂ m is a proper subset of m
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satisfying m′ ∩ c 6= ∅ for every clause c of CNF, a conflicting assignment is m′. In the
other case that there is a clause c ∈ CNF that contains more variables than number
of monomials in DNF, if c′ ⊂ c is a proper subset of c satisfying c′ ∩m 6= ∅ for every
monomial m of DNF, the conflicting assignment would be V − c′, where V is the set
of all variables.

We note that in each case, the conflicting assignment can be found in polynomial time in
the length of the CNF and the DNF.

Line 4 addresses the case in which either the CNF or the DNF is very small, and the
equivalence can be checked directly via exhaustive search through the tree of assignments
in the CNF or the DNF, whichever is smaller. If they are inequivalent the procedure returns
a conflicting assignment; otherwise, it returns ∅.

The recursive part of the algorithm starts from line 6 where a splitting variable is se-
lected; based on its frequency in the CNF and the DNF, the splitting variable is set to
either False or True, and after that the current CNF and DNF are simplified by fixing
this variable assignment and generating a recursive call to the FK-B algorithm on the new,
smaller problem. Note that in line 7, a variable x is called at most µ-frequent in D if its
frequency in D is at most 1/µ(|D| · |C|), i.e. |{m ∈ D : x ∈ m}|/|D| ≤ 1/µ(|D| · |C|), where
µ(n) ∼ log n/ log log n is the largest integer k such that kk ≤ n. A similar definition applies
to C.

Given that the FK-B algorithm, Algorithm 2, returns the first conflicting assignment
(CA) that it finds between the given CNF and DNF, computing the dual of a given DNF
using Algorithm 1 requires NCNF + 1 iterations, where NCNF is the size of the CNF that
is dual to the given DNF.

2.2 Mapping the Dualization Problem to Metabolic Network
Structures

The dualization problem can be mapped to a variety of problems. The problem of interest
in our application is that of analyzing the structure of a metabolic network model by finding
its Elementary Flux Modes (EFMs) and Minimal Cut Sets (MCSs). The problem of finding
the smallest size EFM or MCS in a metabolic network is NP-hard [13], while the problem
of finding all the EFMs or all the MCSs has an unknown complexity status, and can only
be solved in reasonable time for small or medium-size metabolic networks [1, 3, 14–17].

In the context of a metabolic network model M , the monotone Boolean function f is
defined on the characteristic vectors of subsets of reactions via f(x) = 1 if and only if the
support of x enables biomass production. In this setting the minimal true points of f are
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Algorithm 2 The Fredman-Khachiyan Algorithm B (FK-B)
Input: Monotone DNF D and CNF C.
Output: ∅ in case of equivalence; otherwise, an assignment A with D(A) 6= C(A).

1: function FK-B(C,D)
2: make D and C irredundant;
3: if a necessary condition is violated then return conflicting assignment;
4: if min{|D|, |C|} ≤ 2 then return ∅ or the conflicting assignment found by a direct

check;
5: else
6: choose a splitting variable x
7: if x is at most µ-frequent in D then
8: A ← FK-B(Dx

1 , C
x
0 ∧ Cx1 ) // recursive call for x set to False

9: if A 6= ∅ then return A
10: for all clauses c ∈ Cx0 do
11: A ← FK-B(Dc,x

0 , Cc,x1 ) // see 〈1〉 below
12: if A 6= ∅ then return A ∪ {x}
13: else if x is at most µ-frequent in C then
14: A ← FK-B(Dx

0 ∨Dx
1 , C

x
1 ) // recursive call for x set to True

15: if A 6= ∅ then return A ∪ {x}
16: for all monomials m ∈ Dx

0 do
17: A ← FK-B(Dm,x

1 , Cm,x0 ) // see 〈2〉 below
18: if A 6= ∅ then return A ∪ {m}
19: else
20: A ← FK-B(Dx

1 , C
x
0 ∧ Cx1 ) // recursive call for x set to False

21: if A = ∅ then
22: A ← FK-B(Dx

0 ∨Dx
1 , C

x
1 ) // recursive call for x set to True

23: if A 6= ∅ then return A ∪ {x}
24: return A
〈1〉: Dx

1 ≡ Cx0 ∧ Cx1 : recursive call for all maximal non-satisfying assignments of Cx0 for
x set to True. Dc,x

0 and Cc,x1 denote the formulae we obtain by setting all the variables
in c to False.
〈2〉: Dx

0 ∨Dx
1 ≡ Cx1 : recursive call for all minimal satisfying assignments of Dx

0 for x set
to False. Dm,x

1 and Cm,x0 denote the formula we obtain by setting all the variables in
m to True.

called elementary flux modes (EFMs) and the maximal false points of f are called minimal
cut sets (MCSs), see for example [18, 19]. In the experimental results section we apply the
FK-B algorithm with the proposed improvements to metabolic network models and study
the impact these improvements have on its performance in generating the MCSs based on
the pre-computed set of EFMs.
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When analyzing metabolic networks to obtain the MCSs from the EFMs, it is beneficial
to pre-process the given EFMs before starting the dualization procedure. The preprocessing
involves three steps:

1. removing any reactions that are not part of any EFMs (also known as blocked reactions
[20,21]), which correspond to unused variables;

2. removing any reactions involved in all the EFMs (also referred to as essential reactions
[20,21]), adding them as singleton MCSs during post-processing;

3. collapsing any group of k reactions whose presence/absence patterns in the EFMs are
identical (a special case of this is referred to as enzyme subsets [20, 21]) into a single
reaction, expanding each of the final MCSs involving this reaction into k copies during
post-processing.

The pre-processing and post-processing steps are not necessary and can be omitted.
However, they reduce the original problem and make the dualization procedure faster, so
we routinely perform them. Please note that, although they are motivated by our specific
application, they may be applied to any dualization problem without modification.
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Chapter 3

Methods

3.1 Reducing the Number of Redundancy Tests in the FK-B
Algorithm

In Algorithm 2, the first step (line 2) removes redundancy in both the CNF and the DNF.
Redundancy removal involves an all-pairs comparison of the clauses (the monomials) in
the CNF (the DNF) and removes any supersets found. In logic, removing redundancy is
equivalent to applying the absorption rule to simplify the Boolean function. While there
are algorithms that slightly improve the asymptotic running time, say by a log factor, not
practical improvement in the quadratic running time is known, and it may be that none
exists [22].

This procedure is a bottleneck due to the large number of pairwise comparisons that
must be performed in each recursive call, and this is compounded by the fact that when
we perform dualization, the FK-B algorithm is called many times to find the clauses of the
CNF.

We reduce the number of redundancy tests performed in FK-B, and consequently in
FK-dualization, by noting that when we set a variable to True (False) in the CNF (DNF),
there is no need to check the redundancy of the CNF (DNF) in the next recursive call
because such a setting results in clauses (monomials) in the CNF (DNF) being removed,
which cannot generate any additional redundancy.

This is implemented using two binary flags, which are set if the redundancy in the CNF
(the DNF) needs to be checked, and cleared otherwise. FKR, the algorithm with reduced
redundancy checks, differs from the baseline, algorithm 2, in the following ways. First, the
redundancy of the CNF (the DNF) is only checked if the corresponding flag is set. Second,
in lines 8 and 20, where a variable x is set to False, the flag for the CNF is set and the
flag for the DNF is cleared, since we only need to check the redundancy in the CNF, not
the DNF. Conversely, in lines 14 and 22, the variable x is set to True, so the flag for the
DNF is set and the flag for the CNF is cleared. Note that in lines 11 and 17, it is assumed
that variable x is respectively set to True and False, and then the variables in c and m are
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respectively set to False and True. For this reason, redundancy can be produced in those
lines, so the next call to FKR needs to check the redundancy in both the CNF and the
DNF.

3.2 Finding Multiple Conflicting Assignments

Given that we can use any conflicting assignment between the current CNF and DNF to
compute a new clause in the CNF, we can find Multiple Conflicting Assignments (MCAs) at
the same time to generate more than one clause per iteration of the dualization procedure,
and reduce the running time of the algorithm by reducing the total number of required
iterations.

To this end, MCAs can be computed in the three situations below without a significant
increase of computational effort. The first two situations arise during the assessment of the
first two conditions necessary for equivalence in FK-B.

The first condition that we assess in the FK-B algorithm is the existence of a non-
empty intersection between every clause in CNF and every monomial in DNF. If there
is no intersection between monomial m in the DNF and clause c in the CNF, then m

makes the DNF True and the CNF False, so it is a CA. During the dualization procedure,
especially early on, many of the monomials and clauses have no intersection. We thus
consider intersections between every clause in the CNF and every monomial in the DNF at
once and can return more than one CA.

The second condition that we assess in the FK-B algorithm is the presence of exactly
the same variables in the CNF and the DNF. If this condition is not met, a CA is determined
from the extra variable(s) in the CNF or the DNF. If multiple variables are present in exactly
one of the CNF and the DNF, we consider all possible conflicting assignments instead of
returning only one.

The third situation in which we compute MCAs is in the case where min(|C|, |D|) ≤ 2. In
such cases, the conflicting assignments are directly derived from Boolean algebra. We only
consider the case |C| ≤ 2 here; the case |D| ≤ 2 is symmetric and is processed analogously.

The following cases may happen during this step:

• |C| = 1

Here, we look for any variable x in the unique CNF clause, denoted C[1], such that
D does not contain the singleton monomial x, in which case {x} is a conflicting
assignment.

• |C| = 2

In this case, we denote the two clauses by C[1] and C[2]. There are three sub-cases:

– Let A0 := C[1] ∩ C[2]. If x ∈ A0 is a variable such that D does not contain the
singleton monomial x, then {x} is a conflicting assignment.
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– Let A1 := C[1]− C[2] and A2 := C[2]− C[1]. Note that A1, A2 6= ∅ because the
CNF is non-redundant. If some monomial m in D is a subset of one of the Ai’s,
then {x|x ∈ m} is a conflicting assignment.

– Let (x, y) ∈ A1 × A2, with A1 and A2 defined above. If no monomial in D is a
subset of {x, y} then {x, y} is a conflicting assignment.

In all the aforementioned cases, whenever more than one conflicting assignment is found,
we return all of them. An issue regarding the MCAs is that sometimes more than one CA
can be mapped to a single clause in the CNF. In this case, we use the unique clauses
resulting from the MCAs.

3.3 Dealing with Repeated Subproblems

Given that FK-B is a recursive algorithm which is called many times during dualization,
certain subproblems are solved very frequently. In this case, memoizing (storing for future
retrieval) these subproblems and their solutions via certificate CA’s (with dual pairs being
characterized by an empty set of CAs) is beneficial, as it can reduce the running time of
both the FK-B algorithm as well as FK-dualization as a whole.

To this end, we use a hash table whose keys are combination of the CNF and the DNF
and whose values are the CAs. To implement this idea, we compute the key for a given
CNF and DNF prior to calling the FK-B algorithm. If it is already in the hash table, we
retrieve the value, i.e. the corresponding CAs, bypassing a recursive call to FK. Otherwise,
we call FK-B and store any computed CAs as a new record in the hash table.

As we experimented with different settings in the implementation of this memoization
technique, we realized that solving small subproblems, with |C| ≤ 2 or |D| ≤ 2, from
scratch was faster than storing them in the hash table and retrieving the CAs because the
special case in line 4 of Algorithm 2 applies to them. Thus, we do not use hashing on these
subproblems in our implementation.

On the other hand, it is challenging to store large subproblems because there are so many
of them. This may be reduced to a degree by storing functions only up to symmetry. An MBF
f(x1, x2, . . . , xn) is equivalent to another MBF g(x1, x2, . . . , xn) if there is a permutation
σ ∈ Sn such that f(xσ(1), xσ(2), . . . , xσ(n)) = g(x1, x2, . . . , xn). For example, the function
f(x1, x2, x3) = (x1 ∧ x2) ∨ (x2 ∧ x3) is equivalent to f(x1, x2, x3) = (x1 ∧ x2) ∨ (x1 ∧ x3)
via the permutation σ = (12)(3). We can then try to put the MBF corresponding to the
DNF into a canonical form for hashing. In general this is difficult, but we can do it for
functions on n ≤ 6 variables by simply generating all n! permutations, multiplying the
function’s representation by a fixed matrix, and scanning through it once, choosing the
lexicographically smallest function, as described in [23]. The same permutation is applied
to the CNF, leading to the overall representation used for hashing.
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3.4 Choosing the Splitting Variable by aWeighting Approach

Selecting the splitting variable in the FK-B algorithm plays a key role in the speed of the
algorithm. The usual method of choosing the splitting variable is to select the common
most frequent variable in both the CNF and the DNF. Here, we present a weighting ap-
proach to choosing the splitting variable which may reduce the number of FK calls required.

Algorithm 3 Updating variable weights. This algorithm is called between dualization
iterations.
Input: A table W with rows indexed by the variables, and two columns: 1) Weight and 2)
Depth.
Output: The updated weight table W .

1: function UpdatingWeights(W )
2: W [Depth] = Normalize(W [Depth]);
3: W [Weight] = W [Weight]�W [Depth]; // element-wise multiplication
4: W [Weight] = Normalize(W [Weight]);
5: return W ;

In this approach, each variable xi is associated with a weight wi and a depth di. The
weight wi is an estimate of the suitability of variable xi to be chosen as the splitting variable,
and the depth di is the smallest recursion depth at which variable xi has been selected as
the splitting variable during the FK-dualization procedure so far . The initial values for
wi and di are 100 and ∞ for each i, respectively.

The depth value di is updated during a dualization iteration, when the variable xi

is selected as the splitting variable. When this happens, if the current depth is d∗, di is
updated to min(di, d∗). On the other hand, the weight wi is updated between dualization
iterations according to Algorithm 3. Briefly, the depths are normalized, the current weights
are multiplied by the normalized depths, and then they are themselves normalized to form
a discrete probability distribution.

In this approach, the splitting variable in each iteration of FK-dualization is chosen
at random from the distribution defined by the weights; a higher weight corresponds to a
higher probability of being selected as the splitting variable.

3.5 Choosing the Order of Settings for a Non-µ-frequent
Splitting Variable

In Algorithm 2, if the chosen splitting variable is not µ-frequent in either the CNF or the
DNF, the splitting variable is first set to False, and if a conflicting assignment is not found,
it is set to True. There is no theoretical reason behind this order for the settings, and we
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now present two heuristic approaches for deciding which of the two possible orders can lead
to a conflicting assignment faster.

Both approaches make decisions based on the history of setting a variable to True or
to False first in the previous iterations of FK-dualization. The first approach considers the
variable’s entire history, i.e. the values assigned to it in all the conflicting assignments found
so far, and decides to first set the splitting variable to the value found in the majority of
previously identified conflicting assignments. The second approach makes the decision in
the exact same way, but only considers the conflicting assignments found in the K = 5
most recent iterations of FK-dualization.

Note that in the both approaches, if there is no history of assignments to a variable, the
default order, first setting False, then setting True, is chosen.

3.6 Shrinking the CNF and the DNF in the Intermediate
Steps of FK-B

In the intermediate steps of running the FK-B algorithm on a CNF and a DNF, it frequently
happens that a variable appears as a singleton in the CNF, and also appears in all the
monomials in the DNF. Alternatively, it can happen that a variable appears as a singleton
in the DNF, and also appears in all the clauses in the CNF. In such a situation, the variable
in question can be removed from both the CNF and the DNF without affecting equivalence
(i.e. the original DNF and CNF are equal if and only if the reduced ones are). This operation
reduces the problem size and lowers the number of recursive calls to FK-B.

This shrinkage step can be performed as a pre-processing step in the FK-B algorithm,
before checking the three necessary conditions for equivalence.
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Chapter 4

Experimental Results

As mentioned in Section 2.2, the dualization problem can be used to solve the problem of
finding the MCSs given the EFMs in a metabolic network model. Here, we use the metabolic
models available in the BioModels database1 to assess the proposed algorithms. To this end,
we selected 19 small and medium-size models to be able run several FK variants on them
in a reasonable time. Table 4.1 shows the characteristics of the models.

To prepare these models for the application of our dualization algorithm, we performed
the following steps:

1. Parsing the biological models using the SBML parser in MATLAB to obtain a stoi-
chiometric matrix containing the metabolites as rows and the reactions as columns;

2. Applying EFMTool [14] or FluxModeCalculator [24] to extract the EFMs into a ma-
trix;

3. Converting the matrix into a binary one by setting all non-zero values to one, and
preprocessing it using the steps outlined in Section 2.2; the resulting matrix is used as
the input DNF for the dualization problem in order to find the MCSs, corresponding
to the CNF.

Different experiments have been designed to elucidate the efficiency of the proposed
modifications to the original FK algorithm, individually and in combination. For this pur-
pose, different metrics have been used to compare them to the original FK algorithm.

In the following, we indicate the modification(s) made to the algorithm 2 using the
letters F, W, S, H, C, O and R, defined as follows:

F : The splitting variable is the most frequent variable in the CNF and the DNF;

W : The splitting variable is chosen using the weighting approach;

1http://www.ebi.ac.uk/biomodels-main/publmodels
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Table 4.1: Characteristics of models. Metabolites: number of metabolites; EFMs: number of
elementary flux modes (monomials in the DNF); n<prer : Number of reactions (variables) be-
fore the preprocessing steps; n>prer : Number of reactions (variables) after the preprocessing
steps; n<postMCS : Number of minimal cut sets (clauses in the CNF) before the postprocessing
steps; n>postMCS : Number of minimal cut sets (clauses in the CNF) after the postprocessing
steps.

Model Metabolites EFMs n<prer n>prer n<postMCS n>postMCS

BIOMD0000000034 9 13 22 22 56 56
BIOMD0000000042 15 35 25 20 56 188
BIOMD0000000048 23 63 25 14 320 12960
BIOMD0000000089 16 20 36 28 192 15552
BIOMD0000000093 34 24 46 24 293 2001
BIOMD0000000094 34 23 45 23 293 667
BIOMD0000000106 25 12 32 17 14 512
BIOMD0000000107 14 11 23 13 14 448
BIOMD0000000108 9 50 17 17 60 60
BIOMD0000000110 15 12 22 15 48 864
BIOMD0000000162 32 60 45 20 675 1928934
BIOMD0000000163 16 12 26 21 156 1296
BIOMD0000000165 37 20 30 9 16 576
BIOMD0000000166 3 18 9 9 27 27
BIOMD0000000169 11 17 27 23 128 1536
BIOMD0000000170 7 10 17 15 32 128
BIOMD0000000171 12 16 26 23 65 264
BIOMD0000000173 26 14 26 10 17 4617
BIOMD0000000228 9 13 22 20 128 512
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S : The CNF and the DNF are shrunk during the intermediate steps of running FK;

H : A hash table is used for small subproblems;

C : The canonical form of the CNF and the DNF is stored in the hash table;

O : A heuristic is used to find the optimal order of settings for non-µ-frequent splitting
variables;

R : The K = 5 most recent splits, not the full history, are used in the order heuristic
(O) above.

We quantify the effectiveness of the proposed improvements using the following metrics:

1. Backtrack count: Quantifies how many recursive calls to the FK-B algorithm return
no conflicting assignment. This count decreases with better splitting variable selection
strategies.

2. Backtrack length: Quantifies the total depth of the recursive calls that return no
conflicting assignment. This length decreases with better splitting variable selection
strategies as well.

3. Iteration count: Quantifies the number of recursive calls to the FK-B algorithm. This
count decreases with improved search strategies, and many of our heuristics may
contribute to this.

4. Hash table hits: Quantifies the number of successful hash queries to bypass additional
calls to the FK-B algorithm (used when the CNF and the DNF have size at least
3). This count increases when the same (or, with option C, equivalent) subproblem is
solved multiple times.

5. Node count: Quantifies the total number of variable settings required to find all the
conflicting assignments. This count decreases with a faster identification of the con-
flicting assignments.

In the following, we present the experiments we carried out and discuss their results. We
note that the FK-dualization procedure is inherently stochastic, and we used a fixed seed to
make the results reproducible. Changing this seed may alter the results, but our sensitivity
analysis suggests that there is no significant impact on the relative contributions of each
modification (data not shown).

4.1 Reducing the Number of Redundancy Tests

The redundancy test is a key bottleneck of FK-dualization, being called on each input
to the FK-B algorithm. In this experiment we measure how much the flags proposed in
Section 3.1 reduce the number of redundancy tests.
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Figure 4.1 shows the total number of pairwise comparisons in the redundancy tests per-
formed during FK-dualization. It suggests that the proposed modification decreases the
number of comparisons required by 20% to 70%.

Given that this modification significantly reduces the running time of FK-dualization,
we only discuss the FK-B algorithm with the modification reducing the number of redun-
dancy tests from now on.
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Figure 4.1: Total number of pairwise comparisons performed in the removing redundancy
during FK-dulaization using the original FK algorithm and the modified version of FK
which the number of redundancy tests are reduced. The numbers on each bar show the
exact number of performed comparisons. Note that in the name of models on the horizontal
axis, we have replaced seven ‘0’ by ‘-’ for the sake of readability.

4.2 Finding Multiple Conflicting Assignments

As discussed in Section 3.2, finding multiple CAs at the same time can reduce the iteration
count for FK-dualization, each of which may require multiple FK iterations. Figure 4.2
shows the iteration counts for the original FK algorithm and the variant of FK that finds
multiple CAs at the same time. It suggests that this modification can reduce the number
of required iterations by 10% to 65%. Figure A.2 additionally shows the size of the CNF at
each iteration.

Similar to the previous section, because this modification is clearly beneficial and inde-
pendent of other changes, it will become part of the baseline for subsequent experiments.
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Figure 4.2: Number of FK-dulaization iterations to complete the CNF given the DNF using
the original FK algorithm and the modified version of FK which multiple CAs are found
at once. The numbers on each bar show the exact number of iterations. Note that in the
name of models on the horizontal axis, we have replaced seven ‘0’ by ‘-’ for the sake of
readability.

4.3 Comparing FK Variants Based on Splitting Variable De-
cisions

In this experiment, we compare seven variants of the FK-B algorithm (note that the results
of the other possible variants are available as Supplementary File 1).

F : A baseline FK-B algorithm, following Algorithm 2 with reduced redundancy tests,
multiple conflicting assignments and using the most frequent variable as the splitting
variable;

FH : Same as the F variant, but also uses a hash table;

FHC : Same as the FH variant, but uses the subproblems’ canonical form as the hash key;

FO : Same as the F variant, but uses the whole history to optimize the assignment order.

FOR : Same as the F variant, but uses the recent splits to optimize the assignment order.

FS : Same as the F variant, but also uses the shrinkage process.

W : Like the F variant, but uses the weighting approach to select the splitting variable
instead.

Figure 4.3 displays the results of this analysis for each of the models. The left panels
show the size of the CNF at each iteration of the FK-dualization algorithm. It suggests
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that for most of the models, W is the fastest method while F is the slowest one. The other
modifications have similar effects to one another, but are superior to the baseline F method.

The right panels compare the methods based on the other metrics that we introduced. In
these figures, the measurements whose values are zero are shown as bars under the baseline.
Since hash tables are only used in the FH and FHC variants, only two bars appear above
the baseline for the hash table hits. These variants also perform better on the backtrack
count and backtrack length for 15/19 of the models. The iteration count is the lowest for
the W variant for 12/19 of the models, and the node counts are strongly correlated with the
iteration counts. Interestingly, the FH and FHC variants have the exact same number of
hash table hits, meaning that storing the subproblems in canonical form to take equivalence
into account provides no additional benefit.

In conclusion, considering both the left and the right panels suggests that W is generally
the best at reducing the number of FK calls as well as the number of iterations required
to compute the CNF.
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Fi g ur e 4. 3: T h e fi g ur e s i n e a c h r o w b el o n g s t o a m o d el. T h e fi g ur e s i n t h e fir st c ol u m n
s h o w pr o gr e s si o n of c o n str u cti n g C N F v er s u s it er ati o n s i n F K - d u ali z ati o n al g orit h m. T h e
fi g ur e s i n t h e s e c o n d c ol u m n ill u str at e h o w b e n e fi ci al e a c h i m pr o v e m e nt i s i n F K - d u ali z ati o n
b a s e d o n fi v e m e a s ur e s: ‘ B a c ktr a c k c o u nt’ s h o w s h o w m a n y ti m e s wr o n g br a n c h e s of tr e e
of a s si g n m e nt s h a v e b e e n c h o s e n t o g o t h r o u g h t h at fi n all y it h a d t o r et ur n t o t h e hi g h er
l e v el s; ‘ B a c ktr a c k l e n gt h’ s h o w s h o w d e e p it h a s g o n e t hr o u g h t h e wr o n g br a n c h e s; ‘ S e e n
n o d e s’ s h o w s t h e n u m b er of v ari a bl e s t h at h a v e b e e n s et t o eit h er t r u e or f al s e or b ot h t o
r e a c h t o t h e c o n fli cti n g a s si g n m e nt( s); ‘ F K C all s’ i n di c at e s t o t h e n u m b er of r e c ur si v e c all s
t o F K al g orit h m; a n d ‘ H a s h f et c h’ s h o w s t h e n u m b er of s u c c e s sf ul f et c h e s t o t h e h a s h t a bl e
i n c a s e t h at k e y s ar e n ot st or e d i n t h e c a n o ni c al f or m a n d if |C | < τ a n d |D | < τ w h er e
τ = 3 , t h e h a s h t a bl e i s n ot u s e d.
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Fi g ur e 4. 3: C o nti n u e d.
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Fi g ur e 4. 3: C o nti n u e d.
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4.4 Analysis of the Pareto Frontier

In this experiment, we try to find the minimal subsets of modifications to the FK algorithm
required to achieve the minimum value of three key metrics - iteration count, backtrack
length, and node count - for all of the models (all possible combinations of the modifications
that minimize each of these metrics are shown in Supplementary File 2). Tables 4.2-4.4 show
the results. As it can be seen some modifications, e.g. W (weighting) or S (shrinkage), are
seen in several rows in all the tables. Such pattern can give us an idea about the benefit of
each modification.

We also created Table 4.5 to summarize the optimal modifications across all three tables
for each model. The last column in this table shows the common modifications, i.e. those
needed to achieve an optimal value of each of the metrics. For 14/19 of the models, there
is at least one common modification. The two most frequently seen common modifications
are S (shrinkage) and H (hash table). However, W (weighting) is also a frequently occurring
modification in the rest of the table.

Table 4.2: Achieving the minimum calls to FK using minimal FK improvements.

Model FK
calls

Successful
HashFetch

Backtrack
counts

Backtrack
length

Seen
nodes

Method

BIOMD0000000034 666 1 23 54 249 WH
BIOMD0000000042 253 46 8 12 126 FHS
BIOMD0000000048 2176 0 175 543 1207 W
BIOMD0000000089 1700 0 2 8 269 WS
BIOMD0000000093 2748 0 96 226 695 WS
BIOMD0000000094 2748 0 96 226 695 WS
BIOMD0000000106 63 6 0 0 15 FHS
BIOMD0000000107 37 0 0 0 16 WS
BIOMD0000000108 292 28 8 24 169 FHS
BIOMD0000000110 319 0 1 2 100 W
BIOMD0000000162 8244 0 4 12 853 WS
BIOMD0000000163 790 1 4 11 220 WH
BIOMD0000000165 62 0 3 6 32 WS
BIOMD0000000166 141 0 0 0 48 WS
BIOMD0000000169 868 1 0 0 225 WH
BIOMD0000000170 122 0 2 7 55 W
BIOMD0000000171 229 0 7 18 84 WS
BIOMD0000000173 29 2 1 1 14 FHS
BIOMD0000000228 331 0 4 8 107 WS
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Table 4.3: Achieving the minimum backtracking length using minimal FK improvements.

Model FK
calls

Successful
HashFetch

Backtrack
counts

Backtrack
length

Seen
nodes

Method

BIOMD0000000034 678 45 0 0 86 FHS
BIOMD0000000042 253 46 8 12 126 FHS
BIOMD0000000048 2288 322 109 292 1436 FHS
BIOMD0000000089 6769 181 0 0 347 FHS
BIOMD0000000093 2748 0 96 226 695 WS
BIOMD0000000094 2748 0 96 226 695 WS
BIOMD0000000106 63 6 0 0 15 FHS
BIOMD0000000107 37 0 0 0 16 WS
BIOMD0000000108 292 28 8 24 169 FHS
BIOMD0000000110 505 35 1 1 82 FH
BIOMD0000000162 79013 650 0 0 2584 FHS
BIOMD0000000163 2337 86 0 0 176 FH
BIOMD0000000165 64 9 1 1 31 FH
BIOMD0000000166 141 0 0 0 48 WS
BIOMD0000000169 868 1 0 0 225 WH
BIOMD0000000170 232 18 2 4 60 FH
BIOMD0000000171 449 68 6 8 223 FHS
BIOMD0000000173 29 2 1 1 14 FHS
BIOMD0000000228 2530 89 2 2 216 FHS
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Table 4.4: Achieving the minimum number of seen nodes using minimal FK improvements.

Model FK
calls

Successful
HashFetch

Backtrack
counts

Backtrack
length

Seen
nodes

Method

BIOMD0000000034 678 45 0 0 86 FHS
BIOMD0000000042 253 46 8 12 126 FHS
BIOMD0000000048 2220 4 187 563 1169 WHS
BIOMD0000000089 1700 0 2 8 269 WS
BIOMD0000000093 2748 0 96 226 695 WS
BIOMD0000000094 2748 0 96 226 695 WS
BIOMD0000000106 63 6 0 0 15 FHS
BIOMD0000000107 37 0 0 0 16 WS
BIOMD0000000108 292 28 8 24 169 FHS
BIOMD0000000110 453 33 3 7 79 FHS
BIOMD0000000162 8244 0 4 12 853 WS
BIOMD0000000163 2337 86 0 0 176 FH
BIOMD0000000165 64 9 1 1 31 FH
BIOMD0000000166 196 13 0 0 46 FHS
BIOMD0000000169 2256 87 0 0 205 FHS
BIOMD0000000170 122 0 2 7 55 W
BIOMD0000000171 229 0 7 18 84 WS
BIOMD0000000173 29 2 1 1 14 FHS
BIOMD0000000228 563 0 2 4 103 W
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Table 4.5: Modifications helped to achieve minimum value for each measurement.

Model Minimizing
FK calls

Minimizing
backtracking length

Minimizing
seen
nodes

Common
modification

BIOMD0000000034 WH FHS FHS H
BIOMD0000000042 FHS FHS FHS FHS
BIOMD0000000048 W FHS WHS
BIOMD0000000089 WS FHS WS S
BIOMD0000000093 WS WS WS WS
BIOMD0000000094 WS WS WS WS
BIOMD0000000106 FHS FHS FHS FHS
BIOMD0000000107 WS WS WS WS
BIOMD0000000108 FHS FHS FHS FHS
BIOMD0000000110 W FH FHS
BIOMD0000000162 WS FHS WS S
BIOMD0000000163 WH FH FH H
BIOMD0000000165 WS FH FH
BIOMD0000000166 WS WS FHS S
BIOMD0000000169 WH WH FHS H
BIOMD0000000170 W FH W
BIOMD0000000171 WS FHS WS S
BIOMD0000000173 FHS FHS FHS FHS
BIOMD0000000228 WS FHS W

4.5 Comparison of Processing Times

Table 4.6 presents the processing time for each metabolic model using different FK variants
that gives a better understanding on how each improvement can affect processing time. As
shown, W variant is the fastest one in 17 models out of 19 models.

Additionally, we tested the F andW variants on four Ecoli metabolic networks including
acetate, succinate, glycerol and glucose [3, 18]. Table 4.7 presents their characteristics and
the required time to find the MCSs. As shown, W variant works well in the two biggest
networks and significantly reduces the processing times in comparison with F variant. It is
worthfully to mention that the processing times we obtained here are much higher than the
reported processing times in [3, 18]. The reason stems from the difference in the essence of
the algorithms and in our project we aimed to speed up the FK-B algorithm because of
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its application in joint-generation problem and we did not aim to compete with the present
algorithms that generate MCSs.

Table 4.6: Comparing processing times. The numbers show the time in seconds and in each
row the lowest number is bold.

Model F FH FHC FO FOR FS W
BIOMD-034 0.81 1.69 1.7 0.75 0.78 0.63 0.51
BIOMD-042 2.04 1.85 1.94 2 1.96 1.22 1.25
BIOMD-048 25.43 12.02 12.15 25.58 25.76 22.18 7.39
BIOMD-089 14.66 7.82 7.73 14.64 14.71 10.81 4.71
BIOMD-093 46.87 20.46 19.79 47.46 47.01 38.1 11.28
BIOMD-094 40.68 20.03 20.16 40.44 40.64 36.57 10.8
BIOMD-106 0.08 1.45 1.44 0.08 0.08 0.05 0.05
BIOMD-107 0.07 1.45 1.45 0.07 0.07 0.05 0.04
BIOMD-108 1.71 1.97 2 5.34 2.34 1.08 0.62
BIOMD-110 0.47 1.64 1.64 0.48 0.48 0.41 0.19
BIOMD-162 649.62 310.64 310.99 650.85 656.5 683.58 64.21
BIOMD-163 4.28 3.97 3.86 4.3 4.29 4.49 1.65
BIOMD-165 0.06 1.48 1.47 0.06 0.07 0.04 0.04
BIOMD-166 0.14 1.53 1.53 0.14 0.14 0.15 0.06
BIOMD-169 4.15 3.38 3.38 4.16 4.16 3.04 1.41
BIOMD-170 0.2 1.51 1.51 0.2 0.2 0.15 0.06
BIOMD-171 1.26 2 1.99 1.18 1.2 0.9 0.28
BIOMD-173 0.03 1.49 1.49 0.03 0.04 0.04 0.05

Table 4.7: Comparing processing times for Ecoli metabolic networks. In each row the lowest
processing time is bold.

Model # of reactions # of EFMs # of MCSs
Processing Time (seconds)

F W
Acetate 21 363 54 2.47 1.94

Glucose 34 21592 857 317905.62
(88.3 hrs)

225271.3
(62.58 hrs)

Glycerol 28 9479 376 19131.28
(5.31 hrs)

9005.03
(2.5 hrs)

Succinate 26 3421 159 179.43 220.95
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Chapter 5

Discussion

In 1996, Fredman and Khachiyan [4] proposed two novel algorithms, so-called FK-A and
FK-B, to identify duality between two monotone Boolean functions whose time complexi-
ties are quasi-polynomial time of the input size. Considering the duality test algorithm, if
one of the monotone Boolean function is known, its dual function can be produced using
the conflicting assignment returning from FK-A or FK-B algorithms in an incremental
manner. The computational complexity of such dualization algorithm would still be quasi-
polynomial. However, the dualization algorithm is not fast enough in practice when the
given monotone Boolean function is of medium or large size.

In this project, we proposed several improvements/techniques to reduce the FK-B run-
ning time in practice. These improvements do not affect the theoretical time complexity of
the FK-B algorithm, however, they make it possible to use the FK-B to solve medium-to-
large-scale dualization problem in practice.

The first improvement is using flags to reduce the number of redundancy tests, pair
comparisons, in each recursive call of the FK-B algorithm. The second improvement is
about returning multiple conflicting assignment instead of only one. In dualization, this
helps to produce more than one monomial in the DNF in each iteration. The third one
is about using a hash table and instead of solving repeated subproblems several times,
fetch the conflicting assignments. In the fourth improvement, instead of choosing the most
frequent variable in both the CNF and the DNF as splitting variable, we choose splitting
variable randomly while the chance of a variable being selected is based on its history of
acting as splitting variable in previous iterations. In this way, if a variable has been acted as
splitting variable in previous iterations and led to a conflicting assignment fast it gets more
chance to be selected as a splitting variable in the current point. In the fifth improvement,
we focused on a situation where the splitting variable is not µ-frequent in either of CNF or
DNF. In this case, instead of first setting the variable to False and search for a conflicting
assignment(s) and in case of not finding any conflicting assignment(s) setting the variable to
True and repeat the search again, we consider history of the variable when it has appeared in
previous conflicting assignments. It is firstly set to False if in majority of previous identified
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conflicting assignments it is False, otherwise it is firstly set to True then if any conflicting
assignments is found, the other option, i.e. True or False, is tested. The last improvement
is about shrinking the CNF and the DNF in the middle of FK-B recursive calls where
one variable appears as a singleton in the CNF/DNF and appears in all monomials/clauses
in DNF/CNF. In this case, this variable can safely be removed from both CNF and DNF
which results in having a smaller problem to solve.

The proposed modifications have been applied on FK-B algorithm and FK dualization
and as an application we have used the modified algorithm in finding minimal cut sets
based on given elementary flux modes in metabolic networks. The results show that the
proposed improvements can reduce the running time by an order of magnitude on most of
the examples.

It is noteworthy to highlight that the proposed modifications/techniques are general and
applicable to any problems, e.g. transversal hypergraph generation problem [10], that can
be mapped to Monotone boolean function dualization problem.
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Chapter 1

Introduction

1.1 Mycobacterium Tuberculosis

Tuberculosis (TB) is an airborne infectious disease caused by the Mycobacterium tubercu-
losis (MTB) bacterium. The TB death rate puts TB in the list of top 10 leading causes of
death in the world. According to the World Health Organization (WHO) report published in
October 20201 the number of people who get infected with TB is gradually decreasing every
year and about 10 million people became infected with TB in 2019. It is known that people
with weak immune systems like those undergoing chemotherapy and those with HIV/AIDS
are at a high risk of developing TB disease when they are exposed to MTB. The WHO
reports that in 2019, about 1.4 million people died because of TB, of whom about 208, 000
were HIV-positive people.

TB generally attacks the lungs, but can also attack other parts of the body. There are
two types of TB infection: active TB and latent TB Infection (LTBI). When someone is sick
with active TB he/she feels sick2 and can spread the disease to other people. Such a person
needs to get treated as soon as possible. On the other side, in case of LTBI, although a
person is infected by TB and has the TB bacteria in their body, the body’s immune system
works properly and the person does not feel sick. Importantly, the people with LTBI do not
spread the disease. The diagnosis of TB is performed using chest X-rays and the culture of
bodily fluids (primarily sputum), as well as the tuberculin skin test.

According to the WHO, about 10% of latent infections develop into active TB which, if
it does not get treated, has the potential of killing 1 out of 2 among those affected.

1https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf

2The typical symptoms of active TB are a chronic cough with blood-containing mucus, fever, night sweats,
and weight loss.
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To treat TB, either active TB or LTBI, it is needed to take (multiple) antibiotics over a
long period of time, i.e. six to nine months. The drugs used for treating TB are grouped in
two categories: first-line drugs and second-line drugs. The most frequent and effective antibi-
otics used for TB treatment include Isoniazid (INH), Rifampin (RIF), Ethambutol (EMB),
Pyrazinamide (PZA) and Streptomycin (SM), so-called first-line drugs. It is common that
treating TB using the first-line drugs fails due to the emergence of drug resistant bacteria.
In this case, the first-line drugs should be replaced with the second-line drugs that are
expensive and much more toxic than the first-line drugs. The second-line drugs are Fluoro-
quinolones group including Ofloxacin (OFX), Levofloxacin (LEV), Moxifloxacin (MOX) and
Ciprofloxacin (CIP), injectable drugs including Kanamycin (KAN), Amikacin (AMK) and
Capreomycin (CAP), and less effective drugs including Ethionamide (ETH)/prothionamide
(PTH), Cycloserine (CS)/terizidone and P-aminosalicylic acid (PAS).

Drug resistance in MTB is primarily caused by spontaneous mutations in genes that
are drug targets or drug-activating enzymes. These mutations occur in the form of Single
Nucleotide Polymorphisms (SNPs), insertions or deletions and rarely large deletions. It is
estimated that the rate of spontaneous mutations in prokaryotes is 0.0033 per replication, or
about 10−9 mutations per base pair (bp) per generation, meaning that roughly 2 mutations
a year occur in MTB given its genome’s length of 4.5 Mbp and replication time of 20 hours.

However, when the mutation numbers in MTB increase in the population this can result
in the emergence of drug resistance. It is known that the rate of mutation depends on the
drugs which are taken and typically the patients are prescribed combination of more than
one drug to decrease the risk of MTB strains being able to survive, as the risk of a strain
containing multiple resistance mutations is a lot lower. The mechanisms of resistance to
some drugs like INH and RIF have now been discovered by identifying the genomic regions
where the relevant mutations occur [25–28]. Table 1.1 shows this information for several
drugs and one can see that for some drugs, mutations in more than one gene are responsi-
ble for MTB developing resistance. The information provided in the table is based on the
current knowledge of drug resistance mechanism and the table is still being completed by
many researchers across the world who study resistance mechanism.

According to WHO, the TB drug resistance types are as follows:

• Mono-resistance that is resistance to only one first line drug,

• Rifampicin resistance (RR) that is resistance to Rifampicin with or without resistance
to other drugs.

• Poly-resistance that is resistance to more than one first line drug, other than both
Rifampicin and Isoniazid,
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Drug Gene Role of gene product

Isoniazid
katG catalase/peroxidase
inhA enoyl reductase
ahpC alkyl hydroperoxide reductase

Rifampicin rpoB b-subunit of RNA polymerase
Pyrazinimide pncA PZase

Streptomycin
rpsL S12 ribosomal protein
rrs 16S rRNA
gidB 7-methylguanosine methyltransferase

Ethambutol embB arabinosyl transferase
Fluoroquinolones gyrA/gyrB DNA gyrase

Amikacin rrs 16S rRNA

Kanamycin rrs 16S rRNA
eis aminoglycoside acetyltransferase

Capreomycin tlyA rRNA methyltransferase
rrs 16S rRNA

Ethionamide
inhA enoyl reductase
ethA enoyl-APC reductase
katG catalase/peroxidase

P-aminosalicylic acid thyA thymidylate synthase A

Table 1.1: First- and second-line drugs and mechanisms of drug resistance.

• Multidrug resistance (MDR) that is resistance to at least both Isoniazid and Ri-
fampicin,

• Extensive drug resistance (XDR) that is MDR plus resistance to any fluoroquinolone,
and at least one of three second line injectable drugs (Capreomycin, Kanamycin and
Amikacin),

As mentioned above, the emergence of drug resistance in TB patients makes the treat-
ment process harder and it would be beneficial to identify drug resistance of a patient to a
specific drug in the beginning of the treatment. According to WHO, 3.3% of new TB cases
were MDR-TB or RR-TB in 2019.

Generally, drug resistance can be detected using special laboratory tests which test the
bacteria for sensitivity to the drugs or detect resistance patterns. These tests can be culture-
based which consider the growth of bacteria in presence of drugs, and molecular-based which
pay attention to genetic mutations. The main problem with culture-based tests is that they
require professional laboratory and trained staff. Additionally, these tests are too lengthy
due to the slow growth rate of MTB bacteria that is doubling roughly once per day [29].

Given that many resistance-causing mutations are known, a molecular-based test can be
done fast but its sensitivity is low for some drugs and it can be an expensive test. Another
problem with this type of tests is the need for specialists to perform the test. Recently, some
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assays like GeneXpert have been commercialized that are easy to use for DST; however, they
have some limitations in detecting resistance to some drugs, and they are also expensive.
A new test called SPIT SEQ3 was introduced in August 2019 in India that tests sputum
and detects all the resistant mutations within 10 days. This test is not yet commercially
available but a potential problem with this test is its cost that is estimated at $100 for each
sample.

Considering the difficulty of these tests due to length of process, accessibility and cost,
some efforts have been made to get help from the computer science field to create tools
that are faster and cheaper to predict resistance to the drugs. In the following section we
introduce some tools and approaches proposed to predict drug resistance.

1.2 Drug Resistance Prediction Using Machine Learning Tech-
niques

TBProfiler [30,31], MyKrobe [32], KvarQ [33], PhyResSE [34] use presence of the resistance-
causing mutations in the isolates to predict resistance to the drugs. According to [35] these
tools have good performance for INH and RIF, the two most effective first-line drugs, but
poor performance for fluoroquinolones and injectable second-line drugs. Similar to these
tools, in [36], the authors find that detecting premature stop codons in resistance-associated
genes (katG, ethA, pncA, and gidB) can improve performance of resistance prediction based
on Whole Genome Sequencing (WGS) data.

In [37] the authors have applied several ML algorithms including Support Vector Ma-
chine (SVM), regularized Logistic regression (LR) and product-of-marginals (PM) as well as
three ensemble learning methods including Random Forest (RF), Adaboost, and Gradient
Boosting Trees (GBT) to predict resistance to 11 drugs based on WGS data. To this end,
they have used three different sets of features: all variants found within the 23 candidate
genes, predetermined resistance-associated variants as listed in [38], and a subset of the
first set including only resistance-associated genes for the particular drug. They have also
used linear dimension reduction techniques like SPCS/SNMF to handle sparsity in the data
and enhance the performance. Yang et al. [39] have also done such research. They have
applied several ML algorithms like LR and SVM with two different kernels, RF, PM and
a class-conditional Bernoulli mixture model (CBMM) on SNP data from selected 23 can-
didate genesIn another research paper [40], the authors have created and trained a GBT
model on SNP data to predict drug resistance.

3https://www.biospectrumindia.com/news/78/14407/medgenome-unveils-novel-dna-test-for-
all-dr-mutations-in-tb.html
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Chen et al. [41] have used wide&deep multi-task neural network (WDNN) to predict
resistance of isolates to 10 drugs using WGS data. They have compared the obtained per-
formance with a single-drug WDNN, a single-drug WDNN trained on known resistant mu-
tations for each drug, RF and regularized LR models.

Yang et al. [42] proposed two deep denoising auto-encoders augmented by multi-task
classifier and a clustering layer. The former is called DeepAMR and the latter is called
DeepAMR-cluster. DeepAMR is used to predict drug resistance while DeepAMR-cluster
is used to cluster the lineages. These models have been applied on SNP data to predict
resistance to 10 drugs. Hyperparameter tuning in DeepAMR has been done by minimizing
the Hamming loss that is fraction of wrong labels to the total number of labels. In addition
to the deep models, the authors have used Multi-label K-nearest Neighbor (MLKNN) and
Ensemble Classifier Chain (ECC) with LR as base classifiers on the data. The authors
compare the results of DeepAMR with MLKNN, ECC, RF, SVM and Direct Association
(DA) methods. In DA method, an isolate is labeled as resistant to a drug if any of known
resistance mutations from [38] is present in the isolate. Additionally, the authors rank the
SNPs by permutation feature importance model. In this approach the order of a feature
column is permuted and sensitivity decrease is computed.

DeepARG [43] is another tool using deep learning to predict drug resistance. To this
end, the authors first align short read sequences with known Antibiotic Resistant Genes
(ARGs) and compute a bit score that measures similarity between two aligned sequences.
Bit scores are fed into a fully connected NN to predict resistance of the input sequence to
the drugs.

Karmakar et al. [44] have pursued a different research direction from the previously
mentioned ones, and have proposed to use the structural information of pncA gene to
predict drug resistance to Pyrazinamide. In this regard, they consider the changes to the
3D structure of pncA when a variant occurs in this gene. The features they have used are
related to stability, dynamics, and evolutionary conservation of the gene. In this study, RF
has been used as prediction model.

Zhang et al. [45] use a Deep Convolutional Neural Network (DCNN) with four two-
dimesional convolutional layers to predict Pyrazinamide resistance in TB strains. To this
end, they reshape one-dimensional SNP data to two-dimensional shape to be able to apply
two-dimensional convolution operator. They also use SVM model along with a recursive
feature selection procedure to find resistance genes and mutations.
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Chapter 2

Data Processing and Feature
Engineering

2.1 SNP Detection in Raw Data

We have used the European Nucleotide Archive (ENA) to download the DNA short reads.
The raw sequence data are mapped to the H37Rv reference genome1 using bwa-mem software,
and then two SNP callers GATK [46] and SAMTools [47] are run to detect the SNPs,
insertions and deletions (indels)2. At the end, the intersection of these two SNP callers is
extracted that results in 742, 620 SNPs. Using the SNPs we create a binary matrix whose
rows and columns correspond to isolates and SNPs, respectively. Entry [i, j] in this matrix
is ‘1’ when SNP j is present in isolate i, otherwise it is ‘0’. Figure 2.1 shows histogram of
SNP occurrence across isolates. As shown there are ∼ 100, 000 SNPs that have detected in
only one isolate. As we get away from one, i.e. the number of SNP occurrence increases, the
number of such SNPs decreases. This histogram show that we have a very sparse matrix.

2.2 Gene/Protein Sequences

According to the TB database there are ∼ 4000 known genes in TB bacteria that can be
downloaded from EPFL database3 or NCBI. For each gene we have its start and end loca-
tions corresponding the M. tuberculosis H37Rv reference genome as well as its orientation
that is either of ‘minus’ or ‘plus’. To reconstruct the sequence of each gene in each isolate
we follow the below steps:

1. Finding the start and end locations of the gene and its orientation,

1https://www.ncbi.nlm.nih.gov/assembly/GCF_000195955.2/

2Note that from here for the sake of simplicity we refer to all of them as SNPs.

3https://mycobrowser.epfl.ch/
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Figure 2.1: Histogram of SNP presence across isolates.

2. Mapping the locations on reference genome and extracting the sequence between start
and end locations,

3. If the orientation is ‘plus’ there is no need to change the sequence, if the orientation
is ‘minus’, the sequence gets reversed, then complemented by replacing ‘A’ with ‘T’
and replacing ‘C’ with ‘G’ and vice versa.

4. Finding the SNPs occurred in the gene and the corresponding isolate,

5. Sorting the SNPs based on their position in order of end to beginning of the sequence,

6. Modifying the sequence based on each SNP.

Note that when two indels are overlapping and conflicting, we choose the one that is
shorter and affects a smaller part of the sequence. At the end, we have 4024 gene sequences
per sample with an average sequence length across all isolates of 995.29 bases.

Reconstructing gene sequences is followed by reconstructing protein sequences. Accord-
ing to [48] the start codons in TB are ‘GTG’, ‘ATG’ and ‘TTG’, and the stop codons are
‘TAG’, ‘TAA’ and ‘TGA’. To translate a gene sequence to its protein sequence we start from
the beginning of the sequence looking for a start codon and then we use the table shown in
Figure 2.2 to translate the codons to corresponding amino acids. Translation ends when a
stop codon is met. We use this procedure to translate the gene sequences we already have
and end up having 3990 proteins whose average length across isolates is 201.64.

4Note that in some genes, there is a stop codon in the middle of the reference gene sequence that is
confusing as stop codons are expected to be at the end of gene sequences. We have skipped those genes and
that is why the number of proteins is less than the number of genes.
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Figure 2.2: Genetic code chart: It shows translating each nucleotide triplet in DNA into an
amino acid or a termination signal in a protein.

Now, by having the gene/protein sequences the following preprocessing steps are needed
to prepare the sequence data to be fed into the network:

• To enable tracking each gene/protein whose lengths are variable, the sequences are
chunked into subsequences with length 200 for genes and 50 for proteins. Then, the
last chunk in each gene and protein is filled with a dummy symbol to make the length
of the last chunk equal to the other chunks.

• All obtained chunks are concatenated in order and a very long sequence for whole
genes/proteins is created.

After the preprocessing steps, the final length of gene and protein sequences are 4, 402, 400
and 822, 100, respectively. Given that gene sequences are too lengthy and needs huge amount
of computational resources, we only use protein sequences in our study.

2.3 Premature Stop Codon

It happens that a SNP changes a codon from a regular one to a stop codon, e.g. changing
‘TAC’ to ‘TAA’. When it occurs before reaching the end of gene sequence it is called pre-
mature stop codon. In [36], the authors show that considering the premature stop codons
and ignoring the occurring SNPs after these stop codons can improve prediction of drug
resistance in TB. Thus, we follow their suggestion and identify premature stop codons and
also ignore the SNPs that occur after the stop codon.
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2.4 Mutation Type

Mutation type is another source of information that might be helpful in improving perfor-
mance of prediction models. In this regard, we consider four types of mutations: missense,
nonsense, silent and frameshift [49].

Missense mutation is a mutation whose effect in changing a nucleotide in a codon results
in changing the protein, e.g. changing ‘ACT’ to ‘ATT’ which results in changing ‘Threonine’
protein to ‘Isoleucine’ protein. Nonsense mutation changes a codon to a stop codon which
can cause a premature stop codon, e.g. changing ‘TAT’ to ‘TAG’. Silent mutation does not
affect the translated protein, e.g. changing ‘CTT’ to ‘CTC’ which both are translated to
‘Leucine’ protein. Finally, frameshift corresponds to indels which can shift the following
codons. If the length of an indel is not divisible by three, it affects the reading frame of the
current and following codons. Thus, frameshifts can shorten or enlarge a protein sequence
and convert the protein sequence into an abnormal protein product.

Note that if we have two indels whose sum of shift lengths is divisible by three, all
mutations between these two indels are considered a frameshift, and after the second indel
the following codons are intact and their types are determined based on their effect on the
translated proteins.

2.5 TB Core Genome

The number of genes in TB is 4024; many of them are unrelated to the drug resistance.
Thus, we only consider TB core genes that are 2891 genes to reduce size of the data. The list
of TB core genes can be downloaded from https://www.cgmlst.org/ncs/schema/741110/

locus/ [50].

2.6 Pathways in Tuberculosis

A pathway consists of genes and their interactions which perform a specific task in a cell.
According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database5 there are
114 pathways in MTB whose genes and other related information can be downloaded using
the R package KEGGREST [51]. Such information is used to create a binary matrix whose rows
and columns correspond to genes and pathways, respectively, and entry [i, j] is 1 if gene i
belongs to pathway j. Such matrix/mask is used when there is protein sequence input data
to the neural network.

5https://www.genome.jp/kegg/
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2.7 Feature Selection Using Chi-squared Test

It is common to do feature selection in case of having a large number of features when
the number of samples is limited. One of the simplest and most useful methods to perform
feature selection is the Chi-squared test that tests the independence of two variables. In this
regard, the inputs of the test are a feature/variable and a label. This test is applied on every
feature and returns a score. When a variable and the corresponding label are independent
the score is low. Thus, to do feature selection, variables whose Chi-squared scores are higher
than others are the ones that are informative. Note that to prevent data leakage from the
training part to the testing part of the data, feature selection is only applied on the training
data, not the validation and testing data.
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Chapter 3

Deep Neural Network Designed to
Predict Drug Resistance

3.1 Introduction to Deep Neural Networks

A neural network is composed of neurons, layers and connections between neurons which
take input variable(s) and produce output(s) based on a chain of equations. The layers in
a basic neural network are an input layer, hidden layer(s) and an output layer. In each
layer there is one or more neurons which are connected to the neurons in previous and
next layer and each connection has a specific weight. Each neuron has two functions in-
cluding a linear function that computes the weighted summation of inputs to the neuron,
z = X0W0 +X1W1 + . . ., and an activation function that is a linear or non-linear function
that is applied to z and produces an output value, f(z).

Training a neural network is an iterative procedure including forward and backward
passes. In forward pass, the input data feeds into the network and goes through the net-
work layer by layer, then an output is generated by the output layer. Afterwards, the error,
so-called loss, is computed based on the difference between the network output(s) and the
true output(s). At this point, if a predetermined stop condition is met the training pro-
cedure stops, otherwise the forward pass is followed by a backward pass. In the backward
pass, so-called back propagation, gradient of loss with respect to the weights of connections
is computed and the weights are updated accordingly and then the forward pass starts again.

In the following sections, we briefly talk about different parts of the proposed neural
network model to predict drug resistance in TB and details of the training procedure.

3.1.1 Activation Functions

In a neural network, for each neuron an activation function is defined that maps the input
of the node to the output. Activation functions can be linear or non-linear. Linear activation

44



0.00

0.25

0.50

0.75

1.00

−5 0 5
x

Si
gm

oi
d(

x)

(a) Sigmoid.

0

2

4

6

8

−5 0 5
x

R
el

u(
x)

(b) ReLU.

0

3

6

−5 0 5
x

SE
LU

(x
)

(c) SELU.

Figure 3.1: Activation functions.

functions are not popular since they cannot capture the complexity of the input data to
the NN. Popular non-linear activation functions includes Sigmoid (Logistic) and ReLU
(Rectified Linear Unit) activation functions which are defined as:

Sigmoid(x) = 1
1 + e−x

(3.1)

ReLU(x) = max(0, x). (3.2)

Figure 3.1(a) shows the Sigmoid activation function. As shown, Sigmoid activation function
maps the input values to a value between 0 and 1. In case of having binary classification
problem, Sigmoid is the activation function that is used for the neuron(s) in the last layer
and its output values are considered as probability of belonging to the positive class.

ReLU activation function is mostly used for the neuron(s) in the hidden layer(s). Accord-
ing to its formula if the input value is greater than 0 its output is equal to the input value,
otherwise it deactivates the neuron(s) by mapping the input value to 0. In this case, during
the backpropagation pass, the weights and biases of such neuron(s) are not updated which
may result in making neuron(s) dead, i.e. they never become activated (See Figure 3.1(b)).
In this regard, some variants of ReLU like SELU (Scaled Exponential Linear Unit) [52]
has been proposed that do not deactivate the neuron(s). The SELU activation function is
defined as:

SELU(x) =

αx x > 0

αλ(ex − 1) x ≤ 0
(3.3)

where α = 1.05070098 and λ = 1.67326324 are constants. Noteworthy to mention that these
values have been computed by solving some equations to preserve the mean and variance
of the input values between consecutive layers. Figure 3.1(c) shows the SELU activation
function.
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3.1.2 Weight Initialization: He Method

The initial values of parameters of a layer including weights and biases can affect per-
formance of a neural network since outputs of one layer are the inputs to the activation
functions of the layer, and the outputs of the activation functions go to the subsequent
layer and pass forward through the whole network. Considering this, weights and biases
can potentially cause or prevent exploding gradients, i.e. too large loss gradients during
backward pass, or vanishing gradients, i.e. too small loss gradients during backward pass.
In either case, the network might not be able to converge or it can take a long time to con-
verge. Thus, selecting proper initial values for the wights and biases is an important task.
One of the popular initialization methods is random initialization where random numbers
based on a predetermined distribution, say Gaussian, are assigned to the weights and biases.

In 2015, He et al. [53] proposed an activation aware initialization approach which assumes
ReLU or Leaky ReLU are used as activation functions in the hidden layers. In this case,
the weights of layer l are:

W [l] = W [l]
r

√
2

Nl−1
(3.4)

where W [l] is weight matrix of layer l, W [l]
r is randomly initialized weight matrix of layer l,

and Nl−1 is the number of neurons in layer l − 1. In the He approach, the initial value of
biases is set to zero. In their paper they have shown that their initialization approach can
help convergence even in very deep networks.

3.1.3 Optimization

Optimization plays a key role in deep learning when we try to minimize the loss function,
i.e. empirical risk, with respect to some parameters on a training set. Gradient descent (GD)
is an iterative algorithm that is used for neural network optimization. The main idea behind
GD approach for a minimization problem is taking steps toward steepest descent direction
that is in the opposite direction of the gradient of the loss function.

The basic formulation of GD is as follows:

wt+1 = wt − ηt∇J(wt), (3.5)

where η is the step-size, so-called learning rate, w is the parameter and ∇J(wt) is
gradient of the loss function for the tth iteration. ∇J(wt) can be written as:
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∇J(wt) = 1
n

n∑
i=1
∇Ji(wt), (3.6)

where Ji(wt) is the loss for sample i in iteration t and n is the number of training samples.
Stochastic Gradient Decent (SGD) is one of the variants of GD where the weights (pa-

rameters) are updated after each training sample. Thus, when one iteration, a pass on all
training samples, is done, the weights have been updated n times.

AdaGrad [54] is another variants of GD where instead of using a fixed learning rate
to update the parameters w, it uses a different learning rate for every parameter at each
iteration based on past gradients of the parameter:

wt+1,i = wt,i −
η√

Gt,ii + ε
· ∇J(wt,i), (3.7)

where ε is smoothing constant, say 1e − 8, to prevent division by zero and G is gradient
matrix:

G =
t∑

τ=1
gτg

T
τ , (3.8)

where gτ = ∇Ji(w) that is the gradient vector at iteration τ and the diagonal element of
matrix G is computed as:

Gii =
t∑

τ=1
g2
τ,i. (3.9)

√
Gt,ii can be considered as `2-norm of previous gradients such that parameters with small

updates get larger scaling factor of the learning rate and parameters with large updates get
smaller scaling factor of the learning rate.

The weakness of AdaGrad is diminishing the learning rate as accumulation of gradients
over time gets very large. In this regard, Hinton [55] has proposed Root Mean Square
Propagation (RMSprop) method to resolve the issue. In RMSprop, the weights are updates
as:

v(w, t) = γv(w, t− 1) + (1− γ)(∇J(w))2, (3.10)

wt+1 = wt −
η√

v(w, t)
· ∇J(w) (3.11)

where γ is called forgetting factor, suggested to be set to 0.9 and v(w, t) computes the
moving average. According to the formula, the learning rate is divided by a factor that
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normalizes the gradient for weight w considering magnitude of recent gradients for that
weight. In this manner, the learning rate is decreased when the gradient is large and in-
creased when the gradient is small; this behaviour avoids exploding and vanishing gradients
in the network, respectively.

It has been observed that AdaGrad works well on problems with sparse gradients and
RMSprop works well on non-stationary problems which might be noisy. Adaptive Moment
Estimation (Adam) [56] method combines benefits of both AdaGrad and RMSprop methods
and similar to them adapts the learning rate for each parameter. Adam considers averages
of gradients as well as the second moments of gradients when it updates the weights:

mt+1,w = β1mt,w + (1− β1)∇J(wt) (3.12)

vt+1,w = β2vt,w + (1− β2)(∇J(wt))2 (3.13)

m̂w = mt+1,w
1− βt+1,1

(3.14)

v̂w = vt+1,w
1− βt+1,2

(3.15)

wt+1 = wt − η
m̂w√
v̂w + ε

(3.16)

where ε is smoothing constant, say 1e − 8, to prevent division by zero, and and β1 and β2

are forgetting factors for gradients and second moments of gradients, suggested to be set at
β1 = 0.9 and β2 = 0.999.

3.1.4 Preventing Overfitting

Overfitting is one of the main challenges in the field of deep neural networks and it occurs
when the training data is small while the network, the number of trainable parameters, is
big. If overfitting occurs, the network works well on training data, however its performance
on test (unseen) data is poor and it is said that the network cannot generalize. Different
techniques have been proposed to resolve the issue including regularization, dropout and
early stopping techniques.

Regularization

In regularization technique, a term is added to the loss function aiming to make the weights
smaller with expecting to obtain a simpler network. In this regard, the total loss of the
network for `2-regularization is defined as:

Total loss = Loss + λ

2n
∑
||w||2 (3.17)
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where λ is the regularization parameter, i.e. penalty, and n is the number of samples. The
second term computes the `2 norm of all weights exist in the neural network that helps to
have smaller weights. For `1-regularization the second term in the total loss is `1 norm
that is written as:

Total loss = Loss + λ

2n
∑
||w||1. (3.18)

Dropout

In dropout technique, which is considered a regularization method, some neurons are ran-
domly ignored at each epoch during the training process, both forward and backward passes.
In the other words, at each epoch each neuron and its connections are ignored with a given
probability that makes the training process noisy and prevent the network from overfitting
and learning noise in the training data [57].

Early stopping

One of the challenges in training a neural network is when to stop training process. If
training stops early, the model has high bias (underfits), meaning it has not yet learned the
training data. On the other hand, if training continues for a long time, the model has a high
variance (overfits). In the early stopping approach, the validation loss is monitored 1. If the
validation loss does not improve for a predetermined epoch number the training process is
stopped and the network weights from the epoch with minimum value of validation loss is
restored [58].

3.1.5 Batch Normalization

In real data, sometimes the range of features is different from each other, which may cause
biases in the learning process. To prevent this, normalization technique is applied on features
to map them to a common scale while the distribution in the original data is maintained.

As mentioned above, in a deep neural network with several hidden layers the weights
are updated in a backward pass, layer-by-layer, from the last layer to the input layer.
Updating weights of a layer is performed with the assumption that outputs of the prior layers
follow a specific distribution. However, the distribution of outputs changes after each weight
update, which may make the network unstable and requiring a long training process. In this
regard, Ioffe and Szegedy in [59] proposed batch normalization technique that standardizes
outputs of layers that come from activation functions. Using batch normalization in a layer
spreads through the subsequent layers and it is expected that the distribution of inputs

1Note that the validation data is never used to train the model and we just measure network performance
on the validation data after each epoch to decide about stopping or continuing the training process.
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does not change dramatically during backward updates, resulting in faster training process
and network stability.

3.1.6 Learning Rate Scheduler

Learning rate is a key hyperparameter, usually in the range between 0 and 1, which scales the
magnitude of the neural network weight updates aiming to minimize the loss function, and
thus can affect the speed of training process. Setting the learning rate to a very small value
causes slowing down of training progress or even getting stuck in a suboptimal solution.
Setting the learning rate to a very large value can cause quick convergence to a suboptimal
solution or seeing drastic variation in the loss function such that it may jump over the
optimal point.

Considering these points, changing the learning rate over time is the simplest method to
prevent oscillation and getting stuck in a local minimum. In this approach, the learning rate
is decreased by multiplying with a momentum, say 0.99, after each epoch. This method
causes large weight updates early and small updates later during the training process [60].

3.1.7 Loss Function

One of the important components of neural networks is the loss function that measures
the performance, the prediction error, of the network by comparing the network output
with the true output. Considering that the loss value is used for computing gradients and
subsequently updating weights in the network, choosing the appropriate loss function can
impact the performance of the final model. Different loss functions have been introduced,
of which the appropriate ones for classification problems are Binary Cross-Entropy (BCE)
and Categorical Cross-Entropy. The first one is applicable for binary classification prob-
lems while the latter is appropriate for multi-class classification problems. Given that drug
resistance prediction is a binary classification problem we focus only on BCE loss function.

Binary Cross-Entropy (BCE), also called Sigmoid cross-entropy, loss is used when we
have a binary classification problem and the activation function of the last layer is Sigmoid.
BCE loss is written as:

BCE = − 1
n

n∑
i=1

yi log(p(yi)) + (1− yi) log(1− p(yi)), (3.19)

where n is the number of samples, yi is the label of the i-th sample and p(yi) is the predicted
probability of sample i belonging to the positive class.

In case of an imbalanced data, i.e. the number of positive samples is significantly smaller
than negative samples, some researchers suggest to use a weighted BCE (WBCE) as follows:
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WBCE = − 1
n

n∑
i=1

Wyi log(p(yi)) + (1− yi) log(1− p(yi)) (3.20)

where W is the weight assigned to the positive class. In WBCE, if W > 0 it penalizes the
wrong answers for the positive class which is considered the minority in an imbalanced data
set. If W = 1 then we have WBCE = BCE.

Generalizing BCE/WBCE for multi-label classification problem is performed via com-
puting summation of losses over all labels. Note that in case of multi-label classification the
parameter W in the WBCE is computed for each label separately. Additionally, considering
that in our problem, in which there are some unknown resistance labels for some drugs
for some isolates, during the computation of loss values for each drug we just consider the
samples with known labels. Considering these points the multi-label WBCE (ML-WBCE)
is as follows:

ML-WBCE = − 1
n

D∑
d=1

n∑
i=1

yd
i is known

W dydi log(p(ydi )) + (1− ydi ) log(1− p(ydi )) (3.21)

where n is the number of samples, D is the number of drugs, ydi is label of sample i for drug
d and p(ydi ) is predicted probability of belonging sample i to the positive class for drug d,
W d is the weight assigned to the positive class for drug d.

3.2 Choosing Metric(s) for Performance Comparison

In recent years some papers [61–63] have discussed importance of performance metric selec-
tion in applied papers. According to these papers, in case of having imbalanced data, using
accuracy and Receiver Operating Characteristic (ROC) curve measurements can be mis-
leading such that with a low true positive rate we get nice results for ROC and accuracy. To
this end, using Precision-Recall (PR) curve measurements is recommended as in computing
precision ( TP

TP+FP ) and recall ( TP
TP+FN ) values the true negative value, that is from major

class, is never used and they just measure correct predictions for the positive/minor class.

3.3 Multi-headed Multi-task Neural Network to Predict Drug
Resistance

To improve the performance of prediction model we propose to integrate multiple data types,
i.e. gene/protein sequence and SNP absence/presence data, extracted from TB isolates. Each
data has its own shape and type thus we need to choose appropriate architecture (head)
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(a) Fully connected block. (b) Residual block. (c) Wide-n-deep block.

Figure 3.2: Three general heads.

to feed the data into the network. For example, for SNP absence/presence data we can
use a simple fully-connected network, however for gene/protein sequence data that are too
lengthy we need to consider using convolution layers in the proposed head.

In this thesis, we use three general heads including residual block, wide-n-deep (WDNN)
block and fully-connected (FC) block applicable for numerical data. Figure 3.2 shows these
three blocks. In each block the number of layers and nodes are adjusted during hyperparam-
eter optimization. Note that for categorical data, e.g. SNP type data, we add an embedding
layer as the first layer of the block.

For sequence data, Long-Short term Memory (LSTM) or Recursive Neural Network
(RNN) are the usual architectures in the field of deep neural network. However in case of
our problem, having about 4000 genes/proteins with average length of ∼ 900 for genes and
∼ 200 for proteins, using these elements in the architecture is not practical. In this case,
we propose the architecture shown in Figure 3.3 that uses Convolutional Neural Network
(CNN) layers to get a separate feature map for each gene/protein. This sequence processing
block can be connected to a fully connected block whose connections can be masked using
background knowledge like gene-pathway data.

3.4 Fine Tuning of Hyperparameters

In machine learning algorithms changing some specific parameters can usually positively/negatively
affect the results and thus, they should be predetermined before the algorithms start. In
the field of deep neural networks such parameters are number of layers, number of nodes in
a layer, learning rate, etc. Considering the number of parameters and also their types, i.e.
whether they are discrete or continuous, we face a search space that must be explored to
find the best setting for the ML algorithm.
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Figure 3.3: Sequence processing block.

The naive and basic approach of finding the best setting is doing grid search and giving
every combination of all the hyperparameter values a try. However, grid search is not a good
solution when it comes to deep neural networks as there are several continuous and discrete
hyperparameters, e.g. learning rate and number of layers. Additionally, giving every possible
setting a try makes grid search a very time-consuming approach; of course, the procedure
can be run in parallel, but this increases the requirement of computational resources.

The second approach of exploring the search space is performing random search. In
this approach, a sampling distribution is provided for each hyperparameter and values are
randomly sampled. The philosophy behind random search is that for most of the data sets,
not all hyperparameters are equally important, and random search does not spend much
time on an unimportant parameter [64]. This approach can also be run in parallel similar
to the grid search approach and is faster than grid search approach; however, there is no
guarantee that it finds the best setting.

The third approach for fine tuning hyperparameters is Bayesian optimization approach,
which is a sequential model-based optimization. In this approach, unlike grid search or
random search where each run is independent from the other runs for selecting the next
candidate setting to test, the information obtained from previous runs is utilized to improve
the sampling method of the next experiment. In brief, a model is initialized with hyper-
parameter vector λ which, after training, is scored S according to a predetermined metric.
Then, the previously evaluated hyperparameter values are used to compute a posterior
expectation of the hyperparameter space. Afterwards, the optimal hyperparameter values
are chosen according to the posterior expectation as the next set of hyperparameters. This
procedure is repeated iteratively until converging to an optimum or reaching the predeter-
mined maximum number of iterations. Considering the advantage of Bayesian optimization
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over grid and random search approaches we use Bayesian optimization approach to adjust
hyperparameters in our project.
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Chapter 4

Experimental Results

4.1 Settings of Experiments

There are 7845 isolates whose labels are partially known for twelve drugs including ‘Etham-
butol’, ‘Isoniazid’, ‘Pyrazinamide’, ‘Rifampicin’ and ‘Streptomycin’ as first-line drugs and
‘Amikacin’, ‘Capreomycin’, ‘Ciprofloxacin’, ‘Ethionamide’, ‘Kanamycin’, ‘Moxifloxacin’ and
‘Ofloxacin’ as second-line drugs. In this project, we mainly focus on first-line drugs, however,
the results on all drugs are available in the supplementary section.

To use the data for creating prediction models we divide the data to three parts: 50% as
training, 30% as validation and 20% as test data. To have similar distribution of the labels
in these three parts we use the stratified approach in scikit-learn package [65] considering
the first-line drugs.
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Figure 4.1: Distribution of labels for each drug in training, validation and test splits.

Figure 4.1 shows the number of isolates from each label in each drug for whole data,
training, validation and test data. As shown in the part of WholeData the number of sensi-
tive isolates are more than the resistant ones and we have many isolates with partial labels,
i.e. for a specific isolate the labels for all 12 drugs are not known. Also, as seen the strati-
fied approach have split the data into training, validation and test data with similar label
distributions which is helping to conduct a fair performance evaluation. In this regard, note
that we use the same data division in all experiments.

In this study to reduce the size of data, we focus on only TB core genome, thus for SNP
related data we only keep SNPs occurred on this set of genes and also, for sequence data
we only keep sequences of TB core genes. In addition, in SNP related data features whose
number of non-zero values is less than 6 are removed from the data as they are considered
as rare SNPs.

In the next step, to reduce the number of input features, in all data types except for
sequence data, we use Chi-square feature selection test on training data and chosen features
are fed into the NNs. In this test, the features whose scores are higher than the average
of scores across all features and have a p-value less than 0.05 are selected as final features.
Note that Chi-square test is applied on each feature and each drug, that means we get a
separate set of selected features for each drug. At this point, the final set of selected features
is produced considering union of the selected features for each drug. Table 4.1 shows the
number of selected variables in each drug and the size of final set of selected variables.
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Ethambutol Isoniazid Pyrazinamide Rifampicin Streptomycin Total number of selected features
SNP Absence/Presence Data 2164 2725 1928 2618 2499 3758
SNP Type Data 2063 2613 1802 2484 2388 3590
Premature Flag Data 226 314 193 295 251 465
Translation Fraction Data 103 109 81 132 99 143

Table 4.1: Number of selected variables for each drug using Chi-square method. The last
column shows the final number of selected variables that is obtained by computing the union
of selected variables for all drugs.

Data types Variable Name Variable type, Range, Distribution

SNP Absence/Presence Data, SNP Type Data,
Translation Fraction Data, Premature Stop Codon Flag Data

Number of nodes Integer, (5, 50), uniform
Number of layers Integer, (2, 20), uniform
Dropout rate Real, (1e-1, 5e-1), log-uniform
`2 Regularization penalty Real, (1e-2, 5e-1), log-uniform
Type of NN head ‘WDNN’, ‘ResidualNN’, ‘FC’

Gene Sequence Data, Protein Sequence Data

Number of nodes Integer, (5, 50), uniform
Number of filters Integer, (5, 100), uniform
Dropout rate Real, (1e-1, 5e-1), log-uniform
`2 Regularization penalty Real, (1e-2, 5e-1), log-uniform

Shared Layers

Number of nodes Integer, (5, 100), uniform
Number of layers Integer, (1, 20), uniform
Dropout rate Real, (1e-1, 5e-1), log-uniform
`2 Regularization penalty Real, (1e-2, 5e-1), log-uniform

Global Parameters Learning rate Real, (1e-6, 1e-1), log-uniform
Activation function of hidden layers ‘ReLU’, ‘SELU’

Table 4.2: Hyperparameter list. This table shows the name, type and range of each hyper-
parameter defined for each input data type as well as shared part of the NN and global
hyperparameters. Note that in case of using two input data types, given that one head is
used for each input data, two sets of the hyperparameters are considered for optimization.

To build the NN, we use He method to initialize the weights and Adam as optimizer in
the model. ML-BCE is used for measuring loss. A learning rate scheduler is used such that
it reduces the learning rate by factor 0.98 in each epoch after epoch 10.

Bayesian optimization approach is used to fine-tune the network based on several hy-
perparameters listed in the Table 4.2. This table shows the name, type and initial range
of each hyperparameter that is used for each data type. Noteworthy to mention that the
range of each hyperparameter has been chosen empirically.

Fine-tuning of the network is performed on training data and validation data. To this
end, we test 50 different sets of hyperparameters to find the setting whose obtained AUC-
PR on validation data is maximized. Network training stops when it reaches to maximum
number of epochs, 2000, or early stopping condition is met (patience is set to 50). After
finding the best setting, we start to train the network with the chosen hyperparameters while
the maximum number of training epochs is set to 4000. In case of meeting early stopping
condition, model weights from the epoch with the minimum validation loss is restored.

In the following, we present results obtained from NNs with different settings and ar-
chitectures.
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4.2 Baselines to Compare Performance of the Proposed Model
with

Logistic regression (LR) is a statistical method that is applicable for binary classification
problems. LR method works well in the field of drug resistance prediction in TB on SNP
absence/presence data, hence it is used as the main benchmark here. Note that LR is
applicable for single label classification problems not multi-label ones. In this case, we run
LR for each drug separately and report its performance. Additionally, Chen et al. [66]
propose to use a multi-task wide&deep NN (WDNN) to predict drug resistance in TB. As
we performed some experiments we noticed that residual NN or even fully connected NN
sometimes works better than the WDNN for our data. Thus, we set the NN architecture
as a hyperparameter to find the best architecture. Figure 4.2 shows the obtained results on
first-line drugs from LR, multi-task NN (NN5) as well as single-label NN (SNN) using just
SNP absence/presence data.
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Figure 4.2: Obtained AUC values from LR, SNN and NN5 methods using SNP ab-
sence/presence data on the first-line TB drugs. Values on each bar shows the exact AUC
value.
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As seen in terms of AUC-PR, that is the main performance metric in our study, LR
method works better for Isoniazid, Pyrazinamide and Rifampicin, however, the difference
between LR’s and NN5’s values is not considerable. Noteworthy to mention that according
to the Bayesian hyperparameter tuning, in NN5 WDNN outperforms the other ones, i.e.
Residual or FC blocks, and is selected as the main model and in SNN, WDNN has been used
for Isoniazid, Pyrazinamide and Streptomycin, residualNN has been used for Ethambutol
and FC has been used for Rifampicin.

4.3 Using Multiple Input Data Types

In this experiment, we have applied NN5 on different input data types. Figure 4.3 shows the
results. According to the results, ‘TransFrac’ and ‘PrematFlag’ data are not good sources
of data and their AUC-PR values are the lowest for each drug while using three sources of
data, ‘SNPAbs-ProtSeq-TransFrac’ produces the highest AUC-PR for 4 drugs out of 5 drugs
and also, according to Figure 4.4, the average AUC of using ‘SNPAbs-ProtSeq-TransFrac’
as well as ‘SNPType-ProtSeq-PrematFlag’ data types outperform the other data sources.
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Figure 4.3: Obtained AUC from NN5 on first-line drugs.
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Figure 4.4: Average AUC from NN5 across first-line drugs. Each bar corresponds to the
average AUC values across the set of drugs. Error bars show the standard deviation across
drugs.

4.4 Considering Co-occurrence of Resistance Labels in NN5

According to [67], when we face with a multi-label classification problem considering the co-
occurrence of labels and adding a layer before the output layer can be helpful. To this end,
unique patterns of resistance co-occurrence in drugs are extracted and a dense layer, whose
number of neurons/nodes is set to the number of unique co-occurrence patterns, is added
to the network right before the output layer. We refer to this model as ‘NN5_COOCC’. Re-
garding the connections, there is a connection between a node, say A, in the co-occurrence
layer and a node, say B, in the output layer if B ∈ A (See Figure 4.5).
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Figure 4.5: Adding a label co-occurrence layer right before the output layer. As seen these
two layers are not fully connected. Neuron {A,B,D} is only connected to neurons A, B
and D and not C in the output layer.
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Figure 4.6: Obtained AUC from NN5_COOCC.

Figure 4.6 shows the results of this experiment using different input data types. The
AUC-PR of ‘TransFrac’ and ‘PrematFlag’ data are the lowest while performance of the other
data types are too close to each other such that we cannot say which data source(s) is better
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than the other ones. Figure 4.7 compares the average AUC values of ‘NN5_COOCC’ and
‘NN5’ across first-line drugs using different input data sources. According to average AUC-
PR values, data ‘SNPType-ProtSeq-TransFrac’ produces the best result for NN5_COOCC
model, however, in comparison with NN5 its AUC-PR is a bit, 0.4% lower.
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Figure 4.7: Average AUC from NN5 and NN5_COOCC across first-line drugs. Each bar
corresponds to the average AUC values across the set of drugs. Error bars show the standard
deviation across drugs.

4.5 Masking Connections Using Gene-Pathway Data in Se-
quence Processing Block

In this experiment, we try to add domain knowledge on TB pathways to the neural net-
work when one of the input data is protein sequence data. To this end, with help of KEGG
database we create a gene-pathway mask, and also a layer is added right after the last
layer of sequence processing block. We call this model ‘NN_GPM’. If the value in the entry
[genei, pathwayj ] in the mask is 0 we set the connection weight between gene i and pathway
j in the network to 0, otherwise we do not change the connection weight (See Figure 4.8).
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Figure 4.8: Connecting the last layer of sequence processing block to a layer whose neurons
correspond to the pathways. If entry [Gi, Pj ] is one the connection between node Gi and Pj
is active, otherwise it is masked, i.e. its weight set to 0.

Figure 4.9 illustrates the obtained results from NN5_GPM for different combination
of input data. Note that protein sequence data is always used since gene-pathway mask
is only applied on sequence processing block. As shown, ‘SNPAbs-ProtSeq’ data obtains
higher AUC-PR values in comparison with the other data sources.
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Figure 4.9: Obtained AUC from NN5_GPM.

Figure 4.10 shows average AUC-PR across first-line drugs for NN5 and NN5_GPM.
As shown, using ‘SNPAbs-ProtSeq’ and ‘SNPType-ProtSeq’ data for NN5_GPM produce
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a slightly better AUC-PR in comparison with NN5, however, considering the other data
sources NN5 is slightly better than NN5_GPM.
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Figure 4.10: Average AUC from NN5 and NN5_GPM across first-line drugs. Each bar
corresponds to the average AUC values across the set of drugs. Error bars show the standard
deviation across drugs.

4.6 Weighted Loss to Handle Imbalance Data

As shown in Figure 4.1, the number of resistant isolates is less than the number of suscepti-
ble ones for each drug that makes the data imbalanced. To handle the imbalance data one
of the popular method in the field of deep neural network is using weights for each class
for each label. Here, we have used WBCE formula as introduced in Section 3.1.7 to see if
it can improve the results. We refer to this model as ‘NN5_WBCE’. Figure 4.11 shows the
results for different types of input data on first-line drugs. Other than ‘PrematFlag’ and
‘TransFrac’ data the AUC-PR for different drugs and input data are very close.
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Figure 4.11: Obtained AUC from NN5_WBCE.

To find if WBCE can help to improve the results we have compared the average AUC
values across first-line drugs obtained by NN5 and NN5_WBCE in Figure 4.12. As seen,
the results are very close and there is no significant difference between them.
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Figure 4.12: Average AUC from NN5 and NN5_WBCE across first-line drugs. Each bar
corresponds to the average AUC values across the set of drugs. Error bars show the standard
deviation across drugs.

4.7 Summarizing the Results

Figure 4.13 helps to get a complete insight on the results reported in previous sections.
It plots top three methods in terms of AUC-PR and AUC-ROC. As shown, ‘ProtSeq’,
‘SNPAbs’ and ‘SNPType’ data are seen frequently in this figure that indicates these three
data sources are the most informative ones. As shown, LR is included in the top three meth-
ods only for Isoniazid while its AUC-PR is still equal to NN5_GPM (SNPAbs-ProtSeq).
Among different NN5 variants and different data inputs NN5 (SNPAbs-ProtSeq-TransFrac)
and NN5_GPM (SNPAbs-ProtSeq) show a good performance which appear in the top three
list for four and three drugs, respectively.

Figure 4.14 shows the best average AUC across first-line drugs for each method. Note
that the data input for both LR and SNN is only SNPAbs while for the other meth-
ods different sources of data have been used. As seen NN5_GPM (SNPAbs-ProtSeq),
and NN5_WBCE (SNPType-ProtSeq-PrematFlag) have obtained higher average AUC-PR,
however, they are very close to the other combination of methods and input data.
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Figure 4.13: Top three AUC results for each drug. The legend shows the name of method
and data input(s) for each bar color.
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Table 4.3: The statistics of AUC-PR values obtained from 10 runs and corresponding %95
confidence intervals (CI). The last column shows if the obtained results are significant when
we compare with LR AUC-PR.

Min Max Mean Std 95% CI Significant
LR - - 0.862 - -
SNN 0.849 0.858 0.854 0.002 [0.852, 0.856]
NN5 0.924 0.927 0.926 0.001 [0.925, 0.926] *

NN5_COOCC 0.923 0.926 0.925 0.001 [0.924, 0.926]
NN5_GPM 0.914 0.922 0.919 0.003 [0.917, 0.921] *
NN5_WBCE 0.915 0.919 0.917 0.001 [0.916, 0.918]

To make sure that the results shown in Figure 4.14 are robust, we ran the NNs, while
the weights are randomly initialized, 10 times using the best parameter settings found by
the Bayesian optimization. Table 4.3 shows the statistics computed based on the obtained
AUC-PR as well as the corresponding %95 confidence intervals (CIs) and the significance.
To compute the CI, given that we have limited number of runs (n = 10 < 30), we use
the t-distribution. As seen, the CIs are very small indicating to robustness of the NNs.
Additionally, performing significance test with considering that critical value of t at 0.05
and dof = 9 is 1.833, it turns out that the NN5 and NN5_GPM are significant when we
compare their mean with LR.

Considering these figures that summarize results of more than 70 experiments we can
say:

• Multi-task NNs outperform SNN and LR as in Figure 4.13 all the three top AUC
results except for Isoniazid come from NN5. Figure 4.14 also confirms this as the
average AUC values for NN5 methods are higher than SNN and LR. These results
can be justified as multi-task NNs are able to capture the relationship between drugs.

• The prediction performance of models using ‘TransFrac’ and ‘PrematFlag’ as a single
input data is not good (see Figures 4.3, 4.6, 4.11) but when they are combined with the
other data types they can slightly improve the performance as it is seen in Figure 4.13
where these two data sources appear 7 times in the legend, and 9 bars out of 15 bars
in the PR curve part.

• As seen in the Figure 4.13, ‘ProtSeq’ data exist in all the bar colors except than
the LR and NN5_WBCE bars and also in Figure 4.14 all the best results from NN5
variants use ‘ProtSeq’ data. Thus, we can say that ‘ProtSeq’ data is a good source
of information to predict drug resistance. Additionally as seen in these two figures,
in almost all cases when ‘ProtSeq’ data is used, one of the SNP data sources, i.e.
‘SNPAbs’ or ‘SNPType’, is also used. This indicates that using these two data sources,
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‘ProtSeq’ data and SNP data, improves the final results. The only problem regarding
using protein sequence data is its high demand for computational resources.

• As seen the best results based on both AUC-PR and AUC-ROC in the Figure 4.14
come from NN5_GPM using two sources of data and the second best results come
from NN5_WBCE using three sources of data. Considering the data sources in the
Figure 4.13 we also see that about half of the bars come from NNs with three data
sources. Based on this we can say that using three sources of the data in NN5 models
can produce good results but seems that such results or even slightly better results
can be produced using the other variants of NN5. i.e. NN5_COOCC, NN5_GPM or
NN5_WBCE, with less input data sources. Thus, changing the NN architecture in a
good manner can positively affect the model performance.

• Although the obtained results confirm that the SNP data is informative for predicting
drug resistance as several research use it, we believe that ‘ProtSeq’ data has also a
good amount of information regarding drug resistance mechanism. There are a few
research papers discussing the roles of TB proteins in drug resistance. For example
Sharma et al.in [68] talk about isolates that show drug resistance to some first-line and
second-line drugs while no mutations in genes, who are responsible for drug resistance,
exist. Such thing can only be explained by studying proteomics in TB as proteins can
control biological processes.

• Last but not least, computational cost of using neural networks is much higher than
methods like LR. While training process in LR takes less than half an hour and it
does not need powerful processors, training process in a neural network takes from
few hours in a small neural network to 8 hours in a big neural network on graphics
processing units (GPUs). Therefore, considering that the performance of LR and NNs
are very close, in case of having limited time and computational resources LR seems
a better choice than neural networks. However, if the goal is not only getting a good
performance but studying the important factors of drug resistance specifically based
on different data types, NNs are better as different types of data can be fed into the
networks.
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Chapter 5

Discussion

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB) bacteria, is a serious air-
borne disease that can be spread via coughing or sneezing from a sick person to another
person. TB primarily occurs in the lungs; however, it can also affect other parts of the body
like the spine, the brain and the kidneys. According to WHO, TB is one of the top 10
leading causes of death in the world. Two types of TB infection are active TB and latent
TB infection (LTBI). Although both of these can be completely cured using antibiotics, not
every drug can cure the disease due to the emergence of drug resistant TB strains in recent
years. Treating drug resistant TB is harder than normal TB and it is better to find if the
TB is drug resistant prior to prescribing medicine. The common method of determining if
the TB is drug resistant is via laboratory experiments, but this method is expensive, time
consuming and not always accessible. Considering the time and cost of identifying drug
resistant TB in the lab, researchers proposed machine learning techniques to predict drug
resistance based on Whole Genome Sequencing (WGS) data. WGS data is used as a main
source of data to predict drug resistance since it has been discovered that some mutations
in specific genes can make a TB isolate resistant to a specific drug. In order to use WGS
data to predict drug resistance in TB, SNP calling software is used to detect the SNPs in
the sequence of TB isolates and then the absence/presence of SNPs is used to develop and
train machine learning models.

In this project, we first detect the SNPs using GATK and SAMTools SNP callers and
identify the common SNPs so as to reduce false positive SNPs. Then, using the detected
SNPs, we generate new types of data to see if the data representation can affect model
performance. The data produced based on SNP absence/presence data include SNP type,
protein sequence, translation fraction and premature stop codon flag data. We use the
data to train several multi-input multi-task NNs to predict drug resistance labels for TB
isolates. The obtained results show that integrating more than one source of data can pos-
itively affect the model performance, and protein sequence data and SNP data, i.e. SNP
absence/presence data or SNP type data, are more informative than the other types. On the
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other side, manipulating the NN architecture using external knowledge can boost the results.

As we worked on this project, we became aware of some possibilities that can be con-
sidered in the future in order to improve the model performance. The first one is about
producing SNP absence/presence data that is the main source of data in the field of drug
resistance prediction. As mentioned, we have detected more than 700, 000 SNPs, which we
know to be primarily false positives (not relevant to drug resistance), and tried to refine them
using Chi-squared tests. However, recently some advanced approaches like DeepVariant [69]
have been proposed to produce more reliable SNPs. We think that using the advanced SNP
callers can increase the quality of SNP absence/presence data which directly affect the final
results.

Another aspect of the project that can be investigated is the significant number of
partially-labeled TB isolates. In this project, we took it in consideration when we define
the loss function; however, this is not the only way to handle the missing labels. Durand et
al. [70] propose the use of Graph Neural Networks (GNNs) to model the correlation between
labels. We think GNNs can be helpful in this matter since TB drug resistance phenotypes
are correlated; for example, TB strains that are resistant to Rifampicin are more likely to
be resistant to Isoniazid, as well [71].

Furthermore, as seen in our results, protein sequence data is an informative source of
data. In this regard, Sharma et al.in [68] talk about isolates that show drug resistance
to some first-line and second-line drugs while no mutations exists in the genes that are
responsible for drug resistance. Such a phenomenon can only be explained by studying
proteomics in TB and considering gene/protein expressions. However, processing sequence
data is challenging due to its large size and high amount of computational resources required.
One way to handle this amount of data is limiting the study to a subset of genes, as we did by
focusing on the core TB genome. In spite of reducing the amount of sequence data, feeding
the protein sequence data into NNs is tricky and to this end, we chunked them into equal
parts, merged the parts and defined specific filters in the convolution layers. Such a method
can be used in any other applications where the input data is sequences and is desired that
the whole sequence be fed into the network. Given that processing sequence data is not
always possible due to lack of computational resources, another way of using sequence data
is extracting new features from sequences that capture overall sequence patterns, as was
done in [72]. Therefore, instead of feeding the large sequence data to the NN, an extracted
tabular data with reasonable size can be used as input.

Lastly, another direction that can be followed is the idea of ensemble learning where
instead of a single model, several sub-models are created and trained and then using ensem-
ble approaches like stacking one meta-learner is created. This is also promising since the
sub-models can cover weak points of each other and make the final model stronger.
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Appendix A

Speeding Up the Structural
Analysis of Metabolic Network
Models Using the
Fredman-Khachiyan Algorithm B

A.1 Code and Data Avaiability

The data and code are available on GitHub Repository https://github.com/NaSed/Modified_
FK_B_Algorithm .

A.2 Analyzing Reactions in the Biological Models

Figure A.1 shows the occurrence frequency of reactions in EFMs and MCSs for each model.
As shown, in most of the models, occurrence frequency of reactions in the EFMs are less
than the MCSs, e.g. BIOMD0000000034 and BIOMD0000000048.
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Figure A.1: Frequency of occurrence of reactions in EFMs and MCSs.
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Figure A.1: Continued.
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Figure A.1: Continued.
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Figure A.1: Continued.
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A.3 CNF Completion Progress in Case of Using FK and
modified FK considering finding multiple CAs in the
FK-dualization Algorithm

Figure A.2 demonstrates the progression of constructing CNF when FK and modified FK
in the dualization procedure.
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Figure A.2: Progression of constructing CNF across FK-dualization iterations when FK
and FKM have been used for equivalency check between the CNF and the DNF.
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Figure A.2: Continued.
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Appendix B

Prediction of Drug Resistance in
Tuberculosis Using Modular
Neural Network

B.1 Code and Data Availability

The original SNP data, and code to produce the other data types, running the model and
visualizing the results, are available on GitHub Repository https://github.com/NaSed/
TBDrugResistancePrediction.

B.2 Considering Co-occurrence of Resistance Labels andWeighted
Loss in NN5

In this experiment, we tried adding co-occurrence layer to the network while we use the
weighted loss function. We call this ‘NN5_COOCC_WBCE’. Figure B.1 represents the AUC
values for different sources of data and Figure B.2 compares the results of ‘NN5_COOCC_WBCE’
with the three variants of ‘NN5’, ‘NN5_COOCC’ and ‘NN5_WBCE’.
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Figure B.1: Obtained AUC from NN5_COOCC_WBCE.
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Figure B.2: Average AUC from NN5, NN5_COOCC, NN5_WBCE and
NN5_COOCC_WBCE across first-line drugs. Each bar corresponds to the average
AUC values across the set of drugs. Error bars show the standard deviation across drugs.

B.3 Considering Masking Connections Using Gene-Pathway
Data and Weighted Loss in NN5

In this experiment, we use gene-pathway connection masking as well as weighted loss func-
tion in the network. We call this ‘NN5_GPM_WBCE’. Figure B.3 represents the AUC val-
ues for different sources of data and Figure B.4 compares the results of ‘NN5_GPM_WBCE’
with the three variants of ‘NN5’, ‘NN5_GPM’ and ‘NN5_WBCE’.
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Figure B.3: Obtained AUC from NN5_GPM_WBCE.
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Figure B.4: Average AUC from NN5, NN5_GPM, NN5_WBCE and NN5_GPM_WBCE
across first-line drugs. Each bar corresponds to the average AUC values across the set of
drugs. Error bars show the standard deviation across drugs.
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