
Hardware and Software Acceleration for
Hamilton-Jacobi Reachability Analysis

by

Minh Nhat Bui

B.Ap.Sc., University of British Columbia, 2019

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Minh Nhat Bui 2021
SIMON FRASER UNIVERSITY

Summer 2021

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.



Declaration of Committee

Name: Minh Nhat Bui

Degree: Master of Science

Thesis title: Hardware and Software Acceleration for
Hamilton-Jacobi Reachability Analysis

Committee: Chair: Tianzheng Wang
Assistant Professor, Computing Science

Arrvindh Shriraman
Co-Supervisor
Associate Professor, Computing Science

Mo Chen
Co-Supervisor
Assistant Professor, Computing Science

Alaa Alameldeen
Committee Member
Associate Professor, Computing Science

Hang Ma
Examiner
Assistant Professor, Computing Science

ii



Abstract

Hamilton-Jacobi (HJ) reachability analysis is a powerful technique with applications in
robotic safety, game theory. etc. HJ reachability analysis is advantageous in analyzing non-
linear systems with disturbances and flexible set representations. A drawback to this ap-
proach is that the associated Partial Differential Equation (PDE) is solved numerically on
a multidimensional grid, hence scales poorly as the number of dimensions increases.

There has been an extensive body of work that addresses the computational complexity
reduction of the problem with or without introducing overapproximation. In this thesis,
without changing the numerical solution approach, we address the speedup of solving HJ
PDE using software and hardware acceleration.

Our first contribution is OptimizedDP, a python-based software toolbox optimized for dy-
namic programming algorithms arising in optimal control and reinforcement learning. The
software toolbox reduces computational time ranging from 7x-75x compared to common
toolboxes written in MATLAB and implementation in Python.

Our second contribution is a customized hardware design that accelerates HJ PDE solv-
ing procedure on a Field Programmable Gate Array (FPGA). The design can accelerate
4D grid-based HJ reachability analysis up to 14 times compared to OptimizedDP and 103
times compared to the existing MATLAB toolbox on a 16-thread machine. The methodol-
ogy presented here is without loss of generality: it can potentially be applied to different
systems dynamics, and moreover, leveraged for higher dimensional systems. In addition, we
experiment online HJ PDE solving algorithm, using on-cloud FPGA, on a robot car that
can safely avoid obstacles.

Keywords: FPGA; Optimal Control; Software toolbox; Hardware Acceleration; Reacha-
bility Analysis

iii



Dedication

To my parents, my brother, and my grandmother.

iv



Acknowledgements

I’m grateful for the constant guidance, support, and encouragement from my advisors Mo
Chen and Arrvindh Shriraman during the past 2 years. I have learned from you both the
technical knowledge and wisdom. Thanks to that I have improved and became better at
conducting research as well as writing papers and giving presentations. Thanks Mo for
introducing me opportunities to give talks about my research whenever possbile. Those
talks and presentations have helped me become more confident in myself and my research.
I also would like to say thanks to Reza Hojabr, Amirali Sharifian, Michael Lu, Georgios
Giovanis for their assistance in my work presented here, without you guys this thesis would
not be possible.

I would like to also say thanks to friends I have met in the past 2 years including Ali
Sedaghati, Tien Vu, Parmida Vahdatniya, Anjian Li, and everyone in MARS lab who made
my graduate school journey less lonely and more enjoyable.

Last but not least, I would like to express my gratitude to my parents and my brother,
who’ve always supported me unconditionally with everything throughout this endeavor.

v



Table of Contents

Declaration of Committee ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1

2 Optimized Dynamic Programming Toolbox 3
2.0.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Overview of the software toolbox structure . . . . . . . . . . . . . . . . . . 5
2.2 Algorithms supported and common features . . . . . . . . . . . . . . . . . . 6

2.2.1 Continuous Markov Decision Process (MDP) & Value Iteration . . . 6
2.2.2 Time-dependent Hamilton-Jacobi (HJ) Partial Differential Equation

(PDE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Time-independent Hamilton-Jacobi (HJ) Partial Differential Equa-

tion (PDE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Common Components and Features . . . . . . . . . . . . . . . . . . 10

2.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Loop ordering (Algorithm 1, 2, 3) . . . . . . . . . . . . . . . . . . . 12
2.3.2 Parallel threading (Algorithm 2) . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Alternating sweeping directions (Algorithm 1, 3) . . . . . . . . . . . 13

2.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Limitation and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vi



3 Real-Time Hamilton-Jacobi Reachability Analysis of Autonomous Sys-
tem With An FPGA 19
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Reachability Analysis & Hamilton-Jacobi (HJ) Partial Differential Equation

(PDE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Field Programmable Gated Array (FPGA) . . . . . . . . . . . . . . . . . . 22

3.4.1 Memory Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Algorithm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6.1 Memory Buffer Micro - Architecture . . . . . . . . . . . . . . . . . . 25
3.6.2 Processing Element Micro - Architecture . . . . . . . . . . . . . . . . 26
3.6.3 Data representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7 FPGA implementation on AWS . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7.1 Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7.2 Interface between host and FPGA . . . . . . . . . . . . . . . . . . . 29

3.8 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.8.1 Hardware correctness . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.8.2 Latency & speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.8.3 Resource utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.9 Robotic Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.9.1 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.9.2 Real-time Robot Demonstration . . . . . . . . . . . . . . . . . . . . 39

4 Conclusion and Future Work 40
4.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Bibliography 42

vii



List of Tables

Table 2.1 First order ENO scheme performance against ToolboxLS and HelperOC 14
Table 2.2 First order ENO scheme performance against BEACLS on CPU . . . 15
Table 2.3 Second order ENO scheme performance against Toolbox and HelperOC 15
Table 2.4 Second order ENO scheme performance against BEACLS on CPU . . 15
Table 2.5 Value Iteration for 3D grid . . . . . . . . . . . . . . . . . . . . . . . . 17

Table 3.1 Error Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 3.2 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 3.3 optimized_dp[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 3.4 ToolboxLS[2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 3.5 RESOURCE CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . 36

viii



List of Figures

Figure 2.1 The overall structures of OptimizedDP. The red-colored files are
written in Python and uses Numpy library for problem specifications,
grid initialization, and plotting utilities. The green-colored files are
written in a mix of HeteroCL and Python. The system dynamics file
has to be provided by users and needs to be a Python object that con-
tains problem parameters, and subroutines that determine optimal
controls, optimal disturbances and compute the rate of change for
each system state. These system object’s subroutines are then called
by the rest of the green-colored files that provide implementations
of the core algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2.2 In [2], each temporary variables are stored in multidimensional ar-
rays. As we increase N , the number of dimensions, the number of
temporary multi-dimensional array goes up linearly. If the depth of
the computation is large, the total amount memory used for tem-
porary variables will exceed system’s DRAM capabilities, limiting
computations to small problems only. . . . . . . . . . . . . . . . . 9

Figure 2.3 OptimizedDP’s implementation of algorithm 2 does not buffer tem-
porary variables into multidimensional arrays. Instead, within each
grid iteration, a grid point value in Vnew is directly computed. . . . 9

Figure 2.4 Nested loop order that follows the linear memory map will take ad-
vantage of the fast cache memory access . . . . . . . . . . . . . . . 12

Figure 2.5 Computation can be parallelized by applying the parallel primitive 13
Figure 2.6 Each grid computation is assigned a thread for parallel computation 13
Figure 2.7 Each grid iteration can have alternating traversing direction for each

dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2.8 Sub-zero level set is the green surface shown in the plots . . . . . . 16
Figure 2.9 2D contour plots of relative distances between the planner and tracker

at different array indices and time. Each of the color on the vertical
bar represents a distance value . . . . . . . . . . . . . . . . . . . . . 17

ix



Figure 3.1 Overview of the accelerator architecture implemented on an FPGA
1© The accelerator on an FPGA consists of Memory buffer and PEs.
The value array V, residing in DRAM, is copied to FPGA’s memory
buffer which distributes data to the PEs to concurrently execute al-
gorithm 5. 2© Every clock cycle, each PE takes new input from the
memory buffer to start executing Algorithm 5 for new indices. 3©
Spatial derivatives in all dimensions, defined in (3.8), are computed
(line 3 in Algorithm 5). 4© Each PE has its own lookup table that’s
used to quickly index the state values for system dynamics compu-
tation (line 5 in Algorithm 5). Optimal control is also determined at
the same time. 5© The Hamiltonian term and the dissipation in (line
6-7 in Algorithm 5) are then computed using the output from pre-
vious steps. 6© New output values are computed (line 8-9 Algorithm
5) written back to DRAM. . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.2 Four lines of memory buffer supply grid data to all four PEs. Each
rectangle block is a FIFO queue synthesized to Block RAM (BRAM).
New grid points are streamed from DRAM every clock cycle. They
enter each buffer line (left-hand side) and old grid points at the end
of the lines are discarded (right-hand side). The overhead notation
is the size of the FIFO queue with N1, N2, N3, N4 as the four grid
dimensions. Note that the FIFO’s size depends only on three dimen-
sions, while still able to supply all the necessary grid data to all PEs.
The FIFO sizes are equal to the linear distances between every two
grid points in memory. . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.3 The pipelining schedule of a single PE. The PE’s operation is an as-
sembly line where multiple grid points are processed simultaneously.
Within the pipeline, each stage computes a step of algorithm 5, and
is occupied by a tuple comprised of the indices i, j, k, l. Every clock
cycle, the results from these indices are forwarded to the next stage
towards the end of the pipeline. . . . . . . . . . . . . . . . . . . . . 28

Figure 3.4 Components that are required for data communication between tar-
get accelerator and DRAM . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.5 PCIe mapped addresses of the control registers on FPGA . . . . . . 29
Figure 3.6 Control registers on FPGA can be accessed in C++ program by

writing to PCI mapped addresses using function call fpga_pci_poke
provided by AWS FPGA software library . . . . . . . . . . . . . . 30

Figure 3.7 The host program polls for the control status register on the FPGA 30

x



Figure 3.8 Data residing on FPGA’s DRAM can be transferred back to host pro-
gram by calling function fpga_dma_burst_read provided by AWS
FPGA software library. . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.9 Environment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 3.10 Environment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 3.11 Environment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 3.12 Initial value function for environment 1 . . . . . . . . . . . . . . . 32
Figure 3.13 Initial value function for environment 2 . . . . . . . . . . . . . . . 33
Figure 3.14 Initial value function for environment 3 . . . . . . . . . . . . . . . 33
Figure 3.15 A 3D slice of 4D Backward Reachable Tube (BRT) for environment 1 34
Figure 3.16 A 3D slice of 4D Backward Reachable Tube (BRT) for environment 2 34
Figure 3.17 A 3D slice of 4D Backward Reachable Tube (BRT) for environment 3 35
Figure 3.18 Software architecture of our experiment. Each green-colored cirlce

is a ROS node that has inward arrow as subscribed message and
outward arrow as publishing message. . . . . . . . . . . . . . . . . . 37

Figure 3.19 There are two obstacles inside the room where a person actively tries
to move one obstacle around while the other obstacle is stationary 39

xi



Chapter 1

Introduction

As autonomous systems, such as self-driving cars, unmanned aerial vehicles, and rescue
robots, become more prevalent in our daily lives, one key factor that will allow wider adop-
tion of these systems is their guaranteed safety. Despite tremendous progress in autonomous
systems research in areas such as motion planning, perception, and machine learning, de-
ployment of these systems in environments that involve interactions with humans and other
robots remains limited due to the potential danger these robotic systems can cause. Formal
safety verification methods can help autonomous robots reach their untapped potential.

Formal verification via reachability analysis can provide guaranteed safety and goal
satisfactions of autonomous systems under adversarial disturbances. Reachability analysis
can characterize a set of states called Backward Reachable Tube (BRT) that a system
must stay out of in order to avoid obstacles. There are different methods to do reachability
analysis for dynamical systems. For example, the authors in [3] propose an approach that
would scale up to one billion dimensions for affine systems, and the authors in [4] provide
reachable sets using specified shapes. Most of these methods trade off generalization for
scalability by making specific assumptions about linear dynamic systems, systems with no
input and disturbances, and set representations with polytypes. The HJ formulation, on
the other hand, is very powerful in handling control and disturbances, nonlinear system
dynamics, and flexible set representations as well as synthesizing controllers to get the
system out of the unsafe states. HJ reachability analysis has been successfully applied in
practical applications such as aircraft safe landing [5], multi-vehicle path planning, multi-
player reach avoid games [6]. The main downside to HJ reachability is that the associated HJ
partial differential equation (PDE) is solved numerically on a multi-dimensional grid with
the same number of dimensions as the number of state variables and thus computational
complexity scales exponentially with the number of dimensions.

In this thesis, we make the following two contributions. Our first contribution is a compu-
tationally efficient toolbox for solving HJ reachability and other related dynamic program-
ming algorithms that emphasizes efficiency and user-friendliness. The second contribution
is a computing architecture on FPGA that further accelerates HJ PDE computation to
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perform real-time reachability for 4D systems. This computing architecture can used as a
computing service hosted by AWS cloud that can potentially be useful for roboticists trying
to apply reachability analysis for real-time collision avoidance of robots.
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Chapter 2

Optimized Dynamic Programming
Toolbox

Dynamic programming algorithms are crucial to many optimization problems. Despite its
poor scalability and exponential complexity, global optimal solutions to many control and
optimization problems are only feasible via dynamic programming. Dynamic programming
also provides a framework that is important for reasoning about solutions to many complex
problems.

Applications of dynamic programming we would like to address in this work is continuous
Markov Decision Process (MDP) value iteration, and reachability analysis via solving the
HJ PDE, whose solution is crucial for guaranteeing the safety of autonomous systems and
the surrounding environment, especially in robotics where there are increasing presences of
autonomous agents in services. While there exist many packages for solving value iteration
in MDP, none of them have support for value iteration with continuous state space and
action.

In addition, as the numerical algorithm for solving the HJ PDE to obtain the Backward
Reachable Tube (BRT) and Backward Reachable Set (BRS) defined in [7] is quite complex
and involves many floating-point operations on a large dimensional grid, it takes a lot of
effort and time to write the algorithm, prototype the system dynamics, waiting for output
results (which can be hours/days), and validating the results. Scalability is probably the
biggest downside of the framework but these aforementioned factors shy roboticists away
more from applying reachability analysis to their research. To address some of these prob-
lems, there have been some toolboxes that were implemented: HelperOC as a wrapper of
the level set toolbox ToolboxLS [2], and the BEACLS library written in C++ and CUDA
[8]. HelperOC and ToolboxLS are both written in MATLAB, which contains a rich set of
visualizing plots and contours functions, and is user-friendly and quite powerful in pro-
totyping mathematical models. However, this toolbox suffers from slow runtime with the
MATLAB software package being proprietary. BEACLS, on the other hand, executes the

3



level-set based numerical algorithm much faster than the MATLAB counterpart but has a
very difficult interface to specify a problem setting and hence is not user-friendly.

In this section, we introduce our new toolbox that not only obtains the BRS and BRT
more efficiently but also includes other optimal control algorithms based on dynamic pro-
gramming that assist researchers better in prototyping and applying optimal control algo-
rithms to their system model. The advantages of our toolbox compared to the existing ones
are the significant improvement of the execution runtime and the user-friendly interface for
problem specifications in Python. The efficient implementation of the toolbox also allows
reachability analysis to be done on dynamical systems of up to six dimensions, which was
not the case previously.

The toolbox supports the following algorithms: level-set based Hamilton-Jacobi PDEs
to obtain BRT, BRS, and time-to-reach (TTR) value function, value iterations for Markov
Decision Process (MDP) with continuous state space and action space. Our toolbox is im-
plemented in Python and HeteroCL [9]. The front-end used to initialize various problem
formulation is written in Python while the backend implementing the algorithms are written
in HeteroCL. HeteroCL is a python-based domain-specific language (DSL) that is based on
Tensor Virtual Machine (TVM) [10], a framework that optimizes deep learning programs
as computation graph structures. HeteroCL is built on top of TVM that allows imperative
programming in its syntax, which allows more flexibility in writing diverse algorithm imple-
mentations. Similar to TVM, HeteroCL decouples algorithm definitions from the scheduling
transformations that can optimize the runtime of the programs. For our implementation, we
attribute the significant improvement in running time to the scheduling optimizing scheme
available that we use and also the optimization done on graphs by the TVM framework.
Our toolbox is available online at https://github.com/SFU-MARS/optimized_dp.

In the next few subsections, we will provide an overview of related software packages,
optimizedDP’s software structure, features, and algorithms supported in our toolbox, and
then describe the structure of our library and implementation details.

2.0.1 Related work

We are aware of other existing toolboxes that are most commonly used for solving HJ PDE:
ToolboxLS [2] is a library that contains many subroutines written in MATLAB for

solving a variety of cases of an HJ PDE. HelperOC is a wrapper around ToolboxLS that
utilizes these subroutines for convenient computation of BRT and BRS through solving the
time-dependent HJ PDE. HelperOC contains many different examples of system dynamics
used in BRT computation. In comparison with optimizedDP, ToolboxLS and HelperOC
is more mature and contains more advanced numerical schemes to approximate derivatives
and numerical integration as well as diverse MATLAB subroutines used for visualizing plots.
One downside to ToolboxLS and HelperOC is that the toolbox can be quite slow for large
problems and not possible for problems with systems that have higher than 4 dimensions.
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Another minor disadvantage of ToolboxLS is that it is written in MATLAB, which is a
proprietary software package whose licenses have to be renewed yearly.

BEACLS is a library that contains implementations of all the features available in
ToolboxLS and HelperOC in C++ and CUDA with support on GPU. This toolbox tries
to solve the computational inefficiency issue that ToolboxLS faces. However, the biggest
downside of this toolbox is that it’s quite hard to use due to the problem specification
having to be written in C++.

Our toolbox optimizedDP introduced here is an ongoing effort that tries to combine the
best features of the two toolboxes: codes that are easy to use, understand while keeping
computations efficient. In addition, we are also aware of other software libraries for solving
value iteration in MDP:

Markov Decision Process for Python is a software package written in Python that
includes many algorithm implementations for MDP such as value iteration, policy iteration,
relative value iteration, etc. However, the package does not support continuous state space
and action space in value iteration. This package is available at https://pymdptoolbox.read
thedocs.io/en/latest/index.html.

POMDP [11] is a software package written in Julia that contains a variety of algorithm
solvers for MDP and reinforcement learning algorithms such as Deep Q-learning, Monte
Carlo Tree Search, etc. The package also contains many examples for different types of
problem initialization and has an easy-to-use interface. But likeMarkov Decision Process
for Python, the package does not support continuous state space and action space value
iteration in MDP.

2.1 Overview of the software toolbox structure

The general structure of our toolbox is shown in Figure 2.1. To begin the computation,
users first specify a problem specification file that imports the file solver.py, which contains
definitions of APIs calls for three different types of computations. The problem specification
file can be quite straightforward to Python users as it is mostly written with Python and
Numpy libraries. To assist users in initializing their problem specifications, there are pro-
vided python libraries that include grid generations (file grid_processing.py ), initialization
of signed distance initial value function (file ShapesFunction.py ). These functions could be
extended or customized towards users’ needs, as long as the APIs are called correctly. The
only HeteroCl part of the problem specifications is the system dynamics description, which
is passed to the backend solvers to build a computational graph at the beginning.

The solver.py file maps the problem specification to the corresponding algorithm im-
plementations. Each algorithm is implemented in HeteroCL which creates a computational
graph of the algorithm and then returns an executable. The executables are used as a
function to which parameters of the problem are passed. Once the results are computed
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Figure 2.1: The overall structures of OptimizedDP. The red-colored files are written in Python
and uses Numpy library for problem specifications, grid initialization, and plotting utilities. The
green-colored files are written in a mix of HeteroCL and Python. The system dynamics file has
to be provided by users and needs to be a Python object that contains problem parameters, and
subroutines that determine optimal controls, optimal disturbances and compute the rate of change
for each system state. These system object’s subroutines are then called by the rest of the green-
colored files that provide implementations of the core algorithms.

and converted to a Numpy array, available visualization package libraries in Python can
be used to display the result. To make visualization of high dimension array easier, the
file plotting_utilities.py creates a wrapper around the plotly’s Isosurface function that can
be called to visualize 3D value function representing various slices of the multidimensional
result array. In addition, certain computation modules can be cross-used among different
algorithms implementation. Specifically, the module spatial derivatives computation is both
used in solving HJ PDE and TTR value function.

2.2 Algorithms supported and common features

2.2.1 Continuous Markov Decision Process (MDP) & Value Iteration

Markov Decision Process is a model that is useful to study the optimal behavior of a target
system in react to the change of external environments. An MDP is usually described by a
tuple (S,A, T,R, γ,H) where S is the state space, A is the action space, T is the transition
between states probability matrix, γ is the discount factor and H is the time horizon. The
key assumption of MDP is that the next state transition of a system is only dependent on
the current state and action. This assumption is described by the following equation

P(St+1|St, At) = P(St+1|St, At..., S0, A0) (2.1)
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where St ∈ S, and At ∈ A. In MDP, the discounted return Gt at time step t is defined as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... = Σn
k=0γ

kRt+k (2.2)

And the state value function Vπ(s) under a policy π : S → A is as follow

Vπ(s) = Eπ[Gt|St = s] = Eπ[Rt + γVπ(s′)|St = s] (2.3)

In MDP, the objective of the target system is to act according to an optimal policy π∗ :
S → A that can maximize the expected rewards received at each state over time. The main
goal in MDP is to discover π∗ along with the expected rewards received at every state. This
objective and the basic properties of MDP are the backbone of all reinforcement learning
algorithms.

Our toolbox provides an implementation of the value iteration algorithm for continuous
state and action space (shown in Algorithm 1), which computes expected rewards Vπ∗(s)
at every state given all the possible actions a state s can take.

Algorithm 1 Continuous MDP - Value Iteration Algorithm
1: Discretize S,A
2: Vt=0 ← 0
3: Repeat:
4: for s in S do
5: for a in A do
6: Q(s, a)← R(s, a) +

∑
s′ p(s′|s, a)Vt−1(s′)

7: Vt+1(s)← max(Vt+1(s), Q(s, a))
8: ∆← |Vt(s)− Vt+1(s)|
9: If ∆ < threshold:

10: Break
11: end for
12: end for

Note that on line 6 of algorithm 1, (s′) is obtained by considering the nearest neighbour
that is the closest discretized state on grid.
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2.2.2 Time-dependent Hamilton-Jacobi (HJ) Partial Differential Equa-
tion (PDE)

Our toolbox supports numerical computation for solving two HJ pdes. The first pde,
which is solved in order to obtain BRS and BRT defined in [7], is as follow:

Dsφ(z, s) +H(z,∇φ(z, s)) = 0

H(z,∇φ(z, s)) = min
d(·)

max
u(·)
∇φ(z, s)T f(z, u, d)

φ(z, 0) = φ0(z), s ∈ [t, 0]

(2.4)

The algorithm based on level-set methods for solving the above equation is implemented as
in algorithm 2.

Algorithm 2 Time-dependent HJ PDE algorithm
1: Initialize φ0

2: // Compute Hamiltonian term, max and min derivative

3: for every grid point index i do
4: Compute ∇φ(z, s)
5: uopt ← arg max

u∈U
∇φ(z, s)>f(z, u)

6: ż ← f(z, uopt)
7: Hi ← ∇φ(z, s)>ż
8: minD ← min(minD,∇φ(z, s))
9: maxD ← max(maxD,∇φ(z, s))

10: end for
11: // Compute artificial dissipation

12: for every grid point index i do
13: αi ← maxp∈[minD,maxD]

∣∣∣∣∂H∂p
∣∣∣∣

14: Hi ← Hi − αi
D+Vi −D−Vi

2
15: αmaxd ← max(αmaxd , αi)
16: end for
17: // Compute integration time step

18: ∆t← (ΣN
d=1
|αmaxd |
∆zd

)−1

19: // First order Runge-Kutta (RK) integrator.

20: Vt+1 ← H∆t+ Vt

Currently, the toolbox only supports algorithms for up to 6 dimensions. Although the
toolbox developed by [2] supports an arbitrary number of dimensions through the usage of
various operation tricks supported by MATLAB, each of the temporary variables such as
spatial derivatives, system dynamics, etc. for each grid point is stored in a multidimensional
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array. This approach is not ideal for the performance of an already expensive computation
in two ways (illustrated in Fig. 2.2 ). Firstly, the approach does introduce extra overhead
of memory in the implementation. These redundant overheads increase linearly as we go up
the dimensional ladder, which can limit the number of dimensions to which the algorithm
can be applied. Secondly, each of the components for all grid points has to be computed
before the final output, which results in bad locality for high-dimensional problems.

Figure 2.2: In [2], each temporary variables are stored in multidimensional arrays. As we increase
N , the number of dimensions, the number of temporary multi-dimensional array goes up linearly. If
the depth of the computation is large, the total amount memory used for temporary variables will
exceed system’s DRAM capabilities, limiting computations to small problems only.

Figure 2.3: OptimizedDP’s implementation of algorithm 2 does not buffer temporary variables
into multidimensional arrays. Instead, within each grid iteration, a grid point value in Vnew is directly
computed.

2.2.3 Time-independent Hamilton-Jacobi (HJ) Partial Differential Equa-
tion (PDE)

In addition, optimizedDP provides an implementation of the Lax-Friedrich sweeping
algorithm described in [12] (also shown in algorithm 3) for efficiently computing time-to-
reach BRS without numerical integration. Given a target set T ⊆ Rn, the time-to-reach
function is defined as follow:

φ(z) = min
d(·)

max
u(·)∈U

min{t | z(t) ∈ T } (2.5)
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By dynamic programming principle, this TTR φ(z) can be obtained by solving the
following HJI PDE:

H(z,∇φ(z)) = 0

φ(z) = 0, z ∈ T

H(z,∇φ(z)) = min
d(·)

max
u(·)

(−∇φ(z)T f(z, u, d)− 1)
(2.6)

The advantage of algorithm 3 compared to obtaining the TTR function through solving
the time-dependent HJ PDE is that less memory is required and the final result for TTR
generally converge much faster. In solving both equations, users can set the objective of the
u and d to either min or max for the term H.

Algorithm 3 Lax-Friedrich sweeping algorithm for TTR
1: Initialize φ(z)← 0 for z ∈ T and φ(z)← 100 for z 6∈ T
2: while |φ− φold| < ε do
3: φ← φold
4: for grid index i not in boundary do:
5: Compute ∇φ(z, s)
6: uopt ← arg max

u∈U
∇φ(z, s)>f(z, u)

7: ż ← f(z, uopt)
8: Hi ← ∇φ(z, s)>ż
9: σ ←

∣∣∣∣∂H∂p
∣∣∣∣

10: c← ∆z
σ

11: φnewi ← c(−Hi + σ φi+1+φi−1
2∆z )

12: φi ← min(φnewi , φi)
13: end for
14: // Update the grid points at boundary
15: φnew1 ← min(max(2φ2 − φ3, φ3), φ1)
16: φnewN ← min(max(2φN−1 − φN−2, φN−2), φN )
17: end while

2.2.4 Common Components and Features

Grid

Similar to the ToolboxLS [2], our toolbox allows users to create a Cartesian grid by speci-
fying the number of grid nodes, upper bound, and lower bound for each dimension. Users
can also specify which dimension is periodic. The ghost points at the boundary for non-
periodic dimension, by default, are extrapolated based on the formula described in the file
addGhostExtrapolate.m in ToolboxLS. The grid is implemented as a Python object.
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Initial Condition

To initialize different implicit surface shapes, we have implemented many initial conditions
which represent shapes such as cylinders, spheres, and lower/upper planes. In addition, there
are utility functions that operate on these geometry shapes such as union, intersection. All
of these functions are written with Python and Numpy, and could be easily extended by
users using the attribute grid.vs exposed by the grid object.

Time Integration

OptimizedDP provides the standard first-order accurate strong stability preserving (SSP)
Runge-Kutta (RK) integrator. The maximum timestep used for integration is determined
by the Courant–Friedrichs–Lewy (CFL) [13] condition.

Spatial Derivatives

Currently, OptimizedDP provides an implementation of derivatives approximation method
that includes first order upwind approximation and second order accurate essentially non-
oscillatory (ENO) [14] scheme.

Visualization

OptimizedDP provides an interface that helps visualize 3D isosurface of implicit surface
for high dimensional systems. This interface allows users to specify the slice indices for
higher dimensional systems and set the threshold value of isosurface for visualization. At
its core, the interface calls the function Isosurface available in plotly library, which will
show the isosurface plot in a browser. Users can also opt to use other software packages for
visualization once the final result is obtained.

2.3 Implementation Details

We decided to implement each algorithm mentioned in the above section for every dimen-
sion separately, each with its own nested loop implementation. Even though this can be a
tedious process for development, there are few reasons for this approach. First, we would
like to keep the algorithm implementation descriptive, intuitive, and easy to be understood
by users who are familiar with the algorithms. More importantly, we would like to optimize
the computation using some of the schedule transformations available in HeteroCL without
introducing extra redundancy and overhead in the code. Currently, the toolbox only sup-
ports algorithms for up to 6 dimensions. In our experience, this is the limit beyond which
tabular dynamic programming is no longer practical on a personal computer of maximum
32GB DRAM.
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In this section, we are going to discuss in more detail the optimization techniques enabled
in HeteroCL we use in our implementations, and note that not all of them are applicable
to all the algorithms implementation.

2.3.1 Loop ordering (Algorithm 1, 2, 3)

This optimization applies to all of the algorithm implementations. One important factor that
can have a substantial impact on the performance of a program when dealing with high
dimensional arrays is memory locality. By knowing the memory layout of the N-dimensional
array, we have a nested loop order that follows this layout order which results in more cache
efficiency. To abide by Numpy’s memory layout, the implementation, by default, has the
highest dimension being the most inner loop and the lowest dimension being the most outer
loop. We are aware that in some cases depending on the system dynamics, this default
order might not be the most optimal. However, on average, we see that this implementation
already gives a very good performance.

Figure 2.4: Nested loop order that follows the linear memory map will take advantage of the fast
cache memory access

For users who are keen on experimenting with different loop orders for their specific
system dynamics problem, they could easily customize and swap the loop orders without
introducing errors into the algorithm already implemented by using transformative primi-
tives available in HeteroCL.

2.3.2 Parallel threading (Algorithm 2)

One important characteristic of algorithm 2 is that each grid point, within the same itera-
tion, can be computed independently, and therefore in parallel. Note that this parallelization
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of computation only applies to solve time-dependent HJ PDE equations. This property can
be taken advantage of to accelerate the computation greatly. In particular, each computa-
tion of algorithm 2 on a grid point can be assigned a thread to it (shown in Fig. 2.6 ). In
HeteroCL, this could be done by applying the transformation primitive parallel to a loop
computation as follow.

Figure 2.5: Computation can be parallelized by applying the parallel primitive

Figure 2.6: Each grid computation is assigned a thread for parallel computation

Under this primitive is an implementation of multi-threading in C++ provided by the
TVM framework. The general idea of this multi-threading implementation is that there is
a pool of threads where each thread pops and assigns itself a task (computation) from a
task queue. The number of threads used is equal to the maximum number of hyper-threads
available in the system. More details about the implementation are available online in the
HeteroCL code base.

2.3.3 Alternating sweeping directions (Algorithm 1, 3)

This optimization is more algorithmic and less on the computer system level, and is applied
to in-place value updating. In our toolbox, this approach is used in the implementation
of value iteration algorithm and time-to-reach value function. The main idea is that the
traversing directions on a multidimensional grid do not have to be fixed and can be alter-
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nated in different iterations until convergence. This technique has been shown to compute
time-to-reach value function for 2D systems [12].

Figure 2.7: Each grid iteration can have alternating traversing direction for each dimension

The benefit of this optimization is that final value results would converge at a faster
rate than a fixed iterating direction. As we go up the dimensional ladder, the total number
of different possible alternating directions increases exponentially. Because of that, we do
not implement all possible iterating directions for each dimensional problem. Instead, for
each dimensional problem, we have a total of 8 different iterating directions.

2.4 Result

In this section, we first compare the performance of optmizedDP against the time-dependent
HJ PDE implementation in ToolboxLS and BEACLS for various number of dimensions.
These results are performed on a 16-thread Intel(R) Core(TM) i9-9900K CPU at 3.60GHz.

Table 2.1: First order ENO scheme performance against ToolboxLS and HelperOC

Dimensions 3D 4D 5D 6D
Grid points 1003 604 405 256

OptimizedDP 0.56 seconds 19 seconds 7 seconds 1 day
MATLAB 3.8 seconds 196 seconds 223 seconds Not possible
Speedup ×7 × 10 × 32 N/A

Maximum difference 1.4×10−6 7.0×10−6 1.4×10−6 N/A
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Table 2.2: First order ENO scheme performance against BEACLS on CPU

Dimensions 3D 4D
Grid points 1003 604

OptimizedDP 0.56 seconds 19 seconds
BEACLS 1.5 seconds 244 seconds
Speedup ×3 × 13

Table 2.3: Second order ENO scheme performance against Toolbox and HelperOC

Dimensions 3D 4D 5D 6D
Grid points 1003 604 405 256

OptimizedDP 0.7 seconds 23 seconds 10 seconds 1 day
MATLAB 12 seconds 678 seconds 754 seconds Not possible
Speedup ×17 × 29 × 75.4 N/A

Maximum difference 0.037 0.25 0.1 N/A

Table 2.4: Second order ENO scheme performance against BEACLS on CPU

Dimensions 3D 4D
Grid points 1003 604

OptimizedDP 0.7 seconds 23 seconds
BEACLS 3 seconds 6420 seconds
Speedup ×4 × 279

For 3D system example, we compute BRT for the following canonical pairwise Dubins
Car’s system dynamics:

ẋ = −va + vb cos θ + ay

ẏ = va sin θ − ax

θ̇ = b− a

(2.7)

where x, y, θ are the relative positions and heading, va and vb are the evaders and pursuer’s
velocity, a and b are the control input of the evader and pursuer respectively. 3D plots of
the BRT are shown in Figure. 2.8.
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(a) Right side view (45 degree) (b) Left side view

(c) Front view (d) Right side view (90 degree)

Figure 2.8: Sub-zero level set is the green surface shown in the plots

For 6D system example, we have the following system dynamics used for computing
tracking error bound of an underwater vehicle with disturbances as defined in [15]:

ẋα = ur + Vf,x(x, z, t) + dx − bx
żα = wr + Vf,z(x, z, t) + dz − bz

u̇r = 1
m−Xu̇

((m̄−m)Af,x(x, z, t)

− (Xu +X|u|u|ur|)ur + TA) + du

ẇr = 1
m− Zẇ

((m̄−m)Af,z(x, z, t)

− (−g(m− m̄))− (Zw + Z|w|w|wr|)wr
+ TB) + dw (2.8)

ẋ = ur + Vf,x(x, z, t) + dx

ż = wr + Vf,z(x, z, t) + dz

where x, z denote the vehicle position, ur, wr represent relative velocities between vehicle and
water flow, xα, zα denote relative position between tracker and planner. The control inputs
are TA, TB, planning inputs are bx, bz, and disturbances are dx, dz, du, dw. The problem
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parameters are m, m̄,Xu̇, Zẇ, Xu, Xw, X|u|u, Z|w|w. Contour plots of distances between the
tracker and planner are shown in Figure 2.9.

Figure 2.9: 2D contour plots of relative distances between the planner and tracker at different array
indices and time. Each of the color on the vertical bar represents a distance value

Since there is no existing library that implements value iteration and algorithm 3
for time-independent HJ PDE, we only compare a version of value iteration written in
pure Python, a commonly used language for reinforcement learning and MDP, with opti-
mizedDP’s implementation. This result is performed on a machine running on AMD A10-
8700P CPU with 4 cores at 3.2GHz.

Table 2.5: Value Iteration for 3D grid

Grid points 25× 25× 9 40× 40× 20 60× 60× 40
OptimizedDP 1.35 seconds 6.44 seconds 28 seconds

Python 4.9 seconds 42 seconds 266 seconds
Speedup ×3.6 × 6.5 × 9.5

It can be observed that as the problem size increases, the gap in performance between
optimizedDP and other existing implementations becomes larger. This proves that our
toolbox is better for working with high-dimensional problems.
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2.5 Limitation and future work

OptimizedDP toolbox is still a work in progress. Despite having better performance in terms
of computational efficiency, optimizedDP is still missing some features that are available in
other toolboxes. To make the toolbox more complete, we plan on adding new features to
the toolbox such as higher order ENO scheme for derivatives approximation, more complex
custom functions such as interpolation that can be used within a HeteroCL graph.

18



Chapter 3

Real-Time Hamilton-Jacobi
Reachability Analysis of
Autonomous System With An
FPGA

In the previous chapter, we have provided a toolbox that allows roboticists to easily apply
reachability analysis to system models. While 3D or smaller systems could be computed
quickly with multi-core CPUs, practical systems that usually involve 4 to 5 state variables
can take several minutes to hours to solve the HJ PDE. This prevents the HJ formulation
to be applied to real-time systems on which safety is increasingly demanded. There have
been works that proposed decomposing high dimensional systems into smaller tractable
sub-systems that can exactly compute [16] or overapproximate the BRT in certain cases
[17]. However, the challenge of applying HJ formulation on real-time systems remains, since
some systems cannot be decomposed lower than four dimensions, and over-approximation
is introduced if projection methods are used.

In this chapter, we expand the limit of the number of dimensions for which we can
directly compute the BRT in real time through the use of an FPGA. As general-purpose
computers no longer double their performance every two years due to the end of Moore’s
law, we have seen examples of successful hardware accelerations in other areas such as
machine learning’s training/inference [18, 19, 20], robot’s motion planning [21]. This is the
source of our inspiration, as we aim to apply hardware acceleration to safety verification.

We will show that we could accelerate HJ reachability analysis for a 4D system by solving
Algorithm 4 efficiently on an FPGA. Our computing architectures can used as a computing
service hosted by AWS cloud that can potentially be useful for roboticists trying to apply
reachability analysis for real-time collision avoidance of robots. The codes of the hardware
design and instructions for running it on an FPGA is online at https://github.com/sfu-
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arch/HJ_solver. Before going into the details of this design, we will introduce some
background and terminologies that are relevant to the understanding of our methodologies.

3.1 Background

Let s ≤ 0 be time and z ∈ Rn be the state of an autonomous system. We assume that
the evolution of the system state over time is described by a system of ordinary differential
equations (ODE) below:

ż = dz(s)
ds = f(z(s), u(s), d(s)), u(s) ∈ U , d(s) ∈ D, s ∈ [t, 0] (3.1)

where u(·) and d(·) denote the control and disturbance function respectively and defined in
[7] and are drawn from the set of measurable functions:

u(·) ∈ U := {φ : [t, 0]→ U , φ(·) is measurable} (3.2)

d(·) ∈ D := {φ : [t, 0]→ D, φ(·) is measurable} (3.3)

where U ⊆ Rnu and D ⊆ Rnd are compact and t < 0. The system dynamics f : Rn×U×D →
Rn are assumed to be uniformly continuous, bounded and Lipschitz continuous in z for fixed
u(·) and d(·). Given u(·) and d(·), there exists a unique trajectory that solves equation (3.1)
[22]. The trajectory or solution to equation (3.1) is denoted as ζ(s; z, t, u(·), d(·)) : [t, 0]→ Rn

which starts from state z at time t under control u(·) and disturbances d(·). ζ satisfies (3.1)
almost everywhere with the initial condition ζ(t; z, t, u(·), d(·)) = z.

3.2 Reachability Analysis & Hamilton-Jacobi (HJ) Partial
Differential Equation (PDE)

In reachability analysis, we begin with a system dynamics described by an ODE and a
target set T ⊆ Rn that represents unsafe states/obstacles [7]. We then solve a HJ PDE to
obtain the Backward Reachable Tube (BRT), defined as follows:

Ā = {z : ∃d(·) ∈ D, ∀u(·) ∈ U, ∃s ∈ [t, 0],

ζ(s; z, t, u(·), d(·)) ∈ T }
(3.4)

The target set is represented by the implicit surface function V0(z) as T = {z : V0(z) ≤
0}. The BRT is then the zero sub level set of a value function V (z, t) defined as below.

V (z, t) = min
d(·)

max
u(·)∈U

min
s∈[t,0]

V0(ζ(s; z, t, u(·), d(·))) (3.5)
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We follow the standard assumption that the disturbance function is taken from the set
of non-anticipative strategies defined in [23]. To guarantee safety under the worst-case as-
sumption, we model the interaction between control and disturbance as zero-sum differential
game, in which the control input and disturbances have opposite objectives. This ensures
that outside of the BRT defined in (3.4), there exists a control that guarantees avoidance
of the target set.

The value function V (z, t) can be obtained as the viscosity solution of the following HJ
variational inequality:

min{DsV (z, s) +H(z,∇V (z, s)), V (z, 0)− V (z, s)} = 0

V (z, 0) = V0(z), s ∈ [t, 0]

H(z,∇V (z, s)) = min
d(·)

max
u(·)
∇V (z, s)T f(z, u, d)

(3.6)

The optimal control can be obtained from the value function as follows:

uopt = arg max
u∈U
∇V (z, s)>f(z, u, d) (3.7)

Exact analytical solutions to (3.6) are rarely possible and typically obtained through
numerical methods. Numerical toolboxes based on level set methods such as [2] are com-
monly used to obtain the solution on a multi-dimensional grid for (3.6). The grid is first
initialized with V0, and integrated backward in time until convergence.

3.3 Numerical solution

The simplest scheme used for approximation of spatial derivaties on a grid is a central-
difference scheme, which is defined as follow for one dimension.

D−Vi = Vi − Vi−1
∆z ,

D+Vi = Vi+1 − Vi
∆z ,

p = DVi = D+Vi +D−Vi
2

(3.8)

.
When Vi is at the grid boundary (ie. i = N − 1, i = 0 where N is the size of the

dimension), we apply the following formulas for extrapolating the left and right value grid
point as implemented in toolbox [2]:

Vi−1 = Vi + |Vi − Vi+1| ∗ sign(Vi) (3.9)

Vi+1 = Vi + |Vi − Vi−1| ∗ sign(Vi) (3.10)
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The algorithm used to solve equation 3.6 for 4D systems, based on level-set method, is
described in algorithm 4.

Algorithm 4 4D Grid Value Function Solving Procedure
1: Initialize V0[N1][N2][N3][N4]
2: //Compute Hamiltonian term, max and min derivative

3: for i = 0 : N1 − 1; j = 0 : N2 − 1; k = 0 : N3 − 1; l = 0 : N4 − 1 do
4: Compute (3.8) for 0 ≤ dim ≤ 3
5: minDdim ← min(minDdim, DdimVi,j,k,l)
6: maxDdim ← max(maxDdim, DdimVi,j,k,l)
7: uopt ← arg max

u∈U
∇V (z, s)>f(z, u)

8: ż ← f(z, uopt)
9: Hi,j,k,l ← ∇V (z, s)>ż

10: end for
11: // Compute dissipation and add to H

12: for i = 0 : N1 − 1; j = 0 : N2 − 1; k = 0 : N3 − 1; l = 0 : N4 − 1 do
13: αdim,(i,j,k,l) ← maxp∈[minDdim,maxDdim]

∣∣∣∣ ∂H∂pdim

∣∣∣∣
14: Hi,j,k,l ← Hi,j,k,l

− Σ4
dim=1αdim,(i,j,k,l)

D+
dimVi,j,k,l −D

−
dimVi,j,k,l

2
15: αmaxdim ← max(αmaxdim , αdim,(i,j,k,l))
16: end for
17: //Compute stable integration time step

18: ∆t← (Σ4
d=1
|αmaxd |
∆zd

)−1

19: Vt+1 ← H∆t+ Vt

20: Vt+1 ← min(Vt, Vt+1)
21: ε← |Vt+1 − Vt|
22: if ε < threshold then
23: Vt ← Vt+1

24: Go to line 3

25: end if

3.4 Field Programmable Gated Array (FPGA)

FPGA are intergrated circuits that can be configured and programmed for specific appli-
cations. FPGAs consist of multiple configurable logic blocks (CLB) that implement digital
logic using look-up table (LUT). In order to correctly behave according to programmer’s
logic gate specifications, these LUTs store the correct output and input combination of the
gates that corresponds to programmer’s logic specification.
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The advantages of FPGAs over CPUs and GPUs are energy efficiency, deterministic la-
tency and high level of parallelism. On FPGA, efficient systems comprises of fast computing
cores and fast data distribution from the memory. Depending on the application, the mem-
ory access and computing pattern will vary. Compute cores must request and receive all the
necessary data from the memory component before proceeding with the computation. If the
memory component cannot provide all data accesses the application requires to proceed at
once, cores have to stall and wait, slowing down the computation.

General-purpose CPU/GPU are often architected towards a reasonable performance for
a wide variety of applications, but not optimized for any particular application. FPGAs, on
the other hand, can be customized by leveraging knowledge about the details of the comput-
ing workload to design an efficient system. With an FPGA, one could control and achieve a
higher degree of parallelism from the digital hardware level at the cost of programmability.

3.4.1 Memory Technologies

Taking into account the distinction between different types of available memory technologies
is crucial for designing efficient hardware accelerator. Here we will focus mainly on two types
of memory: Dynamic Random Access Memory (DRAM) and Blocks of Random Access
Memory (BRAM).

DRAM works by storing a data bit (1 or 0) inside a memory cell consisting of a capacitor
and a transistor. The electric charge inside the cell leaks over time and hence a DRAM
requires a controller that need to refresh the data periodically. DRAM typically come in
size of 8GB to 32GB with maximum bandwidth of 20GB/s.

BRAM is a small unit amount of memory implemented on FPGA that typically has a
size of 4 to 32 Kilobits. An FPGA can have from hundred of kilobytes to eight megabytes of
BRAM. Each of the BRAM could provide at most two memory accesses every clock cycles.
All the memory accesses are synchronized to the logic clock and hence, the latency is solely
dependent on the the clock period.

3.5 Algorithm Optimization

In this section, we will show that Algorithm 1, with three full grid iterations, repeats
redundant computation that can be reduced to one iteration instead using the bounded
input property in the dynamics on a grid. We will analyze this property for our target
dynamical system, which is an extended 4D Dubins car model:

ẋ = v cos(θ) ẏ = v sin(θ)

v̇ = a θ̇ = v
tan(δ)
L

(3.11)
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where (x, y) represents the positions, v represents the speed, and θ represents the heading.
The control inputs are acceleration a ∈ [−a, a] and the steering angle δ ∈ [−b, b]. The explicit
formula for the Hamiltonian term is: H =

(
∂V

∂x
ẋ+ ∂V

∂y
ẏ + ∂V

∂v
v̇ + ∂V

∂θ
θ̇

)
. In this case, the

term
∣∣∣∣ ∂H∂pdim

∣∣∣∣, which is used as scaling factor (line 14 - Algorithm 5), is not dependent on
pdim and equal to the absolute value of the rate of change of state component dim. Hence,
we do not need to keep track of the maximum and minimum spatial derivatives; this allows
us to merge second grid iteration (line 12 - Algorithm 4) into the first one . This change is
reflected in line 7 of Algorithm 5. Furthermore, we can observe that the rates of change of
each state component are only dependent on other state’s components and the control input.
The maximum rate of changes αmaxdim is therefore, resulted from the combination of largest
value from each state component and largest possible control input, which is constant over
time. Instead of re-computing ∆t every time and then iterating through the 4D grid array
again, we pre-compute ∆t and re-use it for all of the time iterations. Combining these ideas
together, throughout this paper, we will use Algorithm 5 with one grid iteration for our
FPGA implementation, which is more computationally efficient. We empirically evaluate
the correctness of this Algorithm 5 in the Result section.

Algorithm 5 Optimized 4D Grid Value Function Solving Procedure
1: Initialize V0[N1][N2][N3][N4]
2: for i = 0 : N1 − 1; j = 0 : N2 − 1; k = 0 : N3 − 1; l = 0 : N4 − 1 do
3: Compute (3.8) for 1 ≤ dim ≤ 4
4: uopt ← arg max

u∈U
∇V (z, s)>f(z, u)

5: ż ← f(z, uopt)
6: Hi,j,k,l ← ∇V (z, s)>ż
7: Hi,j,k,l ← Hi,j,k,l

− Σ4
dim=1|żdim|

D+
dimVi,j,k,l −D

−
dimVi,j,k,l

2
8: Vt+1,(i,j,k,l) ← Hi,j,k,l∆tprecomputed + Vt,(i,j,k,l)
9: Vt+1,(i,j,k,l) ← min(Vt,(i,j,k,l), Vt+1,(i,j,k,l))

10: end for
11: ε← |Vt+1 − Vt|
12: if ε < threshold then
13: Vt ← Vt+1
14: Go to line 2
15: end if

3.6 Hardware Architecture

In this section, our goal is to build a custom hardware design on an FPGA that solves
Algorithm 5 efficiently. Before going into details of the design, we will introduce some
terminologies that will be relevant throughout the next section. In digital systems, time
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is discretized into the unit of a clock cycle, which is the amount of time it takes for an
operation such as computing, loading, and storing to proceed. Each clock cycle typically is
a few nanoseconds.

Our custom hardware comprises two main components: an on-chip memory buffer, and
processing elements (PE) (shown on the right side of Fig. 3.1). The memory buffer is on-
chip storage, providing access to all the grid points a PE needs to compute a new value
function. Each PE is a digital circuit that takes in value grid points from the memory buffer
to compute a new value function at a particular grid point according to Algorithm 5 (lines
3-10). In the following subsections, we will go into the details of each component.

Figure 3.1: Overview of the accelerator architecture implemented on an FPGA 1© The accelerator
on an FPGA consists of Memory buffer and PEs. The value array V, residing in DRAM, is copied
to FPGA’s memory buffer which distributes data to the PEs to concurrently execute algorithm 5.
2© Every clock cycle, each PE takes new input from the memory buffer to start executing Algorithm
5 for new indices. 3© Spatial derivatives in all dimensions, defined in (3.8), are computed (line 3 in
Algorithm 5). 4© Each PE has its own lookup table that’s used to quickly index the state values for
system dynamics computation (line 5 in Algorithm 5). Optimal control is also determined at the same
time. 5© The Hamiltonian term and the dissipation in (line 6-7 in Algorithm 5) are then computed
using the output from previous steps. 6© New output values are computed (line 8-9 Algorithm 5)
written back to DRAM.

3.6.1 Memory Buffer Micro - Architecture

The memory buffer has the following key design objectives: (1) minimize on-chip memory
usage and external DRAM accesses while (2) concurrently providing value grid points to
each PE every clock cycle.

One challenge of working with a multi-dimensional grid is that the value function over
the whole grid can take up tens of megabytes and therefore its entirety cannot fit into a
state-of-the-art FPGA’s on-chip memory. In our design, instead of storing the entire grid
on-chip, the value of V at grid points are streamed continuously from DRAM into the
on-chip memory buffer, which is implemented as a First In First Out (FIFO) queue data
structure. Every clock cycle, values of new grid points are fetched from DRAM and pushed
onto the back FIFO queue while the oldest grid points are popped from the front of the
queue. Our objective is to minimize this length of this FIFO queue, and hence the amount
of memory usage. Shown in [24] the minimum length of the FIFO queue is equal to the
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maximum reuse distance of a value grid point, which is dependent only on smallest N − 1
dimensions of the grid. Based on the grid’s size in each dimension, the minimum length of
the FIFO queue is as follows:

2N1N2N3 + pe+ 1 (3.12)

where pe is the number of PEs used in the design. The expression in (3.12) is an order
of magnitude smaller than the grid’s size of N1N2N3N4 and can fit on FPGA’s on-chip
memory.

The next challenge is to design the FIFO queue such that it can provide value of the grid
points for the PEs to simultaneously start computing new value function at grid points every
clock cycle. On FPGA, a FIFO queue is physically mapped to standard Blocks of Random
Access Memory (BRAM). Each BRAM has two-ports and can concurrently request at most
two read/write in the same clock cycle. One way to increase the number of access per clock
cycle is to duplicate the FIFO queue with multiple BRAMs, but this would not work well for
multi-dimensional arrays since these array copies easily exceed an FPGA’s on-chip memory.

A different technique, called memory banking, partitions a FIFO queue into multiple
smaller FIFO queues mapped into multiple BRAMs. Our FIFO queue structure (shown in
Fig. 3.2) is adapted from the parallel memory buffer microarchitecture described in [24],
which is specialized for a 2D/3D grid. We extend [24] to be optimized for a 4D grid as
follows. The on-chip FIFO structure is partitioned into four line buffers, which corresponds
to the number of PEs in our design. Each line buffer is a sequence of connected FIFO queues
of varying sizes (shown as the horizontal stacks of rectangles in Fig. 3.2) depending on which
grid points need to be accessed by the PEs. The endpoints of these FIFO queues (shown as
colored arrows in Fig. 3.2) are connected both the next FIFO queue and to the inputs to
the PEs. At every clock cycle, values from four grid points are streamed from DRAM and
enter the four buffer lines (left side of Fig. 3.2) then travel towards the right of the buffer
lines to fill up the FIFOs until they are popped at the end of each line (right side of Fig.
3.2). As the values move along the FIFO queues, they are accessed by the PEs. To perform
the computations in line 3 of Algorithm 5, the PEs need access to the adjacent grid points
values in all 4 dimensions as illustrated by Fig. 3.2. The indices of the grid value needed by
the PEs determine the sizes of each FIFO queue, which are shown in Fig. 3.2 for the first
line. Note each line buffer supplies values to multiple PEs, as shown by the coloured arrows.

3.6.2 Processing Element Micro - Architecture

The PE has the following target design objectives: (1) increase compute throughput (defined
as the number of value output generated per second) through pipelining, a technique that
overlaps execution between iterations, (2) and ensure the correctness of the result while
minimizing data transfer between DRAM and the FPGA using a lookup table.
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Figure 3.2: Four lines of memory buffer supply grid data to all four PEs. Each rectangle block is a
FIFO queue synthesized to Block RAM (BRAM). New grid points are streamed from DRAM every
clock cycle. They enter each buffer line (left-hand side) and old grid points at the end of the lines are
discarded (right-hand side). The overhead notation is the size of the FIFO queue with N1, N2, N3, N4
as the four grid dimensions. Note that the FIFO’s size depends only on three dimensions, while still
able to supply all the necessary grid data to all PEs. The FIFO sizes are equal to the linear distances
between every two grid points in memory.

To increase computation throughput, each PE is fully pipelined. Similarly to an as-
sembly line, each PE operation is divided into multiple stages, and each stage within the
pipeline is responsible for executing a step in Algorithm 5 (lines 3-10) for a particular index
i, j, k, l. Following the sequential order of Algorithm 5, every clock cycle, the result from the
previous stages will be forwarded into the next stage. At any time during the operations,
the processing element is executing Algorithm 5 for multiple indices concurrently (explained
in Fig.3.3).

To ensure that the computation is correct, inside each of the PE, there are indices that
keep track of loop variables i, j, k, l, with the innermost loop variable incrementing by one
every clock cycle. These indices are used to correctly address the state vectors during the
system dynamics computation (line 5 of Algorithm 5). To avoid accessing external DRAM
as much as possible, we store the list of values of each state variable in z or any fixed non-
linear functions such as cos(·) and sin(·) of these states over the entire grid as a lookup table
stored in the on-chip memory, since state vectors only depend on the grid configuration and
do not change with the environment. Each PE has access to its own copy of look-up table to
avoid communications between PEs. Having this data on-chip only requires a few kilobytes
of memory.
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Figure 3.3: The pipelining schedule of a single PE. The PE’s operation is an assembly line where
multiple grid points are processed simultaneously. Within the pipeline, each stage computes a step
of algorithm 5, and is occupied by a tuple comprised of the indices i, j, k, l. Every clock cycle, the
results from these indices are forwarded to the next stage towards the end of the pipeline.

In our design, we use 4 PEs (shown in Fig. 3.1). The number of PEs is largely determined
by how many grid points can be provided by the on-chip memory, which in turn is dependent
on the DRAM speed. Each PE has an offset index idx, 0 ≤ idx ≤ 3 associated with it. At
the start of Algorithm 5, each PE takes as input a grid index (i, j, k, l + idx) and its eight
neighbours from the on-chip memory buffer to start computing Vt+1(i, j, k, l+idx) according
to Algorithm 5 (line 2-10).

3.6.3 Data representations

Computing a new value function based on Algorithm 5 involves multiple addition operations
on floating-point numbers. At the hardware level, the addition of floating-point numbers
is as computationally expensive as fixed-point multiplication, which would take up lots of
resources and chip’s area. Instead, we use fixed-point representations for our data to reduce
the burden on the hardware. We will show in the next section that this has little impact
on the correctness of the computation if the radix point is chosen carefully for the grid
configuration.

3.7 FPGA implementation on AWS

3.7.1 Memory Interface

Fig. 3.4 shows the hardware modules that are used to correctly and effectively transfer data
from DRAM to our hardware accelerator. Our FPGA design communicates data with exter-
nal DRAM using the AXI protocol. Every external data requests (read/write commands) on
FPGA has to pass through the module arbiter, which ensures fairness among the modules
that require DRAM accesses. Each read/write command’s addresses and request length are
controlled and tracked by a Finite State Machine (FSM).

Data are accessed in bursts from/to DRAM with the data length being fixed throughout
the computation. In particular for our design, we use a data length of 512 for our AXI modes.
As array values are read sequentially, using this maximum possible data length can help us
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Figure 3.4: Components that are required for data communication between target accelerator and
DRAM

achieve near optimal usage of the DRAM bandwidth. In addition, because the accelerator
is not guaranteed to keep up with input supply rate, there has to be a FIFO queue (dark
green blocks in Fig . 3.4) that buffers grid points read from DRAM. Each of the FIFO takes
different size for the input width and the output width, and the depth of the queues are
computed using the burst size and data length used for the AXI communications.

3.7.2 Interface between host and FPGA

To correctly offload the specialized computation from the host program to the FPGA,
the following information has to be shared between the host and the FPGA: input data
addresses, output data addresses, when the computation should start, and when the com-
putation has finished. On FPGA, these information are stored in a set of control registers
that can be written and read by both host program and fpga’s custom logic. In particular,
the design’s control registers include two write address registers, two read address registers,
a cycle counter register and a launch register. Each register is 32-bit wide. Note that the

Figure 3.5: PCIe mapped addresses of the control registers on FPGA

two 32-bit address registers make up a 64-bit address in the host system. In addition, the
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cycle counter register keeps track of the number of clock cycles that has passed since the
beginning of computation and can be read back by the host program. The definitions of
these control registers are defined in the file DCRF1.scala.

In the host program, these registers’ addresses are mapped to the custom logic’s registers
through the PCIe bus (Figure 3.5). By writing to these mapped addresses, we can interface
to the custom logic design from our host program (shown in Figure 3.6 ).

Figure 3.6: Control registers on FPGA can be accessed in C++ program by writing to PCI mapped
addresses using function call fpga_pci_poke provided by AWS FPGA software library

To kickstart the computation on FPGA, the launch register is written 1 by the host
program, and written 2 by the FPGA when the computation has finished. To determine
if the computation on FPGA has finished, the host program will poll for the computation
status on the FPGA by continuously evaluating the value of the launch register(shown in
Figure 3.7). Finally, input data from the host program can be written to the FPGA’s
DRAM using DMA function calls, and output results on the FPGA side can be read back
by the host program using the DMA burst read function (shown in Figure 3.8)

Figure 3.7: The host program polls for the control status register on the FPGA

Figure 3.8: Data residing on FPGA’s DRAM can be transferred back to host program by calling
function fpga_dma_burst_read provided by AWS FPGA software library.
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3.8 Result

3.8.1 Hardware correctness

We evaluate the correctness of our FPGA on three different environments (shown in Fig.
3.9, 3.10, 3.11) in a room of size 6m x 5m. The target system is an RC car modeled by the
dynamics described in equation 3.11 with the control input range and car length as follows:
a ∈ [−1.5, 1.5], δ ∈

[
− π

12 ,
π
12
]
, and L = 0.3m.

Figure 3.9: Environment 1

Figure 3.10: Environment 2
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Figure 3.11: Environment 3

Each of the cone in the scenarios are used as obstacles and the implicit value function
is as follow:

V0(x, y, v, θ) =
√

(x− xo)2 + (y − yo)2 −R (3.13)

where xo and yo are the obstacle’s positions and R = 0.08m is the radius of the cone. The
sub-zero level set of the intial value function is shown in Figure. 3.12, 3.13, 3.14

Figure 3.12: Initial value function for environment 1

32



Figure 3.13: Initial value function for environment 2

Figure 3.14: Initial value function for environment 3

Each of these initial level set function is passed to the FPGA in order to be solved for the
converged value function. Because our FPGA works with fixed-point data representation,
each initial value function has to be correctly converted before computation can start. In
particular, we use 32 bits with 5 bits to represent the integer part (including sign) and 27
bits for the decimal part. With this choice, the precision of the result is 2−27 = 7.45× 10−9

and the range is from −16 to 16. The room area is 4m × 6m, hence the largest absolute
distance is the diagonal of 7.2m. Therefore, the number of integer bits is enough to represent
all possible values in the solution V , which has the physical interpretation of minimum
distance to collision over time, given (3.5) and the choice of V0 in (3.13).
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Figure 3.15: A 3D slice of 4D Backward Reachable Tube (BRT) for environment 1

Figure 3.16: A 3D slice of 4D Backward Reachable Tube (BRT) for environment 2
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Figure 3.17: A 3D slice of 4D Backward Reachable Tube (BRT) for environment 3

The numerical error resulting from the different representations is shown for each three
environments in Table 3.1. The errors are negligible due to precision difference between
fixed-point and floating point number.

Table 3.1: Error Comparison

Env. 1 Env. 2 Env. 3
Maximum Error 3.1× 10−6 1.67× 10−6 2.62× 10−6

Even though the computation is repeated for many iterations, the maximum error does
not grow dramatically over time. We believe that is because of the convergence property of
the value function. As time increases, the rate of changes in the value function at the grid
points slows down, leading to a stable discrepancy between the correct floating point and
fixed-point values.

3.8.2 Latency & speedup

To measure the speed up for all three environments, we compare the computation time on
an AWS FPGA running at 196MHz against the toolboxes [1] and [2] running on a 16-thread
Intel(R) Core(TM) i9-9900K CPU at 3.60GHz. The results are summarized in Tables 3.2
and 3.4. Latency refers to the time it takes to compute the the value function over the time
horizon of 0.5s. For an FPGA, latency can be computed by multiplying the clock cycles
with the clock period.
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Table 3.2: FPGA

Clock cycles Period Iterations Latency

Env. 1 47965066 5.1 ns 67 0.2447s
Env. 2 47964977 5.1 ns 67 0.2447s
Env. 3 47965021 5.1 ns 67 0.2447s

Table 3.3: optimized_dp[1]

Latency Iterations FGPA speed up
Env. 1 3.35 s 67 ×13.7
Env. 2 2.99 s 67 ×12.2
Env. 3 3.42 s 67 ×14

Table 3.4: ToolboxLS[2]

Latency Iterations FPGA speed up
Env. 1 25.11 s 70 ×103
Env. 2 25.14 s 70 ×103
Env. 3 25.18 s 70 ×103

3.8.3 Resource utilization

On an FPGA, arithmetic operations on numbers are implemented using Digital Signal
Processing (DSP) hardware or Look Up Table (LUT) that perform logical functions. Our
design does not consume a significant portion of the available resources and thus could be
scaled up to a larger grid size if needed. The resources usage of our design for 4 PEs is
shown in the table below.

Table 3.5: RESOURCE CONSUMPTION

LUT BRAM DSP
Used 26319 519 598

Available 111900 1680 5640
Utilization 14.03% 30.89% 10.6%

Note that since we are synthesizing our hardware design on AWS FPGA, the number
of resources used also include other components that are specific for AWS’s general appli-
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cation but not part of the core hardware accelerator. This means that our accelerator can
potentially be synthesized on smaller, local FPGAs with fewer resources.

3.9 Robotic Experiment

3.9.1 Software Architecture

Figure 3.18: Software architecture of our experiment. Each green-colored cirlce is a ROS node that
has inward arrow as subscribed message and outward arrow as publishing message.

The software architecture used in our experiment is shown in Figure. 3.18 and is written in
Python language. Our software uses Robotic Operating Systems (ROS) framework in order
to handle the communications between different modules locating in different locations in
a communication network over the internet. The software architectures include three ROS
nodes (green-colored circle in Figure. 3.18): the Vicon bridge node, the car controller
node, and the main controller node. We will go into detail about the functionality of each
node below.

The Vicon is responsible for detecting and tracking the positions of obstacles and the
target system in real-time. The Vicon bridge ROS node takes in these input from the Vicon
and publishes them in the form of ROS messages over the network. The main controller
locating at the AWS server subscribes to these messages to complete two tasks. First, it
computes the new value function multidimensional array using equation 3.13 with new
obstacle’s positions in the local environment. In order to use the hardware accelerator
implemented on FPGA in a Python program, we use Pybind to wrap the C++ driver code
that triggers computation on FPGA. Second, the ROS node sends back optimal control
computed by taking the spatial derivatives at the car’s current state. It should be noted
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that the car does not have to be applied the most optimal control input all the time, but
only necessary when the car is close to the BRT ( configuration states in which inevitable
collisions happen in the future) in order to guarantee safety. Based on the car’s positions,
the ROS node will evaluate how safe the car currently is by checking the value function of
the car’s present position against a positive threshold value, and then decides if optimal
control has to be sent to the car. If the current value function of the car is less than the
threshold value, an override flag is set to true and the car must take the optimal control
(line 8-9 of algorithm 6). These two tasks of the main controller are performed concurrently
by multithreading. This approach has the advantage that the HJ PDE solving procedure
does not block the optimal control computation from proceeding. In fact optimal control
has to be sent at a much higher frequency of 50-70 Hz than the HJ PDE computation. If
the latest value function is being updated, an older multidimensional value array is used to
determine the optimal control for current state input instead.

The third ROS node (car controller in Figure. 3.18 ) subscribes to the control message
published by the main controller and to the control sent from a remote manual controller.
If the override flag of the optimal control message is false, the manual control is chosen to
be applied to the car and a person can freely control it. However, when the car’s position
is less than a pre-defined threshold, the optimal control will then take over.

The algorithms used in the main controller and car controller are shown below in Al-
gorithm 6 and 7.

Algorithm 6 AWS Controller
1: Initialize V [N1][N2][N3][N4]
2: Thread 1 (z):
3: OptTakeover ← false
4: StateValue ← V (z)
5: uopt ← arg max

u∈U
∇V (z, s)>f(z, u)

6: If StateValue < threshold:
7: OptTakeover ← true
8: Publish (OptTakeover, uopt)
9: Thread 2 (obstacle):

10: Compute V based on the obstacle’s positions
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Algorithm 7 Car Controller
1: Global ctrl
2: Thread 1 (manualControl):
3: ctrl ← manualControl
4: Thread 2 (AWSControl):
5: If AWSControl.OptTakeover == True:
6: Publish AWSControl.uopt
7: Else:
8: Publish ctrl

3.9.2 Real-time Robot Demonstration

We plan out our experiments as follows: two obstacles locating in a room where one obstacle
is static while other obstacle is constantly moved by a person trying to hit a moving car.
The car is freely remotely controlled by another person when the flag OptTakeover is false. A
video demonstrating obstacle avoidance is available at https://www.youtube.com/watch?v=
8q6cJHmHNS8.

Figure 3.19: There are two obstacles inside the room where a person actively tries to move one
obstacle around while the other obstacle is stationary
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Chapter 4

Conclusion and Future Work

As autonomous systems are increasingly demanded in many industrial sectors, safety guar-
antees is an important aspect that is crucial in turning autonomous systems into reality. In
order to achieve that, we need better, faster tools for theoretical research as well as more
reliable, efficient systems on which safety-critical computation can run. Our work presented
in this is one step towards that goal. In this thesis, we have contributed OptimizedDP, a
toolbox that can be useful for researchers to solve HJ PDEs and value iteration problems
more efficiently with an easy-to-use Python interface. We have also shown that a specialized
computing architecture on FPGA could accelerate reachability analysis an order of magni-
tude faster than a multi-core CPU machine while having a more consistent computational
latency.

4.1 Future work

OptimizedDP’s core computation is written in HeteroCL, which lacks mathematical libraries
that can be useful for problem specifications. The next step to resolve this issue is extending
HeteroCL and TVM to include more complex mathematical functions. Several use cases of
Optimized DP indicate that utility functions found in Numpy can be used as a guideline
for this extension. To make OptimizedDP even more complete, features such as accurate,
higher order numerical scheme of spatial derivates approximation, numerical integration,
etc. will be added in the future.

Currently, the architecture we presented in Chapter 3 has to be manually specified us-
ing hardware description language Chisel/Scala. This process consumes a lot of time and
effort. For systems with varying characteristics such as different system dynamics and dif-
ferent number of dimensions, the memory buffer and PE presented will have to be designed
from scratch again. One potential direction to solve this issue is to build an automation
framework that can produce a description of digital circuits given a high-level user’s prob-
lem specification input. Another aspect of this work we would like to address in the future
is better computational latency. The accuracy of solutions to HJ PDEs can be tuned by
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both the number of grid points and the numerical scheme of computation. Because of that,
higher order numerical scheme can be adopted to compensate for fewer grid points used.
As the current architecture presented is limited by DRAM bandwidth, this trade-off can
potentially result in even faster computation of HJ PDE for high dimensional systems.
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