
Private Boosted Decision Trees via
Smooth Re-Weighting

by

Bahar Salamatian

B.Sc., Sharif University of Technology, 2019

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Bahar Salamatian 2021
SIMON FRASER UNIVERSITY

Summer 2021

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name:

Degree:

Thesis title:

Committee:

Bahar Salamatian

Master of Science

Private Boosted Decision Trees via Smooth
Re-Weighting

Chair: Evgenia Ternovska
 Associate Professor, Computing Science

Igor Shinkar
Supervisor
Assistant Professor, Computing Science

Andrei A.Bulatov
Committee Member
Professor, Computing Science

Valentine Kabanets
Examiner
Professor, Computing Science

ii

Abstract

Protecting the privacy of people whose data is used by machine learning algorithms is
important. Differential Privacy is the appropriate mathematical framework for formal
guarantees of privacy, and boosted decision trees are a popular machine learning technique.
So we propose and test a practical algorithm for boosting decision trees that guarantees
differential privacy. Privacy is enforced because our booster never puts too much weight
on any one example; this ensures that each individual’s data never influences a single tree
"too much." Experiments show that this boosting algorithm can produce better sparsity and
accuracy than other differentially private ensemble classifiers.

Keywords: differential privacy, smooth boosting, decision tree, decision stump

iii

Acknowledgements

I want to thank my patient and supportive supervisor, Professor Igor Shinkar. Thanks for
letting me explore different projects to find a project that I am passionate about. I am
grateful for all of your guidance and for helping me to become a better researcher. I can not
imagine having any better supervisor. I also want to thank my collaborators. This thesis was
not possible without them, Marco L. Carmosino, Akbar Rafiey, Mohammadmahdi Jahanara,
and Vahid Reza Asadi. I am particularly grateful to Marco, who introduced me to the
concept of differential privacy; I learned a lot from you. Finally, I would like to thank my
partner, parents, and brother for their unconditional love and support during the completion
of this thesis.

iv

Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Our contributions . 2
1.2 Overview of our work . 2
1.3 Related Work . 5

2 Preliminaries 7
2.1 Notation . 7
2.2 Distributions and Smoothness . 7
2.3 Learning . 8
2.4 Decision Trees . 10
2.5 Differential Privacy . 10
2.6 Differentially Private Learning . 12
2.7 DP Learning of 1-Rules . 16

3 Private Boosting 19

4 Concrete Private Boosting 21
4.1 Baseline: 1-Rules . 21
4.2 TopDown Decision Trees . 22

5 Experiments and Conclusions 27
5.1 Experiments . 27

v

5.1.1 Parameter Selection Without Assumptions 27
5.1.2 Results . 29
5.1.3 Effect of Approximate Differential Privacy 29
5.1.4 Sparsity, regularization, and interpretability 31
5.1.5 Pessimistic Generalization Theory . 31

Appendix A Sparsity statistics of the experiments 33

Appendix B Hyperparameters 35

Bibliography 37

vi

List of Tables

Table 5.1 Parameters grid . 28
Table 5.2 Statistics of number of features used by LazyBB with DP-1R across

different levels of privacy on adult dataset. See the Appendix for the
complete table. 31

Table 5.3 A 0.4-DP model obtained by training LazyBB with DP-1R on adult
dataset with 0.82 accuracy. 31

Table 5.4 Comparison between Rademacher estimates of generalization perfor-
mance and experimental generalization performance for boosted 1-Rules,
at ε = 1. 32

vii

List of Figures

Figure 5.1 Advantage curve and margin histogram. 28
Figure 5.2 Learning Curves — Privacy vs. accuracy. 29
Figure 5.3 CV accuracy on Adult of (ε, δ)-DP LazyBB (κ = 1/4, λ = 1/4, τ = 99)

with DP-1R, δ ∈ {0, 10−5}, varying ε, vs. non-private baselines. . . . 30
Figure 5.4 CV accuracy on Adult of (ε, δ)-DP LazyBB with DP-1R, δ ∈ {0, 10−5},

varying ε, vs. non-private baselines, with best model for each ε displayed. 30

viii

Chapter 1

Introduction

A machine learning algorithm is an algorithm that gets a set S of n datapoints in some
high dimensional space Rr, and for each datapoint x ∈ S it also gets its boolean label
y(x) ∈ {±1}. In addition, we assume that the elements of S are sampled i.i.d. from some
unknown distribution D, such that each point x in the support of D has some unique Boolean
label y = y(x) that is unknown to the algorithm.

The goal of the learning algorithm is given the points in S and their labels to output a
functions h : Rr → {±1} from a certain restricted class of functions (called the hypothesis
class), so that the hypothesis h outputs the correct label on as many points are possible
from the (unknown) distribution D. That is, by reading only the points in S we want to
build a hypothesis h that maximizes Prx∼D[h(x) = y(x)].

One popular and widely used hypothesis class is the class of Boolean decision trees.
Recently, this notion has been generalized to Boosted decision trees. These are defined by a
distribution over some finite collection of Boolean decision trees. That is, given an input
x the boosted decision tree computes the value of each decision tree on the input x, and
decides to output +1 or −1 according to the weighted majority of the outputs of the trees.

Boosted decision trees are a popular, widely deployed, and successful machine learning
technique. Boosting constructs an ensemble (distribution) of decision trees sequentially, by
calling a decision tree base learner with sample weights that “concentrate attention” on
training examples that are poorly classified by trees constructed so far [30].

Differential Privacy (DP) is a mathematical definition of privacy which ensures that the
distribution over hypotheses produced by a learning algorithm does not depend too much
on any one input example [7], so that an adversary cannot tell if any specific individual
participated in a differentially private study or not [see 32, section IV.C.1].

Recent purely theoretical work of [4] used Smooth Boosting to give a simple and differen-
tially private algorithm for learning large-margin half-spaces. Informally speaking, smooth
boosting is an algorithmic technique that gets a differential private weak learning algorithm
(that’s is a learning algorithm that works only slightly better than a random guess), and
converts it into a learning algorithm while preserving the differentially privacy property.

1

This is done by applying the weak learning algorithm repeatedly on the same training set
with different distributions, making sure that never to concentrate too much sample weight
on any one example. The boosting algorithm of [4] is generic, and does not depend on any
specific features of the weak learner beyond differential privacy.

1.1 Our contributions

In this work we demonstrate that the smooth boosting algorithm of [4] is a practical and
efficient differentially private classifier when paired with decision “stumps” – depth-1 trees,
i.e., predicates that depend on only one feature of the dataset1. We compare on three
classification tasks to DP logistic regression [6], DP bagging [18], DP gradient boosting [22],
and smooth boosting over our own “reference implementation” of DP decision trees. In
all cases, smooth-boosted decision stumps improve on other algorithms in accuracy, model
sparsity, or both in the high-privacy regime. This is surprising; in the non-private setting
somewhat deeper trees (depth 3 - 7) generally improve accuracy. It seems that stumps better
tolerate the amount of noise that must be added to enforce privacy for small samples. Since
many applications of DP (e.g., US Census sample surveys, genetic data) require simple and
accurate models for small datasets, we regard the high utility of smooth-boosted DP-Stumps
in these settings as a pleasant surprise.

1.2 Overview of our work

Below we provide an informal overview of our work by describing its algorithmic components,
and the results we obtain from our experiments.

As explained above, the theoretical part of this work relies on the notion of smooth
boosting which we describe next. Smooth boosting consists of two parts: (1) constructing
a differentially private weak learning algorithm, and (2) boosting the learning algorithm
while preserving privacy. In our case we study two hypothesis classes that the weak learning
algorithms output: (i) 1-rules, also known as decision stumps or dictators, and (ii) decision
trees of some fixed depth. Boosting of the weak learners output distributions over the basic
hypotheses.

Weak learner: Given a training data set S ∈ (X × {±1})n consisting of n data points
x = (xi,1, . . . , xi,r) ∈ Rr and their labels y(x) ∈ {±1}, our weak learning algorithm constructs
a decision tree as a hypothesis, where each node in the tree depends on one of the coordinates
of the input x. The tree is constructed iteratively, where in each iteration given the tree
so far we decide which of its leaves to split and which predicate (coordinate/feature of the

1Such predicates are known as the dictators in the literature on analysis of Boolean functions

2

input) to associate with this node. The decision is made by a greedy heuristic, namely
we choose an split (leaf and coordinate pair) that has a high splitting criterion value. We
formally define our notion of splitting criterion in Section 4.2 and Definition 4.2.1.

In particular, we study the 1-Rules or "Decision Stumps", which are degenerate trees with
only one node. It turns out that these using them as weak learners in the boosting algorithm
gives a learning algorithm that improves over DP-RL, which is the standard differentially
private learning algorithms in the literature. See Section 4 for details.

In each iteration we use a simple differentially private algorithm named Weighted
Exponential Mechanism, which is defined in 2.6.3, to find a split that with high probability
has a high splitting criterion value. In order to prove privacy guarantees for our weak
learners we use composition theorems for differentially privacy informally described below,
and formally in Theorem 2.5.3 and Theorem 2.5.4.

Boosting algorithm: Given a training data set S ∈ (X × {±1})n consisting of n data
points x = (xi,1, . . . , xi,r) ∈ Rr and their labels y(x) ∈ {±1}, and a weak learning algorithm,
we start by applying the learning algorithm on S with the uniform distribution µ1 = Un.
The learning algorithm returns us a hypothesis h1 : X → {±1}.

In the next iteration, we go over all data points in S, and see how many of them are
misclassified by h1, i.e., find all x ∈ X such that h1(x) 6= y(x), where y(x) is the correct label
of x. Then, we define a new distribution µ2 that gives more weight to the x’s misclassified
by h1, and would like to run the weak learning algorithm on this distribution µ2. However,
since we want our learning algorithm to preserve privacy, we need to make sure that µ2 is
κ-smooth for some parameter κ ∈ [0, 1], where, roughly speaking “smooth” means close to
uniform. This is achieved by “smoothing” µ2 using the procedure called Bregman projection
(Definition 2.2.4). We run the weak learning algorithm on this smooth distribution, and
obtain another hypothesis h2.

We continue in the same fashion to the next iteration, by finding all points that are
misclassified by the average of the previous hypotheses h1, . . . hi, defining the appropriate
distribution, smoothing it using Bregman projection, and then running the weak algorithm
again to obtain the next hypothesis hi+1.

The output of the learning algorithm is the sign function of the average of the hypotheses
obtained in all the iterations. That is, sign(∑i hi(x)), where sign(r) = 1 for all r > 0 and
sign(r) = −1 for all r ≤ 0. See Algorithm 2 and Theorem 3.0.1 in Section 1.3 for details.

Composition theorems: In order to prove that the smooth boosting defined above is
indeed differentially private, we use the sequential composition theorem stated in Theorem
2.5.3, which we explain next. A composition of two private algorithms M1 and M2 is defined
as follows: given an input dataset S we first run M1 of S, and obtain an output. In our case
the output is a hypothesis h1. Then, we run M2 by providing to it the dataset S as well

3

as h1 the output of M1. Assuming that each of M1 and M2 are differentially private with
some parameters, the composition theorem provides the guarantees on the privacy of their
composition. See Theorem 2.5.3 for details.

Similarly to the sequential composition theorem we also use the parallel composition
theorem. For parallel composition we partition all data points (from both training dataset
and testing dataset) into k parts D = D1 ∪ D2 ∪ · · · ∪ Dk according to some predefined
partition function. (For example, the partition function can be a decision tree of height
log2(k) where each node depends on some coordinate/feature of the datapoint.) For each
i = 1, . . . , k we have a differentially private learning algorithm Mi. The parallel composition
of these Mi is obtained in the natural way: (1) Run each Mi independently and obtain a
hypothesis hi : Di → {±1}. (2) Then, given an input x ∈ D we first find i∗ such that x ∈ Di∗ ,
and then output hi∗(x). The parallel composition theorem states that the differential privacy
of the composition is small assuming that each of the Mi’s is differentially private with the
appropriate privacy guarantee. See Theorem 2.5.4 for the precise statement.

Experiments and the quality our results: We implement our boosted learning algo-
rithm, where hypothesis class of the weak learning algorithms output consists of 1-rules, also
known as decision stumps or dictators. For these algorithm we show that smooth boosting
of 1-rules yield improved model accuracy under privacy constraints when compared to the
standard learning algorithms, such as differentially private logistic regression (DP-LR).

Specifically, run our experiments on three sets of datapoints described below. We explain

Adult This dataset contains the information from Census data, containing some statistical
information about the participants in the survey, such as age range, marital status,
languages the person speaks, etc. For this data set the goal is to build a hypothesis
that predicts whether the income of a given person is above $50K/yr based on census
data. Here the dataset is publicly available, and has 32,561 training examples, that
are standard and are used by all learning algorithms. Then the hypothesis is tested on
additional 16,282 test examples. These test examples provided by the Census data are
also standard, and are not to be used during when running the learning algorithm.

Cod-RNA This dataset is available from the LIBSVM website, and has 59,535 training
examples. The goal of the learning algorithm here is to build a hypothesis for detection
of non-coding RNA. Unlike in the Adult dataset, here we do not have the standard
separation between training data and testing data. In order to test out hypothesis
we use cross-valudation (Definition 2.3.5). In the cross-validation setting we choose,
say 10 percent of random datapoint from the data set T ⊂ X , and use the remaining
points for training. Then we test the obtained hypothesis on the chosen 10 percent of
the data points T , and measure on how many of these points the hypothesis provides
a correct label.

4

This procedure is repeated several times, each time sampling an new set T of testing
datapoints.

Mushrooms This dataset has 8124 training examples, each consisting of 117 features, and
the goal is to output a hypothesis that identifies whether the mushroom is poisonous
or not. As in the Cod-RNA, the dataset does not have a standard separation between
training data and testing data, and we use cross-validation to measure the success rate
of the hypothesis obtained from our learning algorithm.

For the case of high privacy regime (corresponding to low probability of distinguishing
whether any particular data point belongs to the training set) our results show better
accuracy on the test data for Adult and Mushrooms, when compared to the differential
privacy linear regression (DR-LP) algortihms, which is the standard benchmark algorithm
in this area.

See Figure 5.2 in Section 5.1 for plots and clarifications about the plots.

1.3 Related Work

Decision trees are among the most popular classifiers, that are often used for their efficiency
and interpretability. Since the NP-completeness result of Hyafil and Rives [16], there has
been an extensive body of research devoted to designing heuristic algorithms for inducing
decision trees. These algorithms are efficient and successful in practice [28]. Notable examples
are greedy procedures such as ID3, C4.5, and CART [26, 27, 3]. They construct the trees
iteratively, “growing” a tree by adding children to some leaf node of an existing tree according
to some splitting criterion.

Differentially Private Decision Trees. Many previous works explored differentially
private algorithms for learning single decision trees. Authors in [2] showed how a traditional
non-private algorithm (ID3) could be modified to achieve differential privacy by adding noise
to the splitting criterion. Later, [12] empirically demonstrated the effectiveness of using the
exponential mechanism to privately select splits for ID3 and C4.5.

Recent work modified the TopDown algorithm of Kearns and Mansour [20] to enforce
differential privacy [31]. This is particularly interesting because TopDown is not a heuristic.
Under a weak learning assumption — if the features considered for splitting have some
advantage over random guessing — TopDown is guaranteed to learn a tree with low training
error. Wang, Dick, and Balcan [31] preserve this guarantee under differential privacy by
appealing to the utility of the Laplace Mechanism. Here, we implement a simpler DP-
TopDown algorithm — as the goal of our work is to test differentially private boosting,
weaker tree induction is perferable.

5

Differentially Private Boosting. Differentially private boosting is less well-studied
because the iterative structure of boosting algorithms complicates the task of enforcing
privacy while maintaining utility. In theory, [11] designed the first differentially private
boosting algorithm. Later, Bun, Carmosino, and Sorrell [4] offered a much simpler private
algorithm based on the hard-core lemma of [1]. Both algorithms preserved privacy by using
“smooth” distributions over the sample to limit the “attention” any one example receives
from a base learner. Our LazyBB (Algorithm 2) is an implementation of the algorithm of [4]
over decison trees and stumps.

Boosting by reweighting updates an explicit distributions over the data, where the
probability mass on an example reflects how difficult it is to classify. Gradient Boosting
iteratively fits the residuals of the combined voting classifier — it alters the labels instead of
explicit weights on each sample.

One very recent experimental work studies differentially private gradient tree boosting
[22]. Their base learner is an ensemble of greedily-constructed decision trees on disjoint
subsets of the data, so that parallel composition may be used inside the base learner to save
privacy. They deal with the “too much attention” problem by clipping the pseudo-residuals
at each round, so that outliers do not compromise privacy by over-influencing the hypothesis
at any round. They use composition to spread the privacy budget across each round of
boosting.

Our algorithm is boosting by reweighting and uses much simpler base learners. Our
update rule is just multiplicative weights, and we enforce privacy by projecting the resulting
distribution over examples into the space of smooth distributions. Our algorithm remains
accurate in the high-privacy (ε < 1) setting; whereas [22] did not explore this regime.

6

Chapter 2

Preliminaries

2.1 Notation

We use the following notation for better exposition and readability.

Definition 2.1.1. We denote the exponential function exp(x) = ex.

2.2 Distributions and Smoothness

To preserve privacy of the data, we will never concentrate too much attention on a single
example. This can be enforced by only using smooth distributions — where no example is
allowed to have too much relative weight.

Definition 2.2.1 (κ-smooth distributions). For a parameter κ ∈ [0, 1] a probability dis-
tribution µ over a domain X is κ-smooth if for each x ∈ X we have µ(x) ≤ 1

κ|X| , where
κ ∈ [0, 1].

In addition we will need the related notion of κ-dense measures, defined below. A measure
on a set X is a function µ : X → [0, 1] that need not sum to one. Note that normalizing
measures to total weight naturally results in a distribution over X.

Definition 2.2.2 (κ-dense measure). For a parameter κ ∈ [0, 1] a measure µ overa domain
X is said to be κ-dense if for each x ∈ X we have µ(x) ≤ |µ|

κ|X| , where |µ| =
∑
x∈X µ(x).

Next we define the notion of Kullback-Leibler (KL) divergence. Informally speaking KL
divergence measure how one probability distribution is different from another.

Definition 2.2.3 (Kullback-Leibler divergence). Let µ1 and µ2 be bounded measures over
the same domain X. The Kullback-Leibler divergence between µ1 and µ2 is defined:

KL(µ1 ‖ µ2) =
∑
x∈X

µ1(x) ln
(
µ1(x)
µ2(x)

)
+ µ2(x)− µ1(x)

7

Next we define the notion of Bregman projection. This will be one of the key notions
required for our boosting algorithm.

Definition 2.2.4 (Bregman projection). Let Γ ⊆ R|S| be a non-empty closed convex
set of measures over S. The Bregman projection of µ̃ onto Γ is defined as: ΠΓµ̃ =
arg minµ∈Γ KL(µ ‖ µ̃).

The result of Bregman 1967 says Bregman projections do not badly “distort” KL-
divergence. Moreover, when Γ is the set of κ-dense measures we can compute ΠΓµ̃ for
measure µ̃ with |µ̃| < κ|X| [1]. Finally, we require the following notion of similarity.

Definition 2.2.5 (Statistical Distance). The statistical distance, a.k.a. total variation
distance, between two distributions µ and ν on Ω, denoted d(µ, ν), is defined as d(µ, ν) =
maxS⊂Ω |µ(S)− ν(S)|.

For finite sets Ω, d(µ, ν) = 1/2
∑
x∈Ω |µ(x)− ν(x)| e.g., see Proposition 4.2 in [21]. Finally

we define Laplace distribution, which will be used in order to sample noise that helps us
guarantee privacy.

Definition 2.2.6 (Laplace distribution). For scale parameter b > 0, the Laplace distribution
is defined with the following probability density function:

p(x) = 1
2b exp(−x

b
) .

2.3 Learning

Throughout the thesis we let S = {(xi, yi)}n, where each xi = (xi,1, . . . , xi,r) ∈ Rr is a
data point represented by a vector of its features, and each yi = y(xi) ∈ {±1} denotes the
unique Boolean label of xi. Though our techniques readily extend to continuous-feature
or multi-label learning, studying this restricted Boolean classification setting simplifies the
presentation and experiments.

Definition 2.3.1 (Hypothesis Class). A hypothesis class, denoted by H, is a family of
functions from the domain X to the labels {±1}. We call any member of the hypothesis class
h ∈ H a hypothesis.

Definition 2.3.2 (A learning algorithm). Let S ∈ (X × {±1})n be a training set of size n,
and assume the elements of S are sampled i.i.d from an unknown distribution D. Let H be a
hypothesis class of functions h : X → {±1}. A learning algorithm takes the random variable
S as an input, and outputs a hypothesis h.

We hope/expect that the hypothesis h obtained from the learning algorithm will output
the correct labels on the unknown underlying distribution of data. One way to formalize this,

8

is the (α, β)−Probably Approximately Correct (PAC) guarantees, that is:

Pr
S∼Dn

[
Pr

(x,y)∼D
[h(x) 6= y] < α

]
> 1− β .

We remark that while the general definition of PAC learning is commonly used in theory,
for practical applications we usually just run our learning algorithm on a training set, and
then estimate the quality of the hypothesis only on uniform distribution over the given test
examples, while the test examples are sampled from an unknown distribution D (which is
typically very far from uniform over all possible examples). This estimation serves as an
estimation of Pr(x,y)∼D[h(x) 6= y(x)].

Definition 2.3.3 (Weak Learner). Let S ∈ (X × {±1})n be a training set of size n. Let µ
be a distribution over [n]. A weak learning algorithm with advantage γ takes (S, µ) as input
and outputs a hypothesis h : X → {±1} such that: Prx∼µ[h(x) = y(x)] ≥ 1/2 + γ, where y(x)
is the unique label of the data point x ∈ X .

It is worth emphasizing that the weak learner is expected to output a hypothesis h that
has advantage γ over the trivial (random) hypothesis only for the training set, and is not
required to have any guarantees about the test dataset.

Definition 2.3.4 (Margin). For binary classification, the margin (denoted σ) of an ensemble
H = h1, . . . , hτ consisting of τ hypotheses on an example (x, y) is a number between −τ and
τ that captures how “right” the classifier as a whole is σ(H,x, y) = y

∑τ
j=1 h(x).

As mentioned earlier, the goal of any learner is to achieve high accuracy (or low error)
with respect to the underlying unknown distribution of data, often called the population
accuracy. In practice we can only estimate this quantity. When we are provided with a test
dataset that is separate from the training dataset, we can use the accuracy of the hypothesis
with respect to the test data as an estimate its accuracy with respect to the underlying
distribution of data. When we do not have such an additional dataset, we have to re-use
our learning data; however the accuracy of the hypothesis with respect to the training data
does not ensure generalization and is often too optimistic as an estimate for the population
accuracy. One approach to guarantee the generalization in this situations is cross-validation.

Definition 2.3.5 (k-fold cross-validation). Given a learning algorithm A, and training
sample S, first partition S into S1, ..., Sk of equal sizes (if |S| is not divisible by k just put
the reminder in the last partition). For each round 1 ≤ i ≤ k, we use all the partitions but Si
to find a hypothesis and then use Si to estimate its accuracy, then average all. Let’s denote
by S−i = S \ Si, and hi = A(S−i). Then k-fold cross-validation is defined as follows:

CVk(A,S) = 1
k

∑
i∈[k]

1
|Si|

∑
(x,y)∈Si

1{hi(x)=y} .

9

2.4 Decision Trees

Definition 2.4.1 (Binary Decision Tree). A decision tree T : X → {±1} is a simple
classifier represented as a rooted directed tree, in which any node has no more than 2 children.
Each leaf ` ∈ T has a label y(`) ∈ {±1} assigned to it. Moreover, each internal node v is
equipped with a simple predicate predv : X → {±1} that decides whether an incoming sample
should go to the right or left sub-tree.

For an input x ∈ X , in order to obtain T (x) one starts from the root, and follows the
predicates rule until reaching a leaf `. The output the label of T on x is the label of the leaf
y(`).

In general, depending on the knowledge domain for the task at hand, the predicate
functions of the internal nodes are selected from a simple family of functions like thresholds
on single features. Here we only consider the case in which X = {0, 1}m and the predicates
of internal nodes v are of the form predv(x) = xi for some i ∈ [m].

2.5 Differential Privacy

The definition of differential privacy relies on the notion of neighboring datasets. We say
two datasets are neighboring if they differ in a single record. We write D ∼ D′ when two
datasets D, D′ are neighboring.

Definition 2.5.1 ((ε, δ)-Differential Privacy [8]). For ε, δ ∈ R+, we say that a randomized
computation M is (ε, δ)-differentially private if for any neighboring datasets D ∼ D′, and
for any set of outcomes S ⊆ range(M),

Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ.

When δ = 0, we say M is ε-differentially private.

Remark 2.5.1 (δ – the probability of catastrophic failure). LetM be randomized algorithm
that is (ε, δ) differentially private. Now let D,D′ be two neighbouring input for M , and O a
potential output for M . Note that if Pr[M(D) = O] = 0, then the only guarantee we have is
that Pr[M(D′) = 0] ≤ δ, which means if we only consider D and D′ it can be the case that
with probability δ it would be completely clear from the output of M which one was used as
the input. Hence we call δ the probability of catastrophic failure and it should be very small
for the DP guarantee to be meaningful.

Now, consider an algorithm that gets a sensitive dataset D of n records as input. Then
randomly select δn records fromD and remove them, and finally release the remaining dataset
as output. It is easy to see that this algorithm is (ε = 0, δ)-DP. This simple observation
suggests that we should keep δ ≤ 1

n .

10

Differentially private algorithms must be calibrated to the sensitivity of the function of
interest with respect to small changes in the input dataset, defined formally as follows.

Definition 2.5.2 (Sensitivity). The sensitivity of a function F : X → Rk is maxD∼D′∈X ||F (D)−
F (D′)||1. A function with sensitivity ∆ is called ∆-sensitive.

In the context of differential privacy, a mechanism is any randomized algorithm that
acts as an interface to the data, and answer specific queries. In following subsection we
generalize a few standard differential private mechanisms that will serve as building blocks
of our private weak learners.

An important feature of the differential privacy framework is its ability to guarantee
privacy under composition of multiple mechanisms. Two privacy composition theorems,
sequential composition and parallel composition, are widely used in the design of mechanisms.

A sequential composition of mechanisms M1, ...,Mk is a new mechanisms M which for
any given input dataset D runs Mi for 1 ≤ i ≤ k one-by-one, providing D and the output of
all previous mechanisms as the input to Mi. Finally M outputs the result of Mk. Notice that
in each round Mi gets a chance to learn even more about D given the results of previous
rounds. We see our boosting algorithm as a sequential composition of single rounds of
boosting, and we use sequential composition theorem to analyse the aggregated privacy cost
of the boosting algorithm.

A parallel composition of mechanisms M1, ...,Mk is new mechanism M which for any
given input dataset D first deterministically partition D to D1, ..., Dk and then run each
Mi independently on Di. Finally M outputs the aggregated result of all the mechanisms,
that is (M1(D1),,Mk(Dk)). Notice that for any neighboring datasets D,D′ only of the
corresponding partitions can be different. We use parallel composition to analyse the
aggregate privacy cost of different branches of our private decision trees.

Theorem 2.5.3 (Sequential Composition [5, 9, 11, 24]). Suppose a set of privacy mecha-
nisms M = {M1, . . . ,Mk} are sequentially performed on a dataset, and each Mi is (εi, δi)-
differentially private with εi ≤ ε0 and δi ≤ δ0 for every 1 ≤ i ≤ k. Then mechanism M

satisfies (ε, δ)-differential privacy where

• ε = kε0 and δ = kδ0 (the basic composition), or

• ε =
√

2k ln 1/δ′ε0 +kε0(eε0−1) and δ = δ′+kδ0 for any δ′ > 0 (the advanced composition).

We emphasise that in Theorem 2.5.3 both the basic and the advanced composition refer
to the same algorithm, and the only difference is in the way the privacy of the algorithm
is analyzed. Advanced composition allows us to tune δ′ in order to trade privacy budget ε
with probability of catastrophic failure δ.

Theorem 2.5.4 (Parallel Composition [23]). Let D1, . . . , Dk be a partition of the input
domain and suppose M1, . . . ,Mk are mechanisms so that Mi satisfies εi-differential privacy.

11

Then the mechanism M(S) = (M1(S ∩D1), . . . ,Mk(S ∩Dk)) satisfies (maxi εi)-differential
privacy.

2.6 Differentially Private Learning

For the sake of our differentially private boosting algorithm we require a slightly different
notion of privacy for weak learners. Given two neighboring datasets and almost the same
distributions on them, we require weak learners to output the same hypothesis with high
probability.

Definition 2.6.1 (DP Weak Learning). A weak learning algorithm WkL : S ×D(S)→ H is
(ε, δ, ζ)-differentially private if for all neighboring samples S ∼ S′ ∈ (X n × {±1}) and all
H ⊆ H, and any pair of distributions µ̂, µ̂′ on [n] with d(µ̂, µ̂′) < ζ, we have:

Pr[WKL(S, µ̂) ∈ H] ≤ exp(ε) Pr[WKL(S′, µ̂′) ∈ H] + δ.

Note that the notion of sensitivity for differentially private weak learners depends on
the promised total variation distance ζ. Hence, differentially private weak learners must be
calibrated to the sensitivity of the function of interest with respect to small changes in the
distribution on the dataset.

Definition 2.6.2 (Robust Sensitivity). The robust sensitivity of a function F : (X,M)→ Rk

where M is the set of all distributions on X is defined as

max
D∼D′∈X

µ̂,µ̂′∈M:d(µ̂,µ̂′)<ζ

||F (D, µ̂(D))− F (D′, µ̂′(D′))||1.

A function with robust sensitivity ∆ζ is called ∆ζ robustly sensitive.

Exponential Mechanism is an algorithmic technique in differential privacy that given
a set of all possible outputs of some algorithm and scores qh ∈ R associated with each
solution h ∈ H, where each score qh depends on some input parameters, outputs a random
solution h with probability that is proportional to exp(ηqh) for some parameter η. The
standard Exponential Mechanism [24] typically considers only the uniform distribution over
the possible inputs, and does not consider utility functions with an auxiliary weighting µ.
But for weak learning we only demand privacy (close output distributions) when both the
dataset and measures are “close.” When both promises hold and µ is fixed, the Exponential
Mechanism is indeed a differentially private weak learner.

Definition 2.6.3 (Weighted Exponential Mechanism). Let η > 0 and let qD,µ : H → R be a
quality score. Then, the Weighted Exponential Mechanism WEM(η, qD,µ) outputs h ∈ H
with probability proportional to exp (η · qD,µ(h)) .

12

Similar to the Exponential Mechanism one can prove privacy and utility guarantee for
the Weighted Exponential Mechanism.

Theorem 2.6.4. Suppose the quality score qD,µ : H → R has robust sensitivity ∆ζ . Then,
WEM(η, qD,µ) is (2η∆ζ , 0, ζ)-differentially private weak learner. Moreover, for every β ∈
(0, 1), WEM(η, qD) outputs h ∈ H so that

Pr
[
qD,µ(h) ≥ max

h′∈H
qD,µ(h′)− ln (|H|/β) /η

]
≥ 1− β.

Proof. The goal is to prove, given two neighboring datasets and two similar distributions
on them, the Weighted Exponential Mechanism outputs the same hypothesis with high
probability.

In what follows let M denote the Weighted Exponential Mechanism, and let H =
Range(M). Suppose S,S ′ are two neighboring datasets of size n and µ, µ′ are distributions
over [n] such that d(µ, µ′) < ζ. Furthermore, let qD,µ : H → R be a quality score that has
robust sensitivity ∆ζ . That is, for every hypothesis h ∈ H, we have

max
D∼D′

µ,µ′:d(µ,µ′)<ζ

|qD,µ(h)− qD′,µ′(h)| ≤ ∆ζ . (2.1)

We proceed to prove that for any h ∈ H the following holds

Pr[M(S, µ) = h] ≤ exp(2η∆ζ) Pr[M(S′, µ′) = h].

Recall that M outputs a hypothesis h with probability proportional to exp(η · qD,µ) with
η = ε

2∆ζ
. Let us expand the probabilities above,

Pr[M(S, µ) = h]
Pr[M(S ′, µ′) = h] = exp (η · qS,µ(h))

exp (η · qS′,µ′(h))

×

∑
h∈H

exp (η · qS′,µ′(h))∑
h∈H

exp (η · qS,µ(h)) .

Consider the first term, then

exp (η · qS,µ(h))
exp (η · qS′,µ′(h)) = exp (η[qS,µ(h)− qS′,µ′(h)])

≤ exp (η ·∆ζ). (By (2.1))

Now consider the second term, then

13

∑
h∈H

exp (η · qS′,µ′(h))∑
h∈H

exp (η · qS,µ(h)) ≤

∑
h∈H

exp (η · [qS,µ(h) + ∆ζ])∑
h∈H

exp (η · qS,µ(h))

=
exp (η∆ζ)

∑
h∈H

exp (η · qS,µ(h))∑
h∈H

exp (η · qS,µ(h))

= exp (η∆ζ).

Hence, it follows that

Pr[M(S, µ) = h]
Pr[M(S ′, µ′) = h] ≤ exp (η∆ζ) · exp (η∆ζ)

= exp (2η∆ζ).

This implies that, for η > 0, WEM is a (2η∆ζ , 0, ζ)-differentially private weak learner. (Note
that setting η = 2ε

2∆ζ
yields a (ε, 0, ζ)-differentially private weak learner.)

We point out that the proof for the utility guarantee of Theorem 2.6.4 is identical to the
proof of the utility guarantee in standard Exponential Mechanism [24].

Another differentially private mechanism that we use is Weighted Return Noisy Max
(WRNM). Let f1, . . . , fk be k quality functions where each fi : S×D(S)→ R maps datasets
and distributions over them to real numbers. For a dataset S and distribution µ over S,
WRNM adds independently generated Laplace noise Lap(1/η) to each fi and returns the
index of the largest noisy function i.e. i∗ = argmax

i
(fi +Zi) where each Zi denotes a random

variable drawn independently from the Laplace distribution with scale parameter 1/η.

Theorem 2.6.5. Suppose each fi has robust sensitivity at most ∆ζ . Then WRNM is a
(2η∆ζ , 0, ζ)-differentially private weak learner.

Proof. Our proof follows the same steps as the standard Return Noisy Max explained in
[10] with slight modification. Again, our goal is to prove, given two neighboring datasets
and two similar distributions on them, the WRNM outputs the same hypothesis index.

Let f1, . . . , fk be k quality functions where each fi : S × D(S)→ R maps datasets and
distributions over them to real numbers. For a dataset S and distribution µ over S, WRNM
adds independently generated Laplace noise Lap(1/η) to each fi and returns the index of
the largest noisy function i.e. i∗ = argmax

i
(fi +Zi) where each Zi denotes a random variable

drawn independently from the Laplace distribution with scale parameter 1/η. In what follows
let M denote the WRNM.

Suppose S,S ′ are two neighboring datasets of size n and µ, µ′ are distributions over [n]
such that d(µ, µ′) < ζ. Furthermore, suppose each fi has robust sensitivity at most ∆ζ . That

14

is, for every index i ∈ {1, . . . , k}, we have

max
D∼D′

µ,µ′:d(µ,µ′)<ζ

|fi(S, µ)− fi(S ′, µ′)| ≤ ∆ζ . (2.2)

Fix any i ∈ {1, . . . , k}. We will bound the ratio of the probabilities that i is selected by
M with inputs S,S ′ and distributions µ, µ′.

Fix Z−i = (Z1, . . . , Zi−1, Zi+1, . . . , Zk), where each Zj ∈ Z−i is drawn from Lap(1/η).
We first argue that

Pr[M(S, µ) = i | Z−i]
Pr[M(S ′, µ′) = i | Z−i]

≤ e2η·∆ζ .

Define Z∗ to be the minimum Zi such that

fi(S, µ) + Z∗ > fj(S, µ) + Zj ∀j 6= i.

Note that, having fixed Z−i, M will output i only if Zi ≥ Z∗. Recalling (2.2), for all j 6= i,
we have the following,

fi(S ′, µ′) + Z∗ + ∆ζ ≥ fi(S, µ) + Z∗ > fj(S, µ) + Zj

≥ fj(S ′, µ′) + Zj −∆ζ .

This implies that

fi(S ′, µ′) + Z∗ + 2∆ζ ≥ fj(S ′, µ′) + Zj .

Now, for dataset S ′, distribution µ′, and Z−i, mechanism M selects the i-th index if Zi,
drawn from Lap(1/η), satisfies Zi ≥ Z∗ + 2∆ζ .

Pr
Zi∼Lap(1/η)

[M(S ′, µ′) = i | Z−i]

≥ Pr
Zi∼Lap(1/η)

[Zi ≥ Z∗ + 2∆ζ]

≥ e−(2η∆ζ) Pr
Zi∼Lap(1/η)

[Zi ≥ Z∗]

= e−(2η∆ζ) Pr
Zi∼Lap(1/η)

[M(S, µ) = i | Z−i].

Multiplying both sides by e(2η∆ζ) yields the desire bound.

PrZi∼Lap(1/η)[M(S, µ) = i | Z−i]
PrZi∼Lap(1/η)[M(S ′, µ′) = i | Z−i]

≤ e(2η∆ζ).

15

This implies that, for η > 0, WRNM is a (2η∆ζ , 0, ζ)-differentially private weak learner.
(Note that setting η = 2ε

2∆ζ
yields a (ε, 0, ζ)-differentially private weak learner.)

2.7 DP Learning of 1-Rules

1-Rules are the simplest kind of decision trees, that is trees with only one node! Throughout
this section let S = {(xi, yi)}n, where each xi = (xi,1, . . . , xi,r) ∈ {±1}r denotes a datapoint,
and let µ be a distribution over [n]. We will brute-force “1-Rules,” also known as Decision
Stumps1 [17, 15]. Here, these simply evaluate a single Boolean literal such as ¬x17 — an
input variable that may or may not be negated. We also admit the constants True and False
as literals.

A brutally simple, but surprisingly effective weak learner returns the literal with optimal
weighted agreement to the labels. For any 1-Rule h define err(S, µ, h) to be:

err(S, µ, h) =
∑

(xi,yi)∈S
µ(i)χ{h(xi) 6= y}.

For learning 1-Rules under DP constraints, the natural approach is to use the Exponential
Mechanism to noisily select the best possible literal. There is a small type error: the standard
Exponential Mechanism does not consider utility functions with an auxiliary weighting µ.
But for weak learning we only demand privacy (close output distributions) when both the
dataset and measures are “close.” When both promises hold and µ is fixed, the Exponential
Mechanism is indeed a differentially private 1-Rule learner. We show this formally below.

1Decision Stumps are also known as the Dictator functions in the context of analysis of boolean functions.

16

Algorithm 1 Differentially Private 1-Rule Induction(S, µ, η)
Require: Dataset S, distribution µ over [1, . . . , |S|], and η > 0.

1: Let H be the set of all literals over S plus the constants True and False
2: for h ∈ H do
3: qS,µ(h)← −err(S, µ, h).
4: end for
5: hout ← select a hypothesis h ∈ H with probability proportional to exp (η · qS,µ(h))
6: return hout

Observation 2.7.1. Let S ∼ S ′ be any two neighboring datasets and set I = S ∩ S ′. Then,
for any two distributions µ, µ′ over [n], we have

∣∣err(S, µ, T)− err(S ′, µ′, T)
∣∣

=
∣∣∣∣∣ ∑

(xi,yi)∈S
µ(i)χ{T (xi) 6= y}

−
∑

(xi,yi)∈S′
µ′(i)χ{T (xi) 6= y}

∣∣∣∣∣
=
∣∣∣∣∣ ∑

(xi,yi)∈S∩S′
[µ(i)− µ′(i)]χ{T (xi) 6= y}

+
∑

(xi,yi)∈S4S′
[µ(i)− µ′(i)]χ{T (xi) 6= y}

∣∣∣∣∣
≤

∑
(xi,yi)∈S∩S′

|µ(i)− µ′(i)|+
∑

(xi,yi)∈S4S′
|µ(i)− µ′(i)|

=
n∑
i=1
|µ(i)− µ′(i)| = 2d(µ, µ′).

Theorem 2.7.2. Algorithm 1 is a (4ηζ, 0, ζ)-differentially private weak learner.

Proof. Suppose S,S ′ are two neighboring datasets of size n and µ, µ′ are distributions over [n]
such that d(µ, µ′) < ζ. Observation 2.7.1 tells us that the quality score qS,µ(h) = −err(S, µ, h)
has robust sensitivity 2ζ. Hence, by Theorem 2.6.4, we have that Algorithm 1 is a (4ηζ, 0, ζ)-
differentially private weak learner.

Theorem 2.7.3. Let hopt denote the optimal hypothesis in H. Then Algorithm 1, with
probability at least 1− β, returns hout ∈ H such that

err(hout) ≤ err(hopt) + 1
η

ln |H|
β
.

17

Proof. By Theorem 2.6.4, with probability at least 1− β, we have

qS,µ(hout) ≥ max
h∈H

qS,µ(h)− 1
η

ln |H|
β
. (2.3)

Note that qS,µ(h) = −err(S, µ, h) for all h ∈ H and max
h∈H

qS,µ(h) = −err(hopt). This gives us

− err(hout) ≥ −err(hopt)−
1
η

ln |H|
β

=⇒

err(hout) ≤ err(hopt) + 1
η

ln |H|
β
.

As we already discussed, in order to construct PAC learners by boosting weak learners we
need weak learners that only beat random guessing on any distribution over the training set.
Here, we wish to use Algorithm 1 as a weak learner. That is, we show that Algorithm 1 (with
high probability) is better than random guessing. In what follows we have Theorem 2.7.4
and its proof.

Theorem 2.7.4. Under a weak learner assumption with advantage γ, Algorithm 1, with
probability at least 1− β, is a weak learner with advantage at least γ − 1

η ln |H|β . That is, for
any distribution µ over {1, . . . , |S|}, we have

∑
(xi,yi)∈S

µ(i)χ{hout(xi) 6= y} ≤ 1/2−
(
γ − 1

η
ln |H|

β

)
.

Proof. By Theorem 2.7.3, Algorithm 1 with probability at least 1− β outputs a hypothesis
hout such that

err(hout) ≤ err(hopt) + 1
η

ln |H|
β
.

Under a weak learner assumption, we assume that an optimal hypothesis hopt is at least as
good as random guessing. That is err(hopt) < 1/2− γ. This yields the desired result.

18

Chapter 3

Private Boosting

Our boosting algorithm simply calculates the current margin of each example at each round,
exponentially weights the sample accordingly, and then calls a private base learner with
smoothed sample weights. The hypothesis returned by this base learner is added to the
ensemble H , then the process repeats. Privacy follows from (advanced) composition and the
definitions of differentially private weak learning. Utility (low training error) follows from
regret bounds for lazy projected mirror descent and a reduction of boosting to zero-sum
games. Theorem 3.0.1 formalizes these guarantees; for the proof, see [4]. Next, we discuss
the role of each parameter.

Round Count τ . The number of base hypotheses. In the non-private setting, τ is like
a regularization parameter — we increase it until just before overfitting is observed. In the
private setting, there is an additional trade-off: more rounds could decrease training error
until the amount of noise we must inject into the weak learner at each round (to preserve
privacy) overwhelms progress.

Learning rate λ. Exponential weighting is attenuated by a learning rate λ to ensure
that weights do not shift too dramatically between calls to the base learner. λ appears
negatively because the margin is negative when the ensemble is incorrect. Signs cancel to
make the weight on an example larger when the committee is bad, as desired.

Smoothness κ. Base learners attempt to maximize their probability of correctness
over each intermediate distribution. Suppose the t-th distribution was a point mass on
example xi — this would pose a serious threat to privacy, as hypothesis ht would only
contain information about individual xi! We ensure this never happens by invoking the weak
learner only over κ-smooth distributions: each example has probability mass “capped” at
1
κn . For larger samples, we have smaller mass caps, and so can inject less noise to enforce
privacy. Note that by setting κ = 1, we force each intermediate distribution to be uniform,
which would entirely negate the effects of boosting: reweighting would simply be impossible.
Conversely, taking κ→ 0 will entirely remove the smoothness constraint.

19

Algorithm 2 LazyBB: Weighted Lazy-Bregman Boosting
Parameters: κ ∈ (0, 1), desired training error; λ ∈ (0, 1), learning rate; τ ∈ N number of
rounds
Input: S ∈ Xn, the sample;
H ← ∅ and µ1(i)← κ ∀i ∈ [n] {Uniform bounded measure}
for t = 1 to τ do
µ̂t ← Normalize µt to a distribution {Obtaining a κ-smooth distribution}
ht ← WkL(S, µ̂t)
H ← H ∪ {ht}
σt(i)← yi

∑t
j=1 hj(xi) ∀i ∈ [n] {Normalized score of current majority vote}

µ̃t+1(i)← exp (−λσt(i))κ ∀i ∈ [n]
µt+1 ← ΠΓ(µ̃t+1) {Bregman project to a κ-dense measure}

end for
Output: f̂(x) = Majhj∈H [hj(x)]

Theorem 3.0.1 (Privacy & Utility of LazyBB). Let L be a (εb, δb, (1/κn))-DP weak learner
with advantage γ and failure probability β for concept class H. Running LazyBB with L for
τ ≥ 16 log (1/κ)

γ2 rounds on a sample of size n with λ = γ/4 guarantees:

Privacy LazyBB is (εA, δA)-DP, where

• εA = τ · εb and δA = τ · δb (using basic composition) or,

• εA =
√

2τ · ln(1/δ′) · εb + τ · εb · (exp(εb)− 1) and δA = τ · δb + δ′ for every δ′ > 0
(using advanced composition).

Utility With all but (τ ·β) probability, H has at least γ-good normalized margin on a (1−κ)
fraction of S i.e., Pr(x,y)∼S

[
y/τ
∑τ
j=1 hj(x) ≤ γ

]
≤ κ.

Note that Theorem 3.0.1 above “opportunistically” switches between basic and advanced
composition in the privacy guarantee. This actually matters for our experiments, because
when the number of rounds is small budgeting privacy according to basic composition is
actually better for the weak learner! Of course, for larger numbers of rounds, advanced
composition is better — assuming we are willing to give up pure differential privacy for a
small possibility of catastrophic privacy failure.

Weak Learner failure probability β is critical to admit because whatever “noise” process
a DP weak learner uses to ensure privacy may ruin utility on some round. So, we must union
bound over this event in the training error guarantee.

20

Chapter 4

Concrete Private Boosting

Here we specify concrete weak learners and give privacy guarantees for LazyBB combined
with these weak learners.

4.1 Baseline: 1-Rules

To establish a baseline for performance of both private and non-private learning, we use the
simplest possible hypothesis class: 1-Rules or “Decision Stumps” [17, 15]. In the Boolean
feature and classification setting, these are just constants or signed literals (e.g. −x17) over
the data domain.

1R(S) = {xi}i∈[d] ∪ {−xi}i∈[d] ∪ {+1,−1} and err(S, µ, h) =
∑

(xi,yi)∈S
µ(i)χ{h(xi) 6= y}.

To learn a 1-Rule given a distribution over the training set, return the signed feature
or constant with minimum weighted error. Naturally, we use the Weighted Exponential
Mechanism with noise rate η to privatize selection. This is simply the Generic Private
Agnostic Learner of [19], finessing the issue that “weighted error” is actually a set of
utility functions (analysis in Section 2.7). We denote the baseline and differentially private
versions of this algorithm as 1R and DP-1R, respectively. We introduced the private version
in Algorithm 1 and analysed its privacy in Theorem 2.7.2.

Given a total privacy budget of ε, we divide it uniformly across rounds of boosting. Then,
by Theorem 3.0.1, we solve ε = 4τ ·η · ζ for η to determine how much noise DP-1R must inject
at each round. Note that privacy depends on the statistical distance ζ between distributions
over neighboring datasets. LazyBB furnishes the promise that ζ ≤ 1/κn. It is natural for
ζ to depend on the number of samples: the larger the dataset, the easier it is to “hide”
dependence on a single individual, and the less noise we can inject at each round. Hence the
following is a direct corollary of Theorem 2.7.2 and the privacy section of Theorem 3.0.1:

Corollary 4.1.1. LazyBB runs for τ rounds using DP-1R at noise rate η = εκn
4τ is ε-DP.

21

4.2 TopDown Decision Trees

TopDown heuristics are a family of decision tree learning algorithms that are employed
by widely used software packages such as C4.5, CART, and scikit-learn. We present a
differentially private TopDown algorithm that is a modification of decision tree learning
algorithms given by Kearns and Mansour [20]. At a high level, TopDown induces decision
trees by repeatedly splitting a leaf node in the tree built so far. On each iteration, the
algorithm greedily finds the leaf and splitting function that maximally reduces an upper
bound on the error of the tree. The selected leaf is replaced by an internal node labeled
with the chosen splitting function, which partitions the data at the node into two new
children leaves. Once the tree is built, the leaves of the tree are labeled by the label of
the most common class that reaches the leaf. Algorithm 3, DP-TopDown, is a “reference
implementation" of the differentially private version of this algorithm. DP-TopDown, instead
of choosing the best leaf and splitting function, applies the Exponential Mechanism to noisily
select a leaf and splitting function in the built tree so far. The Exponential Mechanism
is applied on the set of all possible leaves and splitting functions in the current tree; this
is computationally feasible in our Boolean-feature setting. Next we introduce necessary
notation and discuss the privacy guarantee of our algorithm, and how it is used as a weak
learner for our boosting algorithm.

DP TopDown Decision Tree. Let F denote a class of Boolean splitting functions with
input domain S. Each internal node is labeled by a splitting function h : S → {0, 1}. These
splitting functions route each example x ∈ S to exactly one leaf of the tree. That is, at each
internal node if the splitting function h(x) = 0 then x is routed to the left subtree, and x
is routed to the right subree otherwise. Furthermore, let G denote the splitting criterion.
G : [0, 1] → [0, 1] is a concave function which is symmetric about 1/2 and G(1/2) = 1.
Typical examples of splitting criterion function are Gini and Entropy. Here we use Gini as
our splitting criterion of choice.

Definition 4.2.1. We denote Gini function by G(x) = 4x(1− x). Note that this function is
symmetric about 1/2 and G(1/2) = 1

Algorithm 3 builds decision trees in which the internal nodes are labeled by functions in
F , and the splitting criterion G is used to determine which leaf should be split next, and
which function h ∈ F should be used for the split.

Let T be a decision tree whose leaves are labeled by {0, 1} and µ be a distribution on
S. The weight of a leaf ` ∈ leaves(T) is defined to be the weighted fraction of data that
reaches ` i.e., w(`, µ) = Prµ[x reaches `]. The weighted fraction of data with label 1 at leaf `

22

Algorithm 3 Differentially Private TopDown-DT
Require: Data sample S, distribution µ̂ over S, number of internal nodes t, and η > 0.

1: T ← the single-leaf tree.
2: C ← leaves(T)× F
3: while T has fewer than t internal node do
4: (`∗, h∗)← select a candidate from C w.p. ∝ exp(η · im`,h,µ̂)
5: T ← T (`∗, h∗)
6: for each new pair `× h ∈ leaves(T)× F do
7: im`,h,µ̂ ← G(T, µ̂)−G(T (`, h), µ̂)
8: Add im`,h,µ̂ to C
9: end for

10: end while
11: Label leaves by majority label [WRNM with privacy budget 8t · η · ζ]
12: Output: T

is denoted by q(`, µ). Given these we define error of T as follows.

err(T, µ) =
∑

`∈leaves(T)
w(`, µ) min{q(`, µ), 1− q(`, µ)}.

Noting that G(q(`, µ)) ≥ min{q(`, µ), 1− q(`, µ)}, we have an upper bound for err(T, µ).

err(T, µ) ≤ G(T, µ) =
∑

`∈leaves(T)
w(`, µ)G(q(`, µ)).

For ` ∈ leaves(T) and h ∈ F let T (`, h) denote the tree obtained from T by replacing ` by
an internal node that splits subset of data that reaches `, say S`, into two children leaves `0,
`1. Note that any data x satisfying h(x) = i goes to `i. The quality of a pair (`, h) is the
improvement we achieve by splitting at ` according to h. Formally,

im`,h,µ = G(T, µ)− G(T (`, h), µ).

At each iteration, Algorithm 3 chooses a pair (`∗, h∗) according to the Exponential Mechanism
with probability proportional to im`,h,µ. By Theorem 2.6.4, the quality of the chosen pair
(`∗, h∗) is close to the optimal split with high probability.

Theorem 4.2.2 (Privacy guarantee). DP-TopDown, Algorithm 3, is a (16t · η · ζ, 0, ζ)-DP
weak learner.

Throughout this section, S ∼ S ′ are two neighboring datasets of size n and µ, µ′ are
distributions over [n] such that d(µ, µ′) < ζ. Observe that for a decision tree T we have
|w(`, µ) − w(`, µ′)| ≤ ζ and |q(`, µ) − q(`, µ′)| ≤ ζ. Before proceeding to provide an upper
bound on the sensitivity of im`,h,µ, we prove some useful lemmas.

23

Lemma 4.2.3. The following holds. 4
∣∣∣w(`, µ)q(`, µ)(1− q(`, µ))

− w(`, µ′)q(`, µ)(1− q(`, µ′))
∣∣∣ ≤ 5

4ζ

Proof. As the Gini criterion G(q) = 4q(1 − q) is symmetric about 1/2, without loss of
generality, we assume q(`) ≤ 1/2. Furthermore, suppose w(`, µ)q(`, µ)(1− q(`, µ)) is greater
than w(`, µ′)q(`, µ′)(1− q(`, µ′)). The arguments for the other cases are analogous.

w(`, µ)q(`, µ)(1− q(`, µ))− w(`, µ′)q(`, µ′)(1− q(`, µ′))

≤ w(`, µ)q(`, µ)(1− q(`, µ))

− w(`, µ′)(q(`, µ)− ζ)(1− q(`, µ) + ζ)

= w(`, µ)q(`, µ)(1− q(`, µ))

− w(`, µ′)q(`, µ)(1− q(`, µ) + ζ)

+ w(`, µ′)ζ(1− q(`, µ) + ζ)

≤ w(`, µ)q(`, µ)(1− q(`, µ))

− w(`, µ′)q(`, µ)(1− q(`, µ)) + ζ

≤ |w(`, µ)− w(`, µ′)|q(`, µ)(1− q(`, µ)) + ζ ≤ 5
4ζ.

Lemma 4.2.4. For a decision tree T and (`, h) ∈ leaves(T)× F we have∣∣∣im`,h,µ(S)− im`,h,µ′(S ′)
∣∣∣ ≤ 4ζ.

Proof. For dataset S let G(T) = ∑
`∈leaves(T)

w(`)G(q(`)). Recall the definition of im`,h,µ,

im`,h,µ(S) = G(T, µ)− G(T (`, h), µ)

= w(`, µ)G(q(`, µ))− w(`0, µ)G(q(`0, µ))

− w(`1, µ)G(q(`1, µ)).

Similarly, for dataset S ′ let G(T, µ′) = ∑
`∈leaves(T)

w(`, µ′)G(q(`, µ′)). Then we have

im`,h,µ′(S ′) = G(T, µ′)− G(T (`, h), µ′)

= w(`, µ′)G(q(`, µ′))− w(`0, µ′)G(q(`0, µ′))

− w(`1, µ′)G(q(`1, µ′)).

24

Having these we can rewrite
∣∣∣im`,h,µ(S)− im`,h,µ′(S ′)

∣∣∣ as follows,
∣∣∣im`,h,µ(S)− im`,h,µ′(S ′)

∣∣∣
=
∣∣∣G(T, µ)− G(T (`, h), µ)− G(T, µ′) + G(T (`, h), µ′)

∣∣∣
=
∣∣∣∣∣w(`, µ)G(q(`, µ))− w(`0, µ)G(q(`0, µ))

− w(`1, µ)G(q(`1, µ))− w(`, µ′)G(q(`, µ′))

+ w(`0, µ′)G(q(`0, µ′)) + w(`1, µ′)G(q(`1, µ′))
∣∣∣∣∣

≤
∣∣∣w(`, µ)G(q(`, µ))− w(`, µ′)G(q(`, µ′))

∣∣∣
+
∣∣∣w(`0, µ′)G(q(`0, µ′))− w(`0, µ)G(q(`0, µ))

∣∣∣
+
∣∣∣w(`1, µ′)G(q(`1, µ′))− w(`1, µ)G(q(`1, µ))

∣∣∣
≤ 15/4ζ ≤ 4ζ,

where the last inequalities follow by Lemma 4.2.3.

Now we are ready to prove Theorem 4.2.2:

Proof of Theorem 4.2.2. Let us denote Algorithm 3 by M . Consider a fixed decision tree T .
We prove that, given S ∼ S ′ and µ, µ′, Algorithm 3 chooses the same leaf and split function
with high probability.

Let C = leaves(T)× F denote the set of possible split candidates. For each (`, h) ∈ C,
im`,h,µ(S) denotes the improvement gained in classification of dataset S by splitting T at leaf
` according to split function h. Similarly, we have im`,h,µ′(S ′). Provided that d(µ, µ′) ≤ ζ,
by Lemma 4.2.4, the robust sensitivity of quality score im`,h,µ is at most 4ζ. Similar to the
proof of Theorem 2.6.4 it follows that

Pr[M(S, µ) = (`, h)]
Pr[M(S ′, µ′) = (`, h)] ≤ exp (8 · η · ζ).

This means each selection procedure where DP-TopDown selects a leaf and a splitting
function is (8 · η · ζ, 0, ζ)-differentially private. Using composition theorem for differentially
private mechanisms, Theorem 2.5.3, yields privacy guarantee

ε̃ = 8t · η · ζ,

for the construction of the internal nodes. We use ε̃ for labeling the leaves using Laplace
Mechanism. Since the leaves partition dataset, this preserves ε̃-differential privacy by parallel

25

composition of deferentially private mechanisms (Theorem 2.5.4). Overall, TopDown-DT is an
(16t · η · ζ, 0, ζ)-differentially private weak learner.

Remark 4.2.1. Using advanced composition for differentially private mechanisms, Theo-
rem 2.5.3, for every δ̃ > 0 yields privacy guarantee

ε̃δ̃ = t(8 · η · ζ)2 + 8 · η · ζ
√
t ln(1/δ̃),

for the construction of the internal nodes. We use ε̃δ̃ for labeling the leaves using Laplace
Mechanism. Since the leaves partition dataset, this preserves ε̃δ̃-differential privacy by parallel
composition of deferentially private mechanisms (Theorem 2.5.4). Overall, TopDown-DT is an
(2ε̃δ̃, δ̃, ζ)-differentially private weak learner.

As before, given a total privacy budget of ε, we divide it uniformly across rounds of
boosting. Then, by Theorem 3.0.1, we solve ε = 16τ · t · η · ζ for η to determine how much
noise DP-TopDown must inject at each round. LazyBB furnishes the promise that ζ ≤ 1/κn.
Overall:

Corollary 4.2.5. LazyBB runs for τ rounds using DP-TopDown at noise rate η = εκn
16τt is

ε-DP.

26

Chapter 5

Experiments and Conclusions

5.1 Experiments

Here we compare our smooth boosting algorithm (LazyBB) over both decision trees and
1-Rules to: differentially private logistic regression using objective perturbation (DP-LR) [6],
Differentially Private Bagging (DP-Bag) [18], and Privacy-Preserving Gradient Boosting
Decision Trees (DPBoost) [22]. In our implementation we used the IBM differential privacy
library (available under MIT licence) [14] for standard DP mechanisms and accounting, and
scikit-learn (available under BSD licence) for infrastructure [25]. These experiments show
that smooth boosting of 1-Rules can yield improved model accuracy and sparsity under
identical privacy constraints.

We experiment1 with three freely available real-world datasets. Adult (Available from
UCI Machine Learning Repository) has 32,561 training examples, 16,282 test examples,
and 162 features after dataset-oblivious one-hot coding — which incurs no privacy cost.
The task is to predict if someone makes more than 50k US dollars per year from Census
data. Our reported accuracies are holdout tests on the canonical test set associated with
Adult. Cod-RNA (available from the LIBSVM website) has 59,535 training examples and
80 features after dataset-oblivious one-hot coding, and asks for detection of non-coding RNA.
Mushroom (available from the LIBSVM website) has 8124 training examples and 117
features after one-hot coding, which asks to identify poisonous mushrooms. For Mushroom
and CodRNA, we report cross-validated estimates of accuracy. All experiments were run on
a 3.8 GHz 8-Core Intel Core i7 with 16GB of RAM consumer desktop computer.

5.1.1 Parameter Selection Without Assumptions

We select parameters for LazyBB and DP-LR entirely using grid-search and cross-validation
(Table 5.1.1 for LazyBB) for each value of epsilon plotted i.e. ε ∈ (0.05, 0.1, · · · , 0.5, 1, 3, 5).
Over the small datasets we use for experiments, the Weak Learner assumption does not hold

1Implementation and datasets available at: http://www.sfu.ca/~bsalamat/Thesis_Supplemental.zip.

27

http://www.sfu.ca/~bsalamat/Thesis_Supplemental.zip

WKL Parameter

τ λ κ

OneRule 5, 9, 15, 19, 25, 29, 0.2, 0.25, 0.2, 0.25,
39, 49, 65, 75, 99 · · · , 0.5 · · · , 0.5

TopDown 5, 9, 15, 19, 25, 29, 0.35, 0.4 0.25, 0.3
35, 39, 45, 51

Table 5.1: Parameters grid

0 50 100 150 200 250 300
iteration

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ad
va

nt
ag

e

Figure 5.1: Advantage curve and margin histogram.

for “long enough” to realize the training error guarantee of Theorem 3.0.1. For example,
fixing κ = 1/2 — seeking “good” margin on only half the training set — suppose we have a
(1/20)-advantage Weak Learner. That is, at every round of boosting, each new hypothesis
has accuracy at least 55% over the intermediate distribution. Under these conditions,
Theorem 3.0.1 guarantees utility after approximately 4,000 rounds of boosting. Figure 5.1
plots advantage on the Adult dataset at each round of boosting with λ = γ/4 as required by
Theorem 3.0.1, averaged over 10 runs of the boosting decision stumps with total privacy
budget ε = 1. The weak learner assumption fails after only 250 rounds of boosting.

And yet, even when run with much faster learning rate λ, we see good accuracy from
LazyBB — the assumption holds for small τ , ensuring that DP-1R has advantage. So,
Theorem 3.0.1 is much more pessimistic than is warranted. This is a know limitation of

28

the analysis for any non-adaptive boosting algorithm [30]. In the non-private setting, we
set λ very slow and boost for “many” rounds, until decay in advantage triggers a stopping
criterion. In the private setting (where non-adaptivity makes differential privacy easier
to guarantee) running for “many” rounds is not feasible; noise added for privacy would
saturate the model. These experiments motivate further theoretical investigation of boosting
dynamics for non-adaptive algorithms, due to their utility in the privacy-preserving setting.

Lo
w

pr
iv

ac
y

re
gi

m
e

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Epsilon

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

 A
cc

ur
ac

y

Adult

DP-LR
LazyBB-OneR
LazyBB-Tree
DPBoost
DP-Bag

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Epsilon

0.60

0.65

0.70

0.75

0.80

0.85

0.90

CV
 A

cc
ur

ac
y

CodRNA

DP-LR
LazyBB-OneR
LazyBB-Tree
DPBoost

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Epsilon

0.90

0.92

0.94

0.96

0.98

1.00

CV
 A

cc
ur

ac
y

Mushroom

DP-LR
LazyBB-OneR
LazyBB-Tree

H
ig

h
pr

iv
ac

y
re

gi
m

e

0.1 0.2 0.3 0.4 0.5

Epsilon

0.76

0.78

0.80

0.82

0.84

Te
st

 A
cc

ur
ac

y

Adult

DP-LR
LazyBB-OneR
LazyBB-Tree

0.1 0.2 0.3 0.4 0.5

Epsilon

0.65

0.70

0.75

0.80

0.85

0.90

CV
 A

cc
ur

ac
y

CodRNA

DP-LR
LazyBB-OneR
LazyBB-Tree

0.1 0.2 0.3 0.4 0.5

Epsilon

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

CV
 A

cc
ur

ac
y

Mushroom

DP-LR
LazyBB-OneR
LazyBB-Tree

Figure 5.2: Learning Curves — Privacy vs. accuracy.

5.1.2 Results

In Figure 5.2 we plot the accuracy of each of the 5 methods above against privacy constraint
ε, along with two non-private baselines to both quantify the “cost of privacy” and ensure that
the private learners are non-trivial. The strong non-private baseline is the implementation
of Gradient Boosted Trees in sklearn, the weak non-private baseline is a single 1-Rule. It is
important to note that for DP-Bag and DPBoost, we only compare our results for datasets
and regimes that the corresponding hyperparameters are reported in the related works.
Surprisingly, we found that LazyBB over 1-Rules and differentially private logistic regression
were the best performing models — despite being the simplest algorithms to state, reason
about, and run.

5.1.3 Effect of Approximate Differential Privacy

Figures 5.3 and 5.4 compare the cross validation average accuracy on Adult dataset in the pure
and approximate differential privacy regimes, for two different strategies of hyperparemeter
selection: oblivious to ε (Figure 5.3), and ε-dependent (Figure 5.4). This emphasizes the
importance of tuning hyperparameters for each choice of ε separately. For approximate

29

differential privacy, we consider the small constant value of δ = 10−5, the same as that used
by DP-Bag [18].

0.2 0.4 0.6 0.8 1.0

Epsilon

0.65

0.70

0.75

0.80

0.85

CV
 A

cc
ur

ac
y

Learning Curve

LazyBB_aprx
LazyBB_pure

Figure 5.3: CV accuracy on Adult of (ε, δ)-DP LazyBB (κ = 1/4, λ = 1/4, τ = 99) with
DP-1R, δ ∈ {0, 10−5}, varying ε, vs. non-private baselines.

When we set hyperparameters identically for each ε, using approximate differential
privacy can allow significantly increased accuracy at each ε. We found this to be the case
especially for higher τ ; we select τ = 99 to illustrate. However, if we are allowed to separately
optimize for each ε, the significance of this advantage disappears. Though average accuracy
clearly improves, it is not outside one standard deviation of average accuracy for pure
differential privacy. It seems that boosted 1-Rules are too simple to distinguish between
pure and approximate differential privacy constraints on this small dataset.

0.2 0.4 0.6 0.8 1.0

Epsilon

0.76

0.78

0.80

0.82

0.84

CV
 A

cc
ur

ac
y

Learning Curve

LazyBB_aprx
LazyBB_pure

Figure 5.4: CV accuracy on Adult of (ε, δ)-DP LazyBB with DP-1R, δ ∈ {0, 10−5}, varying ε,
vs. non-private baselines, with best model for each ε displayed.

30

5.1.4 Sparsity, regularization, and interpretability

Algorithms used for high-stakes decisions should be both well-audited and privacy-preserving.
However, often there is a trade-off between privacy and interpretability [13]. Generally, noise
injected to protect privacy harms interpretability. But our algorithms maintain accuracy
under strong privacy constrains while admitting a high level of sparsity — which facilitates
interpretability. Table 5.2 lists measurements across different levels of privacy. For an example
of boosted one-rules at ε = 0.4 DP, see Table 5.3.

DP-LR — another simple algorithm with excellent performance — uses L2 regularization
to achieve sparsity and better generalization. While L2 regularization keeps all the assigned
weights relatively small, it generally assigns a non-negligible weight to every features. Hence,
the resulting model becomes less interpretable as the dimension of data grows. On other
hand, LazyBB with 1-Rules controls sparsity indirectly by the number of rounds of boosting.
Just as with non-private non-adaptive boosting algorithms, we can see this as a greedy
approximation to L1 regularization of a linear model [29]. Moreover, the final model can be
interpreted as a simple integral weighted voting of features.

ε features count mean features count std % features

0.40 6.4 0.800 3.95%
0.50 12.8 0.400 7.90%
1.00 30.6 1.200 18.88%
3.00 72.8 2.481 44.93%
5.00 49.8 2.785 30.74%

Table 5.2: Statistics of number of features used
by LazyBB with DP-1R across different levels of
privacy on adult dataset. See the Appendix for the
complete table.

votes (feature, value)

3 marital-status : Married-civ-spouse
-2 capital-gain = 0
1 occupation : Exec-managerial
1 occupation : Prof-specialty
1 13 <= education-num <= 14.5
-1 age <= 17

Table 5.3: A 0.4-DP model obtained
by training LazyBB with DP-1R on
adult dataset with 0.82 accuracy.

5.1.5 Pessimistic Generalization Theory

Empirically, LazyBB generalizes well. As with AdaBoost, we could try to explain this with
large margins and Rademacher complexity, which applies to any voting classifier. So, we
estimated the Rademacher complexity of 1-Rules over each dataset to predict test error.
The bounds are far more pessimistic than the experiments. Intuitively, if LazyBB showed
larger margins on the training data than on unseen data, this would constitute a membership
inference attack — which is ruled out by differential privacy. This motivates theoretical
investigation of new techniques to guarantee generalization of differentially private models
trained on small samples.

The following table compares the best guaranteed lower bound derived by estimated
Rademacher complexity and the test accuracy. The test accuracy of Adult dataset is obtained
by evaluating the model on the test set, which was not touched during training. For Cod-RNA

31

and Mushroom dataset there is no canonical test set available, so we report cross-validation
accuracy.

Dataset Rademacher Estimate of Test Accuracy (CV) test accuracy

Adult 0.37 0.83
Cod-Rna 0.09 0.86
Mushroom 0.49 0.98

Table 5.4: Comparison between Rademacher estimates of generalization performance and
experimental generalization performance for boosted 1-Rules, at ε = 1.

32

Appendix A

Sparsity statistics of the
experiments

In Section 5.1 of the main body, we discussed sparsity and interpretability of LazyBB with
1-Rules. Here we share the complete table of sparsity measurements for all the experiments.
For each level of privacy, we use the hyper-parameter selected by cross-validation and
repeated the experiment 5 times to obtain confidence bounds.

ε features count mean features count std % features
0.05 4.6 0.489 2.83%
0.10 4.8 0.400 2.96%
0.15 3.8 0.400 2.34%
0.20 3.6 1.019 2.22%
0.25 7.0 0.632 4.32%
0.30 13.8 1.166 8.51%
0.35 7.6 0.489 4.69%
0.40 6.4 0.800 3.95%
0.45 19.2 2.785 11.85%
0.50 12.8 0.400 7.90%
1.00 30.6 1.200 18.88%
3.00 72.8 2.481 44.93%
5.00 49.8 2.785 30.74%

Table A.1: Sparsity measurements for Adult dataset.

33

ε features count mean features count std % features
0.05 6.0 0.632 7.50%
0.10 12.4 1.744 15.50%
0.15 19.6 1.625 24.50%
0.20 16.8 1.327 21.00%
0.25 11.2 0.748 14.00%
0.30 10.2 0.748 12.75%
0.35 26.4 1.356 33.00%
0.40 19.8 2.482 24.75%
0.45 34.4 1.497 43.00%
0.50 25.4 2.653 31.75%
1.00 54.2 3.187 67.75%
3.00 44.2 2.227 55.25%
5.00 32.0 2.098 40.00%

Table A.2: Sparsity measurements for Cod-RNA dataset.

ε features count mean features count std % features
0.05 4.6 0.490 3.93%
0.10 7.2 1.166 6.15%
0.15 5.8 0.748 4.95%
0.20 8.6 1.497 7.35%
0.25 6.2 0.748 5.29%
0.30 5.6 0.490 4.78%
0.35 9.0 0.894 7.69%
0.40 9.8 1.166 8.37%
0.45 9.4 1.356 8.03%
0.50 11.8 1.720 10.08%
1.00 14.4 1.625 12.03%
3.00 28.8 2.926 24.61%
5.00 11.8 0.748 10.08%

Table A.3: Sparsity measurements for Mushroom dataset.

34

Appendix B

Hyperparameters

These are the hyperparemeters selected by cross-validation of boosted 1-Rules over each of
our datasets. The privacy vs. accuracy curves use these settings for each value of ε.

ε density learning rate no. estimators
0.05 0.50 0.50 5
0.10 0.45 0.50 5
0.15 0.50 0.40 5
0.20 0.50 0.30 5
0.25 0.35 0.50 9
0.30 0.40 0.40 19
0.35 0.30 0.45 9
0.40 0.35 0.50 9
0.45 0.40 0.45 25
0.50 0.35 0.50 15
1.00 0.35 0.45 39
3.00 0.35 0.45 99
5.00 0.35 0.45 75

Table B.1: Hyperparameters selected by cross-validation for Adult dataset.

35

ε density learning rate no. estimators
0.05 0.50 0.50 9
0.10 0.50 0.35 19
0.15 0.50 0.50 29
0.20 0.40 0.50 25
0.25 0.50 0.45 25
0.30 0.50 0.45 25
0.35 0.45 0.35 49
0.40 0.45 0.45 39
0.45 0.50 0.40 65
0.50 0.45 0.50 49
1.00 0.40 0.50 99
3.00 0.30 0.40 99
5.00 0.35 0.40 99

Table B.2: Hyperparameters selected by cross-validation for Cod-Rna dataset.

ε density learning rate no. estimators
0.05 0.45 0.50 5
0.10 0.50 0.40 9
0.15 0.50 0.45 9
0.20 0.50 0.40 15
0.25 0.30 0.40 9
0.30 0.35 0.50 9
0.35 0.40 0.35 15
0.40 0.45 0.40 19
0.45 0.35 0.20 19
0.50 0.45 0.25 25
1.00 0.25 0.30 29
3.00 0.20 0.20 75
5.00 0.20 0.50 29

Table B.3: Hyperparameters selected by cross-validation for Mushroom dataset.

36

Bibliography

[1] Boaz Barak, Moritz Hardt, and Satyen Kale. The uniform hardcore lemma via approx-
imate bregman projections. In Claire Mathieu, editor, Proceedings of the Twentieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY,
USA, January 4-6, 2009, pages 1193–1200. SIAM, 2009.

[2] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the
sulq framework. In Chen Li, editor, Proceedings of the Twenty-fourth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June 13-15, 2005,
Baltimore, Maryland, USA, pages 128–138. ACM, 2005.

[3] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth, 1984.

[4] Mark Bun, Marco Leandro Carmosino, and Jessica Sorrell. Efficient, noise-tolerant,
and private learning via boosting. In Jacob D. Abernethy and Shivani Agarwal, editors,
Conference on Learning Theory, COLT 2020, 9-12 July 2020, Virtual Event [Graz,
Austria], volume 125 of Proceedings of Machine Learning Research, pages 1031–1077.
PMLR, 2020.

[5] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications,
extensions, and lower bounds. In Martin Hirt and Adam D. Smith, editors, Theory of
Cryptography - 14th International Conference, TCC 2016-B, Beijing, China, October
31 - November 3, 2016, Proceedings, Part I, volume 9985 of Lecture Notes in Computer
Science, pages 635–658, 2016.

[6] Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially private
empirical risk minimization. J. Mach. Learn. Res., 12:1069–1109, 2011.

[7] Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel, Vladimiro
Sassone, and Ingo Wegener, editors, Automata, Languages and Programming, 33rd
International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings,
Part II, volume 4052 of Lecture Notes in Computer Science, pages 1–12. Springer, 2006.

[8] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor.
Our data, ourselves: Privacy via distributed noise generation. In Serge Vaudenay, editor,
Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia,
May 28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer Science,
pages 486–503. Springer, 2006.

37

[9] Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Michael
Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 371–380.
ACM, 2009.

[10] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

[11] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and differential
privacy. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 51–60. IEEE Computer
Society, 2010.

[12] Arik Friedman and Assaf Schuster. Data mining with differential privacy. In Bharat
Rao, Balaji Krishnapuram, Andrew Tomkins, and Qiang Yang, editors, Proceedings of
the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Washington, DC, USA, July 25-28, 2010, pages 493–502. ACM, 2010.

[13] Frederik Harder, Matthias Bauer, and Mijung Park. Interpretable and differentially
private predictions. Proceedings of the AAAI Conference on Artificial Intelligence,
34:4083–4090, Apr. 2020.

[14] Naoise Holohan, Stefano Braghin, Pól Mac Aonghusa, and Killian Levacher. Diffprivlib:
The IBM differential privacy library. CoRR, abs/1907.02444, 2019.

[15] Robert C. Holte. Very simple classification rules perform well on most commonly used
datasets. Mach. Learn., 11:63–91, 1993.

[16] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision trees is
np-complete. Inf. Process. Lett., 5(1):15–17, 1976.

[17] Wayne Iba and Pat Langley. Induction of one-level decision trees. In Derek H. Sleeman
and Peter Edwards, editors, Proceedings of the Ninth International Workshop on Machine
Learning (ML 1992), Aberdeen, Scotland, UK, July 1-3, 1992, pages 233–240. Morgan
Kaufmann, 1992.

[18] James Jordon, Jinsung Yoon, and Mihaela van der Schaar. Differentially private bagging:
Improved utility and cheaper privacy than subsample-and-aggregate. In Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 4325–4334, 2019.

[19] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova,
and Adam D. Smith. What can we learn privately? SIAM J. Comput., 40(3):793–826,
2011.

[20] Michael J. Kearns and Yishay Mansour. On the boosting ability of top-down decision
tree learning algorithms. In Gary L. Miller, editor, Proceedings of the Twenty-Eighth
Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania,
USA, May 22-24, 1996, pages 459–468. ACM, 1996.

38

[21] David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American
Mathematical Soc., 2017.

[22] Qinbin Li, Zhaomin Wu, Zeyi Wen, and Bingsheng He. Privacy-preserving gradient
boosting decision trees. In The Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages
784–791. AAAI Press, 2020.

[23] Frank McSherry. Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. Commun. ACM, 53(9):89–97, 2010.

[24] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), October
20-23, 2007, Providence, RI, USA, Proceedings, pages 94–103. IEEE Computer Society,
2007.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[26] J. Ross Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106, 1986.

[27] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[28] Lior Rokach and Oded Maimon. Data Mining with Decision Trees. WORLD SCIEN-
TIFIC, 2nd edition, 2014.

[29] Saharon Rosset, Ji Zhu, and Trevor Hastie. Boosting as a regularized path to a maximum
margin classifier. J. Mach. Learn. Res., 5:941–973, 2004.

[30] Robert E. Schapire and Yoav Freund. Boosting: Foundations and Algorithms. The MIT
Press, 2012.

[31] Kaiwen Wang, Travis Dick, and Maria-Florina Balcan. Scalable and provably accu-
rate algorithms for differentially private distributed decision tree learning. CoRR,
abs/2012.10602, 2020.

[32] Alexandra Wood, Micah Altman, Aaron Bembenek, Mark Bun, Marco Gaboardi,
James Honaker, Kobbi Nissim, David R. OBrien, Thomas Steinke, and Salil Vadhan.
Differential privacy: A primer for a non-technical audience. Vanderbilt Journal of
Entertainment & Technology Law, 21(1):209–275, 2018.

39

	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Our contributions
	Overview of our work
	Related Work

	Preliminaries
	Notation
	Distributions and Smoothness
	Learning
	Decision Trees
	Differential Privacy
	Differentially Private Learning
	DP Learning of 1-Rules

	Private Boosting
	Concrete Private Boosting
	Baseline: 1-Rules
	TopDown Decision Trees

	Experiments and Conclusions
	Experiments
	Parameter Selection Without Assumptions
	Results
	Effect of Approximate Differential Privacy
	Sparsity, regularization, and interpretability
	Pessimistic Generalization Theory

	Appendix Sparsity statistics of the experiments
	Appendix Hyperparameters
	Bibliography

