
Functional Annotation of Natural Product Extracts 

Through Integration of Orthogonal NMR Datasets  

by 

Joseph M. Egan 

Master of Science, UNC Greensboro, 2016 

Bachelor of Science, UNC Greensboro, 2014 

Thesis to be Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

Doctor of Philosophy  

in the 

Department of Chemistry 

Faculty of Science 

 

© Joseph M. Egan 2021 

SIMON FRASER UNIVERSITY 

Summer 2021 

 

 

Copyright in this work is held by the author. Please ensure that any reproduction  
or re-use is done in accordance with the relevant national copyright legislation. 



ii 

Declaration of Committee 

Name: Joseph M. Egan 

Degree: Doctor of Philosophy 

Title: Functional Annotation of Natural Product 
Extracts Through Integration of Orthogonal NMR 
Datasets 

Committee: Chair: Paul C. H. Li 
Professor, Chemistry 

 Roger G. Linington 
Supervisor 
Professor, Chemistry 

 Vance Williams 
Committee Member 

Professor, Chemistry 

 Robert Britton 
Committee Member 
Professor, Chemistry 

 Charles Walsby 
Examiner 
Associate Professor, Chemistry 

 Anthony Carroll 
External Examiner  
Professor, School of Environment and Science - 
Ecology and Evolution 
Griffith University 

 



iii 

Abstract 

Natural products have provided humanity with powerful tools for human health, including 

combatting infections, curing diseases, and helping humans to understand the world 

around us. However, natural product discovery is complicated by the challenges in robust 

annotation and sample comparison from complex samples. New utilities which integrate 

orthogonal experimental data together could better describe the constitution of natural 

product extracts, allowing for functional annotation of individual components and 

streamlining the discovery process. MADByTE, an NMR processing platform designed for 

metabolomics and dereplication using 2D NMR data was designed to integrate data from 

HSQC and TOCSY experiments to create contextual networks to annotate structural 

characteristics of unknowns in complex samples. Addition of bioactivity profiling to the 

MADByTE network allows for prediction and targeted isolation of bioactive constituents, 

demonstrated through the isolation of collismycin A from an actinobacterial extract. When 

coupled to a molecular recognition platform (SMART) and an NMR prediction utility 

(NMRShiftDB2), substructures of molecules within complex samples can be proposed 

based on similarities in spectral profiles. Integration of MADByTE with DOSY experiments 

allows for the refinement of features based on molecular descriptors such as diffusion 

rates. Taken together, MADByTE represents a valuable utility for the untargeted analysis 

of natural products contained in complex samples and provides a new viewpoint of 

chemical diversity across an extract library.  
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Chapter 1.  
 
Metabolomics and Natural Products 

Natural products are defined as secondary metabolites from organisms that do not play a 

role in basic metabolism but are often produced to help organisms compete for resources, 

survive in a niche environment, or directly combat other organisms that threaten their 

survival. Secondary metabolites are compounds produced and used by an organism that 

do not play an active roll in metabolism and can often be organism specific. Since the 

dawn of civilization, humans have used these organisms in various ways to adapt and 

thrive in their surroundings, but only through the last two centuries have we been able to 

directly isolate and observe the effects of these secondary metabolites on human 

pathogens in a controlled manner. Throughout the 20th century, natural product chemistry 

was a cornerstone in the pharmaceutical market, serving as the source or point of 

inspiration for over 39% of approved small molecule drugs by the FDA over the last 40 

years, and expanding to ~60% if natural product inspired molecules are included.1  

Investigation of these molecules is not without its challenges, namely 

complications from the source material itself and the variable abundance of potent 

molecules among the complex background of primary metabolites and known products 

that are not of interest in a particular study. These complications, and the time-consuming 

nature of classical natural product investigations, have led to a massive reduction in 

natural product drug discovery platforms adopted in the pharmaceutical industry. 

However, in recent years, new approaches to the investigation and characterization of 

these important molecules have created a new era of technological development and 

instrumentation capable of profiling hundreds of metabolites simultaneously that are now 

not only available, but are readily accessible to many institutions across the globe. This 

has created a massive communal interest in the investigation of natural products by 

combining new driven tools and advanced instrumentation.  

Broadly defined, the term metabolomics refers to the detection, identification and, 

in some cases, quantification of metabolites produced by an organism.2 In comparative 

metabolomics, each analysis compares the metabolic profile of one sample against the 

context of a much larger subset of samples. These investigations have been heavily 
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utilized in the field of primary metabolism where inherent changes in the profile of many 

primary metabolites can be linked to a biological perturbation or effect in an organism. 

Secondary metabolomics, the detection and identification of secondary metabolites, has 

been a slower growing field due in large part to the complexity of the metabolome of the 

organisms under investigations. A large bottleneck in the development and utilization of 

secondary metabolomics has been the accurate identification of molecules of interest, 

since many secondary metabolites are still unknown and therefore have no identifying 

characteristics which can be tied directly to phenotype or survivability of an organism.  

1.1. Natural Products and Unique Challenges 

1.1.1. Natural Products and Their Sources 

In chemistry, the term “natural products” refers to the collection of small molecule 

metabolites from living organisms which are not involved in primary metabolism, but often 

provide an advantage for the organism to survive a niche in its larger ecosystem.3 These 

molecules, despite not being directly involved in primary metabolism, can serve a variety 

of functions to aid the organism in survival from predation,4 resource sequestration,5 or to 

address external pressures brought on by competing organisms.  

Presumably, since life began on earth simple organisms have engaged in a type of 

“biological warfare” through the production of natural products to address selective 

pressures and to increase overall survivability of the species. The expenditure of energy 

needed to produce these natural products is considerable, and much like other 

evolutionary traits they must confer some survivability advantage upon the organism to be 

of use. As selective pressures change on an organism, so too does its expressed 

metabolome – producing certain compounds only in the presence of different conditions. 

As early as the discovery of penicillin, manipulation of culture media or growth conditions 

have provided a systematic method for the discovery of new natural products and ways to 

increase their yield from source organisms.6,7  

Natural products have been isolated from a variety of sources with much of the focus on 

plants, bacteria, and fungi as platforms for new and important molecules for human health. 

Botanically derived molecules, in a way, represent the transition from folk medicine to 

modern medicine. Ancient remedies involving botanicals have been well documented 
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across many cultures and provide robust hypotheses for natural product chemists; if a 

given botanical or preparation alleviates a symptom, there is a high likelihood that the 

physiologically active components are good starting points for modern medicinal 

approaches. Indeed, investigations of plants relevant to ancient people’s lives has become 

its own field of study – ethnobotany – and active components are still being described 

from these sources today. With the discovery of the microbial world and our increased 

understanding of fungi and bacteria, new opportunities presented themselves for the 

discovery of medicines.  

1.1.2. Natural Products Importance in Modern Medicine 

Small molecule natural products provide a historically significant contribution to modern 

medicine beyond the 19th century. Perhaps one of the most famous advancements in the 

last century was the discovery and use of penicillin, a natural product first described by 

Alexander Flemming in 1929 from a culture of Penicillium notatum which had grown on a 

Streptococcus culture dish, yielding a zone of inhibition where the Streptococcus could 

not survive.6 In the 1940s, cultivation and widespread production of penicillin became so 

important for treating infections sustained by soldiers that researchers working to optimize 

production and isolation at Oxford University had spores hidden in their coats for 

immediate transport in the event the production facilities were bombed by Axis forces.8 By 

the end of the war, production of penicillin had undergone massive transformations, 

drastically reducing its cost as well as increasing its widespread availability and stands as 

a notable achievement in modern medicine development. In this way, the allied wartime 

effort leveraged the biological capabilities of Penicillium to increase survival to selective 

pressures beyond itself.  

Natural products have become so important to the landscape of human health that several 

Nobel prizes have been awarded for their discovery and subsequent use to treat human 

conditions, including in 1945 for the discovery of penicillin to treat infections9 and in 2015 

for the discoveries of ivermectin and artemisinin, two natural products deemed by the 

WHO to be essential medicines.10 Beyond the Nobel recognition, other natural products 

have drastically changed the treatment of human diseases, such as taxol – a secondary 

metabolite from the bark of the pacific yew (Taxus brevafolia) which displayed a novel 

mechanism of action which was shown to be effective in the treatment of refractory ovarian 

cancers.11 Taxol was approved for use in ovarian cancers in 1992, and was shown to 
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double the survival rate of patients after adoption. In ovarian cancers which show 

resistance to platinum-based chemotherapies, combination therapies that include taxol 

and its derivatives, raise the survival rate and outcomes considerably.12 

1.1.3. The Future of Natural Products  

Much like human warfare, victory in the battle for antibiotics is a temporary phenomenon 

and repercussions of the battle can last well into the future. Even before its initial release 

to the public, resistance to penicillin was observed in laboratory conditions, foreshadowing 

the widespread resistance we see today. This creates an ever-changing landscape and 

the need for new tools in the treatment of infections, cancers, parasites, and human 

disease. As natural products are often predisposed to bioactivity, they represent a wealth 

of potential in the never-ending quests for small molecule therapeutics. 

Starting in the 1980s, the role of natural products in pharmaceutical development has been 

reduced due to high up-front cost and high rates of rediscovery as the main reasons. 

Despite the pharmaceutical industry retraction of their natural product divisions, natural 

products remain important sources of both new lead molecules, and conceptual scaffolds 

for synthetic design, accounting for over 60% of all small-molecule drugs approved since 

the 1980s.1 Therefore, their importance in the field of human health remains as strong as 

ever and the need for better techniques for discovery and profiling of natural products is 

apparent. The field of metabolomics has developed high-throughput and high-content 

analyses methods which could reduce the rates of rediscovery in natural product discovery 

pipelines and better prioritize samples with novel chemistry.  

1.2. Metabolomics and Natural Products 

1.2.1. Targeted Metabolomics and Dereplication 

Primary and secondary metabolomics studies can be further described by whether 

they are targeted or untargeted in approach. A targeted metabolomics approach often 

uses known metabolites (primary or secondary) as markers and gauges perturbations in 

these molecules across many different phenotypes to find correlation of the known 

compound to the unknown condition of the organism.2 Examples of this include biomarker 

discovery and detection,13 urinalysis or blood-plasma investigations,14 organism state 
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monitoring, cultivar and geographic origin comparisons,15 and comparison studies of 

popular supplements and foodstuffs.16  

Targeted metabolomics is an expansion of dereplication efforts devised over the 

last century to identify molecules based on repositories of spectral features and physical 

characteristics of compounds already isolated.17 Dereplication strategies are highly 

amenable to automation, and save considerable amounts of time, material, and cost of 

investigations into natural products.  

Dereplication and targeted metabolomics can be performed through a variety of 

methods, depending on available reference data, including mass spectrometry based 

investigations18, and NMR spectroscopy based investigations.19 However, all methods of 

dereplication are contingent on these data being well organized and of sufficient quality 

for a robust comparison to be made. Currently, there are repositories of information 

available for public use,20 but few are constructed to contain raw reference data, which 

could be more universally leveraged than data tables from original publications.  

Several databases of natural product spectra carry subscription costs and are 

compiled on a for-profit model, limiting their widespread access. This has provided a niche 

for the academic community to create, curate, and continue to develop new repositories 

of information that are better suited for the needs of rapid investigations into complex 

mixtures. Notably, the Natural Product Atlas – a platform designed in the Linington Lab – 

is a publicly accessible database of more than 29,000 natural products with citations to 

their original discovery and description.21 In addition, the NPAtlas is cross referenced with 

other repositories of note, such as MIBiG (>1400 annotations) and GNPS (>1200 

annotations) to facilitate robust analysis from a variety of platforms. Robust databases 

enable rapid comparison of molecular families, their identified origins, and provide a great 

starting point for de novo structure elucidation efforts.  

1.2.2. Untargeted Approaches  

Untargeted metabolomics, conversely, is observing spectral characteristics 

without the identity of many of the molecules being known.22 This method is inherently 

complex, as these investigations must extensively utilize several different analytical 

techniques simultaneously to arrive at a convergent answer as to what metabolite may be 
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driving a given response. In most untargeted analyses, there exists little or no prior 

knowledge of the identity of a given molecule and therefore the dependence on databases 

of matching spectral data is inherently lower.  

Untargeted metabolomics in the field of natural products has largely been driven 

by statistical modeling of the presence, or absence, of a particular signal or feature to 

compare one sample to another. In these analyses, the focus is not to detect a given 

compound within a complex mixture, but rather to gauge the similarities and differences 

of samples to each other in a batch-wise fashion. This allows for quick prioritization to be 

performed on many samples, which can save considerable amounts of time and 

resources, and allow for predictions to be made about the novelty of a given feature across 

many samples simultaneously. When combined with contextual metadata about the 

sample, strategies in untargeted metabolomics can be used to gauge the validity and 

legitimacy of complex samples, such as botanical supplements.23 

When combined with the strengths of targeted metabolomics and dereplication, a 

vast amount of information can be generated about the plausible identity of a molecule 

which is identified by untargeted techniques. This approach, sometimes called targeted-

untargeted metabolomics, can functionally annotate an extract by gauging what is known 

via dereplication or targeted analysis, and further evaluate if the known compounds 

explain the novelty of the extract.22 Analyses capable of combining these schemes are 

well situated for the investigation of complex extracts where some metabolites may be 

completely new but are normally obscured by known chemistry.  

1.3. Existing Methods of Metabolomic Profiling of Natural 

Products 

1.3.1. Mass Spectrometry 

Mass spectrometry has emerged as a first-choice utility for the untargeted profiling of an 

organism’s metabolome in recent years. High resolution mass spectrometers have 

incredible dynamic range, are extremely sensitive, and have a resolving power which is 

largely unmatched in analytical instrumentation. Using MS as a driving utility in 

metabolomics, many tools have been designed which leverage the massive amount of 
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information from MS with metadata and biological evaluation to predict the bioactivity of 

unknown metabolites. These tools, such as  the Global Natural Product Social Molecular 

Network (GNPS)24, Compound Activity Mapping,25 and Biochemometrics23,26 have given 

investigators new profiling tools to investigate the complex profiles of extracts with minimal 

sample separation or manipulation.  

Comparison strategies based in MS can leverage several layers of data for comparison 

simultaneously. The primary feature for comparison in most strategies is the molecular 

ion, generated through the analysis of a charged ion by a mass analyzer. However, with 

the introduction of LC-MS systems, analytes are analyzed as they elute from the LC 

system generating a retention time specific to a molecule. The combination of these two 

features form the basis for standard comparison for many MS systems and dereplication 

protocols.18 In addition to this, many mass spectrometers can fragment ions through 

forced collisions with an inert gas, generating ionized fragments of the molecule.  

The matching of fragmentation patterns in MS systems can be leveraged beyond 

verification of molecules against a known standard. Platforms which leverage this 

compare the way in which analytes fragment instead of comparing absolute values of the 

fragment pieces, relying on the comparison of patterns over singular features. With the 

introduction of molecular networking and GNPS, the patterns of fragmentation can be 

analyzed and compared across hundreds of samples for similar fragmentation profiles.24 

This allows associations of structurally similar molecules to be made even with changes 

in the overall molecular structure (such as methylation). Molecular networking enables 

researchers to gain a perspective on what the ions of interest may be, as comparisons are 

done against a growing library of reference datasets. GNPS itself is available for public 

use and data deposition, allowing for community curation of compound identities and 

fragmentation information.  

Mass spectrometry-based methods of comparison are powerful but come with certain 

limitations. Molecules of interest must have the ability to ionize to be detected, and not all 

analytes ionize well in MS. Ion suppression is a well documented phenomena in MS and 

can be pronounced in complex sample analyses.27,28 Additionally, the mechanisms of 

fragmentation in MS systems is not fully understood, and fragmentation itself provides 

limited information of molecular connectivity unless compared to a standard.   
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1.3.2. Nuclear Magnetic Resonance 

Nuclear Magnetic Resonance (NMR) spectroscopy is an analysis technique which has 

seen demonstrated improvement over the last 15 years in both sensitivity and resolution 

due to the introduction of higher field instruments and advanced processing methods.29 

Although notably less sensitive when compared mass spectrometry and other 

spectroscopic methods, NMR offers considerable advantages in establishing molecular 

connectivity. NMR spectroscopy has been used to great effect in the metabolomics 

community due to inherent advantages offered by this method of analysis. NMR 

spectroscopy is regarded as a ‘universal detector’ for organic molecules, is relatively 

quantitative under standard conditions, and is highly reproducible.30 NMR experiments 

provide molecular connectivity, allowing investigators to directly annotate and solve the 

structure of an analyte. 

NMR spectroscopy works by exploiting the relationship between nuclear spin states, 

excitation of nuclei by RF frequencies, and the detection of emitted signals as the nuclei 

relax to ground state. NMR active nuclei exhibit a property called spin, which induces a 

magnetic field with respect to the spin direction. Outside of a magnetic field, these 

magnetic moments are scattered at random in all directions. However, in the presence of 

a magnetic field, atomic nuclei align with respect to the field (B0). As the atomic nuclei are 

still not perfectly aligned, the sum of all magnetic vectors – called the magnetic moment - 

determines the spin state. Nuclei can be in either a spin-up (mostly parallel with the 

magnetic field) or spin-down orientation (mostly anti-parallel). Energetically, in 1H NMR 

spectroscopy the spin-up state is more favorable, and therefore more nuclei align 

themselves in this orientation. The energy difference between the two spin states (called 

the Boltzman distribution) scales with the strength of the magnetic field; the stronger the 

magnetic field, the more nuclei are in the lower energy state.  When exposed to a RF pulse 

of a particular frequency, the nuclei absorb the energy, and the equilibrium is disturbed. 

When the RF is halted, the nuclei release the energy necessary to return to equilibrium 

which is measured by the detection coil. The larger the change in the bulk magnetization, 

the more intense the signal detected. Both 1H and 13C nuclei are detectable by NMR 

spectroscopy, and as nearly all organic molecules contain at least one 1H, NMR 

spectroscopy is regarded as a universal detector in organic chemistry. 
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1H NMR analysis of pure compounds is a relatively straightforward analysis technique and 

is a routine technique in many fields of chemistry. Each 1H nucleus emits a signal 

proportional to the number of nuclei in each environment, allowing quantitative 

relationships to be made for each signal at a given chemical shift. The chemical shifts at 

which these signals are detected, describe the amount of chemical shielding a given 

nucleus is exposed to, allowing for functional groups and environments to be deduced. 

NMR signals at a given chemical shift can exhibit splitting as nuclei couple to each other 

due to a phenomenon known as spin-spin, or scalar, coupling. This relationship splits a 

given NMR signal proportional to the number of neighbors which are coupled, allowing for 

connectivity relationships to be established.   

Taken together, the quantitative and qualitative information from 1H and 13C NMR 

spectroscopy allows chemists to deduce the structure of an unknown molecule. However, 

when multiple compounds are present in the sample, these relationships become harder 

to resolve through signal overlap and the difficulty of associating of signals arising from a 

single molecule scales with the number of chemical species present.  

NMR Analysis of Complex Samples 

NMR based metabolomics using 1D NMR experiments such as 1H and 13C have increased 

drastically in popularity and utility. In many applications of 1D targeted metabolomics, 

diagnostic signals from metabolites are used to predict the presence of a metabolite, 

rather than detection of all signals from the compound. These studies allow for comparison 

of highly overlapped and complex spectra but rely on some prior knowledge of the 

metabolites expected. One such example is the development of a cranberry model 

system,22 which allows for analysis of the origin of cranberry samples with direct 

applications for quality control in industry. In this case study, reference spectra of major 

metabolites were used to identify signals which could be extracted from complex spectra 

to confirm the presence and abundance of metabolites through 1D quantitative NMR 

methods and ascribe differences in the profiles to geographic origin of the botanical. 

Expansion of these methods have enabled the creation of workflows to authenticate 

botanical supplements by profiling expected metabolites from samples to reference data.31  

Combinations of signal patterns, often referred to as barcoding or fingerprinting, have 

been used with great success when comparing and identifying metabolites from 1D 1H 

NMR profiling. Using fingerprints of isolated compounds for future dereplication, analysis 
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pipelines specific to species or organism source can be leveraged.32,33 HiFSA (1H iterative 

Full Spin Analysis) has been used in the analysis of isomers which have near identical 

NMR profiles, and for the generation of high quality fingerprints.32 However, as the number 

of components in a sample increase, the ability of these platforms to deduce sample 

constitution is reduced, as overlap in signals can create problems in the extraction of both 

chemical shift and 1H quantitation.  

1.3.3. 2-Dimensional NMR Spectroscopy 

Although a considerable amount of information can be afforded by 1D NMR experiments, 

complications arise when attempting to detect and verify the presence of compounds in a 

crude mixture. These complications arise from overlap of resonances in the 1H  NMR 

spectrum, concentration differences in the metabolic profile of the extract, or the rise of 

complex couplings which crowd the spectra. Attempts have been made to deconvolute 

the information in 1D NMR experiments in recent years, such as CRAFT NMR34  and 

various deconvolution algorithms which are made available by both vendor supplied35 and 

third party software packages.36,37 However, the challenge of deducing chemical 

constitution in severely overlapped spectra remains a principal challenge in NMR.  

 Two-dimensional NMR experiments come in a wide variety of applications and each 

exploit different phenomena to associate individual resonances together to better 

understand molecular structure. Each 2D NMR experiment can be broken down into a 

collection of 1D experiments which adjust predetermined variables in the pulse sequence 

to create an effect on the system that can be compared across multiple acquisitions. These 

independent variables can be adjustments in the delays between pulses, adjustments in 

pulse lengths, the power of each pulse, or even the shape of the pulse applied. Comparing 

how these variables affect the system over several acquisitions affords new knowledge 

pertaining to coupling, connectivity, or spatial interactions. 2D NMR is less amenable to 

the sample complexity effects when compared to 1H 1D NMR. One reason is that it 

provides a secondary axis to separate resonances through an additional correlation axis 

that is less likely to overlap and is therefore a plausible solution to spectral complexity.  

There are many 2D NMR experiment types, each of which afford new information in the 

molecular connectivity or physical characteristics of the analyte, such as its diffusion rate 

through a given mixture. These experiments can be separated into three categories – 
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heteronuclear correlation, homonuclear correlation, and physical/spatial correlation 

experiments, each demonstrating orthogonal characteristics of the molecules they 

analyze.  

Homonuclear Correlation Spectroscopy 

In NMR spectroscopy, homonuclear correlation spectroscopy is driven by atomic nuclei 

from the same element, provided they are the same isotope. These experiments are used 

to determine molecular connectivity by demonstrating through bond correlations, from 

coupling of the nuclei to one another. There are several routine experiments which utilize 

homonuclear correlations, such as COrrelation SpectroscopY (COSY), TOtal Correlation 

SpectroscopY (TOCSY) and the 2D j-resolved 1H experiment. These 1H-detected 

experiments are widely used, but other homonuclear experiments exist in which other 

nuclei are used, such as the 13C detected INADEQUATE experiment, but these suffer from 

decreased sensitivity when compared to 1H detected experiments. The decrease in 

sensitivity is a major drawback, and as such, these experiments are somewhat rare in 

practice despite their obvious utility.  

Homonuclear NMR experiments are of extreme value for structure elucidation, serving as 

a method to establish scaffold connectivity through coupled nuclei. The COSY experiment 

establishes connectivity typically through 3 bonds (Figure 1.1- Top), allowing for detection 

of adjacent protons along a given carbon backbone, while the TOCSY allows for many 

more connections to be established (Figure 1.1- Bottom).  
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Figure 1.1. Homonuclear Correlation Spectroscopy. Top: COSY allows for 
adjacent neighbors in a spin system to be determined 
independently. Bottom: TOCSY allows for all neighbors in a spin 
system to be determined simultaneously.  

Heteronuclear Correlation Spectroscopy 

Heteronuclear experiments, such as the Heteronuclear Single Quantum Coherence 

(HSQC) and the Heteronuclear Multiple Bond Correlation (HMBC) experiment are similar 

to homonuclear experiments in that they transfer the magnetization energy between nuclei 

which are connected through bonds but differ in that the nuclei observed are not of the 

same element. Both the HSQC and HMBC experiments are able to detect correlations of 

1H-13C and 1H-15N, but differ on the number of bonds the energy must travel through.  

 

Figure 1.2. The HSQC Pulse Sequence. Combinations of pulses and timing 
allow for the transfer of energy through bonds of 1H nuclei to 13C 
nuclei (INEPT Block) which is then allowed to evolve over a given 
timeframe (d0) before being transferred back to 1H for detection 
(Reverse INEPT Block).  

The HSQC pulse sequence has four main components, the INEPT block, the variable 

evolution period, the reverse INEPT block, and detection (Figure 1.2). The INEPT/reverse 

INEPT block transfers energy between 1H nuclei to 13C nuclei before and after the variable 
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evolution period where differences in chemical shift of the 13C nuclei can evolve. The 

detection phase includes simultaneous decoupling of the 13C nuclei, allowing for simplified 

resonances with a reduction in coupling based splitting. When combined with a spin-lock 

step during the variable evolution period, it is also possible to derive multiplicity information 

from the phase of the resonances, affording information previously obtainable through 

many 13C detected DEPT experiments with no additional time costs and increased 

sensitivity.38   

The information afforded by the HSQC experiment is extremely valuable as it allows for 

the detection of directly bonded 13C nuclei through the detection of 1H resonances. This is 

a notable advantage to 13C detected methods, as 13C has only 1% natural abundance, and 

a magnetic moment which is ¼ that of 1H (found at 99.98% abundance compared to other 

species of H). This method directly translates to higher sensitivity than 13C detected pulse 

sequences and allows for minor compounds to be observed alongside more abundant 

analytes.  

Physical/Spatial Correlation Experiments 

In addition to molecular connectivity, NMR spectroscopy can apply experiments that are 

dependent on the physical characteristics of an entire molecule. DOSY – Diffusion 

Ordered SpectroscopY is a method of NMR analysis which focuses not on connectivity of 

atoms, but rather on the physical properties of nuclei diffusing through a medium over a 

given time interval. DOSY itself is not a pulse sequence, such as an HSQC or TOCSY, 

but instead relies on the relative intensity of analytes across several identical experiments 

with an applied dephasing gradient and delay to allow for the molecules to diffuse at 

random within the solvent. After the diffusion delay, selective refocusing of the 

magnetization allows for resonances which are in-phase to be detected. Over the course 

of several acquisitions, induced changes in intensity of analytes can be used to back 

calculate the decay rate of the signals as a function of gradient strength. This decay rate 

can then be used to find the diffusion rate of the resonance which is molecule dependent. 

This allows for the association of many resonances originating from single analytes to be 

made based on their unique diffusion rates. Molecules which are small and diffuse more 

easily though the medium have a faster diffusion rate, and molecules which are larger in 

structure that are not as mobile diffuse at a slower rate.39 Because DOSY is a processing 

method utilizing slightly modified pulse sequences, it is extremely versatile in the types of 
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experiments which it can be leveraged for, including implementation of diffusion elements 

into multidimensional NMR experiments.   

1.4. Application of NMR Metabolomics for Functional 
Annotation of Natural Products 

The importance of natural products in modern medicine is well established, but the 

challenges in the study and isolation of these metabolites have slowed the rate of 

discovery for truly novel compounds. However, the challenge of annotating the 

components from natural sources has produced remarkably innovative utilities to 

continuously improve our ability to understand the molecular world around us. Many of 

these utilities have been designed for MS, but carry with them the inherent drawbacks of 

MS based analyses. In recent decades, new approaches in NMR have allowed for 

increased sensitivity, new experiments, and processing techniques which are well suited 

to address the needs of the NP discovery community.  

The focus of this dissertation is the development, implementation, and orthogonal 

applications of a metabolomics utility deemed MADByTE (Metabolomics And 

Dereplication By Two-Dimensional Experiments). MADByTE itself is not a singular 

experiment, rather a coupling of information from several techniques which were selected 

to give a new perspective on the types of metabolites present in complex mixtures. In 

Chapter 2, the overall rationale and design of the platform will be discussed alongside 

practical challenges in the development of an NMR based method for feature comparison. 

The framework of MADByTE networks will be discussed, and their application towards 

dereplication and structural annotation of similar compounds.  

To prioritize bioactive molecules, an expansion of MADByTE was developed to overlay 

bioactivity data directly on top of the MADByTE association networks. Chapter 3 will focus 

on the design, rationale, and application of this extension towards the isolation of an active 

component from an actinobacterial extract. This application highlights the ability of the 

platform to be further refined by the addition of new experimental data and builds on the 

concept of associating data beyond NMR into the platform.  

The need for robust databases for the construction and use of new workflows, as 

described previously, cannot be understated. New technologies which attempt to utilize 
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data from unknowns, such as with MADByTE, could be further leveraged if sufficient 

resources existed to encourage new in silico developments. In Chapter 4, the combination 

of MADByTE sample comparison to a machine learning platform (SMART),40 originally 

designed for pure compounds, is explored with a new module to generate substructure 

predictions. This application is made possible through community contributions to a 

publicly accessible database, NMRShiftDB2,41 and the in silico utilities designed for 

prediction of NMR chemical shifts.42 SMART and NMRShiftDB2 are well curated 

databases, and Chapter 4 explores their integration into a new hypothesis generating 

utility. SHIMS (Substructure Hypothesis by Integration of MADByTE and SMART).  

Chapter 5 explores the combination of additional NMR experiments into MADByTE to 

generate robust features for comparison through the introduction of DOSY techniques. 

Originally designed for simplified mixtures, DOSY shows great promise in the ability to 

refine spin systems derived from MADByTE, especially in areas where a crowded 2D NMR 

spectrum can complicate analysis. Using diffusion in conjunction with MADByTE 

networking through a workflow called FADES (Feature Association by Diffusion 

ExperimentS) allows for more robust spin system formation and association of spin system 

features through similar diffusion rates.  

All applications of MADByTE described within this dissertation were constructed from an 

NMR first perspective, focusing primarily on how relatively simple analyses can give rise 

to information rich datasets. MADByTE was developed to put this information into real 

context, allowing new perspectives to be considered and offering new vantage points to 

the landscape of analytical technologies available to NP discovery. The landscape of 

utilities developed for annotation of natural product extracts is ever changing and new 

strategies will be needed as new challenges arise. These tools do not exist in isolation, 

and to be of practical use to the community at large, must be able to pivot to a variety of 

sample types and experimental objectives. Collectively, the development of MADByTE 

and the introduction of the SHIMS and FADES modules highlight the ability to integrate 

orthogonal datasets into an open source, context-driven tool for the functional annotation 

of natural products mixtures.  
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Chapter 2.  
 
Design of the MADByTE Platform 

2.1. Introduction 

Natural products have traditionally played a central role in drug discovery, but novel 

bioactive compound discovery is becoming increasingly difficult as the field matures and 

the number of known scaffolds increases.43 Standard approaches rely heavily on 

bioassay-guided fractionation, which often results in the re-isolation of known compounds 

and carries an inescapable material cost. To reduce the chances of re-isolation, numerous 

dereplication methods have been developed, including UV, mass spectrometry and NMR-

based platforms.17,44 However, many of these tools rely on in-house databases that are 

slow and expensive to generate, and require high coverage for exact database matching.  

Methods which compare spectral features from samples rather than attempting to match 

single components explicitly have been developed to remove the need for large reference 

databases. In the field of MS-based natural products, a workflow named Global Natural 

Products Social Molecular Networking (GNPS) has revolutionized front-end investigations 

of complex samples.24 GNPS uses molecular networking to associate MS features based 

on the similarity of their MS2 profiles by analyzing fragmentation patterns for similarities. 

These similarities are then visualized through the creation of networks between MS 

features to generate clusters of features which may be structurally related. In absence of 

reference libraries, this profiling technique can associate molecular ions within sample 

pools to describe shared chemistry in a sample set. However, when coupled to external 

reference libraries, structural annotations can be made which provide robust starting 

points for structure elucidation or sample triage. These “feature first” tools improve 

prioritization efforts by enabling investigators to group metabolites into compound families, 

and to determine the distribution of these families across sample sets.  

Despite the numerous advantages of this methodology, mass spectrometric analysis 

suffers from several inherent limitations, including variable ionization efficiency between 

analytes, and ion suppression.27,28,45 In addition, mass spectrometry yields limited 

structural information compared to other analytical methods. Therefore, complementary 

methods are needed that can address the existing limitations of these approaches. 
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In contrast to mass spectrometry, NMR spectroscopy provides direct structural 

information, is a universal method of detection, and is semi-quantitative under standard 

conditions. NMR-based metabolomics approaches have increasingly focused on the 

development of platforms capable of highly accurate annotations of known primary 

metabolites, especially in biofluids.13,14,46–48 These approaches have been successfully 

used to highlight high priority regions of the spectra, using spectral variability as a proxy 

to gauge potential novelty or detection of biomarkers.49,50 However, 1H NMR-based 

metabolomics methods cannot relate signals from the same molecule together, limiting 

identification options for unknowns.  

As described in Chapter 1, an inherent strength of NMR-based platforms is their ability to 

resolve complex mixtures in two or more dimensions and are a rapid method to establish 

molecular connectivity. 2D NMR data offer a robust method of annotation when compared 

against a database of known compounds,19,20 but are often limited by the availability of 

reference data.51 Several platforms exist for annotating metabolites utilizing 2D NMR data, 

including dereplication utilities and targeted metabolomics in biofluids (Table 2.1).52  

Table 2.1. NMR Utilities for Natural Product Investigations 

 MetaboMiner53 COLMAR20 SMART 2.054 DEREP-NP55 MADByTE56 

Analysis Type Targeted Targeted Targeted Targeted Untargeted 

Designed for 
Mixtures 

✓ ✓   ✓ 

Reference 
Database 

Required Required Required Required Optional 

Metabolite 
Type 

1° 1° 2° 2° 2° 

Sample Type Biofluids Biofluids 
Single 

Compound 
Single 

Compound 
Extracts 

Batch 
Comparison 

    ✓ 

Solvent 
System 

Buffered D2O 
Buffered 

D2O/CDCl3 
Independent Independent Independent 

 

Like MS2 based methods, comparison of NMR spectroscopy derived fingerprints from 

complex samples has shown great promise in the prioritization of desirable compounds. 

In one study, HSQC-TOCSY spectra were used to fingerprint crude extracts from a library 

of bacterial isolates, and these fingerprints were used to prioritize strains enriched in NMR 
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derived motifs for polyketide and peptidic natural products; scaffold types with significant 

precedent in bioactive natural products discovery.55  

Many existing NMR-based tools require pure, or simplified samples for accurate structure 

prediction or priortization.57 To address this issue, MADByTE (Metabolomics And 

Dereplication By Two-dimensional Experiments) was developed to deconvolute NMR data 

from complex natural products mixtures into features for comparison. MADByTE 

annotates extract spectra, verifies components through feature matching to pure 

compounds, and identifies features associated with highly bioactive samples for the 

isolation of bioactive constituents. MADByTE works by integrating 1H-13C connectivity data 

from HSQC spectra with 1H-1H scalar couplings from TOCSY spectra to define scaffold 

substructures from multiple components simultaneously. These spin system features 

(SSFs) can be related between samples, or compared against reference datasets for 

compound dereplication, accelerating the discovery process.  

Unlike many of the existing NMR-based profiling tools, MADByTE does not require a 

bespoke spectral reference library against which to compare NMR data (Table 2.1). This 

is an important distinction, as it offers a new mechanism to evaluate the chemical 

similarities and differences between samples, regardless of whether these constituents 

are known or novel natural product classes.  

2.1.1. Theory 

MADByTE’s analysis strategy builds on the idea that if a metabolite is shared between 

samples, there will be shared spectral features that accompany it. This approach is 

common among dereplication platforms which compare MS profiles of complex 

samples.18,58 The rapid adoption of these strategies have enabled discovery efforts to 

develop new methodologies for chemical annotation by using repeated observations of 

fingerprints to describe chemical constitution.59,60 These new targeting strategies have 

improved up-front profiling strategies by enabling many compounds to be simultaneously 

annotated.  

The feature comparison strategy MADByTE employs is to extract spectroscopic 

information from individual 2D NMR spectra (as points), generate associations between 

points from HSQC and TOCSY spectra (as features) and, finally, to compare features 
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between samples across the entire sample set. The result of this comparison is an 

association matrix which displays the homology of points between any two features as a 

ratio of points found compared to the size of the features compared. This comparison 

strategy allows for imperfect matches between overall features. This is advantageous, as 

it allows for association of similar chemical species which may have slight changes in the 

core scaffold. Even when comparing the same compound between samples, differences 

in sample constitution or temperature would hinder annotation efforts if MADByTE 

required each resonance to match perfectly.  

Once the association matrix is constructed, MADByTE generates network visualizations 

which place the information into context and highlight the chemical similarities between 

compounds in different chemical extracts. To achieve this, a strategy was devised to 

create SSF nodes for each feature from a sample and to connect these nodes to a central 

extract ID node. On a per sample basis, this represents all features from an extract directly 

associated to an anchor point (Figure 2.1 – Panel A). As features are found to be similar 

across samples, connections are made which allow for a network to grow describing 

chemical similarity across the set (Figure 2.1- Panel B). Networks can be rendered to 

display all SSFs or display only SSFs which have similarity in the sample pool.  
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Figure 2.1.  Conceptual Overview of MADByTE Comparison. A) Peak lists from 
HSQC and TOCSY are deconstructed into spin system nodes (grey) 
which represent scaffold pieces of molecules in the sample. B) As 
similar molecular pieces are found in other samples, connections 
between nodes allow for similar samples to be associated.  

 

2.2. Practical Considerations  

2.2.1. Experiment Selection and Setup 

Pulse Sequence Selection 

MADByTE is structured to use two separate 2D experiments, the HSQC and TOCSY. The 

HSQC pulse sequence selected for use in the MADByTE system is the hsqcedetgpsisp2.3 

pulse sequence, which is optimized for sensitivity when compared to a standard HSQC 

pulse sequence. This is accomplished by replacing the rectangular pulses typically used 

in the INEPT portion of the pulse with adiabatic pulses, which have increased response 

from 13C nuclei over a wide range of resonance frequencies.61 In addition to this, the phase 
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sensitive nature of the experiment provides multiplicity information that is used in spin 

system construction.  

The TOCSY pulse sequence used for MADByTE was dipsi2gpphzs, a robust pulse 

sequence which optimizes the response of in-phase signals.62 TOCSY mixing time is an 

important factor, as it determines both the signal intensity and length of the detected spin 

system. Typical TOCSY mixing times are between 30 ms and 120 ms. Longer mixing 

times can reveal longer spin system associations, but if set to long probe damage can 

occur. A sample of 3% lactose by mass was prepared and run with mixing times of 60, 80 

and 100 ms. The length of the spin system was similar between 80 and 100 ms, and 

reduced for the shorter mixing time of 60ms. A mixing time of 100 ms was chosen and 

used for the collection of all MADByTE data. To balance signal response and spectrum 

resolution, TOCSY spectra were processed with a sine squared function with a sine bell 

shift of 2. 

HSQC variants include the HSQC-TOCSY experiment, where TOCSY cross peaks are 

arrayed on the 13C axis in the F1 dimension. In principle, a combination HSQC-TOCSY 

offers time savings, as only one experiment must be acquired. To evaluate the usefulness 

of the combined HSQC-TOCSY, 8 mg of lincomycin was dissolved in 500 µL of DMSO-d6 

and subjected to HSQC-TOCSY analysis. Using 16 scans in the HSQC-TOCSY, the 

sensitivity loss was noticeable when compared to a TOCSY using only 2 scans (Figure 

2.2). S/n was calculated for these slices with s/n of 676.3 for TOCSY at 2 scans, compared 

to a s/n of 160.9 for the HSQC-TOCSY. As MADByTE was designed for the investigation 

of crude mixtures where some metabolites are present in low abundance, individual HSQC 

and TOCSY spectra were collected for this study.  

By requiring the HSQC as a separate experiment, explicit 1H-13C relationships can be 

assigned. This is not possible in the HSQC-TOCSY. As an added benefit of using 

orthogonal experiments rather than a singular experiment, MADByTE requires 

resonances in both the HSQC and TOCSY to be present in order to be counted as a valid 

resonance, ensuring artifacts from noise in one spectrum does not confound the results 

of the combination processing. Although HSQC experiments are notably less sensitive 

than TOCSY experiments, HSQC-TOCSY experiments are less sensitive than the 

selected HSQC experiment. This is because the HSQC-TOCSY experiment 

(hsqcdietgpsi) is an expansion of an already less sensitive HSQC experiment (hsqcetgpsi) 
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with an added spin lock in the pulse sequence which may contribute to additional loss of 

signal.  

 

 

 

 

Figure 2.2. Sensitivity of TOCSY vs HSQC-TOCSY for a Spin System of 
Lincomycin at 3.16 ppm. The overall sensitivity improvement of the 
TOCSY vs HSQC-TOCSY can be seen through additional 
correlations and higher s/n.  

2.2.2. Sample Considerations 

Sample preparation for NMR metabolomics studies is extremely important to ensure that 

the information provided by the analysis is both meaningful and truly representative of the 

chemistry in an extract. In addition, external factors such as sample scarcity and 
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conservation place a specific burden on sensitivity considerations. Sample preparation 

must also be done as consistently as possible, as downstream comparisons require 

minimal variation between samples to ensure reliable and robust analyses.  

Natural product libraries containing microbial extracts often contain samples of varying 

complexity and concentrations. Any profiling technique should consider the range of 

polarities and solubility profiles of the metabolites being analyzed. In primary 

metabolomics, pH is often standardized by buffering the solvent to achieve comparable 

metabolite profiles between samples. In natural product metabolomics analyses, buffering 

was not done as the samples were not obtained from aqueous prefractions and instead 

consistent profiles were obtained by acquisition in the same solvent (DMSO-d6).  

Often, samples from natural product libraries are stored in DMSO for long term storage, 

as it is generally regarded as a very effective solvent and can help to solubilize a wide 

range of compounds.63 Use of DMSO carries an additional practical consideration, as this 

solvent is hydroscopic and absorbs water from the atmosphere readily. Over a period of 

time in storage, this water content can increase drastically.64 Additionally, DMSO can be 

a difficult solvent to fully remove through evaporation. This complicates preparation for 

NMR analysis as the concentration of native DMSO and/or water in the sample can quickly 

overwhelm signals originating from metabolites in NMR analysis. To remove native DMSO 

from the extracts, samples were lyophilized for a minimum of 12 hours, resuspended in 

DMSO-d6 and lyophilized for an additional 12 hours to remove as much native DMSO as 

possible. Dried extracts were resuspended in 280 µL DMSO-d6 for NMR analysis to 

provide a consistent volume in the detection coil, providing a consistent shim profile while 

retaining a representative concentration profile for relative quantitation.  

An additional consideration in the design of MADByTE was sample scarcity. Isolates of an 

organism may produce different chemical profiles over time, which complicates sample 

generation and replication. The Linington lab chemical library is created using a 

standardized approach in which 1 L scale cultures of actinobacteria are condensed into 

six 1 mL DMSO aliquots representing each prefraction (prefractionation procedure 

outlined in section 2.7.1), providing the sole supply of a given extract and a snapshot of 

the chemical profile of the organism at a singular point of time under these conditions. As 

replication of this chemical extract is not guaranteed, practical sample allocations allow 

for analyses by multiple platforms. For the development of MADByTE, the practical 
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working limitation was an aliquot of 25 µL from each 1 mL stock, accounting for 2.5% of 

the total volume of the chemical extract supply.  

NMR Tube Selection  

Concentration of the sample can have drastic effects on the profiles obtained during NMR 

metabolomics investigations. In some cases, some compounds are present at levels too 

low for detection. To increase the signal intensity in NMR spectroscopy, investigators often 

attempt to maximize the amount of sample in solution. In practice, NMR sensitivity is 

directly proportional to the amount of sample in the detection coil, shown by Equation 2.1 

where S/N is the signal to noise ratio, n is the number of spins in the detection coil, γe is 

the gyromagnetic ratio of the nucleus being excited, γd is the gyromagnetic ratio of the 

nucleus being detected, B0 is the magnetic field strength and t is the acquisition time.  

𝑆/𝑁 ∝ 𝑛𝛾𝑒√𝛾𝑑
3𝐵0

3𝑡 
(2.1) 

In the case of sample limitation with all other factors kept consistent, an increase of sample 

concentration (n) by a factor of 2 directly translates to a 2-fold increase in the signal to 

noise ratio of the overall experiment. However, investigations with limited source material 

provide a challenge as access to more sample is not always feasible. There are several 

options which provide a way around this, including reducing the concentration of solvent 

in the coil while maximizing the concentration of analyte. This increases the number of 

spins from the analyte in the detection coil while minimizing to the number of spins 

contributed by the solvent.  

Shigemi Tubes are unique NMR sample tubes which are ‘matched’ to solvents providing 

a way to achieve higher concentrations in the detection coil while retaining a favorable 

shim profile by mimicking solvent both above and below the sample. This is accomplished 

by positioning the solvent between a plug and plunger assembly that is matched to the 

magnetic susceptibility of the solvent. This creates a shim profile like that of a standard 

NMR tube filled to the recommended volume, but with a sample/volume ratio up to 2/3 

higher. As an added advantage, this configuration allows for all sample signal to be directly 

in the detection coil, which maximizes the signal when compared to a reduced sample 

volume in a standard NMR tube. Small volume tubes, such as 3 mm and 1.7 mm tubes 
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are often used in metabolomics studies as they allow for a considerably reduced volume 

requirement to fill the tube, allowing for more sample to be dissolved in minimal solvent. 

To select the optimal tube type for obtaining spectra with good peak shape and sensitivity 

in a 5 mm probe, a sample of 0.84 mg of mupirocin was suspended at 1 mg/mL in 

methanol, sonicated, and 450 µL was transferred to each of two separate vials. Each vial 

was concentrated to dryness under a stream of nitrogen gas, resuspended in either 150 

µL or 250 µL of DMSO-d6, and placed into a 3 mm NMR tube and a matched Shigemi 

tube, respectively. After automatic shimming using ‘topshim’, the 5 mm Shigemi tube 

showed an improvement in shimming time, compared to the 3 mm tube, which required 

manual shim correction to achieve decent peak shapes. The 5 mm tube also afforded 

higher peak area and improved signal to noise ratio compared to the 3 mm tube. The 

signal to noise ratio was calculated using the Bruker command SINO with the signal region 

between 3.98 - 4.02 ppm and the noise region defined as 7 - 8 ppm with a s/n of 5954 for 

the 3 mm tube and 14180 for the 5 mm Shigemi tube. All experiment settings were kept 

consistent for both experiments. 

 

Figure 2.3. Comparison of Peak Area of 0.42 mg of Mupirocin in a 3 mm Tube vs 
5 mm Shigemi Tube in a 5 mm TCI Probe 

Optimizing conditions and increasing the volume of solvent to 280 µL in the 5 mm Shigemi 

tube allowed for easy automatic shimming. An additional benefit was the ability to use 

Shigemi tubes in an autosampler to increase sample throughput, as opposed to manual 

loading and shimming required by the 3 mm tube setup.  
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2.3. Data Processing 

2.3.1. MADByTE Architecture 

MADByTE was deigned and built in the Python programming language and comprises 

over 2000 lines of code and more than 90 functions. These functions encompass the full 

data processing pipeline spanning data import from vendor specific files to the generation 

of various network plots from post processed data. A simplified overview can be seen in 

Figure 2.4.  
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Figure 2.4. Overview of Processing Steps and Outputs from MADByTE Analysis 

At several stages in the processing pipeline, output files are created for quality control and 

manual inspection. An example of this is the spin system master file 

(spin_system_master.json) which is created to summarize spin systems found in the 
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sample batch which displays the derived spin systems from all samples, the resonances 

assigned to each spin system, and the originating sample ID. The flat files produced 

contain essential data for MADByTE networking and are used by the downstream 

processing steps. Additionally, a log of every processing step and interaction is created 

as MADByTE generates features and networks, allowing for the manual follow-up of a 

particular resonance of interest by logging filtration and alignment steps explicitly.  

2.3.2. Supervised Peak Picking 

Investigations into automated peak picking were conducted to find a plausible method for 

data processing automation. Although peak picking is a relatively straightforward aspect 

of NMR spectroscopy, the nuances of how this is done across various platforms and in 

different sample conditions/types differ considerably with each algorithm. In general, most 

peak picking algorithms determine the validity of a peak by evaluating peak shape, peak 

maximum intensity, the standard deviation of the noise level of the spectrum, resolution 

between peaks, or a combination of several of these metrics. In pure compounds, these 

metrics are straightforward, and the majority of data will pass each of these checkpoints 

without issue or the need for major revision from an investigator.  

 In multidimensional NMR of complex samples, peak picking in an automated fashion is a 

known issue, as peak overlap is a more significant problem in crude or simplified extracts 

than it is with pure compounds.65 Vendor supplied peak picking algorithms (MNova and 

Bruker) were trialled for their ability to pick peaks of sufficient intensity, plausible peak 

shapes, and their capacity to deal with overlapped regions of the spectra. In each case, 

exceptions to one or more of these criteria were found, often creating issues in the 

downstream processing steps.  

Spectra containing considerable T1 noise, which is common in samples with a pronounced 

solvent peak and/or water peak, demonstrate the complications of peak picking 

algorithms. The regions of noise caused by these signals are often considerably higher 

than the standard noise level of the rest of the spectra. If a generic noise “floor” is selected, 

these extensively noisy regions can quickly confound the peak picking algorithm and 

generate peak lists which overwhelmingly represent the noise region (Figure 2.5).  
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Figure 2.5. TOCSY of Extract Prefraction RLUS 2108D Processed Using 
Automated Peak Picking. 

One method of reducing the number of erroneous peaks selected by peak picking 

algorithms is to set an upper threshold for the number of peaks to be picked. However, an 

additional complication can arise from the dynamic range of the data each spectrum 

contains. Major metabolites are often present at considerably higher levels than minor 

metabolites, which may be of interest, and regions of the spectrum which are not as 

susceptible to noise or peak overlaps can contain legitimate resonances at a threshold 

lower than that of noise in another part of the spectrum (such as the T1 noise regions). 

This causes the algorithms to become overwhelmed with peaks which may be erroneous 

in one part of the spectrum, while ignoring real data in others.  

Due to these complications, it was determined that the development of a robust processing 

scheme should predicate its use on data which has undergone supervised peak picking 

(Figure 2.6). This ensures that the data used to construct, and network features is built on 

the confidence of the researcher that a given signal is real and reduces the chances for 

false representation of the data. However, as more robust automated peak picking 

algorithms are under constant development and refinement, future applications of 

MADByTE analysis could see this recommendation relaxed.66,67  
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Figure 2.6. TOCSY of Prefraction RLUS 2108D Processed Using Supervised 
Peak Picking. 

2.3.3. HSQC Data Filtration and Preprocessing 

HSQC data are first filtered to remove peaks in the solvent and water signal regions, as 

some datapoints may be carried forward despite the requirement for supervised peak 

picking. In addition, regions with very high disparities between the relative 1H and 13C 

values are excluded (Figure 2.7 regions 1, 2, and 3 and tabulated in Table 2.2). 
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Figure 2.7. Graphic Representation of Data Filtration Regions for HSQC Data 

Table 2.2. Tabulated Data Filtration Regions for HSQC Data 

Proton Range (ppm) Carbon Range (ppm) Reason Zone 

2.48-2.52 All DMSO T1 Noise 5 

3.28-3.32 All H2O T1 Noise 4 

0.0-2.4 100.0-210.0 Extraordinary Shift Disparity 3 

0.0-7.0 170.0-210.0 Extraordinary Shift Disparity 2 

7.0-13.0 0.0-50.0 Extraordinary Shift Disparity 1 

 

Addressing the Retention of Multiplet Structure in Metabolomics Data 

An additional consideration in the filtration of HSQC data is the efficiency of the 

decoupling between 1H and 13C. Although HSQC spectra are optimally single resonance 

datapoints, some multiplet structure is retained without implementation of pure shift 

experiments.68 Although pure shift variants of the HSQC exist and are widely used, their 

overall sensitivity loss reduces their effective use in metabolomics studies.69 To address 

this, after initial data filtration HSQC data points are queried for residual multiplet structure 

by finding resonances which could plausibly be originating from single resonances split by 

coupling. This is done by finding resonances within defined 1H and 13C ppm error 

tolerances. 1H tolerance recommendations can be made through relation of the Karplus 

plot and equation with respect to a 3 bond HCCH coupling through Equation 2.2. 
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 3𝐽𝑎𝑥(𝜃) = 𝐴 cos2 𝜃 + 𝐵 cos 𝜃 + 𝐶 (2.2) 

Equation 2.2 describes the relationship of the coupling constant in Hz (3Jax (θ)) 

obtained from the relationship of the dihedral angle (θ) between any two protons which 

display three bond coupling. Plotting the relationship for ethane (Figure 2.8), the maximum 

expected coupling due to bond angles of ethane would be around 15 Hz.70,71 In a 600 MHz 

magnetic field, this translates to a 1H tolerance of 0.025 ppm; since coupling can be either 

a positive or negative relationship, points within 1H 0.05 ppm may be due to imperfect 

decoupling.  

 

Figure 2.8. Coupling Constant Relationship as a Function of Dihedral Angle 
Between Two Nuclei Coupled Through 3 Bonds in Ethane.  

In addition to the 1H and 13C tolerances, HSQC data provided in phase-sensitive 

mode contain important information as to whether signals could plausibly be originating 

from coupling relationships. For instance, if two points are within these tolerances but 

display differing phase (I.E. + and -), they cannot be originating from the same resonance. 

Points satisfying these requirements are merged, centered, and treated as single 

resonances for downstream comparisons.   
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2.3.4. TOCSY Data Filtration and Preprocessing 

The homonuclear data acquired from TOCSY experiments contains important information 

about chemical environments and coupling information between resonances. However, 

resolving peaks with similar chemical shifts and extended spin systems can be challenging 

due to peak overlap. Left unaddressed, areas of high overlap can create false 

associations, which extend the TOCSY spin system feature with erroneous correlations.  

TOCSY data is initially filtered by removal of the shielded region in both dimensions (<2.50 

ppm), as the overlap in this region is too great to permit accurate peak picking in most 

cases. Fortunately, data points in this region are often incorporated through their 

association with downfield correlations in F2, improving spectral coverage. Points 

identified as self-correlations are also excluded from analysis to reduce inflation of the 

data. Each TOCSY proton signal is then queried to see if a matching proton signal exists 

within the 1H ppm tolerance in the HSQC spectrum. If no HSQC data point is found, the 

correlation is removed. By requiring the data points to be present in both the processed 

TOCSY and HSQC data, false data points arising from reconstruction of non-uniform 

sample data as well as random noise are eliminated from further analysis. 

Homonuclear experiments such as TOCSY and COSY can be artificially symmetrized 

through vendor supplied algorithms. While this may seem advantageous, the most 

symmetrisation functions introduce the risk of artefact creation or signal splitting when 

comparing F1 and F2– both of which can complicate the formation of trustworthy spin 

system features. This is especially pronounced in complex data, such as with extracts and 

prefractions for which the MADByTE platform was designed. To avoid these 

complications, symmetrisation is not recommended.  

TOCSY spectra collected in DMSO-d6 may contain valuable information about extended 

chemical motifs through the detection of exchangeable protons found on OH or NH 

groups. However, as these signals will not have associated HSQC coordinates, they are 

dropped from consideration in the assembly of spin system features. With the current 

framework of the MADByTE processing scheme, inclusion of these signals poses a 

difficult data filtration challenge, as they may be indistinguishable from random noise. 

However, as their extended spin system will likely contain other 1H coordinates which are 
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detectable in the HSQC, the remainder of these spin systems will remain intact as long as 

they satisfy the remaining filtration requirements.  

After data filtration, remaining TOCSY data points are aligned by merging all reported F2 

peaks occurring within 0.01 ppm, allowing for small variances and peak picking errors. 

Points in F1 are then aligned to points in F2 within 0.02 ppm and data points outside of 

this margin are re-queried and merged within a margin of 0.01 ppm. This process is 

designed to take advantage of the increased resolution in the F2 dimension for alignment, 

eliminating cases of resonance duplication. An overview of the process can be seen in 

Figure 2.9. 

 

Figure 2.9. TOCSY Data Filtration and Alignment Steps 
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2.3.5. Feature Construction and Comparison 

Following the preprocessing of both the HSQC and TOCSY data, datapoints are 

associated between the experiments. Initially, the TOCSY signals are compared against 

the HSQC peak list, and TOCSY signals without corresponding HSQC cross peaks in the 

1H dimension are excluded. This is done as an additional confidence step, as points arising 

in the TOCSY which are not found in the HSQC are either noise, generated artefacts from 

spectrum reconstruction, or not directly attached to 13C – and therefore would not be useful 

in the cross comparison of these data. Therefore, any further comparison is done only 

between datapoints which have been identified in both spectra, have not fallen into 

typically noisy regions, and are of a high degree of confidence.  

Spin system features for individual samples are created by generating a directed graph 

from each TOCSY peak table, where nodes represent 1H signals in the TOCSY spectrum, 

and edges represent TOCSY cross peaks between 1H signals. Because multiple members 

of each spin system should generate cross peaks to any given spin system member, 

nodes containing only a single connection to a spin system are removed. This requires 

valid resonances to be reciprocal (i.e. observed on both sides of the diagonal of the 

TOCSY spectrum).  

 

Figure 2.10. Spin System Construction from TOCSY Data of Erythromycin 

The resulting graph includes sub-graphs for every unique spin system in the sample. 

Nodes in these sub-graphs are annotated with 13C chemical shifts to form (1H, 13C) pairs 
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by integration of the HSQC peak table data. In instances where spectral overlap yields 

multiple candidate 13C chemical shifts, values of the closest HSQC resonance are included 

in the node annotation. In the event that two resonances from the HSQC are equidistant 

to the TOCSY resonance, both carbon assignments are added as points in the spin system 

as they cannot be resolved. Resulting spin system features are stored and used in the 

following step to determine the similarity of spin systems from different samples. 

Once the spin system construction step is complete, the spin systems must be 

compared to each other to find the amount of potential overlap between any two systems. 

This was accomplished by establishing a similarity ratio to determine the overlap. Each 

pairwise combination is scored for (1H, 13C) pair overlap by dividing the number of 

overlapping (1H, 13C) pairs by the total number of (1H, 13C) pairs in the spin system. 

To calculate the similarity between two spin systems 𝑠 and 𝑠′, the analysis 

considers each spin feature independently. A spin feature consists of a proton resonance 

signal with a set of one or more carbon signals. The similarity ratio is then given by 

Equation 2.3 where the intersection of two spin systems is determined by finding the 

number of spin features in system 𝑠′ which overlap with the features in system 𝑠. 

 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠, 𝑠′) =  
𝑙𝑒𝑛𝑔𝑡ℎ(𝑠′  ∩  𝑠)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑠)
 (2.3) 

Two user defined parameters are employed here; the 1H error tolerance and the 

13C error tolerance, which default to 0.05 and 0.4 ppm respectively. Two spin features are 

said to overlap if a proton is found within the given tolerance, provided that proton has at 

least one carbon which also matches within the given tolerance. As an example, if we 

have two spin systems [where each spin feature is noted as (1H, (13C1, 13C2, …))]  

𝑠 = { (1.50, (13.0, 30.2)), (3.01, (20.1)), (4.44, (55.5)) }  

𝑠′ =  {(1.51, (25.9)), (1.56, (28.9))}  

Then the length of the intersect of 𝑠′ in 𝑠 is 1, because the first spin features of each 

system match within tolerance. This would give a similarity ratio of  1/3, or 0.33. The 

similarity ratio takes values between 0 (when there is no overlap of two systems) to 1 
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(when systems are identical or overlap perfectly). For a MADByTE experiment, the 

similarity ratio between each pair of spin systems is computed and stored in a square, 

non-symmetrical matrix which records the overlap of spin system A with B in one 

dimension, and B with A in the other. The higher of the two similarity scores (A vs B or B 

vs A) is used to define edges between spin system nodes. This approach is appropriate 

because variation in compound concentrations or resolution between samples can lead to 

the creation of larger or smaller spin system features for the same molecule in different 

samples. 

2.3.6. Network Visualizations 

MADByTE illustrates the chemical interrelatedness of sample sets by creating network 

graphs that include all spin system features and include connections (edges) between 

features with similarity scores above a minimum threshold. These networks are used to 

identify interrelated spin system features between samples, which can be used to either 

gauge the amount of structural similarity between samples, or as a feature for downstream 

dereplication. In all views, extracts are represented by large nodes (red nodes in Figure 

2.11), but each representation allows for different aspects of the overall network to be 

highlighted.  

 

Figure 2.11. Conceptual Representations of Node Relationships from Each of 
MADByTE's Network Outputs 

Full Association Network 

The full association network (Figure 2.11 - Panel A) is a representation of every SSF node 

derived from every sample. This allows for nodes that share similarity to be displayed 

alongside nodes which house unique SSFs which are not found elsewhere in a sample 

set. When small sample sets are queried, this provides a comprehensive view of the 
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chemical environments found in each sample. The full annotation network can be used to 

highlight the uniqueness of each spin system, providing a strategic vantage point for 

novelty driven explorations of the network. However, due to the inherent complexity of 

large networks, the visual representation of the FAN can quickly become problematic.  

Similarity Network 

The similarity network (Figure 2.11 - Panel B) is a method of reducing the complexity 

resulting from MADByTE analysis by highlighting only SSFs which are found elsewhere in 

the sample set. This view reduces the number of datapoints visible by dropping the unique 

SSFs which can overwhelm visual analysis of large sample set comparisons. Nodes which 

share no connections at all are dropped from visualization, so as to reduce the overall 

complexity. The similarity network provides a good vantage point for studies where shared 

chemistry is the focus, such as compound dereplication or metabolomics co-occurrence 

studies.  

Hybrid Network 

The hybrid network (Figure 2.11- Panel C) was constructed to display the relatedness of 

each SSF node relationship in context of the samples with homology identified. The 

construction of the hybrid network involves merging independent SSFs through their 

shared chemical profiles. To achieve this, each set of SSF resonances from associated 

nodes are compared and only points found in each are retained, dropping unique 

resonances from consideration. Points found to be within the 1H ppm and 13C ppm error 

tolerances are averaged as new points. As the new node does not represent the totality 

of the SSFs, new nodes are created to represent these relationships which replace the 

presence of discreet SSF nodes in the network – providing a condensed node network by 

comparison to the similarity network.  

2.3.7. Graphic User Interface  

Perhaps one of the biggest hurdles in adoption of a new utility or analysis pipeline is the 

ease of installation and use for end users.72 Many metabolomics software packages have 

been developed for community adoption, but few contain intuitive user interfaces or ample 

documentation for users to tailor the processing steps or resulting outputs to the context 

of their individual studies. In many cases, installation of the software itself can present 
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major challenges, often placing a burden of technical expertise on the user before they 

can begin using the tool. To address this, MADByTE was designed with user definable 

parameters – clearly documented in the user manual, and facile installation instructions 

for both Windows and Mac. These features were specifically designed to facilitate ease of 

use and rapid adoption of the utility. Consistent with this philosophy, MADByTE is provided 

under the MIT Software license and is available for free as a code repository from 

https://github.com/liningtonlab/MADByTE. 

 

Figure 2.12. Screenshots of the MADByTE Graphic User Interface (GUI). The 
batch analysis menu contains all the user adjustable parameters 
such as the 1H ppm and 13C ppm cutoffs and allows for solvent and 
data type selections.  

Flexibility of Input Data 

Because MADByTE accepts post-processed peak lists rather than raw fids, users can 

customize processing parameters to fit their experimental design. This allows control over 

peak picking thresholds, linear prediction, zero filling, apodization function selection, and 

even application of advanced processing methods such as covariance NMR.73 

Additionally, as users may use different peak picking strategies available to them, using 

peak picked lists as the input data allows for users to be in full control of the input data, 

and affords downstream compatibility for peak picking or processing utilities yet to be 

https://github.com/liningtonlab/MADByTE
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developed. Importantly, this also removes dependencies associated with vendor-specific 

software, affording access to a wider user base.  

Nearly all aspects of data filtration in the HSQC and TOCSY preprocessing steps are 

directly accessible to end users through the GUI, with default values provided as starting 

points. This enables users with limited access to high resolution systems to utilize the 

utility by establishing cut-off values appropriate for the resolution of their spectra.  

Interactive Displays 

The MADByTE GUI provides utilities which enable interaction with the results of the 

processing in an intuitive manner. Because MADByTE is constructed on top of a Python-

based framework, data can be quickly parsed in customized functions and displayed to 

the user in real time. To achieve this, MADByTE constructs node networks using 

networkX74 and passes the resulting network and associated metadata to Bokeh75 to 

generate an interactive data display (Figure 2.21). As a user hovers over a given spin 

system feature node in the network viewer, the membership of the feature is displayed in 

real time, providing a snapshot of real datapoints associated with abstract features used 

for comparison. Combined with filtration of the spin system network based on the number 

of points in each feature, these interactive networks allow for users to highlight and 

investigate regions of interest and derive features for prioritization within seconds of 

processing.  

In addition to network views, MADByTE also contains native NMR plotting for spectral 

review, including options for viewing both 1D spectra and points derived from HSQC and 

TOCSY processing (Figure 2.22). 1H NMR plotting is done using NMRglue,76 a powerful 

Python-based utility for processing of NMR data, which retains important plotting 

information such as peak shapes and relative intensities in high fidelity.  

2.3.8. Dereplication Module 

Although the MADByTE analysis pipeline was constructed to address the shortcomings of 

standard dereplication approaches to annotation in complex mixtures, dereplication as a 

concept is a robust and repeatedly validated methodology in natural product research and 

discovery. To facilitate dereplication within the GUI environment of MADByTE, a module 

was constructed that allows for HSQC spectra to be queried against an in-house library 
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which users can establish, depending on their individual requirements. In many cases, 

dereplication of known chemistry can extend beyond the scope of publicly available 

databases.  

NMR based dereplication is often performed by deriving the peak list from a sample and 

comparing against a database of known metabolite profiles, often specialized for a given 

sample type or experimental setup. Although this methodology has been shown to work 

in complex samples, assignments are often made on only a few key correlations rather 

than the entire molecular profile of the metabolite. Multiple resonances of interest found 

within a sample can increase confidence of assignment, but regions of high complexity 

caused by peak overlap may confound these approaches to annotation and are common 

in metabolomics studies.  

Dereplication in MADByTE is done via point-to-point HSQC comparison of the datapoints 

from a given sample against the database references for entire molecules. The 2D nature 

of the HSQC spectra is advantageous as it resolves the resonance information against an 

additional axis, determined by the chemical shift of the directly attached 13C. In addition to 

the increased resolution, the chemical shift of the 13C nuclei provides an additional layer 

of confidence in assignment, as 1H nuclei alone may share the same chemical shifts, 

despite being attached to 13C nuclei which are exposed to different chemical 

environments.  These resonances, when taken together represent a robust feature for 

molecular identification and provide considerably more context than either a 1D 1H NMR 

or 13C NMR can provide for a given molecule.  

As MADByTE derives the resonance information from peak picked lists in the first 

processing steps, this information is readily available to the platform to perform 

dereplication. Scoring of resonance matches are performed by finding (1H,13C) coordinate 

pairs in the sample matrix which are within the defined 1H ppm and 13C ppm error 

tolerances defined. Each sample is then scored by the number of peaks found in the 

spectrum vs the number of peaks expected from the reference compound in the 

dereplication library and displayed as a table in the GUI for review.  
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2.4. Applications of MADByTE 

2.4.1. Proof of Principal: Application to Standard Compounds 

To test the effectiveness of MADByTE for grouping compound classes, a training dataset 

comprising 1H, TOCSY and HSQC spectra for 17 commercially available natural products 

and natural product analogues was acquired (Figure 2.13). Following supervised peak 

picking, peak lists were imported into MADByTE and processed as described above. An 

excerpt from the resulting similarity network is presented in Figure 2.14, which 

demonstrates the ability of the platform to network similar compounds together through 

spin system features. The full network can be found in Section 2.8.2.  

 

Figure 2.13. Standard Compounds Used for MADByTE Development. 
Compounds were chosen to represent natural products from several 
structural classes common to natural product investigations.  
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Figure 2.14. Condensed Full Annotation Network of 9 Commercially Available 
Compounds Used for MADByTE Development. Colored nodes can 
be mapped to their structural components (matching colors) 
through manual inspection and comparison against reference data.  

The global network contained one sub-cluster (central cluster) containing three 

reference compounds. Closer examination of this sub-network revealed the presence of 

the related polyketide macrocycles azithromycin (3), erythromycin (4) and roxithromycin 

(5). These compounds were related by the presence of two major spin system features 

shared between all three compounds, analyzed in detail in Figure 2.15 and Table 2.3. 

Review of the network (Figure 2.14) revealed other matching compound sets, 

including chloramphenicol (1)/ thiamphenicol (2), and epirubicin (6)/ daunomycin (7).  

Encouragingly, compounds with low structural similarity to other members of the training 

set did not form connections to these clusters. Instead these compounds (e.g. puromycin 

(8) and mupirocin (9)) remained as single sub-networks containing only the spin system 
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features identified from their own NMR spectra, without false-positive connections to other 

members of the test set.  
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Figure 2.15. Analysis of Macrocycle Cluster. Shared spin systems (colored node 
borders) were mapped back to common structural elements 
(corresponding color) by comparison to published assignments. For 
example, the central cluster of macrocyclic compounds 
azithromycin (3), erythromycin (4), and roxithromycin (5) contains 
spin systems from the cladinose sugar (blue border) and a portion 
of the macrocyclic core (pink border). Analysis of the proton 
assignments for these motifs show that 1H directed methods may 
miss common elements due to bin sizes (Panels 3 and 4).  
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Table 2.3. Spin System Features From Macrocyclic Compounds 

Spin System Members Compound 

Node Border 
Color 

(Figure 2.15) 

Azithromycin_0 (0.80, 10.9),(1.37,20.9),(1.77,20.9),(4.75,76.4) 3 Pink 

Erythromycin_0 (0.76, 10.8),(1.38,21.0),(1.80,21.2),(5.11,75.8) 4 Pink 

Roxithromycin_0 (0.76, 10.6),(1.37,20.9),(1.80,21.1),(5.13,76.0) 5 Pink 

Azithromycin_2 (1.52, 34.7),(2.28, 34.6),(4.84, 94.5) 3 Blue 

Erythromycin_6 (1.53, 34.9),(2.29, 35.0),(4.74, 95.9) 4 Blue 

Roxithromycin_4 (1.53, 34.9),(2.28, 34.9),(4.73, 95.6) 5 Blue 

The first set of features (pink nodes) included signals from the lactone junction of the 

macrocyclic core, while the second set (blue nodes) contained signals from the pendant 

cladinose sugar. In the former case the spin-system feature contains four resonances 

(0.76-0.80, 1.37-1.38, 1.77-1.80, 4.75-5.13) found in each dataset (Table 2.3). These four 

signals are sufficient to identify this motif as a commonly shared sub-structure. The 

cladinose substructure includes six (1H, 13C) correlations, present in two discrete spin 

systems. One of these spin systems, containing three features (1.52-1.53, 2.28-2.29, 4.73-

4.84), was detected as a core motif in all three datasets. These results demonstrate the 

ability of the MADByTE algorithm to connect substructures even in the absence of all 

possible correlations, and to use these connections to group structurally related molecules 

from different samples.  

2.4.2. Detection of Non-Native Compounds in Complex Matrices 

To evaluate the ability of MADByTE to identify metabolites in complex mixtures a set of 9 

spiked prefraction samples were prepared (Table 2.4). 25 µL aliquots of each prefraction 

were taken from the Linington lab extract library, dried, and spiked with 0.5 mg of one of 

three reference compounds as shown in Table 2.4. These three compounds (novobiocin, 

mupirocin, and erythromycin) were selected because they are structurally dissimilar to one 

another, and were known not to occur in these extracts. HSQC and TOCSY spectra were 

collected for each sample, processed, peak picked, and subjected to MADByTE analysis, 

including the reference spectra for the pure reference compounds (Figure 2.16). The 

resulting network shows clear separation of the extract prefractions based on the presence 

of spiked reference compounds. 
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Table 2.4. Prefractions Spiked with Reference Compounds. 

Sample 
Name 

Extract 
Prefraction 

Spiked 
Compound 

Node ID 

(Figure 2.16) 

1526_A_SPK 1526 A Erythromycin A 

1526_C_SPK 1526 C Mupirocin B 

1526_E_SPK 1526 E Novobiocin C 

1726_A_SPK 1726 A Novobiocin D 

1726_C_SPK 1726 C Erythromycin E 

1726_E_SPK 1726 E Mupirocin F 

1814_A_SPK 1814 A Novobiocin G 

1814_C_SPK 1814 C Mupirocin H 

1814_E_SPK 1814 E Erythromycin I 

Mupirocin - - 9 

Erythromycin - - 4 

Novobiocin - - 10 
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Figure 2.16. Full Annotation Network Illustrating Extract Prefractions Containing 
Spiked Reference Compounds. Spiked extracts (green, gold, and 
pink nodes) cluster through spin system features (grey nodes) to 
pure compound reference data (blue nodes; erythromycin (4), 
mupirocin (9), and novobiocin (10)) 

 

As with all MADByTE networks, nodes in this graph are grouped based on the presence 

of shared spin system features. Grouping by reference compound indicates that these 

three extracts have low chemical similarities to one another, with the exception of the 

reference compounds added in each case. In two of the three cases (mupirocin and 

erythromycin), clearly resolvable features gave network connections between all three 

prefractions containing the same compound. In the third case (novobiocin), extensive 

signal overlap in the HSQC spectra reduced the number of resolvable spin-system 

features, decreasing but not eliminating the interconnectedness of these three 

prefractions. Importantly, this study indicated that even in complex matrices, features can 

be constructed and used to identify scaffold motifs present.  
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2.4.3. Structural Dereplication in A Natural Product Extract Library 

To extend MADByTE to real-world datasets, data for 85 samples from the prefractionated 

microbial natural products library was acquired. Following data processing to generate 

spin system features, these samples were combined with the pure compound dataset and 

the spin system similarity matrix generated using standard parameters. 

This yielded a complex network containing a large number of spin system features of 

varying complexity with respect to membership. To highlight the shared chemistry 

between these extracts, the resulting hybrid network was analyzed, as it collapses linked 

features into their common resonances, simplifying the overall layout (Figure 2.18: panel 

A). Interestingly, several natural products prefractions contained spin system features that 

linked to reference compounds, suggesting the presence of known compound families. 

Two extracts in particular, RLUS 1565C and RLUS 1565D showed connection to the 

reference compound novobiocin, a compound known to be produced by marine 

actinobacteria, and therefore a plausible metabolite in this sample set. Analysis of the 

shared features did not account for the entire molecule, but rather, provided a structural 

hypothesis. Importantly, comparison of the 1H NMR profiles of these extracts was not 

sufficient to provide definitive confirmation of this molecule within the sample due to peak 

overlap (Figure 2.17).  

 

Figure 2.17. Stacked 1H Profiles of Extracts RLUS 1565C and RLUS 1565D 
Compared to a Novobiocin Reference Standard. 
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Figure 2.18. Identification of Novobiocin in Natural Products Library Prefractions. 
A) Network of 85 extract prefractions and reference compounds. B) 
Expanded region from panel A showing node connections between 
novobiocin (10) and extract prefractions RLUS 1565C and RLUS 
1565D. C) Expansions of TOCSY and HSQC spectra showing 
resonances responsible for node connections in panel B. D) HRMS 
spectra of novobiocin peak at 4.36 min. E) Extracted ion 
chromatograms for novobiocin (m/z 613.2378) in prefractions 1565C 
and 1565D, compared to novobiocin standard. 
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  UPLC-MS analysis of pre-fractions RLUS 1565C and RLUS 1565D (Figure 2.18 panels 

D and E) confirmed the presence of novobiocin unequivocally through confirmation of 

retention time and MS profiles, demonstrating the value of MADByTE for compound 

dereplication through partial structure homologies, even in absence of all resonances from 

this molecule in the complex extract.  

2.5. Limitations of MADByTE Analysis 

Although the findings from these experiments demonstrate a variety of utilities and 

applications of the MADByTE platform, several limitations became apparent which should 

be addressed.  

Firstly, spectral overlap in the TOCSY spectrum proved to be a considerable challenge, 

especially in regions of high complexity such as correlations from 0-2.5 ppm. As 

addressed in section 2.3.4, the current strategy to mitigate this is to not consider 

resonance associations which are only shown in this region. However, problems with 

overlap and closely associated chemical shifts are not unique to this region, and as such, 

imperfect spin systems are created. In some cases, overlap can cause two independent 

spin systems to become associated through an erroneous resonance creating a larger 

spin system feature. This error is caused in the spin system construction step and is 

currently expected behaviour due to the restrictions in resolution caused by instrument 

and processing limitations. These large spin system features are still valid features and 

contain important information which could still be valuable in associations of spin systems 

across the sample set. Therefore, the asymmetric correlation matrix is important. In cases 

where a large spin system contains several smaller spin systems combined (A+B), other 

extracts may create features which represent only one of the smaller spin systems (A or 

B) and would still allow for connections to be made showing the shared chemical overlap. 

Innovations in pure-shift NMR, which increases the resolution between points when 

compared to standard NMR experiments or an increase in the magnetic field strength 

could also be leveraged to alleviate these problems of spectral overlap in future 

applications.  

The loss of connection information from 0-2.5 ppm is an additional limitation when 

considering all possible cases of spectral overlap. This region contains information which 

may be fundamental in the assignment of structural motifs from relatively shielded 
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molecules. This limitation was observed in the standard compounds network in section 

2.4.1 with compounds 14-16 (betulinic acid, ursolic acid, and oleanolic acid – respectively). 

Although these compounds have very similar scaffolds, the number of positions which 

contained valid resonances beyond 2.5 ppm were few. In these cases, the loss of 

connection information in the 0-2.5 ppm region proved to be the majority of the molecular 

scaffold, and the number of resonances which were above this cut-off threshold differed 

too greatly to generate linkages in the network. Therefore, MADByTE analysis of 

molecules containing highly shielded spin systems may yield limited structural information. 

An increase in the resolution of the overall spectrum – obtainable through a higher field 

NMR, alternative pulse sequences, or an increase in experiment acquisition time may 

provide a viable alternative to this filtration mechanism but could prove impractical for 

widespread use. 

An additional limitation is that the data viewpoints afforded by the MADByTE processing 

pipeline represent shared resonances from different samples but cannot natively attribute 

those collections of resonances into direct structural motifs. In the case of the macrocyclic 

compounds described in Figure 2.15, the features derived by MADByTE could be mapped 

back due to the availability of reference data in the appropriate solvent. This, however, is 

not a realistic expectation when applied to unknown compounds in complex matrices. A 

proposed solution to this limitation would be to generate a reference library of compounds 

with their spin systems fully annotated. Associations to a given annotated motif could then 

be used to propose plausible structural components, but this is currently impractical due 

to the limited availability of reference compound data.   

2.6. Conclusions 

MADByTE has been shown to derive spin system information from TOCSY, create 

associations of these spin systems to their connected carbon backbones through HSQC, 

and construct and compare these spin system features across large sample sets. These 

comparisons can be leveraged for metabolomics, discovery, and dereplication studies and 

provides a framework for customization through its open-source nature.  

The development and design of the MADByTE analysis pipeline reflects the changing face 

of natural products research. Utilizing the methods for structure elucidation common to 

natural products research, in conjunction with new comparison methods and visualization 
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schemes, MADByTE provides an orthogonal viewpoint of complex data which can be 

leveraged for hypothesis generation, sample comparison, and functional annotation of 

natural products in complex samples. Technological platforms such as MADByTE pivot 

the strategies used for de-novo structure elucidation to more complex systems than would 

be manageable through human analysis, allowing access to otherwise overwhelming 

data.  

The processing steps involved in the MADByTE analysis reflect the challenges for a robust 

platform to be developed. Data filtering and feature comparison require a careful balance 

of flexibility to handle real-world data and rigidity to provide a reproducible and useful 

result. As complex analysis platforms are created to investigate complex data, they must 

also be designed with consideration towards future implementations and real-world 

complications.  

Metabolomics and dereplication represent two extremely important steps in natural 

product research by providing new leads and triage methods to streamline downstream 

studies. Chemical extracts can take weeks to generate, but with new analysis tools 

focused around describing their constituents in just a few hours, researchers can focus 

their efforts on samples which provide the best context to test their hypotheses and make 

new discoveries.  

2.7. Experimental Methods 

2.7.1. Extract Prefraction Preparation 

25 µL aliquots of extract prefractions were retrieved from our previously described 

actinobacterial library77, dried via lyophilization, resuspended in 300 µL of DMSO-d6, and 

lyophilized again to remove non-deuterated DMSO from the sample. Sample aliquots 

translated to a variable mass between 4-15 mg of dry material. Shigemi tubes were placed 

under high vacuum for 30 minutes prior to use to remove water vapor, and back filled with 

argon. Samples were dissolved in 320 µL of DMSO-d6, sonicated, and 280 µL was placed 

into a matched Shigemi tube for acquisition, with care taken to ensure no solid particulate 

was transferred. Glass pipettes were pulled to greater length and attached to a 1000 µL 

micropipette for accurate solvent dispensing and transfer.  
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2.7.2. NMR Acquisition 

All NMR spectra were recorded on Avance III TCI (600 MHz) or Avance III QCI (600 

MHz) spectrometers in DMSO-d6 (CortecNet lot Q0611) at 300K. HSQC spectra were 

recorded as 32 scans (TD: 4096 x 256), collected by non-uniform sampling at 50% 

followed by linear prediction and zero filling. TOCSY spectra were recorded as 16 scans 

(TD: 1024 x 128), collected by non-uniform sampling at 50% followed by linear prediction 

and zero filling. NUS point spreads were kept consistent between samples to ensure 

consistency. Proton spectra were recorded as 64 scans (TD: 131 k). All spectra were 

manually referenced and phased, followed by supervised peak picking. 

2.7.3. Standard Compound Network 

The reference compound set selected for the standard compound network were chosen 

to represent diverse scaffolds from natural products or natural product derivatives. 

Daunomycin (7), roxithromycin (5), erythromycin (4), puromycin (8), novobiocin (10), and 

cycloheximide (12) were obtained from Sigma-Aldrich (St. Louis, MO, USA). Ursolic acid 

(15), betulinic acid (14), and oleanolic acid (16) were purchased from Extrasynthese SA 

(Genay, France). Chloramphenicol (1) was obtained from Calbiochem (La Jolla, CA, 

USA). Azithromycin (3) and rifamycin S (13) were purchased from TCI (Tokyo, Japan). 

Thiamphenicol (2) was acquired from Spectrum Chemicals (Cardena, CA, USA), and 

actinomycin D (17) was purchased from RPI (Mount Prospect, IL, USA). Mupirocin (9) was 

purchased from AppliChem (Darmstadt, Germany). Epirubicin (6) was purchased from MP 

Biomedicals LLC (Solon, OH, USA), and staurosporine (11) was purchased from LC 

Laboratories (Woburn, MA, USA). 

Parameters used for this study are displayed in Table 2.5. The resulting networks were 

exported in graphML format and processed in Gephi for visualization using the Force Atlas 

2 algorithm with default parameters except; spacing = 10, dissuade hubs = True, prevent 

overlap = True.  
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Table 2.5. MADByTE Parameters Used for Standard Compound Networking 

Parameter Value 

Hppm Error 0.05 

Cppm Error 0.40 

Consensus Error 0.03 

Similarity Ratio 0.51 

Merge Multiplets True 

Maximum Spin System Size 40 

2.7.4. Non-Native Compound Network 

Preparation of Chemical Extracts 

Isolates of RL10-484-HV5-A were retrieved from cryogenic storage, streaked on SYP agar 

plates, and allowed to grow at room temperature for 9 days until robust colonies were 

observed. Colony isolates from each plate were then transferred to small-scale liquid 

culture conditions containing 7 mL of SYP media and 3 glass beads to increase agitation. 

Each small-scale culture was incubated while shaken at room temperature for 3 days. 

From this, 4 mL of each small-scale culture was transferred to medium-scale conditions 

containing 250 mL of SYP media and shaken for an additional 7 days. 40 mL of the 

medium-scale cultures were transferred to large-scale conditions containing 1 L of SYP 

media, 20 g of washed XAD-16 resin and incubated under agitation for 7 days.  

Each 1 L culture was filtered to remove the culture media and the resulting cell mass and 

resin was stirred in 250 mL of 50:50 CH2Cl2:CH3OH for 1 hour and filtered. The resulting 

filtrate was dried under vacuum and fractionated on a reverse phase sep-pack C-18 

column yielding 6 final fractions – RLUS 1814 X,A,B,C,D,E with each fraction representing 

an increase in methanol concentration in the eluent, and a 7th fraction, F, representing an 

ethyl acetate flush. Each fraction was dried under vacuum and resuspended in 1 mL of 

DMSO for storage. This process was done in parallel for cultures RL10-247-HVF-C and 

RL10-348-HVF-A, yielding extracts RLUS 1526 X-F and RLUS 1728 X-F respectively.  

Each extract was retrieved from storage, thawed, sonicated, aliquoted, and dried as 

described as above to prepare for NMR analysis. Samples of each compound to be added 

into the extract were prepared by dissolution of 0.5 mg of each in 300 µL of solvent, which 
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was then added to each dried extract sample, sonicated, and transferred to a Shigemi 

tube for data collection.  

Parameters used for the detection of non-native compounds in sample extracts can be 

found in Table 2.6. The resulting networks were exported in graphML format and 

processed in Gephi for visualization using the Force Atlas 2 algorithm with default 

parameters except; spacing = 10, dissuade hubs = True, prevent overlap = True. For 

Figure 2.16, color coding was applied manually. 

Table 2.6. MADByTE Parameters Used for Extract Prefractions Containing 
Non-native Compounds 

Parameter Value 

Hppm Error 0.05 

Cppm Error 0.40 

Consensus Error 0.03 

Similarity Ratio 0.30 

Merge Multiplets True 

Maximum Spin System Size 40 

 

2.7.5. Natural Product Extract Library Network  

Samples chosen for the NP extract library network were prepared as described in section 

2.7.1 and data acquisition followed the outlined protocol in section 2.7.2. Following 

analysis, samples were dried down under vacuum and placed in separate storage to 

facilitate follow up analysis. Parameters used for the detection of non-native compounds 

in sample extracts can be found in Table 2.7. The resulting networks were exported in 

graphML format and processed in Gephi for visualization using the Force Atlas 2 algorithm 

with default parameters except; spacing = 10, dissuade hubs = True, prevent overlap = 

True.  
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Table 2.7. MADByTE Parameters Used for Natural Product Extract Library 
Networking 

Parameter Value 

Hppm Error 0.05 

Cppm Error 0.40 

Consensus Error 0.03 

Similarity Ratio 0.30 

Merge Multiplets True 

Maximum Spin System Size 40 

2.8. Supplemental Data 

2.8.1. Plausible Alternatives to Fourier Transformation in 
Metabolomics Data 

Advances in alternative processing, such as covariance processing, have aimed to 

increase the practical resolution of homonuclear experiments (such as TOCSY) and was 

investigated for utility. Covariance processing offers a promising alternative to standard 

processing, as it provides an increase in the resolution in F1 when compared to the typical 

fast Fourier transform.78 To evaluate covariance processing, the TOCSY spectrum from 

azithromycin (3) and an extract prefraction 2108D were processed using the covariance 

module included in MNova (direct covariance, square root, no filter).79 Although this 

worked well for pure compounds, extract data performed poorly (Figure 2.19), introducing 

'streaking' patterns and signal artefacts that made it harder to accurately  pick relevant 

peaks from the TOCSY spectrum. For this reason, the design and applied demonstration 

of MADByTE did not utilize this processing, although this is still a valid avenue of 

preprocessing available should future experiments or utilization require it.  
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Figure 2.19. Covariance Processing on a Standard Compound and an Extract 
From the Linington Lab Library.  
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2.8.2. Full Annotation Network of 17 Standard Compounds  

 

Figure 2.20. Full Annotation Network of Standard Compounds Involved in 
MADByTE Development Including Structure Annotations.  
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2.8.3. Additional MADByTE GUI Features 

 

Figure 2.21. The MADByTE Network Module. The networks constructed by 
MADByTE analysis can be viewed using the interactive module – 
hovering over nodes displays SSF membership.  
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Figure 2.22. Screenshot of the MADByTE GUI Plotting Function. The plotting 
function built into MADByTE can display 1H NMR spectra from 
MADByTE processed samples natively including 1H spectra and 
points derived from TOCSY and HSQC Processing. 
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Chapter 3.  
 
Integration of Bioactivity Profiling and MADByTE  

3.1. Introduction 

Drugs and therapies discovered from natural products are often considered as some of 

the most important drug discovery successes in modern medicine. Since the discovery of 

penicillin as an isolable fungal metabolite, the relationship between small molecules 

produced by living organisms and their role in the treatment of diseases have inspired the 

study of and search for new and novel producers of bioactive metabolites. A review of the 

last 40 years of all FDA approved drugs shows that natural products or natural product 

inspired molecules account for ~60% of small molecule drugs, demonstrating their broad 

usage and modern relevance as lead molecules for medicinal use.1  

Historically, most discovery platforms aimed at identifying small molecules from natural 

sources relied on bioactivity guided fractionation to isolate bioactive constituents. This 

practice utilizes iterative rounds of separation by chromatography or partitioning with 

bioactivity evaluation at each step. Complex samples, through multiple rounds of this 

process, can be purified into their constituents using the bioactivity results as a 

prioritization function. This method has led to the discovery and development of many 

bioactive natural products,11 but includes an inherent cost in both the time and sample 

amounts needed to perform biological evaluation at every step. In many cases, extensive 

time and effort can be spent on the characterization of a single component from a sample 

only to find that the molecule is already known and well characterized in the literature. In 

others, extensive rounds of bioassay guided fractionation can quickly reduce the amount 

of working material available until the supply is exhausted, and recollection of the original 

fraction cannot be guaranteed. Therefore, while bioactivity guided fractionation allows for 

the triage of non-bioactive extracts and the prioritization of others, the risk of rediscovery 

has led to the reduction of this method as an industry standard.  
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3.1.1. Bioactivity Profiling  

To overcome the limitations of bioactivity guided fractionation, many discovery workflows 

have shifted towards a more informatics-based approach by infusing analytical methods 

of analysis such as MS and NMR spectroscopy into various steps in the process to 

characterize sample constituents. Using these data, samples can be checked for known 

entities through a process called dereplication. Although a powerful utility for prevention 

of reisolation, dereplication methodologies require bespoke libraries of reference data to 

be compiled before their full potential can be realized and are often tailored to single 

organisms, or frequently studied model organisms. In practice, when dereplication 

suggests a known bioactive molecule exists in a mixture, investigations are often 

abandoned before the full evaluation of a particular extract which may still yet yield 

important bioactive molecules.  

Mass Spectrometry Based Methods of Biological Profiling 

Because dereplication can only compare what is currently known to an investigation, new 

methods for predicting bioactivity from complex analytical data on these extracts have 

been developed in recent years which focus on the use of statistical modeling to predict 

features which may be giving rise to bioactivity. Biochemometrics, for example, derives 

PLS components for comparison and calculates the variance in a bioactivity dataset as a 

function of the presence or absence of a particular feature within a more complex dataset 

– called the selectivity ratio.23 This allows for targeted isolation of features which may 

explain the bioactivity of the extract. Biochemometrics, although able to predict whether a 

molecule may be bioactive, does not provide context as to the MOA of a given molecule, 

and therefore could lead to the isolation of components which contain off target effects.  

Beyond simply predicting the activity of a natural product within a complex extract, 

advancements in metabolomics comparison have allowed for the prediction of specific 

mechanisms of these analytes through comparisons of high content profiling assays. 

Compound Activity Mapping is one such utility which utilizes high content imaging of HeLa 

cells to generate fingerprints which describe the phenotypic effects of extracts in 

combination with HRMS data to generate hypotheses about the MOA of molecules from 

actinobacteria extract prefractions.25 Importantly, Compound Activity Mapping provides 

these predictions by the generation of high content networks which allow for these data to 

be visualized and grouped based on shared features. The resulting networks provide 
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general descriptions about the predicted bioactivities of extracts, as well as specific 

predictions of molecular identities driving these bioactivity profiles. Although a very 

powerful utility, Compound Activity Mapping requires the generation of many biological 

responses through high content screening which may not be accessible to many research 

programs.  

Mass spectrometry provides a powerful analytical method for generating features to 

compare across samples due to its ability to: resolve a great number of analytes through 

coupling to chromatography systems; the ability to selectively fragment ions of interest; 

and measure additional traits such as a collisional cross section. The wide variety of 

information which can be derived for constituents within a complex sample provide a 

robust method for verifying the identity of a molecule and even predicting its molecular 

class. However, mass spectrometry carries some inherent complications that can create 

problems with downstream isolation. Often the limit of detection for MS is orders of 

magnitude lower than that of other techniques, such as NMR spectroscopy, but as MS is 

not inherently quantitative, this can create instances in which features are predicted to be 

bioactive but are not present in high enough abundance for practical isolation. In addition, 

MS based methods are dependent on the analytes ability to ionize and hold a charge – a 

requirement that many molecules can fail to satisfy depending on their ionization 

mechanism or molecular structure.  

3.1.2. NMR Applications 

In comparison to MS, NMR spectroscopy is regarded as a “universal detector” for organic 

molecules, as it relies on the detection of magnetically active nuclei - typically 1H - which 

can be found in almost all organic molecules. Additionally, NMR is semi-quantitative under 

standard conditions and although the limit of detection is considerably higher than MS, 

features that are abundant enough for detection by NMR are present in practically isolable 

amounts. Therefore, methods which are able to profile the biological activities of complex 

samples using NMR as the basis for analysis would be at a distinct advantage over MS 

based methods for practical use. However, without the resolving power of MS based 

analyses, deriving features for comparison and prediction remains a challenge.  

NMR based metabolomics have recently attempted to solve this issue by using the 

comparison of data between extracts or samples to find common features which exhibit 
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similar bioactivities to explain the contributions from metabolites. STOCSY (Statistical 

TOtal Correlation SpectroscopY) is a method of comparison for 1H 1D spectra which 

utilizes the collinearity of signals in sets of 1H spectra to generate a correlation matrix 

predicting the associations of signals which may arise from single metabolites shared 

between the samples.50 When combined with statistical modeling such as OPLS-DA, 

predictions can be made about the metabolites’ contribution to a given biological state, 

observed biological effect, or connect NMR fingerprints to MS features.80 However, 

STOCSY requires extremely large sample sets with carefully monitored biological data 

outputs and has been designed for use in primary metabolomics investigations, which 

often can be validated against reference libraries. Despite this, STOCSY has been shown 

to be compatible with natural product discovery pipelines, but still requires extensive 

separation to predict bioactive motifs.81  

MADByTE, like STOCSY, is a method for comparison of common features between 

complex samples through relationships in NMR spectra. Unlike STOCSY, however, 

MADByTE does not rely on complex statistical relationships of compared features or 

combinations with MS profiling data. MADByTE derives shared spin system features for 

comparison, and like MS based utilities such as Compound Activity Mapping, provides 

contextualized mapping of the features occurrence through the generation of a network. 

Using the network resulting from a MADByTE analysis of a sample set, predictions of 

bioactivity of linked extract nodes could be made based on their shared spin system 

features and bioactivity profiles.  

3.2. Integration of Biological Profiling and MADByTE 

3.2.1. BioMAP  

Biological evaluation of extracts is an important step in the profiling of natural product 

libraries, allowing for the prioritization of extracts which display elevated activities against 

known pathogens. In most applications, a targeted organism is selected for evaluation and 

extracts are evaluated against a particular organism of interest, such as a drug resistant 

or hospital derived strain of a pathogenic bacteria. Typically, biological assays provide a 

metric of growth inhibition, phenotypic response, or cytotoxicity. While this strategy 

provides valuable information about the extract potential, it carries inherent limitations if 

only a single organism is profiled.  
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In recent years, new biological evaluation methodologies have allowed for wider screening 

panels to be tested with minimal sample requirements. The inherent advantages of these 

methods include a more comprehensive bioactivity profile and comparison of biological 

responses from the same extract across expanded panels. BioMAP, a platform developed 

to take advantage of an expanded panel of 15 bacterial strains, allows for comparisons of 

biological response to construct fingerprints which can be compared to known 

antimicrobial compounds. These comparisons of complex extracts were shown to be 

sufficient to predict the identity of known antibiotics contained within them, and even 

provide predictions of bioactive compound class. Importantly, the screening strategy 

developed for BioMAP provides access to high content data in a high throughput format, 

allowing for the rapid evaluation of large natural product libraries.  

The 15 bacterial strains used in the development of BioMAP (Table 3.1) represent an 

important cross section of clinically relevant bacteria, known to have different responses 

to antibiotics from differing classes. The diversity of this panel is important, as it addresses 

the need for antibiotics capable of treating both Gram-positive and Gram-negative 

bacterial infections and provides datapoints for activity profiles against a wide variety of 

commonly targeted organisms.  In the BioMAP platform, the differential between these 

responses allows for the class level prediction of active components. Establishing a link 

between these biological data to spectroscopic information could potentially provide a 

mechanism for bioactive component prediction without the need for large reference 

datasets.  
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Table 3.1. Organisms Used In BioMAP Screening 

Strain Gram (+/-) Biosafety Level 

Bacillus subtilis 168 + 1 

Listeria ivanovii (BAA-139) + 1 

Enterococcus faecium (ATCC 6569) + 1 

Staphylococcus epidermis (ATCC 14990) + 1 

Staphylococcus aureus (ATCC 29213) + 2 

Methicillin-resistant S. aureus (MRSA) (BAA-44) + 2 

Escherichia coli K12 (BW 25113) - 1 

Providencia alcalifaciens (ATCC 9886) - 1 

Ochrobactrum anthropi (ATCC 49687) - 1 

Enterobacter aerogenes (ATCC 35029) - 1 

Acinetobacter baumanii (NCIMB 12457) - 1 

Vibrio cholerae O1 (biotype El Tor A1552) - 2 

Salmonella typhimurium LT2 - 2 

Pseudomonas aeruginosa (ATCC 27835) - 2 

Yersinia pseudotuberculosis (IP2666 pIBI) - 2 

 

3.2.2. MADByTE Comparison of BioMAP Evaluated Extract 
Prefractions 

The development of MADByTE (Chapter 2) involved the profiling of 85 extract prefractions 

from the Linington Lab actinobacteria extract library. HSQC and TOCSY experiments were 

used to generate features which allow for comparison of scaffold motifs present in complex 

mixtures, and provided a viable method for compound dereplication from a structure driven 

perspective. A subset of these data (34 samples) were previously screened in the BioMAP 

assay, providing the bioassay data necessary for the evaluation of this approach.  

The MADByTE bioactivity layering function was constructed to be a generalizable utility 

which would not require extended bioactivity panels and could easily be adapted. To this 

end, construction of categorical bins is performed, and extract nodes are re-colored to 

provide a topographical context of activity on top of existing MADByTE networks. The 

initial screening of these extracts provided three metrics as outputs; active, mildly active, 

and inactive; activities were summed across all 15 organisms. Three bins were 

established to highlight broad spectrum antimicrobial activity of the Linington Lab extracts 
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against the BioMAP panel (mildly active– 1-4 organisms, moderately active – 5-9 

organisms, and highly active 10+). Samples which hit at least one organism in BioMAP 

provided the MADByTE network shown in Figure 3.1 - panel A, and layering the broad-

spectrum activity profiles resulted in the network displayed in Figure 3.1- panel B.  

 

Figure 3.1. Layering of BioMAP Activity Onto a MADByTE Network. Activity 
profiles were established as mildly active(1-4 organisms hit), 
moderately active (5-9 organisms hit) and highly active (10+ 
organisms hit). Clusters of high bioactivity can serve as a method 
for prioritization and can provide structural relationships of 
potentially bioactive motifs present in the extract prefraction. 

 

3.3. Isolation of an Active Component from MADByTE 
Networking 

3.3.1. Determination of a Shared Feature for Isolation Prioritization 

The bioactivity layering function provides a contextual mapping of extract activities from 

spectral information. Regions of low or moderate activity may possess shared chemistry, 

but the bioactivity layering suggests that if isolation of a bioactive component is of high 

importance, these structural features can be deprioritized while areas of high activity which 

show similar SSFs can be prioritized. Investigation of common linkages between three 

prefractions displaying high biological activity displayed this favorable relationship. These 

prefractions belonged to the same isolate, RL12_176_HVF_A, originally isolated from 

marine sediment in Bell Point, WA in 2012. The overlap of the SSFs from these samples 
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provided a plausible hypothesis for a structural feature belonging to a potentially active 

shared component, and therefore represented a high priority target for isolation. 

Comparison of the spin system features is displayed in Table 3.2. Although there were 

differences in the assigned 13C resonances of 2108_C_8 compared to 2108_D_4 and 

2108_E_5, the 1H resonances are highly conserved and served as the principal feature 

for isolation.  

 

Figure 3.2. Overlap of Extract Prefractions 2108E and 2108D Provides a 
Plausible Target for Isolation of a Predicted Bioactive Component. 

 

Table 3.2. Spin System Features Derived from Three Highly Bioactive Extract 
Prefractions 

2108_E_5 2108_D_4 2108_C_8 

1H ppm 13C ppm 1H ppm 13C ppm 1H ppm 13C ppm 

7.50 124.5 6.92 117.1 7.50 124.7 

7.97 119.7 7.50 124.6 7.97 124.5 

8.34 120.7 7.96 119.4 8.39 137.1 

8.68 149.1 7.97 124.6 8.70 124.5 

8.71 149.1 8.39 120.7 8.70 149.2   
8.72 149.1 

  

3.3.2. Regrowth and Extraction of the Producing Organism 

To provide ample material for isolation of the pure component, a stock culture of 

RL12_176_HVF_A was streaked out on SYP media and allowed to grow until distinct 
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colonies formed. Four isolated colonies were each transferred into 7 mL of marine broth 

and allowed to grow for 5 days. From each culture, 3 mL was transferred into medium 

scale conditions (60 mL of media) and allowed to incubate for 7 days. Large scale growths 

were prepared by inoculation of 40 mL of the medium scale to 1L of SYP medium 

containing 20 g of washed XAD-16 resin and incubated for 7 days. All cultures were 

incubated at 27 °C and shaken at 200 rpm.  

Each large-scale culture was vacuum filtered to remove the supernatant from the cellular 

material and resin. The resulting cell material, resin, and filter were then placed into a 1 L 

Erlenmeyer flask containing 250 mL of 50:50 CH2Cl2:CH3OH mixture, shaken for 1 hr, and 

filtered to remove the solid material from the extracted metabolites. Each extract was then 

evaporated under vacuum until minimal solvent remained and loaded onto celite loading 

material for Combiflash separation. Each 1 L large scale culture was kept separate, and 

no samples were pooled at this point.  

3.3.3. Flash Chromatography and Isolation of Collismycin A 

Flash chromatography was completed on each large-scale culture using a 4 minute 10% 

loading followed by a 10-100% (methanol: water) gradient over 34 minutes with a 3 minute 

100% methanol wash and 3 minute ethyl acetate wash at a flow rate of 20 mL/min. Aliquots 

of the higher methanol fractions (fractions 7-18) from cultures 1-3 were then analyzed via 

LCMS to assess complexity. One sample, fraction 10 from culture 3 seemingly contained 

only one metabolite when analyzed via LCMS (Figure 3.3) (m/z of 276.1) and yielded 5.83 

mg of material after drying. NMR analysis of fraction 2108_S3_F10 yielded confirmation 

that the product was pure (> 95%) and contained the proton resonances shared between 

the targeted spin system features. Comparison to literature values verified this component 

as collismycin A (18).82,83  
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Figure 3.3. PDA Response Profiles of Combiflash Fractions from 2108 Culture 3 
Analyzed Via LCMS for Complexity.  
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Figure 3.4. 1H NMR of 2108_S3_F10 in DMSO-d6, Determined to be Collismycin 
A. 

The MADByTE network of these extracts was reconstructed including the spin system 

information derived from the purified collismycin A and the resulting spin system feature 

was shown to be directly associated with the spin system features of interest.  

 

Figure 3.5. Collismycin A (18) Showed High Overlap in the 2D TOCSY When 
Compared to the Prioritized AExtracts (A) and Networking (B) 
Revealed Direct Connections to Prioritized Spin System Features.  
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3.3.4. Biological Evaluation of Collismycin A.  

Antimicrobial susceptibility tests for collismycin A were performed against a select panel 

of bacteria (Table 3.3) using a miniaturized high throughput assay adapted from the broth 

microdilution method outlined by the Clinical and Laboratory Standards Institute (CLSI).84 

Bacterial test strains were individually grown on fresh Nutrient Broth (NB, ATCC Medium 

3) agar, Tryptic Soy Broth (TSB, ATCC Medium 18) agar or Brain Heart Infusion (BHI, 

ATCC Medium 44) agar, as recommended by the American Type Culture Collection 

(ATCC) cultivation protocol (Table 3.3). Individual colonies were used to inoculate 3 mL 

of sterile NB, TSB or BHI media and grown overnight with shaking (200 rpm; 37 °C). 

Listeria ivanovii (ATCC BAA-139) and Streptococcus pneumoniae (ATCC 49619) were 

incubated overnight but not shaken (37 °C; 5% CO2). Saturated overnight cultures were 

diluted in their respective media according to turbidity to achieve approximately 5 x 105 

CFU of final inoculum density and dispensed into sterile clear polystyrene 384-well 

microplates (Thermo Scientific 265202) with a final screening volume of 30 µL. L. ivanovii 

was diluted with and grown in Haemophilus Test Medium (HTM; ATCC Medium 2167). 
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Table 3.3. Bacterial Strains and Growth Conditions for Biological Evaluation 

 

DMSO solutions of test collismycin A and antibiotic controls were prepared as a 1:1 dilution 

series and pinned into each assay plate (200 nL) using a high throughput pinning robot 

(Tecan Freedom EVO 100) to achieve final screening concentrations ranging from 128 

µM to 3.91 nM. In each 384-well plate; lane 1 was reserved for DMSO vehicle and culture 

medium; lane 2 reserved for DMSO vehicle, culture medium and target bacteria; lanes 23 

and 24 reserved for antibiotic controls, DMSO vehicle, culture medium and target bacteria. 

After compound pinning, assay plates were read as T0 at OD600 using an automated plate 

Strain Name Strain Number 
Biosafety 

Level 
Growth 
Medium 

Growth 
Condition 

Gram-Positive 

Bacillus subtilis ATCC 6051 1 NB 37°C 

Enterococcus faecalis ATCC 29212 2 BHI 37°C 

Enterococcus faecium ATCC 6569 2 BHI 37°C 

Listeria ivanovii BAA-139 1 BHI-A; HTM 37°C; 5% 
CO2 

Staphylococcus aureus 
(Methicillin-Resistant) 

BAA-44 2 TSB 37°C 

Staphylococcus aureus 
(Methicillin-Sensitive) 

ATCC 29213 2 TSB 37°C 

Staphylococcus epidermidis ATCC 14990 1 TSB 37°C 

Streptococcus pneumoniae ATCC 49619 2 BHI 37°C; 5% 
CO2 

Gram-Negative 

Acinetobacter baumanii ATCC 19606 2 TSB 37°C 

Escherichia coli K-12 MG1655 1 NB 37°C 

Klebsiella aerogenes ATCC 35029 1 NB 37°C 

Klebsiella pneumoniae ATCC 700603 2 NB 37°C 

Ochrobactrum anthropi ATCC 49687 1 TSB 37°C 

Providencia alcalifaciens ATCC 9886 1 TSB 37°C 

Pseudomonas aeruginosa ATCC 27853 2 TSB 37°C 

Salmonella enterica ATCC 13311 2 NB 37°C 

Shigella sonnei ATCC 25931 2 NB 37°C 

Vibrio cholerae A1552 El Tor 2 TSB 37°C 

Yersinia pseudotuberculosis ATCC 6904 2 BHI 37°C 
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reader (Molecular Devices SpectraMax i3x), sealed with a lid and placed in a humidity-

controlled incubator at 37 °C for 18-20 h. Final OD600 values were obtained on the same 

plate reader for T20 values. L. ivanovii and S. pneumoniae were incubated in a separate 

incubator (37 °C; 5% CO2). Resulting growth curves for each dilution series were used to 

determine the MIC50 values for all test compounds following standard procedures. 

Table 3.4. Biological Evaluation of Collismycin A 

Organism MIC50 (µM) 

Bacillus subtilis 32 

Enterococcus faecalis >128 

Enterococcus faecium >128 

Listeria ivanovii >128 

Staphylococcus aureus (Methicillin-Sensitive) >128 

Staphylococcus aureus (Methicillin-Resistant) >128 

Staphylococcus epidermis >128 

Streptococcus pneumoniae 64 

Ochrobactrum anthropi >128 

Escherichia coli 32 

Klebsiella aerogenes 64 

Klebsiella pneumoniae 16 

Providencia alcalifaciens 128 

Salmonella enterica 32 

Shigella sonnei 64 

Yersinia pseudotuberculosis >128 

Acinetobacter baumanii 128 

Pseudomonas aeruginosa 32 

Vibrio cholerae 128 

 

Encouragingly, the results from the antimicrobial susceptibility tests showed that 

collismycin A was active in 11 out of the 19 organisms tested, reflecting a hit rate 

comparable to the initial screening results and confirming that incorporation of bioactivity 

information into MADByTE networking allows for associations between structural motifs 

and bioassay activity to be made.  
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3.4. Variations of Bioactivity Prediction Using MADByTE  

The prioritization and isolation of collismycin A by using bioactivity layered networks 

reinforces that the layering of orthogonal data generates strong hypotheses for natural 

product isolation efforts. The amount of bioassay data available aided in generating a 

robust hypothesis and was strengthened through the wide panel of bacteria screened. The 

summation of these results allowed for the isolation of a compound displaying broad 

spectrum activity, which can be a favorable lead in drug discovery efforts. However, the 

ability to filter data such as the ability to prioritize activity against Gram positive or Gram 

negative in a selective fashion could be of great interest for finding selective agents over 

broad-spectrum activities. To demonstrate this approach, the MADByTE network from 

Figure 3.1 was further processed (Figure 3.6) to provide viewpoints offering summed 

response profiles (Figure 3.6-Panel B) Gram negative (Figure 3.6-Panel C), and Gram 

positive (Figure 3.6- Panel D) in direct comparison. This new viewpoint shows that 

although the nodes which led to the isolation of collismycin A were highly bioactive from a 

broad-spectrum point of view, other bioactive nodes were selectively active against one 

or another organism type.  
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Figure 3.6. Differential Layering of Bioactivity Information on a MADByTE 
Network. A) MADByTE base network with no bioactivity based color 
coding. B) Summation of all bioactivity profiles from BioMAP 
screening. C) Overlay of Gram positive activity profiles. D) Overlay 
of Gram negative activity profiles.  

 

High throughput applications can generate vast amounts of biological information 

simultaneously, but these applications are often out of reach for many smaller natural 

product laboratories or screening campaigns. To allow for generalizable use of the 

MADByTE bioactivity layering, the bioactivity module performs no processing on provided 

biological data and instead implements color coding based on user provided bins. As 
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users establish the bins they wish to use, responses can be generalized to a wide variety 

of scalable metrics such as MIC values, live/dead binary responses, or inhibition of a target 

expression. By allowing users to determine what constitutes a hit in the bioactivity 

response, investigators can optimize the utility for their experimental design and 

constraints. Extensions of this principal could yield networks which display counter-

screening results which could further refine the bioactivity prediction and subsequent 

prioritization.  

3.5. Limitations and Future Directions 

The generation of a synthetic spin system feature through the combination of the shared 

resonances of 2108_C_8, 2108_D_4, and 2108_E_5 produced 1H resonances which 

could be used for isolation. However, as noted in section 3.3.1, the 13C resonances 

determined for 2108_C_8 were dissimilar to those compared between 2108_D_4 and 

2108_E_5. Investigation of these spectra showed that 2108_C_8 contained several 

resonances in this region belonging to a minor constituent which confounded the spin 

system assignment function. This suggests that this organism produces several 

compounds which may be structurally related but are different enough in their 13C shifts to 

cause complications when attempting to assign values between the HSQC and TOCSY. 

As noted in Chapter 2, further refinement, and adoption of pure shift HSQC and TOCSY 

experiments may be sufficient to mitigate this issue but must overcome sensitivity losses 

when working with complex extracts.  

3.6. Conclusions  

MADByTE networks have shown the ability to derive structural information from complex 

samples and apply new visualization techniques to generate context. As shown through 

the proportion of approved drugs in the last four decades, natural products represent 

important molecules for human health and many NP discovery pipelines remain focused 

on the rapid prioritization of bioactive molecules. As demonstrated through the 

prioritization and isolation of collismycin A, combining structural context from MADByTE 

with generalizable layering of bioactivity data, targeted isolation can greatly streamline the 

discovery pipeline. Importantly, as MADByTE utilizes structural features derived from 
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experimental spectra and is not contingent on existing databases for comparison, these 

untargeted pipelines hold great value in discovery.  
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Chapter 4.  
 
Substructure Hypothesis by Integration of SMART 
and MADByTE 

4.1. Introduction 

Characterization of natural products in extracts is a challenging task, even in cases where 

a molecular identity is known. A robust method of dereplication can inform investigators 

about the known chemistry within a given sample and provide a hypothesis of novelty if 

no matches are found. However, as most dereplication libraries are lab specific, there 

currently are limited options for thorough dereplication from an NMR perspective. 

Centralized databases of pure compound spectra would greatly aid future targeted 

metabolomics efforts by enabling direct comparison to reference data, but few have been 

constructed which are specific to natural product investigations and house the types of 

molecular entities often encountered.51 The databases of spectra from each laboratory 

can contain massive gaps in coverage, which can limit the databases utility when applied 

to new projects or organisms, and are rarely shared between groups. In cases where 

databases containing chemical shift information exist, reports are often provided in a 

single-solvent – resulting in less overall coverage and limiting widespread adoption of 

these procedures.  In primary metabolomics databases, for which there are a number of 

targeted molecules submitted and referenced, most are provided for molecules in buffered 

aqueous solutions, which is not optimal for NP investigations.  

Specialized databases with a natural products focus have been constructed, such as the 

MetIDB,85 or the JEOL NP NMR database which allow for specialized applications. 

However, MetIDB is no longer available to the public, and the JEOL NP database was 

constructed from a 13C perspective and lacks total 1H coverage for all molecules, 

representing a challenge for comprehensive representation. Currently, amalgamation of 

these databases is slow moving, and solutions beyond standard databasing are needed 

to allow for more rapid discovery and annotation of natural products in mixtures.   

Since the early 2000s, calculation of predicted NMR shifts for organic molecules has been 

an area of rapid development and expansion, with DFT methods revolutionizing the 
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accuracy of predicted spectra but at the cost of computational power and time.86 Many 

applications of these calculation methods have focused on structure verification and 

resonance assignments and have been applied extensively to complex natural product 

molecules.87 More recently, hybrid methods which use availability of reference compound 

information to inform calculation efforts have also shown great promise, a high degree of 

accuracy, and have cut down drastically on the computational time costs associated with 

generating high accuracy predictions on large numbers of molecules.42,88  

Mixture analysis pipelines have increasingly embraced calculation methods to access 

chemical shift information from proposed structures. If analysts have knowledge of 

candidate structure or metabolites which are plausible, modelling and prediction allows 

complex NMR data to be readily queried allowing highly targeted analysis without the need 

of a bespoke database.89 However, application of these calculation based approaches 

requires prior knowledge of the molecules that may be in the mixture which is not a feasible 

requirement when applied to discovery pipelines where the target objective is the 

discovery of new molecules.  

Inspired by the improvement of metabolomics pipelines for comparison of sample 

constitution, natural product investigations have increasingly relied on the comparison of 

features across samples rather than direct verification of an analyte. Increasingly, these 

workflows have been paired with machine learning algorithms and platforms which 

leverage a considerable throughput advantage afforded by automated processing. These 

methods, although powerful, carry significant limitations when addressing mixtures. Most 

ML platforms are trained on model data, which originate from single molecule samples in 

optimal conditions, whereas more complex samples may confound the analysis pipeline 

when more signals are present to consider. 

4.1.1. Challenges with MADByTE Analysis 

At its core, MADByTE is a sample comparison utility aimed at deriving features for 

comparison. As described in Chapter 2, it utilizes an orthogonal data comparison strategy 

to generate spin system features from complex samples. The strength of using MADByTE 

is that it directly compares sample to sample without requiring an external database and 

spin system features can be mapped across a sample subset to determine spin systems 

shared by molecules in extracts. From a discovery point of view, this information can be 



82 

leveraged as a metric of novelty in cases where few or no similar spin systems are found, 

but these associations are sample and experiment dependent. As a metric of similarity, 

associated features across samples can suggest shared chemical motifs, but it is a 

significantly more difficult task to assign motif elements to the SSFs directly without a 

database of reference compounds to provide context.   

4.1.2. Small Molecule Accurate Recognition Technology (SMART) 

Recently, a new machine learning platform, SMART (Small Molecule Accurate 

Recognition Technology) has been proposed as a new structural dereplication utility for 

pure compounds.40 SMART uses a comparison strategy similar to image recognition 

technologies by comparing HSQC spectra to user supplied peak lists, attempting to 

recognize molecules that may exist in the spectra, analogous to an image recognition 

algorithm identifying an object in a picture. At its core, SMART is constructed with over 

50,000 natural products HSQC spectra as its training set, providing an unmatched scale 

of dereplication data to users through this molecular recognition method.  

Comparison by SMART is an all-on-all query against the points in the database, 

attempting to fit as much of the provided data as possible. The practical restriction on this 

strategy is that the algorithm is attempting to map all provided HSQC datapoints to a single 

entity. Comparing this problem to the image recognition analogy, the system may be able 

to identify an image of a lamp against a blank background but identifying the object in a 

natural setting of a living room may fail. Due to the all-on-all comparison strategy, complex 

mixtures where several compounds contribute to data complexity remain a challenge.  

4.1.3. Combinations of Context 

MADByTE spin system features, although small with respect to the entire molecule, 

represent resonances from HSQC spectra which have been associated as originating from 

the same molecule. If SMART analysis can find molecules which contain the MADByTE 

SSFs, it should be possible to use the context of SMART results to provide structural 

information. Importantly, SMART is a dereplication utility at its core, but uses a method of 

comparison which does not make a definitive claim of identity. Rather, it suggests the 

types of molecules a match may fit the available data. The classes of molecules returned 

can be of substantial use to inform structure elucidation, even if the verification of a single 



83 

molecule cannot be made.  A new MADByTE module, SHIMS (Substructure Hypothesis 

by Integration of MADByTE and SMART) was designed to provide plausible substructures 

for MADByTE features by providing a frame of context as to what kind of molecules and 

chemical environments the chemical shift patterns in SSFs may be describing. 

4.2. SMART Usage and Data Structure 

4.2.1. SMART Training Dataset 

As with all machine learning algorithms, the strength of the platform is proportional to the 

size and quality of the data training set used for its creation. SMART originally was trained 

with 2,054 HSQC datasets, including a sizable portion of natural products classes. The 

variety of information was important to the performance, as many natural product classes 

have less than 50 described members.40 Unlike conventional ML approaches which 

require active selection of features for comparison, SMART utilizes a process called deep 

learning, which derives features without interaction with an investigator. As HSQC spectra 

form patterns which can be displayed as images, a convolutional neural network was 

chosen as the inputs of choice, as they have greatly increased the effectiveness of image 

recognition ML approaches. With the release of SMART 2.0, the number of HSQC spectra 

used for the training set was increased to 53,076 created from primary data sources 

(25,454 HSQC spectra from the JEOL NP database) and simulated compounds (27,642 

HSQC spectra generated from ACD Labs predictor).54 Training on these new data 

provided SMART 2.0 with a considerable boost in coverage.  

4.2.2. SMART Searching 

SMART, as a utility, is a web-based application hosted by the University of California San 

Diego with an intuitive graphic user interface. Users can submit peak picked lists directly 

for query as flat files, or by providing tabulated HSQC resonances. The algorithm is 

relatively quick, with most queries taking less than 30 seconds to complete. The top 100 

matches made by the algorithm are then displayed in a results table which contains the 

structure of the compound, the compound name, a SMILES string representing the 

chemical structure, and a cosine score describing the accuracy of the prediction (Figure 

4.1). Results can be downloaded as a csv flat file containing all information except the 

rendered structure.  
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Figure 4.1. Example of SMART Results Returned for an HSQC Spectra. Results 
are provided for the top 100 compounds which are plausible 
scaffold matches to the provided HSQC peak lists and contain the 
molecule name, structure, cosine score, and molecular weight.  

Submission of peak lists to SMART 2.0 was a manual process, accepting csv files with 

certain format requirements which were not directly compatible with vendor peak list 

output files. As MADByTE was constructed to extract the resonance information from 

these vendor output files already, simple adjustments to the output formatting allowed for 

SMART to use these scripts to parse output lists from Topspin and MNova, removing the 

transcription requirement from the workflow with the release of SMART 2.1. To expand 

the dereplication capabilities of MADByTE, this new formatting script was added into the 

dereplication module, allowing users to directly format their MADByTE ready data for 

SMART searching. As SMART is a web-based application, interaction through an API is 

possible and was configured to allow for automatic submission of queries, facilitating high-

throughput operation.  

4.3. Design of SHIMS Processing 

SHIMS processing attempts to describe the origin of SSFs contained in samples through 

comparison of the common elements of their HSQC spectra enabling prediction of 

molecular class and providing context as to where SSFs may arise from. This is 

accomplished through the integration of several open platforms and providing an overview 

of likely candidates. An overview of the process involved can be seen in Figure 4.2.  
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Figure 4.2. Overview of SHIMS Processes, Filtration Steps, and Data Handling.  
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4.3.1. Obtaining SMART Results 

The initial strategy of comparison of MADByTE features using SMART aimed to find all 

molecules where the resonances from a SSF are found, and then to compare their 

structures to find common elements. It was proposed that the spin systems derived from 

MADByTE would be sufficient to return results from SMART, as the peak lists could be 

treated as truncated HSQC datasets. Unfortunately, this proved to be impractical, as the 

comparison strategy in SMART returned limited results with small datasets, as the model 

was not designed for fragment-based searches. Using the spin system erythromycin_0 

from the standard compound experiment in Chapter 2, over 100 results were returned as 

plausible matches with cosine similarity scores above 0.5. This demonstrated that the 

algorithm was finding many compounds whose spectra were predicted to be closely 

related to the spin system. Notably, however, none of the returned structures were 

macrocyclic compounds, showing a failure to identify the class of compound from which 

this spin system was derived.  

Spin systems are representative of small portions of these secondary metabolites they are 

derived from, and shared spin system features between samples highlights the overlap 

between the spectra. Using a single SSF for comparison showed the platform’s limitations 

when searching directly in SMART, as the data contained in a SSF are too sparse for 

robust comparison using this platform.  

4.3.2. Filtration of SMART Results 

Occasionally, several instances of compound recognition returned from SMART show 

duplicate scaffolds or names, despite having different cosine scores associated with the 

match. This is due to the way in which the HSQC spectra were originally obtained for the 

training data set, and the metadata associated with each. In some cases, stereochemistry 

was neglected when the simulated HSQC were created, leading to some minor 

discrepancies when the same compound was simulated more than once. In others, the 

solvent used for simulation was different than that of the experimentally acquired spectra.  

Filtering of these data to remove duplicates was done through comparison of the supplied 

SMILES strings from the results file. SMILES strings are a representation of the molecule 

noting positions of substitution and stereochemistry. Although stereochemistry can affect 
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chemical shift, it was determined that some compounds provided in the SMART database 

do not attempt to represent stereochemistry, instead predicting their NMR shifts from flat 

structures. To standardize the SMART results, it was determined to not factor in 

stereochemistry when removing duplicates.   

To compare these molecules without stereochemistry, SMILES strings provided in the 

results are converted to an InChi-Key, a truncated version of the InChi which describes 

the flat structure of the compound. This method allowed for considerably different SMILES 

strings to be converted and compared, revealing that the underlying flat structures were 

the same. As duplicates are found, the result with the highest cosine score is kept and all 

others are dropped. In the case of erythromycin, filtration of the query reduced the top 20 

results to 10 to consider (Table 4.1 and Table 4.2).  

Table 4.1. Top 20 SMART Results from Erythromycin HSQC Data 

Cosine 
Score 

DBID From MW Name From SMART 

0.972 v2.1_92052 ACD_Labs 747.5 CLARITHROMYCIN 

0.970 v2.1_86233 ACD_Labs 717.5 Erythromycin B 

0.962 v2.1_91700 ACD_Labs 747.5 "Clarithromycin (Biaxin, Klacid)" 

0.957 v2.1_91474 ACD_Labs 733.5 Erythromycin (E-Mycin) 

0.953 v2.1_95226 ACD_Labs 748.5 Massbank:EA019001 Azithromycin 

0.953 v2.1_71379 ACD_Labs 733.5 Erythromycin 

0.953 v2.1_91247 ACD_Labs 733.5 Erythromycin A 

0.953 v2.1_96810 ACD_Labs 733.5 Massbank:UF407401 Erythromycin 

0.950 v2.1_5797 Jeol 748.5 erythromycin A oxime 

0.950 v2.1_96020 ACD_Labs 687.4 Massbank:KO003661 Oleandomycin 

0.949 v2.1_97044 ACD_Labs 748.5 HMDB:HMDB01916-1833 Azythromycin 

0.947 v2.1_21508 Jeol 832.5 lankamycin 

0.947 v2.1_91544 ACD_Labs 748.5 Azithromycin (Zithromax) 

0.943 v2.1_96812 ACD_Labs 747.5 Massbank:UF408501 Clarithromycin 

0.942 v2.1_94284 ACD_Labs 834.5 MLS001074061-01!DIRITHROMYCIN 

0.942 v2.1_86234 ACD_Labs 719.4 Erythromycin C 

0.941 v2.1_94617 ACD_Labs 861.5 MLS001074901-01!erythromycin ethylsuccinate 

0.939 v2.1_95227 ACD_Labs 747.5 Massbank:EA019101 Clarithromycin 

0.938 v2.1_87632 ACD_Labs 876.6 Megalomicin A 

 

 

 



88 

 

Table 4.2. Top Results from SMART After Duplicate Filtration 

Cosine 
Score 

DBID From MW Name From SMART Inchi_Key 

0.972 v2.1_92052 ACD_Labs 747.5 CLARITHROMYCIN AGOYDEPGAOXOCK 

0.970 v2.1_86233 ACD_Labs 717.5 Erythromycin B IDRYSCOQVVUBIJ 

0.957 v2.1_91474 ACD_Labs 733.5 Erythromycin (E-Mycin) ULGZDMOVFRHVEP 

0.953 v2.1_95226 ACD_Labs 748.5 
Massbank:EA019001 

Azithromycin MQTOSJVFKKJCRP 

0.950 v2.1_5797 Jeol 748.5 erythromycin A oxime KYTWXIARANQMCA 

0.950 v2.1_96020 ACD_Labs 687.4 
Massbank:KO003661 

Oleandomycin RZPAKFUAFGMUPI 

0.947 v2.1_21508 Jeol 832.5 lankamycin JQMACDQCTNFQMM 

0.942 v2.1_94284 ACD_Labs 834.5 
MLS001074061-

01!DIRITHROMYCIN WLOHNSSYAXHWNR 

0.942 v2.1_86234 ACD_Labs 719.4 Erythromycin C MWFRKHPRXPSWNT 

0.941 v2.1_94617 ACD_Labs 861.5 

MLS001074901-
01!erythromycin 
ethylsuccinate NSYZCCDSJNWWJL 

0.938 v2.1_87632 ACD_Labs 876.6 Megalomicin A LRWRQTMTYVZKQW 

 

4.3.3. Resonance Prediction and Assignment from SMART Results 

Although the SMART platform can attempt to assign structures to their HSQC profiles, it 

does not perform assignments of the data to the suggested scaffolds. Without access to 

the training data and molecular assignments for each molecule, this data must be 

generated for comparison to assign a positional identity to the SSFs derived from 

MADByTE. NMR shift prediction from the proposed compounds was seen as a viable 

method to access these assignment data.  

Despite the availability of NMR simulation software, few utilities which can generate high 

quality prediction data are amenable to high throughput automation. ACD Labs Predictor, 

which was used to generate the simulated data used for SMART training, is a manual use 

tool requiring several steps and does not provide any utilities for automated processing. 

Other prediction utilities provide extremely accurate values through molecular modeling 

but come at the cost of computational power and time which cannot be afforded for high 
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throughput automated analyses and are more suited to the generation of chemical shift 

libraries for reference.90  

NMRshiftDB2, a database containing depositions of NMR data freely available to the 

community, also hosts several simulation utilities which offer a variety of methods for NMR 

prediction such as HOSE code and neural network based predictions for 1H and 13C shift 

prediction.41,42,91 These utilities are open to public use and are provided independently of 

the database through self contained Java archives, allowing for use on a local machine. 

HOSE code prediction methods predict chemical shift values based on surrounding 

chemical environments, and work by relating similar chemical environments across many 

molecules. Predictions are generated rapidly compared to molecular modeling 

approaches and are generated by supplying a SMILES string as structural input, which is 

provided within the SMART results.  

Because the HOSE code prediction utility relies on user submitted assignment data as a 

basis for shift prediction, the prediction quality is dependent on the number of times a 

particular chemical environment has been previously assigned. In some cases, only a few 

reference points can be collected which have considerably different shift values, causing 

the difference between the minimum and maximum values to be substantial (Table 4.3). 

Predictions were scored as good( 0-5 ppm), fair (5-8 ppm), poor (8-15 ppm), and bad (15+ 

ppm) depending on the minimum and maximum values obtained through HOSE code 

predictions. Often, the mean values provided by the prediction are of sufficient quality for 

comparison, however, there remain cases where these shifts differ from published 

assignment data.   
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Table 4.3. 13C Predictions for Erythromycin Via HOSE Code Shift Prediction 

Atom ID Min Mean Max Prediction Range Prediction Range Quality 

0 9.8 9.8 9.8 0.0 ND 

1 27.7 27.7 27.7 0.0 ND 

2 62.0 83.8 94.1 32.1 Bad 

4 172.4 172.9 173.5 1.1 Good 

6 37.2 43.1 45.9 8.7 Poor 

7 11.1 12.6 15.8 4.7 Good 

8 69.5 79.5 92.7 23.2 Bad 

10 95.7 98.5 101.8 6.1 Fair 

11 43.3 45.2 47.1 3.8 Good 

12 74.0 80.5 89.7 15.7 Bad 

13 19.1 21.8 24.4 5.3 Fair 

15 48.6 51.9 57.2 8.6 Poor 

16 63.8 74.3 84.9 21.1 Bad 

18 70.6 73.4 76.0 5.4 Fair 

19 13.3 17.7 19.0 5.7 Fair 

21 33.0 37.7 44.2 11.2 Poor 

22 13.0 13.7 14.2 1.2 Good 

23 53.4 77.8 92.7 39.3 Bad 

25 88.9 101.5 107.8 18.9 Bad 

27 62.9 73.1 77.1 14.2 Poor 

28 9.8 20.8 24.9 15.1 Bad 

29 26.3 36.1 44.6 18.3 Bad 

30 67.6 67.6 67.6 0.0 ND 

32 38.0 42.4 45.3 7.3 Fair 

33 38.0 42.4 45.3 7.3 Fair 

34 48.6 73.1 92.8 44.2 Bad 

36 73.7 73.9 74.2 0.5 Good 

37 20.4 23.8 24.1 3.7 Good 

39 24.7 37.7 53.3 28.6 Bad 

40 39.1 13.6 47.6 8.5 Poor 

41 14.0 15.6 18.9 4.9 Good 

42 214.3 214.3 214.3 0.0 ND 

44 42.2 48.3 54.4 12.2 Poor 

45 9.6 10.7 11.5 1.9 Good 

46 70.3 74.9 81.2 10.9 Poor 

48 73.7 74.3 75.4 1.7 Good 

49 11.4 23.8 33.8 22.4 Bad 
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For every molecule with predicted shifts, a key is constructed which outlines the 

connectivity information for all 13C atoms. These positions are then assigned the predicted 

shift information, yielding an atom connectivity map and their associated resonance IDs. 

This molecular map allows for molecular characteristics to be queried per carbon such as 

the expected number of connected 1Hs (providing multiplicity), and the identities of 

adjacent carbons.  

 

Figure 4.3. Erythromycin (A) and the Resulting Carbon Connectivity Map (B). 
The molecular map allows for visual reference for predicted 
chemical shifts provided in SHIMS, access to expected multiplicity 
for each carbon position, and context for adjacent carbon positions. 

4.3.4. Assignment of MADByTE Spin System Features  

Assignment of SSFs from MADByTE is done from a “feature first” perspective, attempting 

to map a given spin system feature to tentative molecules returned from SMART. 

Following the construction of the reference map of the tentative molecule, resonances are 

retrieved for every position in the SSF. The tentative molecule is then searched for 13C 

resonances which have predicted mean shifts close to a 13C resonance in the SSF. If a 

match is made, the adjacent carbon is compared to other 13C resonances in the SSF; this 

is repeated until there are no more 13C positions remaining in the SSF, and the plausible 

SSF is returned.  
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As many portions of a scaffold may contain areas where 13C shifts are similar, the returned 

results are further analyzed utilizing multiplicity information. As MADByTE retains the 

phase information provided by the HSQC, each position which matches 13C shift 

information is compared to the expected multiplicity. For example, a spin system whose 

phase is entirely positive could contain no CH2 moieties, therefore any plausible 

assignments which rely on CH2 positions in the tentative molecule are dropped from 

consideration.  

Even with these filtration steps, it is plausible that several portions of a molecule are 

returned as valid if they have similar 13C resonances and phase patterns. To provide the 

best prediction of identity, the remaining plausible spin systems are compared to the SSF 

shift values directly, and the assignment in best overall agreement is returned as the best 

match for a given spin system in each molecule. An overview of the assignment process 

can be seen in Figure 4.4, detailing filtration requirements.  
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Figure 4.4. Overview of Spin System Feature Assignment. Spin system features 
(SSFs) are compared to tentative matches from each scaffold 
through 13C resonance matching, phase agreement, and quality of 
shift agreement.  
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4.3.5. HSQC Scoring 

Although SMART compares experimental HSQC spectra (from user input) to reference 

HSQC data, the result returned does not contain information on what resonances are 

present and which are missing. To provide users with context as to which HSQC 

resonances are present, the synthetic HSQC constructed for each molecule is compared 

against the sample HSQC data and visualized on the molecule structure in the SHIMS 

results.  

As noted in Section 4.3.3, there are often cases where the prediction quality can vary 

greatly within a molecule and comparison of the full synthetic HSQC spectrum would yield 

many false positive associations. To ensure only predictions which are the most robust 

are compared against the experimental data, resonances which have predicted 13C value 

ranges greater than 8 ppm, or 1H predictions with prediction ranges greater than 1.0 ppm 

are removed prior to HSQC mapping and scoring.  

4.3.6. Molecular Class Prediction  

SMART prediction of compounds based on HSQC pattern matching provides a method 

for prediction of molecular class from these data, as the results returned from SMART 

often contain repeated classes. Although SMART does not provide a breakdown of the 

represented molecular classes, a neural network tool called NPClassifier is able to predict 

molecular superclass from SMILES representations.92 By categorizing the top 100 results 

from SMART into their molecular superclass, it is possible to gauge which molecular 

families are heavily represented and therefore are plausible descriptors.  

The prediction of molecular class by this method may provide important information in the 

investigation of unknown compounds. Although a definitive identity may be beyond the 

scope of SMART, prediction of probable molecular class can enable access to expected 

UV-Vis spectroscopy profiles and a plausible starting point for structure elucidation efforts. 

Molecular class predictions and their representation in SMART results may be useful but 

should also be used with caution as overrepresentation in SMART by a molecular 

superclass may bias results.  
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4.4.  Proof of Principal: Pure Compounds  

The MADByTE data from the pure compound network leveraged for MADByTE 

development in Chapter 2 was used for the development and evaluation of the SHIMS 

module. To evaluate the performance of SHIMS on pure compound assignments, spin 

system assignments made by comparison to reference data were evaluated 

independently by the SHIMS platform.  

4.4.1. Erythromycin, Roxithromycin, and Azithromycin 

SMART results from the erythromycin data returned the top 100 candidates that the 

system gauged as possible identifications. The top 10 results from SMART all possessed 

cosine scores of >0.95 (excellent agreement), but the top result was clarithromycin – not 

the expected erythromycin A. As all results in the top 10 were matches to predicted HSQC 

spectra, it is reasonable to conclude that the top candidates proposed by SMART still 

require a reasonable level of scrutiny and that accuracy will improve as more experimental 

data is provided. Of the top 100 compounds, 89 were viable candidates for categorization 

by NPClassifier, allowing for prediction of the molecular class of the compound (Table 

4.4). Overwhelmingly, SMART recognizes the data as originating from a macrolide 

superclass, which is the correct designation for erythromycin A.  

Table 4.4. NPClassifier Classifications of SMART Candidate Molecules from 
Erythromycin A HSQC Data 

Molecular Superclass Number of Candidates in SMART Results 

Macrolide 63 

Polyether 7 

Linear polyketide 5 

Steroid 7 

Cyclic polyketide 4 

Oligopeptide 1 

Fatty acyl 1 

Diterpenoid 1 

 

Manual investigation of the spin system features from erythromycin attributed 

Erythromycin_0 to the ethyl appendage at the lactone junction through comparison to 

reference data. SHIMS processing conducted on this sample found 6 compounds with 
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cosine similarity scores above 0.95 that contained at least one substructure hypothesis 

for this spin system (Table 4.5), and all but one were ethyl appendages at the lactone 

linkages in macrocyclic compounds. SHIMS was unable to correctly find assignments for 

Erythromycin_6, the cladinose substructure. Review of these data showed that the 

predictions for 13C for this molecule were further from the real values than allowed by the 

comparison in positions 10 and 11 (Figure 4.3, panel B). Position 10 had a reasonably 

close chemical shift prediction (Min: 95.7 ppm, Mean: 98.5 ppm, Max: 101.8 ppm) to the 

reported value of 95.8 ppm while position 11 was predicted as having a 13C shift of (Min: 

43.3 ppm, Mean: 45.2 ppm, Max: 47.1 ppm), but reference data places this 13C shift as 

34.8 ppm in DMSO-d6.93  
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Table 4.5. Proposed Substructures from SHIMS for the Spin System 
Erythromycin_0 

Compound Cosine Score HSQC Match Score Proposed Substructure 

Clarithromycin 0.972 0.47 

 

Erythromycin B 0.970 0.55 

 

Erythromycin A 0.957 0.5 

 

Azithromycin 0.953 0.40 

 

Erythromycin A oxime 0.950 0.44 

 

Oleandomycin 0.950 0.63 
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4.4.2. Obtaining SMART Results from Complex Samples 

If samples processed by MADByTE share spin system features, then there are verified 

HSQC and TOCSY features that are common between them that may extend beyond the 

SSF. Therefore, comparison of common points in the complex HSQC profiles of these 

samples may be sufficient to achieve enough scaffold coverage to highlight potential 

structures in SMART.  

Comparison of the full HSQC spectra of the three macrocyclic compounds from chapter 

2, azithromycin, erythromycin, and roxithromycin was done to evaluate this strategy. 

These compounds were chosen as some resonances associated with the core scaffold 

are shared between spectra and others differ by considerable amounts (Figure 4.5). 

 

Figure 4.5. HSQC Stack Plot of 3 Macrocyclic Antibiotics, Erythromycin (Red), 
Azithromycin (Blue), and Roxithromycin (Green). 

 To generate the profile of common points between them, unique points in each spectrum 

are subtracted, thereby creating a new consensus HSQC displaying the homology (Figure 

4.6). As with MADByTE comparison, the similarity requirements between any two points 

are adjustable with 1H and 13C ppm values. To maximize the amount of plausible overlap 
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due to signal shifts, these error values are wider than the suggested cut-off values for 

MADByTE analysis (H_ppm: 0.05, C_ppm: 3.0 ppm).  

Using the resultant consensus HSQC (Figure 4.6 – Panel D) as the input for SMART 

provided results which were considerably more informative. The homology of points 

between the three different macrocycles provided enough datapoints for SMART results 

with high cosine scores. Encouragingly, 17 out of the top twenty results were macrocyclic 

compounds (Table 4.6), demonstrating that the shared features between these 

compounds were enough to correctly predict the compound class they represent.  

 

Figure 4.6. Comparison of 3 Macrocyclic Compounds (A: Erythromycin,B: 
Azithromycin,C: Roxithromycin) HSQC Spectra Yield a Consensus 
HSQC Representing Common Elements (D) 
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Table 4.6. Top 20 Results from SMART Obtained by Querey of the Synthetic 
HSQC Generated from Macrocyclic Compounds After Duplicate 
Filtration 

Cosine 
Score 

DBID MW Compound Name Molecular 
Superclass 

0.950 v2.1_92052 747.5 Clarithromycin Macrolides 

0.947 v2.1_91474 733.5 Erythromycin Macrolides 

0.938 v2.1_94617 861.5 Erythromycin ethylsuccinate Macrolides 

0.923 v2.1_86233 717.5 Erythromycin B Macrolides 

0.920 v2.1_5797 748.5 Erythromycin A oxime Macrolides 

0.913 v2.1_21508 832.5 lankamycin Macrolides 

0.913 v2.1_95226 748.5 Azithromycin Macrolides 

0.899 v2.1_87634 960.6 Megalomicin C1 Macrolides 

0.896 v2.1_94287 836.5 Roxithromycin Macrolides 

0.894 v2.1_96020 687.4 Oleandomycin Macrolides 

0.894 v2.1_83505 546.3 Antibiotic A-31438 Macrolides 

0.893 v2.1_87632 876.6 Megalomicin A Macrolides 

0.892 v2.1_85972 527.3 Dihydropicromycin Macrolides 

0.886 v2.1_23179 500.3 Dolabriferol C 
Linear 

polyketides 

0.885 v2.1_9063 715.5 Anhydroerythromycin A Macrolides 

0.882 v2.1_87633 918.6 Megalomicin B Macrolides 

0.879 v2.1_94284 834.5 Dirithromycin Macrolides 

0.876 v2.1_86234 719.4 Erythromycin C Macrolides 

0.865 v2.1_102388 715.5 Erythromycin A enol ether Macrolides 

0.855 v2.1_9112 752.4 Marsdenoside D Steroids 

0.846 v2.1_3794 689.4 7-hydroxy-6-demethyl-6-deoxy-erythromycin D Diterpenoids 

 

All three of the compounds used for comparison were represented in Table 4.6, 

demonstrating the ability of spectra comparison to retrieve plausible results for compound 

overlap. Further, SHIMS processing of the these results was able to retrieve plausible 

substructures for a shared spin system by these molecules from MADByTE networking 

(Erythromcyin_0: Figure 4.7, Azithromycin_0: Supplemental Data:  Figure 4.11, 

Roxithromycin_0: Supplemental Data, Figure 4.12). Substructure prediction was limited to 

potential compounds with a SMART cosine score of greater than 0.85. Notably, all 

predicted substructure matches were to macrolide compounds.  
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Figure 4.7. Substructure Hypotheses for Spin System Feature Erythromcyin_0 
From Comparison of Three Macrocyclic Compounds. A) The correct 
substructure predicted on the correct molecule from which this SSF 
was derived. B) Correct substructure hypotheses on incorrect 
molecular entities. C) Incorrectly predicted substructures.  

The results of this comparison demonstrate the ability of the SHIMS processing to find 

plausible substructures for spin system features when comparing compounds from a pure 

compound perspective. The HSQC comparison approach was able to retrieve plausible 

compounds from the SMART platform, suggesting this approach may be applicable to 

more complex cases where SMART analysis between more complex samples may fail.  
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4.5. Application to Complex Mixtures 

To evaluate the ability of SHIMS to provide substructure hypotheses for spin system 

features derived from complex samples, the samples from Section 4.4.2 which were 

spiked with erythromycin were compared to gauge the ability of the platform to correctly 

identify erythromycin as a tentatively shared metabolite, as well as provide an accurate 

hypothesis for the spin system features from these complex samples. HSQC spectra from 

RLUS 1814E_SPK, 1526A_SPK, and 1726C_SPK were compared for common points 

(Figure 4.8). The SMART results from this consensus HSQC were promising, with 

erythromycin returned as the top result with a cosine score of 0.83.  

 

Figure 4.8. HSQC Peaks and Resulting Overlap of Extract Prefractions Spiked 
With Erythromycin. Peak lists from 1814E_SPK (A),1526A_SPK (B), 
and 1726C_SPK (C) were compared for common points (1H 
Tolerance: 0.05 ppm, 13C Tolerance: 1.0 ppm) yielding the consensus 
HSQC for SHIMS analysis (D).  
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From the spiked compounds MADByTE network, one node from these samples, 

1814_E_SPK_0, connected to the known spin system erythromycin_0, which had 

previously been correctly predicted by SHIMS. Substructure predictions were limited to 

the top 5 returned results from SMART, and only three of these contained substructures 

where the SHIMS system predicted could be plausible for assignment. All three 

predictions showed the correctly predicted motif as the ethyl appendage in a macrocyclic 

compound (Figure 4.9). Similar, but truncated substructure predictions were found for the 

spin system features 1526_A_SPK_0 and 1726_C_SPK_2 although these SSFs are not 

connected to the erythromycin_0 SSF in the MADByTE network. Manual investigations of 

the resonances in these SSFs indicated that the shifts attributed to this motif are present 

in these SSFs, but are combined with other resonances due to spectral overlap.  

 

Figure 4.9. SHIMS Predicted Substructures for SSF 1814_E_SPK_0. All three 
proposed substructures were predicted to be ethyl appendages at 
the lactone junction in macrolide compounds.  

 To test the effectiveness of SHIMS on prefractions that have not been spiked with 

known compounds, 1565C and 1565D were compared as they were previously shown to 

contain novobiocin by MADByTE networking. The results of SHIMS showed that although 

novobiocin itself was not in the SMART results from HSQC comparison, very similar 

compounds were returned which contained several major substructures also present in 

novobiocin. The MADByTE network (Figure 4.10) showed that novobiocin was linked to 

these prefractions through Novobiocin_0 linkages to the extract spin systems 1565_D_3 

and 1565_C_0. 
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Figure 4.10. Hybrid Node Network Linking Novobiocin to Prefractions RLUS 
1565C and RLUS 1565D. The spin system linked to both extract 
prefractions, Novobiocin_0 (A), pertains to the isoprene subunit of 
novobiocin (B).  

The spin system Novobiocin_0 pertains to an isoprene subunit on novobiocin, and this 

subunit was represented in many of the top SMART results. However, neither of the spin 

systems derived from these prefractions were able to be mapped onto this motif. This 

represents a challenging case, as the assembly of the spin system Novobiocin_0 was 

done based on the coupling seen in the TOCSY spectra. In this case, the allylic coupling 

across the isoprene unit was strong enough to generate valid TOCSY resonances, 

generating a spin system across a quaternary carbon position. This spin system therefore 

cannot be mapped accurately by SHIMS, as the substructure prediction does not make 

assumptions as to whether allylic coupling can be allowed.  

4.6. Limitations of SHIMS 

The SHIMS module presents a promising case for the description of individual metabolites 

in complex mixtures but carries significant limitations which must be overcome for future 

development and adoption to be practical. Perhaps the most notable limitation of SHIMS 

is in the prediction of NMR shifts from the provided SMART data. Although amenable to 

high throughput automation, the predictors used in the SHIMS pipeline do not provide high 

accuracy predictions for all chemical environments. This limitation is driven by the lack of 

deposited reference data into NMRShiftDB2, as the HOSE code based approach uses 

these references to derive plausible shift patterns for each derived HOSE environment. 

An additional complication to this problem is the limited availability of these data for any 
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molecule in several solvent conditions, which can have major consequences on the 

shielding or deshielding of certain nuclei.  

SHIMS relies directly on the results returned from SMART analysis, which can be 

restricting due to the availability of training data for the neural network. Much of the data 

used in the training of SMART 2.0 was generated using spectral simulation and chemical 

shift prediction which provides access to compounds for which there is no primary 

reference data. Although this contributes to the success of SMART for many cases, the 

simulated spectra are only made using two primary solvents, MeOD and CDCl3 which can 

affect the ability of the platform to return results for queries made from other solvents, such 

as our chosen DMSO-d6.  

These limitations, both in the simulation of chemical shifts and in the availability of training 

data for SMART will be overcome in the near future, as the NMR community makes a 

concerted push towards databasing reference data in centralized repositories. As these 

databases are constructed and curated, the availability of high-quality reference data for 

utilities such as these will contribute greatly towards the accuracy of these systems and 

allow for the future development of computational utilities for NMR mixture analysis.  

These limitations have a considerable effect on the ability of SHIMS to map MADByTE 

features into plausible structures, but an existing limitation is the ability of MADByTE to 

construct robust features in severely overlapped spectra. As demonstrated in Section 4.5, 

complex spectra have the potential to generate large spin system features which still allow 

useful networking but are not usable candidates for predictions of chemical motifs. New 

strategies in achieving higher resolution HSQC and TOCSY experiments, such as 

improved covariance processing and increased sensitivity of pure shift TOCSY 

experiments would bring about a considerable leap in the ability of MADByTE to construct 

these spin systems.  

4.7. Conclusions and Future Directions 

MADByTE in combination with SHIMS represents the first known strategy to derive 

plausible substructures from complex mixture data using 2D NMR experiments. The 

HSQC comparison strategy described allows for complex spectra to be consolidated into 

shared resonances, providing a mechanism for obtaining results from SMART through 
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comparison of similar spectra. The use of MADByTE networking to suggest samples to be 

compared allows for prioritization for this comparison strategy, removing the need to 

compare every sample. The integration with SMART allows for a predictive model to be 

generated and analysis by NPClassifier provides robust predictions of molecular class 

from complex sample data. Chemical shift prediction of SMART results through 

NMRshiftDB2 and the creation of the molecular map predicts plausible scaffold motifs 

which can describe the experimental shift data derived from samples through MADByTE.  

SHIMS was able to correctly predict substructures in a variety of cases involving pure 

compounds and in mixtures, showing a great deal of promise in targeted applications.  

However, the inability to match potential substructures that can arise due to complex 

coupling, highlighted by the failure to identify the shared motif between novobiocin and 

1565C and 1565D show that some limitations exist. Although SHIMS can provide these 

hypotheses, the number of plausible results returned by the module can be overwhelming 

and filtration in cases where the sample constitution is completely unknown remains a 

challenge. As this comparison approach provides candidates that may be shared between 

extracts linked through MADByTE analysis, SMART results could be filtered and 

compared to MS data which would drastically reduce the number of false positives. 

SHIMS represents the fusion of separate utilities developed for orthogonal purposes to 

achieve plausible prediction of molecular scaffolds present in mixtures. The integration of 

these utilities to describe sample constitution demonstrates the complexity of 

cheminformatics when applied to real world data and highlight their importance in the 

changing landscape of discovery-based metabolomics. These utilities provide an NMR 

focused approach towards the functional annotation of complex mixtures, and integration 

with additional data such as proposed substructures obtained via an MS based 

approach,94 could provide future opportunities for increased confidence in substructure 

prediction. As future utilities are developed and combined, the ability to provide more 

robust annotations through the combination of orthogonal data, machine learning, and 

molecular modeling will drastically increase the speed and ease of investigations of 

complex samples and their potentially important components.  
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4.8. Supplemental Data:  

 

Figure 4.11. Substructure Hypotheses for Spin System Feature Azithromycin_0 
From Comparison of Three Macrocyclic Compounds. A) The correct 
substructure predicted on the correct molecule from which this SSF 
was derived. B) Correct substructure hypotheses on incorrect 
molecular entities. C) Incorrectly predicted substructures.  
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Figure 4.12. Substructure Hypotheses for Spin System Feature Roxithromycin_0 
From Comparison of Three Macrocyclic Compounds. A) The correct 
substructure predicted on the correct molecule from which this SSF 
was derived. B) Correct substructure hypotheses on incorrect 
molecular entities. C) Incorrectly predicted substructures. 
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Chapter 5.  
 
MADByTE Feature Association by Diffusion 
Experiments 

5.1. Introduction 

5.1.1. Diffusion NMR in Mixture Analysis  

Natural products represent some of the most challenging cases of mixture analysis for 

annotation and characterization for most analytical platforms. As complex extracts, 

metabolites are present in variable amounts, often unknown, and represent difficult 

molecular scaffolds. NMR investigations into the constitution of mixtures are often aided 

by the addition of new methodologies such as orthogonal experiments which allow for new 

information to confirm or suggest the identity of molecules present in the mixture. One 

method of investigation which has been applied to simplified mixtures for decades is 

DOSY, or Diffusion Ordered SpectroscopY which utilizes the ability of molecules to diffuse 

through a liquid to derive new information about molecular structure.  

Diffusion Ordered Spectroscopy 

The basic DOSY method is a pseudo 2D NMR experiment which allows for the 

determination of physical characteristics of the molecules analyzed, rather than directly 

establishing connectivity through bonds.95 In solution NMR spectroscopy, molecules are 

suspended in a solvent and naturally diffuse within the solution during the timeframe of an 

NMR experiment. In most NMR experiments, this diffusion is of little consequence as the 

pulses are applied to provide consistent energy transfer along the z-axis and molecules 

experience the effect of pulses uniformly. This allows for the other variables, such as the 

T1 delay in the HSQC, to be the independent variable in the experiment. In DOSY, pulses 

are shaped by a gradient to purposely cause a differential effect along the z-axis of the 

NMR tube which affects the amount of focusing/refocusing energy transferred to a given 

nucleus.  

As molecules diffuse over the timeframe of the experiment, changes in the observed 

energy upon refocusing can be associated to the movement of the molecule. By altering 



110 

the power associated with this gradient pulse, nuclei which are in focus are attenuated 

differentially. This change in signal intensity can be compared as a function of the gradient 

strength, which allows for the derivation of a coefficient for a particular resonance that 

describes the rate of diffusion. In a single molecule, resonances would be affected 

uniformly by this gradient pulse, and therefore have the same diffusion coefficient. When 

represented as a 2D plot, the 1H resonances can be associated against their diffusion 

coefficients, allowing for resonances of the same molecule to be determined (Figure 5.1).  

 

Figure 5.1. DOSY Conceptual Plot. DOSY yields a pseudo 2D NMR spectrum by 
plotting resonances against their derived diffusion rates. 
Compounds with different diffusion rates (A vs B vs C) resolve along 
the Y-axis due to their physical characteristics.  

 

Several factors can determine the amount of diffusion a molecule undergoes during a 

DOSY experiment including the physical size of the molecule, the viscosity of the solvent, 

and changes in conformation. In general, larger molecules will diffuse slower due to their 

inability to move easily through solvent. This relationship is one of the primary uses of 

DOSY and is often used to estimate the size of large molecules, such as mixtures of 

polymers.96,97  

Advanced DOSY 

Although DOSY typically shows success in the analysis of simple mixtures, complexity of 

the sample is still a defining limitation. Baseline resolution of the signal is often required in 

order to pick and fit peaks in each 1D plane of the experiment and overlap in signals can 
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distort the calculations used to determine the diffusion rate of a signal.98 Because of this, 

multidimensional experiments which incorporate DOSY elements have been developed.99 

Conceptually, these experiments are like standard DOSY processing in that they calculate 

the changes in signal intensity for a given pulse gradient strength, which can then be used 

to calculate a diffusion rate for the signal. However, because each signal is now separated 

along a secondary axis, the degree of overlap for a resonance is reduced. The result is a 

pseudo 3D NMR spectrum in which standard 2D NMR spectra are displayed along a third 

axis of diffusion rates.  

This strategy of incorporating DOSY elements into standard 2D experiments is attractive 

for mixture analysis, but requires substantial increases in experiment collection time as 

each plane of the pseudo 3D spectrum contains the information from a conventionally 

sampled 2D dataset. As the accuracy of diffusion rate calculations depends greatly on the 

number of gradient pulses applied, the need for more planes can quickly outpace 

reasonable experimental timeframes and is still considered a major limitation to the 

application of DOSY for complex mixture analysis.  

To address this limitation, the development of the COSY-IDOSY experiment was 

undertaken by Nilsson et al. in which the underlying DOSY element (BPP-LED)100 was 

removed and replaced by a modified gradient enhanced COSY sequence, reducing the 

number of required transients by 32 fold.101 This drastically reduced the experimental time 

required for collection, allowing for more practical applications towards mixture analysis.  

5.1.2. Limitations of MADByTE Analysis 

MADByTE analysis derives spin system features from complex samples by associating 

HSQC resonances through TOCSY correlations. When considering a pure compound, 

these spin system features represent different scaffold motifs in a relatively straightforward 

manner – a molecule is broken up into its smaller spin systems and each spin system 

would be represented as a spin system feature node in the overall network. However, 

considering that multiple spin systems should be present for each detected molecule 

within a mixture, these small motifs may not be sufficient to describe the overall character 

of a component within a mixture. If multiple spin system features are derived for a given 

molecule in a mixture, then association of these spin system features together before 

comparison could allow for a more detailed comparison of conserved motifs. However, 
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neither TOCSY nor HSQC experiments allow for further connectivity or associations to be 

established and therefore other experimental information would need to be incorporated 

to provide a way to link two otherwise independent features.  

Another limitation of MADByTE processing is that 1H overlap can cause features to 

become fused through false connections brought on by resonances within the defined 1H 

ppm error. These spin systems are often considerably larger than would be practical and 

are falsely comprised of otherwise independent spin systems with a small number of 

resonances in common. If these resonances could be split and pooled when compared to 

the TOCSY spin systems, spin system features from complex samples would more 

accurately reflect the overall makeup of the sample by teasing out scaffold information 

from otherwise confounding features.  

5.1.3. Feature Association by Diffusion Experiments 

To address both limitations in the formation and association of spin system features from 

complex samples, it was proposed that combination of DOSY experiments to derive 

diffusion rates for signals in these data could be leveraged. With diffusion rates associated 

for each resonance, SSFs with the same diffusion rates can be merged (feature fusion) 

and confounded SSFs can be split into more refined features (feature fission). The 

combination of both feature fusion and feature fission forms the basis for the expansion of 

MADByTE known as FADES (Feature Association by Diffusion ExperimentS).  

Feature Fusion  

Spin systems that would otherwise be independent entities (Figure 5.2 - Panel A) would 

contain resonances which match diffusion rates in other spin systems, allowing for these 

features to be associated together (Figure 5.2 - Panel B). Taken as larger collections 

(Figure 5.2 - Panel C), associations of these spin systems could better describe the 

molecules within the mixture than any one spin system feature and may better differentiate 

shared compounds.   
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Figure 5.2. Feature Association by Diffusion Experiments. A) Independent spin 
systems from MADByTE analysis could originate from one or many 
compounds. B) By comparing the diffusion rates of resonances 
within the spin system features, those arising from the same 
molecule could be linked and C) fused into composite features. 

 

Feature Fission 

Feature fission would work in the opposite direction of feature fusion, by splitting complex 

spin systems based on diffusion rates prior to the spin system formation step (Figure 5.3). 

Peak lists from TOCSY would be first sorted by their corresponding 1H diffusion rates, and 

these sub-lists would then be subjected to standard MADByTE analysis. The reduced 

complexity of the TOCSY would allow for otherwise overlapping systems to be split into 

smaller and more robust SSFs.  

 

Figure 5.3. Feature Fission by Diffusion Experiments. A) Spin system features 
derived from overlapped resonances contain spin systems from 
several compounds fused together. B) By comparing the diffusion 
rates of 1H signals before feature creation, these complex SSFs can 
be split C) into smaller SSFs.  
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5.2. Experimental Considerations 

5.2.1. Important Parameters in DOSY Experiments 

The diffusion coefficient (D) for a given molecule can be determined through the 

relationship of change in signal intensity as a function of the applied gradient strength (g) 

and length of the gradient pulse (δ), as shown in Equation 5.1 where I0 is the initial intensity 

with no gradient applied, I is the observed intensity, Δ is the diffusion time allowed, and γ 

is the gyromagnetic ratio of the observed nuclei.102  

𝐼 = 𝐼0𝑒−𝐷𝛾2𝑔2𝛿2(∆−
𝛿

3
)
  (5.1) 

From these relationships, molecule specific factors (D and γ) determine signal attenuation 

but cannot be changed experimentally. As long as the remainder of the NMR experiment 

remains the same, the factors affecting signal intensity that can be manipulated on a per 

transient basis include g, δ, and Δ. The values of Δ and δ are set for all transients but must 

be determined experimentally to ensure proper signal attenuation. The gradient strength 

(g) is calculated depending on the number of planes in the overall experiment.  

5.2.2. Creation of a Model System  

To evaluate the DOSY experiments, a 1:1:2 mixture of erythromycin (4), cycloheximide 

(12), and nystatin (19) was suspended in DMSO-d6 and HSQC and TOCSY spectra were 

obtained. These molecules were selected to ensure the components in the system were 

representative of natural product scaffolds, were different in molecular size and mass, and 

contained multiple spin systems expected from the MADByTE processing.  
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Figure 5.4. MADByTE Network of DOSY Sample. A) The mixture of three 
components yielded five SSFs, including one (node b) that represents 
extensive overlap which may be refined through feature fission. B) 
MADByTE networking with standards showed five nodes originating 
from node Z, where nodes a,c, and d belong to nystatin (19), and 
should group together through feature fusion. 

 

Processing the model mixture in MADByTE led to the generation of five SSFs of varying 

confidence (Figure 5.4 – Panel A). Three spin systems were of reasonable length, nodes 

a (6 members long), c and d (each two members long), and the remaining spin systems 

were of suspect length, nodes e (11 members) and b (33 members). A summary of these 

memberships can be found in Table 5.4. Although these spin systems contain useful 

resonances, they are suspected to be the product of resonance overlap and each may 

hold potential for refinement. When processed alongside the reference compounds, cases 

for implementing both feature fission and feature fusion are made (Figure 5.4 - Panel B).  
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5.3. DOSY Experiments 

Pseudo 2D DOSY 

To evaluate the performance of a pseudo 2D DOSY, a 1:1:2 mixture of erythromycin, 

cycloheximide, and nystatin was prepared and analyzed with ledbpgp2s. The resulting 

DOSY plot showed that the separation of resonances by their diffusion rates (y-axis – 

logarithmic scale) performed well in areas where peaks are well resolved, such as in areas 

of higher deshielding. However, in areas where peaks overlap, such as 1-3 ppm, 

resonances were unable to be resolved into their respective diffusion rates.  

 

Figure 5.5. Pseudo 2D DOSY Plot of Erythromycin, Nystatin, and 
Cycloheximide. Well resolved resonances, such as those which are 
deshielded and displayed good baseline separation showed good 
agreement in the determination of a diffusion rate. However, areas of 
high complexity, 1-3 ppm, showed a reduced ability to determine 
diffusion rates associated with the rest of the molecule.   

As this represented a simplified mixture of only three components, it was determined that 

more complex cases, such as the extract prefractions analyzed by MADByTE would not 

be able to determine consistent diffusion rates for whole molecules. As the number of 
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components within a DOSY mixture increases, the loss in resolution and accuracy of 

diffusion rate determination become difficult to manage.   

Pseudo 3D DOSY 

To address issues of sample complexity, advanced DOSY variants of 2D NMR 

experiments have been put forward, as they offer a secondary axis of resolution to 

otherwise overlapped signals. Positions which would experience overlap in a 1D projection 

are often resolved in a 2D NMR experiment, and comparison of signal decay for these 

positions can be better managed. The COSY-IDOSY was selected for evaluation as it 

offers this increased resolution advantage, is proton detected, and contains 1H-1H coupling 

information which could aid in the assignment of spin system features derived from 

MADByTE. A sample of 1:1:2 of erythromycin, cycloheximide, and nystatin was prepared 

and analyzed by COSY-IDOSY (Figure 5.6).101 Analogous to 1D DOSY experiments, a 

set of COSY experiments were collected with an increase in the applied gradient pulse 

strength to attenuate resonances. The rate of attenuation of each signal can then be used 

to calculate a diffusion rate for each peak in the spectrum, and signals with similar diffusion 

rates can be represented as individual planes in a 3D plot. Three planes of interest arise 

from this processing, with their mean diffusion rates allowing for filtration of signals which 

are likely to arise from the same molecule (Figure 5.7).  
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Figure 5.6. Planes of COSY Spectra of 1:1:2 
Erythromycin:Cycloheximide:Nystatin Mixture In DMSO-d6 for 
COSY-IDOSY. A) With minimal applied gradient strength, the 
attenuation of most signals in the mixture is negligible, and peaks 
are at their full intensity. B) At the middle gradient strength, signals 
have begun to attenuate and are no longer visible at the same 
intensity. C) At the highest gradient strength applied, all but the 
most intense signals have fully attenuated and are no longer visible.  



119 

 

Figure 5.7. Three Planes of the COSY-IDOSY Experiment. The 3 planes derived 
from the COSY-IDOSY experiment which display peaks that could be 
fit. The derived diffusion planes A) 8.58e-10  B) 4.64e-10  and C) 2.51e-

10 m2/s represent clustering of individual resonances which decay 
with similar rates.   
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5.4. Association of Diffusion Data to Spin System Features 

With a promising result showing three main planes of DOSY separation, the next step 

would be to compare these resonances to the resonances found in MADByTE spin 

systems to see whether distinct groupings can be validated.  

5.4.1. Processing of Diffusion Data 

Analysis of COSY-IDOSY Data 

There are several methods of processing in Dynamics Center for COSY-IDOSY data 

which allow for near-automated processing to be conducted on Topspin processed data. 

One option available is automated peak picking which attempts to peak pick above a given 

threshold in every plane of the experiment. However, this process proved to be 

impractical, as only a few peaks from each plane were picked and fittings did not provide 

any tangible results. As peak picking is a notable problem in complex data, a manual 

solution was needed to address this data processing shortcoming. The COSY-IDOSY data 

were processed in Topspin to produce the 3D representation and the first plane was 

selected, representing the lowest applied gradient strength where no peak attenuation is 

expected. Peaks were picked manually following the same convention as MADByTE peak 

picking and exported as a peak list. This peak list was applied to all planes of the DOSY 

data in Dynamics Center, allowing for uniform positioning across all planes.  

As can be seen in Figure 5.7-B, most cross peaks in the diagonal lined up with the middle 

plane, although this is likely a byproduct of the method of analysis which attempts to derive 

diffusion constants from these peaks. This method of analysis used the intensity of each 

peak at the point provided and did not attempt to integrate signals or deconvolute signals 

that may be overlapping. In cases where the points show good decay (Figure 5.8) diffusion 

rates can be calculated. If two signals are overlapped at the point a peak is picked, then 

the dissimilar attenuation rates may introduce error into the quality of the fit of the peak. 

Uncertainty in pseudo 3D DOSY spectra are represented as stretching in the F1 plane 

(Figure 5.9). The mean of peaks affected by this may be biased towards the middle plane 

of the spectrum, resulting in a falsely associated signal due to overfitting.  
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Figure 5.8. Decay Curves for Peaks From Different DOSY Planes. A) A peak 
from DOSY Plane 5 shows full attenuation around 40 G/cm of 
applied gradient strength, A signal from Plane 6 B) shows around 
90% attenuation around the final gradient strength of 47 G/cm, and a 
signal from Plane 7 C) shows a slower decay rate than either.  
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Figure 5.9. 3D Representation of COSY-IDOSY Results for Erythromycin, 
Cycloheximide, and Nystatin Mixture. A) Datapoints representing the 
picked peaks can be seen from an F2/F3 perspective and resemble a 
typical COSY experiment. B) Viewed from F2/F3/F1 perspective, 
points can be seen to align along one of 4 planes identified 
depending on the fit of the decay curve. The line widths along the F1 
dimension represent the quality of fit, and points in the 4th plane 
show the lowest quality of fit, as they extend through the other 
planes as well.  
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Table 5.1. Summary of Calculated Diffusion Rates from COSY-IDOSY Planes 

Plane Mean 

(m2/s) 

Min 

(m2/s) 

Max 

(m2/s) 

Standard Deviation 

(m2/s) 

DOSY Plane 5 2.60E-10 2.52E-10 2.83E-10 6.10E-12 

DOSY Plane 6 1.87E-10 1.37E-10 2.64E-10 2.87E-11 

DOSY Plane 7 1.26E-10 1.17E-10 1.33E-10 3.41E-12 

 

Peaks assigned to each plane were recorded and the diagonal relationships were 

removed to calculate the mean and standard deviation of diffusion rate for each grouping 

(Table 5.1). As can be seen, the ranges of DOSY planes 6 and 5 overlap, which would 

complicate assignment of spin system points to a diffusion plane. Points were removed 

from further consideration if they were above or below two standard deviations of the mean 

in each plane. This resulted in distinct bins for each plane which did not allow for overlap 

(Table 5.2) which can then be independently compared against MADByTE spin system 

features.  

Table 5.2.  Refined Bins of Diffusion Planes from COSY-IDOSY 

Plane Min 

(m2/s) 

Max 

(m2/s) 

DOSY Plane 5 2.52E-10 2.68E-10 

DOSY Plane 6 1.37E-10 2.43E-10 

DOSY Plane 7 1.22E-10 1.32E-10 

 

5.4.2. Spin System Association 

New spin system features are created from the combination of diffusion data and 

MADByTE SSFs. Each point in a SSF is compared against peak lists from a DOSY plane 

for points which are within the defined 1H error. As each diffusion plane represents COSY 

correlations, when a match to 1Ha is made the associated 1Hb resonance is cross checked 
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against the SSF to ensure it is present. If both are confirmed, the resonance is added to 

a new DOSY associated SSF and the process is repeated for remaining 1H resonances 

(Figure 5.10). Once comparison of all SSFs from a sample is completed, the process is 

repeated for the remaining DOSY planes.  

 

Figure 5.10. Overview of Spin System Refinement Using DOSY Planes. Each SSF 
from MADByTE analysis is compared to a DOSY plane peak list for 
matches. If a match is found, the reciprocal point is queried. If a 
match is made, the points are added to a new SSF annotated with 
the plane association. 

 

Each DOSY plane can therefore split the original SSFs into smaller systems, directly 

allowing for feature fission. A new spin system master file is created indicating these new 

spin system features and their membership to allow for MADByTE processing and network 

generation.  
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5.5. Results and Discussion 

5.5.1. Feature Fission  

The 1:1:2 mixture of erythromycin, cycloheximide, and nystatin presented a valid case for 

feature fission through the association of DOSY data where a single spin system feature 

was constructed from several independent spin systems from a complex sample (Figure 

5.11 – Panel A, starred node). This was due to the inherent complexity of the TOCSY 

data, in which proton resonances were too close for the system to resolve as independent. 

However, through the introduction of the diffusion data, this spin system was split into 

three new SSFs, each originating from a different plane of the DOSY plot (Figure 5.11 – 

Panel C, starred nodes). In the case of the original spin system network, cycloheximide 

(12) shared only associations to this feature. However, after feature fission, the new spin 

system feature associated with DOSY plane 5 (Figure 5.11 – Panel C, green bordered 

node) showed improved connectivity to cycloheximide and represented a more 

reasonable spin system size (9 members) when compared to the original feature (33 

members).  

 

Figure 5.11. Feature Association by Diffusion Experiments – Feature Fission of a 
Mixture of 3 Components. A) The original MADByTE Network of the 
mixture produced a spin system through clustering of many signals 
together (starred node). B) Feature fission filters the SSFs into new 
diffusion associated SSFs. C) Color coding of SSFs by their 
associated DOSY plane (Plane. 5: green, Plane 6: yellow, Plane 7: 
pink). The complex node from panel A is split into three new nodes 
(starred) each associated with a different diffusion rate.   
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5.5.2. Feature Fusion 

Feature fusion of SSFs from a sample allows for the clustering of SSFs from each DOSY 

plane, which allows for a more compact version of the network to be constructed. In the 

case of this mixture, Erythromycin (4) clustered to only nodes which were associated with 

an average diffusion rate of 1.87E-10 m2/s, and cycloheximide (12) clustered only to the 

fusion node associated with an average of 2.60E-10 m2/s. This suggests that the 

resonances within these features belong to these components and that connections from 

nystatin (19) to these nodes may be due to chance overlap of resonances.  

 

Figure 5.12. Feature Association by Diffusion Experiments - Feature Fusion of a 
Mixture of 3 Components. A) MADByTE Network from feature fission 
separating spin system features by diffusion rate. B) Combination of 
spin systems with the same diffusion plane (Plane 5: green border, 
Plane 6: yellow border, Plane 7: pink border) 

 

In general diffusion NMR spectroscopy, molecular size greatly influences the ability of a 

molecule to diffuse such that the larger the molecule, the slower the diffusion rate.39 The 

calculated diffusion rates of each plane suggest that the smallest molecule, cycloheximide 

has the fastest diffusion rate, and nystatin would conversely diffuse slowest.  
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5.5.3. Feature Association by Diffusion Experiments 

A practical application of feature fusion can be seen from Equation 5.1, which states that 

the diffusion constant of a molecule should remain stable in independent experiments if 

all other experimental values remain constant. Therefore, fusion features which exhibit 

similar diffusion constants and share structural SSF connections could greatly aid in the 

annotation of unknown molecules when applied to extracts. However, this would require 

an improvement in DOSY methods to derive diffusion rates for a mixture of very different 

analytes, which may interact and complex in unpredictable ways in complex samples. This 

remains a challenge, as most applications of DOSY require substantial optimization and 

manual processing to achieve accurate diffusion rates. The introduction of an internal 

standard holds promise for this comparison strategy, providing a method for compensation 

of matrix effects which may affect diffusion rates in mixtures.103  

As MADByTE processing already requires two 2D experiments (HSQC and TOCSY), any 

addition of experiments in the sample analysis pipeline would need to afford a 

considerable advantage and carefully balance the need for additional experiment time. 2D 

DOSY offers a considerable time advantage when compared to the COSY-IDOSY, but did 

not afford enough information to be of practical use. Other 3D DOSY experiments could 

be incorporated into a FADES approach, such as the HSQC-IDOSY104, but require 

considerable amounts of time when compared to COSY-IDOSY; a 16 point gradient of the 

HSQC-IDOSY (1280 x 128 x 16, ns = 16) would require 15 hrs of experiment time 

compared to the COSY-IDOSY (2048 x 512 x 16, ns = 2) experiment time of 5 hrs. 

Therefore, application of the HSQC-IDOSY experiment to complex mixtures may not be 

practical on scale. Another DOSY method, the Hadamard encoded 3D DOSY-TOCSY, 

shows promise for future integration into MADByTE analysis as it reports an increase in 

both resolution and a 10-fold reduction of experiment time when compared to standard 

DOSY-TOCSY methods.105 If optimized, this method could replace the standard TOCSY 

acquired for MADByTE, allowing for a standard processing pipeline to be developed which 

natively incorporated diffusion separation into MADByTE.  

5.6. Conclusions  

The implementation of 2D DOSY experiments was shown to be insufficient to achieve 

separation in the diffusion dimension and therefore was not promising for development. 
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However, through the incorporation of 3D DOSY experiments, it was shown that two 

limitations of MADByTE analysis could be independently addressed through feature fusion 

and feature fission. Feature fission allows for the refinement of MADByTE features 

suffering from spectral overlap in standard 2D experiments and was able to separate the 

spin system originating from cycloheximide from a complex of overlapped resonances. 

Similarly, feature fusion allows for the association of otherwise independent spin systems 

which arise from several molecules in a mixture to be associated based on diffusion rate, 

increasing the amount of structural coverage which can be attributed to a single molecule 

in a mixture. Application of this strategy to complex extracts could yield great 

improvements to MADByTE network analysis, especially when combined with the 

introduction of an internal standard for determination of comparable diffusion constants.   

5.7. Future Perspectives of MADByTE  

These pilot studies demonstrate an additional utility of the MADByTE system to associate 

complex NMR data into contextualized features which attempt to describe the chemical 

constitution of a mixture. In the perspective of the entire MADByTE platform, these 

additional data show that the advancements of NMR in the last few decades have provided 

advanced strategies for mixture analysis and metabolomics. Improvements in  pulse 

sequences,106,107 non-uniform sampling,108 automation of NMR processing using machine 

learning,109 and the introduction of ultra-high field NMR instrumentation29 all have direct 

impacts on the future perspectives of MADByTE. As noted in Chapter 4, combinations of 

predictive utilities with these advancements may position NMR spectroscopy as the 

analytical platform of choice for functional annotation of natural product mixtures in the 

coming years.   

As these methods improve, expandable utilities which allow for comparison of these data 

will become increasingly important. Currently, GNPS (Global Natural Product Social 

Molecular Networking) represents the state of the art in community developed tools which 

allow for the comparison of data to generate hypotheses of chemical constitution from 

spectral data.24 The introduction of GNPS to the natural product community has 

revolutionized workflows and tool development in the field, demonstrating the value of 

these context creating utilities.94,110,111 However, hypothesis generating utilities such as 

GNPS and MADByTE still require investigator intuition and manual analysis of the results 

and cannot be relied upon to provide a definitive answer in every use case. The roll of 
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these utilities is to aid the investigator - not replace them – and will require steady 

development and community feedback to be of widespread use.72  

MADByTE is constructed from an NMR first perspective but does not exist in isolation. 

Advancements in MS and NMR annotation platforms are often pitted against one another 

in general discussion, but instead represent two powerful complimentary analytical utilities 

often used in combination. MS based platforms demonstrate increased sensitivity, 

dynamic range, and throughput when compared to 2D NMR studies but suffer from a loss 

of structural information which is accessible in NMR spectroscopy. Future development of 

utilities which leverage both platforms together offer considerable promise for discovery 

pipelines, especially when combined with robust databases to supplement in-silico 

predictions.112,113  

5.8. Experimental 

HSQC and TOCSY  

All HSQC and TOCSY NMR spectra were recorded on a Bruker Avance III QCI (600 

MHz) spectrometers in DMSO-d6 (CortecNet lot Q0611) at 300°K. HSQC spectra were 

recorded as 32 scans (TD: 4096 x 256), collected by non-uniform sampling at 50% 

followed by linear prediction and zero filling. TOCSY spectra were recorded as 16 scans 

(TD: 1024 x 128), collected by non-uniform sampling at 50% followed by linear prediction 

and zero filling. NUS point spreads were kept consistent between samples to ensure 

consistency. HSQC and TOCSY spectra were manually peak picked for MADByTE 

analysis.  

Pseudo 2D DOSY 

The sample prepared for pseudo 2D DOSY experiments was prepared as 1.0 mg/mL 

erythromycin, 1.0 mg/mL of cycloheximide, and 2.0 mg/mL of nystatin prepared in a 

Shigemi tube with a filling of 280 µL. DOSY spectra were collected using the ledbpgp2s 

pulse sequence with a pulse length of 1.7 ms and a diffusion delay of 0.1 s with 16 gradient 

increments from 2% - 98%. Spectra were baseline and phase corrected in Topspin 3.6.2 

and processed in Dynamics Center 2.6.3. Peak picking was done using automated peak 

picking and values were compared using intensities at peak positions.  
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COSY-IDOSY 

The sample prepared for COSY-IDOSY experiments was prepared as 1.0 mg 

erythromycin, 1.0 mg of cycloheximide, and 2.0 mg of nystatin prepared in a Shigemi tube 

with a filing of 400 µL. Nystatin, being nearly three times the molecular mass of 

cycloheximide was provided at double the concentration to avoid dynamic range issues.  

DOSY spectra were recorded using the dosyicosy3d pulse sequence with a pulse length 

of 4.0 ms and a diffusion delay of 0.1 s with 16 gradient increments from 2%-98% with 2 

scans (1024x512) per increment. Spectra were Fourier transformed in F1 and F2 in 

Topspin 3.6.2 and DOSY processed in Dynamics Center 2.6.3. Peak picking was done 

manually using the first plane (2% gradient strength) and applied to all remaining planes. 

Peaks were selected if they were above the noise threshold, exhibited good peak shape 

in both dimensions, and were not suspected as being noise or artefacts from spectral 

processing. The DOSY view was constructed using a logarithmic display with a minimum 

threshold of 1.0e-12 and a maximum of 1.0e-8. 

MADByTE Processing 

Initial MADByTE networks were constructed using MADByTE v1.3.0 using the parameters 

in Table 5.3. Initial processing of the mixture sample was done without reference 

compounds, yielding the single sample network displayed in Figure 5.4 – panel A. 

Introduction of the standard compounds and reprocessing using the same parameters 

yielded the network in Figure 5.4 – Panel B.  

Table 5.3. MADByTE Parameters for 1:1:2 Mixture of Erythromycin, 
Cycloheximide, and Nystatin 

Parameter Value 

Hppm Error 0.05 

Cppm Error 0.40 

Consensus Error 0.03 

Similarity Ratio 0.50 

Merge Multiplets True 

Maximum Spin System Size 40 

 

Creation of the feature fission network was done using a modified version of MADByTE 

v1.3.0 using manual construction of the spin system master file incorporating the output 
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of DOSY plane association. Network construction parameters were identical to 

parameters in Table 5.3, producing the network framework in Figure 5.11 – panel B. The 

feature fusion network was created through manual combination of diffusion associated 

nodes from the feature fission network, retaining connections from the component nodes 

from feature fission MADByTE processing. All networks were visualized using Gephi 0.9.2 

using the Force Atlas 2 algorithm with default settings except spacing = 10, dissuade hubs 

= True, prevent overlap = True.  

5.9. Supplemental Data 

5.9.1. Spin System Assignment from Initial MADByTE Analysis 

Table 5.4. Spin System Assignment from MADByTE Analysis of DOSY Sample.  

Resonance Spin 
System 

[0.73, 10.90] JE_DOSY_0 

[0.86, 12.25] JE_DOSY_0 

[1.07, 21.35] JE_DOSY_0 

[1.10, 17.82] JE_DOSY_0 

[1.17, 72.87] JE_DOSY_0 

[1.18, 26.31] JE_DOSY_0 

[1.31, 40.03] JE_DOSY_0 

[1.38, 21.10] JE_DOSY_0 

[1.49, 42.30] JE_DOSY_0 

[1.63, 34.88] JE_DOSY_0 

[1.80, 39.85] JE_DOSY_0 

[1.80, 42.35] JE_DOSY_0 

[1.81, 39.85] JE_DOSY_0 

[1.81, 42.35] JE_DOSY_0 

[2.24, 26.86] JE_DOSY_0 

[2.28, 38.34] JE_DOSY_0 

[2.37, 42.55] JE_DOSY_0 

[2.56, 36.8] JE_DOSY_0 

[2.59, 36.8] JE_DOSY_0 

[2.62, 56.01] JE_DOSY_0 

[2.77, 44.51] JE_DOSY_0 

[3.02, 70.86] JE_DOSY_0 

[3.03, 70.86] JE_DOSY_0 

[3.06, 70.86] JE_DOSY_0 
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Resonance Spin 
System 

[3.62, 67.09] JE_DOSY_0 

[3.66, 69.06] JE_DOSY_0 

[3.83, 64.91] JE_DOSY_0 

[4.01, 65.60] JE_DOSY_0 

[4.34, 75.24] JE_DOSY_0 

[4.36, 102.15] JE_DOSY_0 

[5.09, 75.73] JE_DOSY_0 

[5.11, 75.73] JE_DOSY_0 

[6.24, 132.37] JE_DOSY_0 

[0.96, 16.92] JE_DOSY_1 

[5.51, 135.50] JE_DOSY_1 

[5.51, 131.21] JE_DOSY_1 

[2.18, 31.71] JE_DOSY_1 

[5.97, 129.45] JE_DOSY_1 

[5.95, 131.08] JE_DOSY_1 

[5.70, 134.24] JE_DOSY_2 

[6.20, 132.81] JE_DOSY_2 

[1.04, 9.10] JE_DOSY_3 

[1.04, 17.90] JE_DOSY_3 

 [1.04, 67.00] JE_DOSY_3 

[2.86, 39.43] JE_DOSY_3 

[1.04, 16.37] JE_DOSY_3 

[1.04, 11.16] JE_DOSY_3 

[1.04, 21.35] JE_DOSY_3 

[1.04, 17.97] JE_DOSY_3 

[4.04, 64.99] JE_DOSY_3 

[1.16, 64.76] JE_DOSY_3 

[1.04, 70.23] JE_DOSY_3 

[1.89, 57.47] JE_DOSY_4 

[3.95, 65.49] JE_DOSY_4 
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5.9.2. COSY-IDOSY Analysis Data Table 

Table 5.5.  Calculated Diffusion Rates from COSY-IDOSY Analysis Per Peak 
Position 

Peak number F1 [ppm] F2 [ppm] D [m2/s] error 

1 1.08 5.06 1.25E-10 1.06E-12 

2 1.47 4.71 1.81E-10 7.56E-13 

3 1.45 4.61 1.70E-10 2.79E-12 

4 3.00 4.34 1.82E-10 7.42E-13 

5 3.04 4.26 1.72E-10 1.52E-12 

6 5.95 5.48 1.26E-10 1.14E-12 

7 5.48 5.94 1.27E-10 1.32E-12 

8 6.18 6.09 1.28E-10 1.62E-12 

9 6.07 6.18 1.26E-10 1.39E-12 

10 5.72 6.19 1.17E-10 2.21E-11 

11 6.18 5.94 1.22E-10 4.39E-12 

12 6.21 5.71 1.22E-10 4.31E-12 

13 5.69 4.35 1.30E-10 4.72E-12 

14 2.18 5.48 1.59E-10 5.17E-12 

15 2.20 5.66 1.67E-10 5.65E-12 

16 4.33 5.70 1.30E-10 3.36E-12 

17 4.26 5.58 1.33E-10 5.50E-12 

18 5.57 4.26 1.32E-10 7.64E-12 

19 4.45 3.64 1.25E-10 5.43E-12 

20 3.63 4.44 1.26E-10 5.50E-12 

21 4.33 3.00 1.81E-10 1.00E-12 

22 4.26 3.04 1.71E-10 2.01E-12 

23 2.88 4.01 1.78E-10 8.33E-12 

24 1.85 3.92 1.24E-10 8.18E-13 

25 1.66 3.88 1.28E-10 1.56E-12 

26 1.54 3.87 1.37E-10 3.27E-12 

27 2.32 3.98 1.25E-10 1.82E-12 

28 1.15 4.01 1.80E-10 6.34E-13 

29 1.26 3.81 2.57E-10 9.43E-13 

30 2.43 3.78 2.55E-10 8.35E-12 

31 4.71 1.50 1.81E-10 6.87E-13 

32 4.71 1.47 1.81E-10 7.07E-13 

33 4.61 1.48 1.68E-10 3.26E-12 

34 4.61 1.46 1.69E-10 1.98E-12 
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Peak number F1 [ppm] F2 [ppm] D [m2/s] error 

35 3.79 1.30 2.57E-10 2.22E-12 

36 3.79 1.27 2.58E-10 2.87E-12 

37 3.58 1.05 1.82E-10 3.05E-12 

38 4.00 1.14 1.75E-10 1.50E-12 

39 5.04 1.07 1.25E-10 2.07E-12 

40 3.07 1.11 1.49E-10 1.42E-11 

41 1.05 3.59 1.83E-10 1.31E-12 

42 1.05 3.56 1.82E-10 2.39E-12 

43 1.10 3.09 1.26E-10 7.07E-13 

44 1.03 2.85 1.81E-10 6.35E-13 

45 1.01 2.82 1.81E-10 8.32E-13 

46 1.03 2.88 1.81E-10 2.22E-12 

47 1.08 2.74 1.78E-10 5.21E-13 

48 1.94 2.41 2.63E-10 1.67E-12 

49 1.92 2.43 2.43E-10 3.39E-12 

50 1.78 2.57 2.56E-10 3.33E-12 

51 1.78 2.61 2.65E-10 4.45E-12 

52 1.54 2.41 1.86E-10 1.78E-12 

53 2.41 1.94 2.54E-10 1.06E-12 

54 1.29 2.22 2.62E-10 1.74E-12 

55 0.94 2.21 1.23E-10 2.74E-12 

56 0.98 1.87 1.81E-10 1.08E-12 

57 0.82 2.57 2.60E-10 1.95E-12 

58 0.84 2.59 2.64E-10 5.21E-12 

59 0.84 2.59 2.64E-10 5.21E-12 

60 0.84 2.63 2.60E-10 2.25E-12 

61 1.03 2.61 1.76E-10 1.67E-12 

62 0.82 2.55 2.63E-10 3.13E-12 

63 1.92 1.63 2.55E-10 3.09E-12 

64 1.92 1.59 2.55E-10 3.10E-12 

65 1.61 1.94 2.57E-10 3.27E-12 

66 1.78 1.94 2.52E-10 2.53E-12 

67 1.78 1.95 2.56E-10 3.47E-12 

68 1.61 1.97 2.57E-10 3.78E-12 

69 1.94 1.77 2.51E-10 2.94E-12 

70 1.94 1.80 2.55E-10 2.79E-12 

71 1.94 1.76 2.51E-10 1.67E-12 

72 2.22 1.29 2.60E-10 1.98E-12 

73 2.41 1.56 1.93E-10 2.07E-12 

74 2.06 1.16 2.49E-10 2.96E-12 

75 2.83 1.02 1.83E-10 2.08E-12 
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Peak number F1 [ppm] F2 [ppm] D [m2/s] error 

76 2.74 1.08 1.83E-10 4.80E-12 

77 2.60 0.83 2.60E-10 2.39E-12 

78 1.43 1.78 2.64E-10 2.83E-12 

79 1.61 1.91 2.54E-10 2.37E-12 

80 1.76 1.91 2.50E-10 2.86E-12 

81 3.75 2.85 1.71E-10 3.85E-12 

82 3.98 2.74 1.76E-10 2.85E-12 

83 3.98 2.72 1.78E-10 2.45E-12 

84 3.98 2.76 1.72E-10 3.81E-12 

85 3.98 2.26 1.58E-10 1.47E-11 

86 3.65 2.59 1.57E-10 1.31E-11 

87 3.91 1.87 1.24E-10 1.10E-12 

88 3.86 1.66 1.29E-10 1.78E-12 

89 3.44 1.87 1.79E-10 3.20E-12 

90 3.72 2.00 1.75E-10 4.36E-12 

91 5.08 1.77 1.71E-10 6.86E-12 

92 5.08 1.35 1.74E-10 3.59E-12 

93 4.97 3.14 7.91E-09 1.87E-09 

94 1.87 3.46 1.95E-10 5.64E-12 

95 1.69 2.83 1.85E-10 5.51E-12 

96 1.43 2.58 2.67E-10 7.47E-12 

97 1.45 2.61 2.62E-10 1.14E-11 

98 1.47 2.56 2.62E-10 1.36E-11 

99 6.18 6.20 1.26E-10 1.02E-12 

100 5.93 5.94 1.21E-10 1.12E-12 

101 5.67 5.67 1.21E-10 1.08E-12 

102 5.48 5.49 1.26E-10 1.03E-12 

103 5.43 5.44 1.60E-10 2.20E-12 

104 5.06 5.07 1.75E-10 2.79E-12 

105 4.75 4.76 1.70E-10 4.15E-12 

106 4.71 4.72 1.81E-10 9.56E-13 

107 4.71 4.70 1.78E-10 1.05E-12 

108 4.61 4.62 1.67E-10 1.78E-12 

109 4.43 4.43 1.25E-10 5.18E-13 

110 4.45 4.71 1.68E-10 1.01E-11 

111 4.73 4.43 1.24E-10 4.80E-12 

112 4.08 4.08 1.69E-10 2.92E-12 

113 4.33 4.34 1.58E-10 2.28E-12 

114 4.31 4.32 1.62E-10 2.15E-12 

115 3.98 3.98 1.75E-10 1.19E-12 

116 3.82 3.81 2.26E-10 4.18E-12 
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Peak number F1 [ppm] F2 [ppm] D [m2/s] error 

117 3.75 3.74 1.78E-10 1.00E-12 

118 3.86 3.87 1.51E-10 3.07E-12 

119 3.63 3.64 1.29E-10 9.90E-13 

120 3.44 3.44 1.73E-10 1.26E-12 

121 3.37 3.38 1.72E-10 3.08E-12 

122 2.86 2.86 1.83E-10 2.07E-12 

123 3.00 3.00 1.62E-10 4.92E-12 

124 3.14 3.14 6.75E-10 1.01E-10 

125 3.18 3.18 1.75E-10 5.53E-12 

126 2.55 2.56 2.68E-10 3.77E-12 

127 2.53 2.54 2.83E-10 7.11E-12 

128 2.48 2.48 6.59E-10 3.38E-11 

129 2.25 2.25 2.28E-10 3.08E-12 

130 2.18 2.19 1.79E-10 1.45E-12 

131 2.04 2.05 7.24E-10 1.06E-10 

132 1.92 1.93 2.51E-10 3.59E-12 

133 1.87 1.87 1.76E-10 1.02E-11 

134 1.78 1.78 2.40E-10 3.70E-12 

135 1.59 1.61 2.49E-10 2.16E-12 

136 1.47 1.47 2.16E-10 3.53E-12 

137 1.31 1.32 1.77E-10 1.42E-12 

138 1.26 1.26 1.89E-10 1.73E-12 

139 1.17 1.17 2.40E-10 3.22E-12 

140 1.10 1.10 1.73E-10 9.42E-13 

141 0.98 0.99 1.79E-10 8.88E-13 

142 0.84 0.84 2.22E-10 5.22E-12 

143 0.82 0.82 2.22E-10 5.00E-12 

144 1.81 1.46 3.99E-10 4.82E-11 

145 4.02 2.89 1.79E-10 4.99E-12 

146 2.76 3.98 1.94E-10 1.04E-11 
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