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Abstract

Analyzing the structural properties of graphs is important in various domains including
bioinformatics, malware detection, and social network analysis. The fast-changing nature of
real-world graphs demands efficient solutions to analyze them in real-time. While general-
purpose graph mining systems have been developed to analyze static graphs, there is no
comparable solution for mining insights from dynamic graphs. Existing application-specific
streaming solutions store intermediate results and explore extraneous matches that are not

relevant for the final results, degrading their overall performance.

In this thesis, we present Protean, the first general-purpose graph mining system for streaming
graphs. Protean incorporates two key components. First, a novel differential pattern matching
engine that directly finds useful subgraphs resulting from graph updates and operates
independently from the snapshot matching engine. And second, a dynamic processing model
that captures cross-pattern dependencies for dynamic subgraph exploration, and utilizes an

efficient multiversioning strategy to avoid exploration of automorphic matches.

For applications where the patterns of interest are known apriori, the differential pattern
matching engine constructs an efficient pattern exploration plan to find matches affected by
the graph updates. On the other hand, applications that dynamically determine the patterns
of interest often demand exploring the data graph from scratch in order to generate results
for new patterns of interest. For such applications, Protean tracks cross-pattern dependencies
using a Pattern-Dependency DAG (P-DAG for short) and dynamically invokes the right
matching engine (differential or snapshot) based on the impact of graph update. As the
matching tasks arising from the two matching engines demand different computing power,
Protean parallelizes the matching tasks from the two engines in different ways in order to

maximize performance.

Our evaluation shows that Protean achieves low latency response to updates, often computing
fresh results in less than a millisecond, which is crucial for continuous graph mining. As
the existing purpose-built streaming graph mining solutions take minutes or even hours
to process updates, Protean’s update-driven parallel processing model enables orders of

magnitude better performance, and scales to graphs with billions of edges.
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Chapter 1

Introduction

As graph data becomes increasingly available in practice, graph mining applications are
commonplace in many domains including bioinformatics, computer vision, malware detection,
and social network analysis [35, 9, 12, 28]. Graph mining algorithms glean insights about the
structure of the input graph through exploration and aggregation of interesting subgraphs.
As real-world graphs are constantly changing, efficiently processing dynamic graphs to
generate continuous results as the graph structure changes becomes important in order to
obtain timely results for the latest graph version and to analyze how results change with
graph structure updates.

Incremental processing is a useful technique that reduces the amount of recomputation
by directly operating on changes (or differences) resulting from graph structure updates.
While incremental processing has been shown to deliver high performance for dynamic
graph processing systems [23, 32|, it requires maintaining intermediate state to be able to
directly process the difference in values resulting from graph updates. However, since the
exploration space in graph mining workloads is often exponential, they generate a large
amount of intermediate subgraphs that cannot be easily held in memory. For instance,
a recent work [18] shows how systems that maintain intermediate subgraphs (either in
memory or on disk) end up crashing due to lack of memory/storage capacity, or do not finish
executing in a reasonable amount of time due to large number of disk read-write operations.
Furthermore, the size of result sets generated by graph mining workloads itself is massive.
For instance, it is common for the final number of matching subgraphs (i.e., subgraphs of
interest, also called matches) to be in the range of trillions even for graphs comprising just a
few million edges. Such high memory requirements make traditional incremental processing
techniques infeasible for graph mining workloads.

Thankfully, the subtasks involved in graph mining workloads are ‘local’; i.e., matches
originate from their corresponding subset of vertices and edges, and hence, matches from
a given region of the graph remain unaffected from updates to other regions of the graph.
This is fundamentally different from graph processing workloads (like PageRank) where the

subtasks are ‘global” and require frequent synchronization of intermediate results throughout



execution (e.g., Bulk Synchronous Parallel [30] processing). Hence, graph mining can be
performed on dynamic graphs without saving the intermediate subgraphs, such that the
results are incrementally adjusted by exploring only the affected region in the graph (i.e.,

where updates take place) instead of restarting the entire mining process from scratch.

1.1 Challenges

Developing a general-purpose dynamic graph mining system is not straightforward due to
the complexities involved in incremental exploration within the affected graph region, as well
as the changing run-time requirements of graph mining applications which guide subgraph

exploration based on previous results.

1.1.1 Incremental Subgraph Exploration

Naively invoking graph mining tasks on the affected graph region causes redundant com-
putation which may not contribute to the final result. We illustrate this using a strawman
approach, described next.

When updates are applied to the graph, an abstract subgraph can be constructed around
the updates to bound the results that must be recomputed [13]. The abstract subgraph
is based on the specific graph mining application; for instance, if we are counting 4-sized
motifs !, then the abstract subgraph should contain all vertices within a 3-hop distance of the
endpoints of the updated edges, along with the edges between those vertices. Then matches
can be explored in the abstract subgraph using any static graph mining exploration strategy.
The abstract subgraph is searched for matches which contain the new graph updates as
well as those which ignore them; the latter is required to identify matches that were once
interesting, but no longer due to new updates. The matches are then checked to decide
whether they impact the results based on the graph update. This involves checking whether
the explored match contains the newly added edge, whether it contains the endpoints of the
edge that was removed, etc. Afterwards, the verified matches can be used to adjust the final
aggregation result. E.g. in motif counting, new matches increment the corresponding motif
counts whereas old matches that are no longer valid decrement their motif counts.

This approach provides accurate results without restarting the mining process from
scratch, but it performs significantly more computation than required to adjust results based
on graph updates. While the abstract subgraph limits the amount of recomputation, it
contains many subgraphs that are not useful and need not be explored because they do
not contain the updated edges or their endpoints. Furthermore, the amount of unnecessary
recomputation depends on where the update is applied (e.g., in dense vs. sparse regions of

the graph), and the size of the graph mining query. For instance, to count 3-motifs in the

1A motif or pattern is an abstract description of the structure of a subgraph to be explored.



Patents graph [17], this strategy explores 1.8 million matches when 10 edge updates are
applied, out of which only 540 matches (0.03%) are useful; whereas during 4-motif counting,
it explores 220 million matches of which only 4,488 (0.002%) are useful. Hence, it becomes
crucial to develop an incremental subgraph exploration strategy that aggressively eliminates

unnecessary explorations and does not rely on maintaining intermediate subgraphs.

1.1.2 Dynamic Subgraph Exploration

The set of subgraphs to be explored in applications like motif counting and pattern matching
does not change during execution, and is known apriori. For such cases, incremental subgraph
exploration can be used directly to compute final results.

However, applications like Frequent Subgraph Mining (FSM) dynamically determine the
set of subgraphs to explore as execution progresses. Specifically, the exploration process
in FSM progresses iteratively such that only patterns that are frequent are extended into
larger patterns, which are then explored in the next iteration. In this case, graph updates
can affect previous decisions made regarding which subgraphs should be explored in each
iteration. For instance, newly added edges can cause a pattern that was initially infrequent
to become frequent: in this case, extensions of this new frequent pattern that were never
explored before must now be explored. Directly exploring the subgraphs in an incremental
fashion (for instance using the abstract subgraph method described above) would lead to
incorrect results mainly because those patterns were never explored before, and the results
of an incremental exploration will have no basis to merge with in order to deliver the final
results.

A simple approach is to compute results for all possible patterns up front regardless of
whether they contribute to the final results for frequent patterns, thus enabling incremental
subgraph exploration whenever the graph structure updates. However, this requires exploring
all possible subgraphs of the data graph (hence why FSM prunes explorations based on
frequencies). Such high computation costs are only justified if the results for every pattern
will be useful at some point upon graph update.

Thus a smarter strategy is required that tracks the patterns that have been explored so

far, and explores new patterns in the entire graph instead of only the updated region.

1.2 Overview of Protean

We propose Protean, a general-purpose graph mining system for streaming graphs that gen-
erates timely results with continuous graph updates. Protean maintains only the aggregation
values for graph mining applications (i.e., does not track the intermediate matches), and
incrementally adjusts the graph mining results without exploring unnecessary subgraphs. It
does so using: (a) a novel differential pattern matching engine that directly explores useful

matches resulting from graph updates; (b) a snapshot pattern matching engine that explores
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Figure 1.1: Protean system overview.

matches in the entire graph; and, (c¢) a dynamic processing model that guides the exploration
of subgraphs using the two engines depending on the graph update. Figure 1.1 shows an
overview of Protean’s design.

The differential pattern matching engine recognizes the graph structure updates as
first class operations over graphs. It constructs efficient pattern exploration plans that
directly find matches containing the updated graph elements so that all the matches are
directly useful to update the final results. The engine generates results in form of differences;
specifically, it explores new matches that contribute to the final result as well as old matches
that must be discounted from the previous result. Aggregations that form abelian groups
are incrementally adjusted by adding the contributions for new matches and inverting the
contributions for old matches that become invalid due to the graph updates.

The snapshot pattern matching engine remains oblivious to the dynamic nature of the
graph and explores matches in the entire graph snapshot. While any pattern matching engine
can be used for snapshot matching, we develop our snapshot pattern matching engine based
on the matching engine developed in Peregrine [18] because it is the state-of-the-art and it
constructs efficient pattern exploration plans to find matches throughout the graph.

The two matching engines complement each other in order to maintain up to date
results for the graph mining application as graph structure gets updated. Protean’s dynamic
processing model maintains the information regarding how pattern explorations took place
prior to a graph update, along with the aggregation results corresponding to patterns
that have been explored in past. It then computes the impact of the graph update on the
resulting pattern set, and invokes either differential pattern matching task or snapshot
pattern matching task for each pattern to be explored.

The processing model parallelizes the matching tasks from two engines in different ways
in order to maximize performance. Since snapshot matching explores the entire graph, it
is done in parallel using multiple threads. On the other hand, differential matching for a
graph update is quick and hence, differential matching on different updates are parallelized

across different threads. Invoking multiple concurrent differential matching tasks on different



updates can lead to automorphisms [16] (i.e., different instances of the same match). To
avoid this, Protean utilizes a multiversioning strategy that orders graph updates so that
they are correctly visible to the concurrent matching tasks. By doing so, each differential
pattern matching task operates on its own version of the graph and never explores any
automorphisms.

Protean exposes an intuitive programming model that allows expressing graph mining
applications as static pattern programs, without worrying about the streaming nature of the
underlying graph. To maintain flexibility, it outputs streams of differential results as well as

complete results, and operates in synchronous mode as well as asynchronous mode.

1.3 Results

We evaluated Protean using different graph mining applications and compared the perfor-
mance with existing solutions for each of the applications. Our results show that Protean
achieves low latency response to updates, where the median latencies are less than a mil-
lisecond to process single update, which is crucial for continuous graph mining. Protean’s
update-driven parallel processing model enables orders of magnitude better performance
than existing purpose-built streaming graph mining solutions, and scales to graphs with

billions of edges.

1.4 Organization

The rest of this thesis is organized as follows. Chapter 2 provides the necessary background
on graph mining and streaming graph model, and Chapter 3 discusses the related work.
Chapter 4 shows how mining tasks can be expressed in Protean as pattern programs.
Chapter 5 describes how the differential pattern matching engine and the static matching
engine generate exploration plans. Chapter 6 explains Protean’s processing model including:
(a) how it uses multiversioning to avoid exploration of automorphisms; (b) how it maintains
the execution history to invoke differential and static pattern matching tasks; and, (c) how
it maintains the aggregation results corresponding to explored patterns. Finally, Chapter 7

presents our experimental results and Chapter 8 concludes the thesis.



Chapter 2

Background

We first define the terminology used in this thesis and review graph mining fundamentals.

Then, we introduce the streaming model of graph mining.

2.1 Graph Mining Terminology

We denote the vertex set, edge set, and vertex label set of a graph g by V(g), E(g), and
L(g), respectively. If L(g) is empty, we say ¢ is unlabeled. A graph s is a subgraph of g if it
contains a subset of edges in g and their endpoints, with the same labels as in g. Though
the techniques described in this thesis apply to directed and multigraphs as well, for ease of
explanation we assume graphs are simple and undirected.

Graph mining involves finding interesting subgraphs of an input data graph. These
interesting subgraphs are represented by connected pattern graphs. A match for a pattern p
in a data graph G is a subgraph m of G which is isomorphic to p. This means there is a
bijection between V' (p) and V' (m) that maps adjacent vertices in p to adjacent vertices in m
with the same labels. We say m is vertex-induced if all edges in G between the vertices of
V(m) are present in F(m). Otherwise, it is edge-induced.

Pattern graphs can additionally contain anti-edges and anti-vertices [18]. These enforce
the absence of edges or vertices in matches for a pattern, respectively.

Symmetries in pattern graphs can lead to automorphic matches. Two matches M; and
My of a given pattern are automorphic if V(M;) = V(Ms). For efficiency and easier program
expression, general-purpose graph mining systems only return unique matches, i.e. one

representative match from each set of automorphic matches.

2.2 Graph Mining Problems

We describe the common graph mining problems below. These applications are modelled as
pattern-matching tasks which generate sets of interesting subgraphs and compute aggregations

on them. The results of an aggregation form a mapping from an arbitrary aggregation key
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Table 2.1: Number of patterns based on their size.
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Figure 2.1: Patterns for 3-motifs and 4-motifs.

to an aggregation value. The aggregations are typically computed using commutative and
associative operators so that aggregation results can be accumulated in parallel.
While the problems listed below focus on counting subgraphs of interest, they are often

generalized to listing (or enumerating) as well.

2.2.1 Motif Counting

A motif is any connected, unlabeled graph pattern. Given a size k, the problem of counting k-
motifs involves counting the occurrences of all motifs having k vertices. This problem typically
explores vertex-induced matches; for instance, Figure 2.1 shows all possible patterns in
3-motifs and 4-motifs. As shown in Table 2.1, the number of patterns increases exponentially
as k increases, which in turn increases the complexity of the problem. Figure 2.2 shows the
example of finding 3-motifs in a data graph. Note that wedges (connected subgraphs that

contain 2 edges and 3 vertices) such as {u1,us,us} are not counted as they induce a triangle.

538" %68

Data Graph G Triangles Wedges

Figure 2.2: Example of finding 3-motifs in a data graph.

2.2.2 Frequent Subgraph Mining (FSM)

This problem involves finding all the labeled patterns in G, whose frequency exceeds a

given threshold 7. Given a size k, k-FSM involves finding these frequent labeled patterns



with k edges. FSM typically explores edge-induced matches, and measures the frequency
of a pattern (also called as support) using multiple methods [20, 26, 37, 25]. Most frequent
subgraph mining systems choose the minimum node image (MNI) [4] support measure,
as this can be computed in polynomial time. On the contrary, some of the other support
measures like MIS [20], HO [14] are NP-complete.

MNI support measure also satisfies anti-monotonic property, i.e., given two patterns p
and p’ such that p is a subgraph of p’, MNI support of p will be at least as high as that of p'.
Anti-monotonicity guarantees that if a pattern p does not meet a given frequency threshold,
then all of the subgraphs that contain p are also not frequent. This allows FSM programs to

prune infrequent patterns by computing frequencies in a step-by-step fashion.

) v 1% \ v \ 1Y
UJ\ /u4 Up—Uy ! ‘ ¢ 3 4
\ “3\ \ / \ Uy Wy & W
wo o v v AR
Data Graph G Pattern p,, MNI Table Pattern p, MNI Table

Figure 2.3: FSM example using two patterns p,, p, and their MNI Tables.

Using Figure 2.3, we show an example of MNI support calculation. Given a data graph
G and pattern p,, MNI Table of p, stores all candidates of pattern vertices in columns. The
number of columns in MNI table is equal to number of vertices in the pattern p,, where each
column corresponds to a unique pattern vertex. For all possible matches p, in G (including
automorphic matches), we store the set of candidate vertices for a pattern vertex in its
respective column. for example there are two matches of p, in G, the candidates for v; is
{us}, va is {u1, us} and vs is {u1, us}. The support of a MNI table is the size of column that
contains minimum number of candidates, which is 1 here. We constructed the MNI table to
another pattern p in a similar fashion. Since p, is a subgraph of py, the MNI support of
pq Will be at least as high as the support of py. So, calculating the support of p, will help
in pruning all the extensions of p,, one of them being py, if p, doesn’t satisfy the support

threshold constraint.

2.2.3 Subgraph Counting

This problem involves counting the number of occurrences of a given pattern in the data
graph. The pattern can contain structural constraints in form of missing edges or disconnected
vertices. For example, the pattern can specify constraints like certain vertices cannot have
any other common neighbor apart from ones specified in pattern. These constraints are

specified using anti-edges and anti-vertices [18] in the pattern.
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Figure 2.4: Matching patterns with anti-edge and anti-vertex constraints. Match {uq,u2,us3}
is not valid for p; due to edge (ui, uz), and matches {uj,us3} and {ug,us3} are not valid for
po due to common neighbors between the vertices.

Figure 2.4 shows how anti-edges and anti-vertices can be used to enforce structural
constraints on patterns. p; is a wedge, whose end points are connected by an anti-edge. This
anti-edge constraint eliminates the match {uy,u2,u3} due to the presence of edge (u1, u2)
in G. Similarly, ps is an edge with anti-vertex connected to both of its end points. This

anti-vertex constraint invalidates matches like {uy,us},{us,us}.

2.2.4 Local Clustering Coefficient

The local clustering coefficient measures how close the neighbours of each vertex in the
graph are to being a clique. This measure is used to determine the degree to which the
vertices in a graph tend to form clusters. For instance, in most real-world graphs such as
social networks, it is observed that the nodes form tightly knit clusters [27].

Formally, the local clustering coefficient of a vertex v is the ratio of number of triangles
that contains v to the number of wedges that contains v in the middle (i.e., v is incident to
both edges of the wedge).

2.3 Streaming Graph Model

Protean enables graph mining in the presence of a continuous stream of updates to the data
graph’s structure. An edge update is a pair < =+, (u,v) > consisting of an operation, either
‘4’ signifying edge addition or ‘—’ signifying edge deletion, and a target edge (u,v). Applying
the edge update to a graph G means modifying the adjacency lists of u and v in G to either
add or remove v and u, respectively. As updates to vertices can be easily expressed using an
edge update for each neighbor of the target vertex, henceforth we consider all updates to be
edge updates.

Streaming graph mining algorithms seek to maintain fresh aggregation results despite
continuous updates to the underlying data graph. Updates are streamed from an arbitrary
data source, grouped in batches (if necessary) according to the use case, and processed to
compute fresh results. Hence, results are computed for every update batch, and depending
on the application requirements, the results are output in form of differences due to the

update batch, or as final results for the graph snapshot including the update batch.



Chapter 3

Related Work

Various works present efficient solutions to specific graph mining applications on streaming
graphs. To the best of our knowledge, Protean is the first general-purpose graph mining

system for streaming graphs that supports a variety of graph mining applications.

3.1 Pattern Matching

[13, 8, 15, 19, 2] develop pattern matching techniques on dynamic graphs. [2] builds a
multi-versioned index of the graph based on the input pattern and adopts a relational view
of the input pattern (i.e. treats the edges of the input patterns as set of relations). The
streaming updates are mapped to each of these relations and updated matches are generated
by extending or joining the edge tables. This requires storing the edges that correspond to the
relations and performing isomorphism checks to match the input pattern. [13] determines the
neighborhood affected by streaming edge updates and explores its subgraphs to find updated
matches, hence ending up exploring unnecessary subgraphs that are not directly impacted by
the streaming updates. [8] stores matches for subpatterns in an SJ-Tree and joins them based
on updates to obtain matches for the input pattern. [15] is a fast pattern detection solution
built on top of vertex-centric graph processing frameworks to monitor pattern occurrences
in evolving graph snapshots. TurboFlux [19] is a streaming isomorphism solution that builds
a data centric graph (DCG) to track candidate data vertices for each pattern vertex. As
updates arrive, TurboFlux uses the DCG to determine updated matches. Both TurboFlux
and [15] store intermediate results and generate unnecessary matches which must be pruned
afterwards. Protean, on the other hand, does not maintain candidate subgraphs and directly

explores matches affected by graph updates.

3.2 Motif Counting

Myriad research has been conducted on maintaining approximate motif counts in a streaming
graph [5, 21, 36, 33]. These works use different sampling and probabilistic methods to estimate

motif statistics, instead of computing exact counts. [5] provides a general unbiased estimator.
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[21] and [33] propose fast approximate frequency estimation algorithms for motif counting
on temporal graphs. [36] randomly samples streaming edges to estimate motif counts. In
contrast, Protean allows efficiently maintaining exact motif counts using its fast differential

matching engine.

3.3 Frequent Subgraph Mining

[3] estimates k-size frequent subgraphs in evolving graphs through reservoir sampling. It
samples subgraphs in the neighbourhood of an edge update to estimate which patterns are
frequent. IncGM+ [1] is an incremental frequent subgraph mining system on streaming
graphs. It maintains MNI tables for all encountered patterns, as well as a fringe set of matches
for patterns which are on the cusp of becoming frequent or infrequent due to an update.
For each updated edge, IncGM+ finds matches containing it similarly to [13] and modifies
the fringe set and MNI tables as necessary. This involves expensive subgraph isomorphism
checks and intermediate results. Protean avoids per-subgraph checks and intermediate results

using its pattern-aware matching engines to perform FSM exactly and efficiently.

3.4 Static Graph Mining Systems

Many systems for graph mining on static graphs have been recently proposed [29, 11,
34, 6, 24, 18, 39]. Pattern-based systems like [18] and [24] directly match subgraphs of
interest represented by input patterns. Protean applies similar techniques to graph mining
in the streaming setting, which carries additional challenges not present in static graph
mining. Exploration based graph mining systems [29, 11, 34, 6, 39] instead iteratively
extend subgraphs and prune those which are deemed uninteresting. This leads to redundant
computation and large memory overheads for intermediate results, which Protean avoids by

using pattern-aware matching engines.

3.5 Dynamic Graph Processing Systems

Several works propose efficient graph processing systems for dynamic graphs [23, 32, 10, 22,
31]. These systems focus on graph processing workloads that iteratively propagate values
within the graph, which involve fundamentally different kind of computation compared to

graph mining workloads.
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Chapter 4

Programming Model

Protean enables users to easily express streaming applications as static pattern programs. The
user specifies patterns and aggregations declaratively, and implements simple callbacks to
control application flow without worrying about the streaming nature of the underlying graph.
The system then automatically translates static computations into efficient streaming pattern
matching tasks. Protean utilizes aggregations that form abelian groups and incrementally
adjusts them based on differences in matches resulting due to graph updates.

Figures 4.1, 4.2, and 4.3 show sample programs for a variety of graph mining use cases.
The functions marked in blue are Protean’s API, and the user-defined callbacks are marked

in orange.

4.1 Pattern Selection

Protean builds over the pattern API developed in [18] to allow dynamic pattern generation
during execution. Figures 4.1, 4.2 and 4.3 show examples of pattern mining applications
expressed on Protean. The extendEdge () and extendVertex() methods take a predicate
as input and instruct the system to extend a pattern if it satisfies the predicate. This allows
easy expression of pattern exploration, such as in the FSM program shown by Figure 4.2. In
this example the runtime combines the predicates passed to filter() and extendEdge ()

to only extend frequent patterns.

4.2 Aggregation

User-defined computations in Protean begin with matches. Protean invokes a user callback
function on every match. Often, this function will transform a match and map the result
to an aggregation value. In Figure 4.3, mapLCC() maps each vertex in a match to a pair
representing the proportion of triangles to triplets.

The aggregation is defined implicitly by the type of the aggregation value. Protean uses

the addition operator to combine aggregation values, and applications will fail to compile if
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DataGraph G = loadDataGraph("input.graph");
UpdateStream U = connectStream("updates.pipe");
Set<Pattern> P = allVertexInducedPatterns (SIZE);

ConcurrentQueue <Map<Pattern, Int>> *result_stream =
Protean.count (P, G, U).liveResults();

while (Protean.running() || !result_stream->empty()) {
// write live motif counts to disk
// without interrupting pattern matching
Map<Pattern, Int> counts = result_stream->dequeue();
log(counts);

Figure 4.1: Non-blocking motif-counting program with handle to live results.

Void mapSupport(Match m) {
map (m.pattern, Domain(m));
}
Bool isFrequent(Pattern p) {
Domain d = readAggregation(p);
return d.support() >= THRESHOLD;
}
Bool shouldExtend (Pattern p) {
return p.numEdges() < SIZE;
}
Void displayResults (Map<Pattern, Domain> result){
for (auto [pattern, domain] : result)
cout << pattern << " " << domain.support() << endl;

}

DataGraph G = loadDataGraph("input.graph");
UpdateStream U = connectStream("updates.pipe", t=1s);
Set<Pattern> P = allEdgeInducedPatterns (2);

Map<Pattern, Domain> final_results =
Protean.match(P, G, U, mapSupport)
.filter (isFrequent)
.extendEdge (shouldExtend)
.forEachUpdateResult (displayResults);

Figure 4.2: Blocking Frequent Subgraph Mining program.

the provided aggregation value type does not have such an operator. In a dynamic setting,
edge updates can cause previously found matches to disappear. This is handled using an
operator which subtracts one aggregation value from another. While simple types like integers
are easily added and subtracted, more complicated data types, such as MNI tables [4] used in
FSM, can be modified to include a subtraction operator with little user effort. For instance,

our MNI table implementation required only 9 lines of code for its subtraction operator.

4.3 Output Streams

Protean outputs streams of differential results as well as complete results. These contain
the change in aggregation results due to the latest update batch, and the latest combined

aggregation result, respectively.
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UpdateStream U connectStream("updates.pipe", n=1000) ;

DataGraph G = loadDataGraph("input.graph");
Set<Pattern> P = {generateClique(3), generateStar (3)};

Void mapLCC(Match m) {

Ratio rt = (1,0);
Ratio rw = (0,1);
m.pattern == P[0] 7

(map(m[0], rt), map(m[1], rt), map(m[2], rt))
(map (centerVertex(m), rw));

}
Void displayResults(Map<Vertex, Ratio> result) {
for (auto [v, ratio] : result) {
Int triangles = ratiol[0];
Int wedges = ratiol[1];
cout<< v << ": " << triangles / wedges << endl;
}
}
Map<Vertex, Ratio> final_results = Protean.match(P, G, U, mapLCC)

.forEachUpdate (displayResults);

Figure 4.3: Blocking Local Clustering Coefficient program.

The output streams can be accessed in two ways. Protean can operate in synchronous,
blocking mode using the forEachUpdateResult() and forEachUpdateDelta() methods,
which accept a callback function as input. In this mode, the callback is applied to the
results after every update batch, and the next update batch is not processed until the
callback returns. Alternatively, invoking the liveResults() or 1liveDeltas() methods on
an application instructs Protean to operate asynchronously in the background, while control
returns to the user program. In this mode, a handle to the output stream is returned, which
allows users to access the queue of complete or differential aggregation results. Figure 4.1
shows an asynchronous motif-counting program where the user can write data to disk without

blocking Protean’s pattern matching progress.

4.4 Granularity of Update Batch

Applications like motif counting and subgraph matching are sensitive to graph updates as
their results change with every single graph update. Other applications like FSM are less
sensitive to single updates as patterns often do not suddenly become frequent or infrequent
based on a single graph update. Such applications may require the analysis to be triggered
after multiple updates are applied to the graph. Protean can refresh results after every
update (for live results) as well as after multiple updates, depending on the application
needs. Updates can be grouped into fixed size batches (e.g., batch of 1000 updates shown
in Figure 4.3), or based on time intervals (e.g., splitting the update stream into 1 second

intervals shown in Figure 4.2).
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Chapter 5

Generating Exploration Plans

Protean uses both a static engine operating on graph snapshots and a novel differential
matching engine for computing changes in the matching results for an update. In this
chapter, we discuss how these engines analyze patterns to generate efficient exploration plans.

Section 6 will show how the processing model invokes these engines based on graph updates.

5.1 Matching on Static Graph Snapshot

Protean uses Peregrine’s core pattern matching engine [18] as the snapshot matching engine.
The input patterns are analyzed to construct matching plans, then the snapshot is traversed
according to these plans to generate matches. We briefly explain the relevant analysis and
how it enables efficient pattern matching.

First, we apply [16] to obtain a partial ordering on symmetric pattern vertices to prune
automorphisms and break symmetries. This is performed as follows. Vertices of the pattern
are labeled with unique ids and all automorphisms of the pattern are listed out. For a given
pattern p, this involves finding all orientations of p that are isomorphic to p. Then, partial
orders are built by iterating over the vertices in the order of their ids. For each pair of
ids, they are added to the partial orders set if ordering them eliminates automorphisms.
The partial orders are built repetitively until there are no more automorphisms left in the
pattern. During the matching phase, these partial orders are enforced on the vertex ids of
matches that map to the pattern.

After computing the partial orders, the pattern core and matching orders are identified
according to the ordering. A pattern core is given by a minimum connected vertex cover of
the pattern, e.g. the edge (u2,u4) in the pattern in Figure 5.1. Matching orders are total
orderings of core vertices which satisfy the pattern’s partial ordering. The example pattern’s
partial ordering permits only one matching order: {ug,uy}.

Finally, data vertices are iteratively mapped according to the matching orders. In the
example, a data vertex v is mapped to ue, then each neighbour of v with greater ID is

mapped to uy, yielding matches for the core. Candidates for the remaining pattern vertices
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are obtained through set operations on the adjacency lists of the matched vertices. Hence,
the vertices matched to us and uy yield the candidates for u; and us, which produce matches

for the entire pattern once mapped.

5.2 Differential Matching upon Graph Update

As the data graph’s structure is updated, previously matched subgraphs may disappear
as an edge is deleted, whereas new matches can arise when an edge is added. If the input
pattern is vertex-induced, both events can occur in a single update. For example, an edge
addition can cause a set of vertices to induce a different pattern, invalidating a match, while
another set of vertices now induces the input pattern, leading to a new match. We call
the new matching subgraphs created by an update positive matches, and the previously
matching subgraphs which are invalidated are called negative matches.

To maintain fresh results after graph updates, our differential pattern matching engine
efficiently computes both positive and negative matches. The engine analyzes the impact
of graph updates on the input patterns to generate efficient exploration plans that directly
match affected subgraphs, without traversing unrelated areas of the data graph.

The key insight in our differential pattern matching engine is to begin matching from
the updated data edge, instead of a data vertex. This guarantees that the resulting matches
will contain the updated data edge, and hence, no further checks will be required. In order
to generate all matches containing the updated edge, we need to map the updated data edge
to every compatible pattern edge. This yields matching subtasks which together generate
exactly the subgraphs that arise due to the edge update.

5.2.1 Mapping Updated Edge to Pattern Edges

We begin with preliminary pattern analysis as in the previous section, computing the pattern
core and matching orders. Each subtask is a partial match mapping the updated edge to a

different pattern edge with the same labels. This mapping must also satisfy partial orders. If
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the endpoints of an edge are not ordered, then the updated edge can be mapped in both
directions.

Consider the example pattern in Figure 5.1. Suppose (v, v2) is the updated data edge,
with v1 < v9. Then (v1, v2) can be mapped to pattern edge (uq,us) in two different ways since
there is no partial ordering between u; and us: u; — v, us — vo as well as ug — v1, u; — vo.
On the other hand, (v1,v2) can only be mapped to (ug,u4) in one way which preserves the
partial ordering: us — vy, us — vo. Repeating this for every pattern edge yields 9 subtasks:
each of the four unordered edges contribute two subtasks, and the single ordered edge of the

pattern core contributes one.

5.2.2 Mapping Updated Edge to Anti-Edges

A recent work [18] introduces anti-edges and anti-vertices as concrete abstractions in patterns
to represent absence of edges and vertices. An anti-edge enforces absence of an edge in
the data graph between the pairs of vertices, whereas an anti-vertex enforces absence of
a common neighbor between vertices. Our differential pattern matching engine natively
handles anti-edges and anti-vertices in the pattern.

For patterns containing anti-edges, we map the updated edge to anti-edges in the same
way. The matches for these subtasks are negative matches if the update adds an edge, and
positive matches if the update removes an edge. This is because when we add an edge to
the data graph, all the positive matches that contain this edge, mapped to anti-edge cannot
satisfy anti-edge constraint any more. Similarly, all the matches that were not matched due
to presence of an anti-edge will become positive matches when the edge mapped to anti-edge
is deleted.

Since we do not consider anti-vertices while computing pattern-cores, the pattern-core
will not contain anti-vertices. Hence, mapping the updated edge to anti-edge containing
anti-vertex can lead to the case where the updated edge is mapped to pattern edge whose
end points are not part of the pattern core. Since we start matching from pattern core, this
would result in exhaustive matching from scratch as the exploration does not start from
updated edge. To avoid this, we extend the pattern core to include the real pattern vertex
of the anti-edge whenever the updated edge is mapped to a pattern edge whose end points

are not part of pattern core. Note that an anti-edge can have at most one anti-vertex.

5.2.3 Revising Matching Orders for Mappings

To complete the subtasks in Figure 5.1, we must follow the matching orders of the pattern,
skipping the vertices that have already been mapped. There are two cases: either the updated
edge has been mapped to an edge within the pattern core, or to an edge outside of it.

(A) Updated Edge Mapped to Core Edge. Here, we simply revise the matching orders
to begin with the updated edge, possibly by inverting its ordering. After the core is matched

there is no change to how the remaining vertices are matched. Note that swapping vertices
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in a matching order does not affect correctness: in our example pattern matching us then wuy
is equivalent to matching w4 then us.
(B) Updated Edge Mapped to Non-Core Edge. Here, one endpoint of the updated
edge must still fall within the pattern core, since it is a vertex cover. Again, we revise the
matching orders. However, the endpoint of the updated edge outside of the pattern core
may have other edges into the pattern core, whose existence in the matched subgraph must
be checked.

For our example pattern when updated edge (v1,v2) is mapped to (u1,us2), after the
pattern core has been matched we can match ug as normal, which gives us a mapping for all
vertices. But we must ensure the edge (uj,u4) is satisfied by checking that v; is connected

to the vertex matching wuy.

5.2.4 Discussion

The above subtasks in our differential matching engine efficiently compute exactly the
subgraphs containing the updated edge, while avoiding automorphisms thanks to pattern-
aware techniques. As they are independent of each other, they can be executed in parallel.

By computing the impact of graph structure updates at an edge-level, each differential
matching task focuses on matching for a single edge update only. Hence, separate differential
pattern matching tasks resulting from different edge updates can potentially impact each
other, if those edge updates are within the common neighborhood. In such a case, if the
corresponding differential pattern matching tasks are performed concurrently, they can end
up generating duplicate matches. For instance, consider a data graph consisting of a single
edge (v1,v2). If two edges (v1,v3) and (ve,v3) are simultaneously added to the data graph,
and two differential matching tasks ¢1, to concurrently try to match triangles, they will both
generate the same match {vy,v2,v3}. t; may begin matching from (vi,vs), and to from
(v2,v3), but as both tasks can see both updates, they will both succeed in matching the
same triangle. To avoid such redundant matching, Protean’s processing model enforces an
ordering on updates when invoking the differential matching tasks concurrently, as explained
in Chapter 6.
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Chapter 6

Processing Model

Protean adopts an update-driven processing model containing two types of pattern matching

tasks. A differential task serves to compute the difference in the aggregation results caused

by an update. A snapshot task computes the aggregation on the latest snapshot of the data
graph.

6.1 Multiversioning against Automorphisms

Each differential task operates on a single graph update. With multiple updates present
in a single update batch, concurrently invoking differential tasks on each update can lead
to automorphisms (as discussed in Section 5.2.4). To avoid exploring automorphisms, we
enforce a strict ordering on updates within the batch and develop a multiversioned graph so
that the differential task for a given update m does not see updates that are ordered after
m. By doing so, the differential task finds only matches that are directly impacted by m,
including ones that are also affected by other updates that are ordered before m. At the
same time, differential tasks corresponding to those other updates never find these same
matches since m is not visible to them. In other words, a match is found only by the latest
update that directly impacts that match and hence, automorphisms are never explored.
Our multiversioned graph uses the adjacency list data structure where entries within
each adjacency list are ordered based on the vertex ids to enable fast list intersection and
difference operations. Figure 6.1 shows how the multiversioned graph compactly holds the
graph structure while retaining the ordering between individual edge updates within an
update batch. Each vertex maintains a version table where the entries point to a ‘version’ of
its adjacency list along with a token that identifies the ordering of that version. Initially, all
the version tables contain only a single entry that points to the adjacency lists from the
graph snapshot before any update is applied. Then, the updates within the batch are applied
in order by adding entries to the respective version table. Specifically for update <=, (u, v)>,
the latest adjacency list versions for vertex u and vertex v are copied to generate their new

versions, and these new versions are modified (i.e., adding/removing v and u from u’s and
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Figure 6.1: Multiversioned graph when processing two simultaneous updates. The
<+, (v2,v5)> gets ordered before <—, (v1,v3)>.

v’s adjacency list). Finally, the new versions are appended to the respective table along with
the order number of the update. As shown in Figure 6.1, v4 maintains one version of its
adjacency list, while the other vertices end up with 2 versions based on the updates.
When finding matches, the matching task for edge update m uses the latest versions
of adjacency lists whose token values are at most the order number of m, hence ensuring
unique matches. Finally after all the matching tasks for the update batch complete, the
latest versions of the adjacency lists are merged back to the base version of the graph and the
intermediate versions are freed up. For batches with large number of updates, the updates
are micro-batched so that only a constant number of versions are maintained at a given
time (to limit the memory consumption) with the latest versions in the micro-batches being

merged back to the base snapshot.
6.2 Dynamic Subgraph Exploration

To support dynamic exploration of subgraphs (common across various use cases like FSM), we
develop a unified processing model that tracks the dynamic cross-pattern dependencies and
the aggregation mappings to compute the necessary differential and snapshot aggregations.
In the remainder of this section, we explain how Protean balances computation for differential

and snapshot tasks using cross-pattern dependencies.

6.2.1 P-DAG: Pattern-Dependency DAG

Protean tracks cross-pattern dependencies through a directed acyclic graph to correctly invoke
differential and snapshot tasks. We call this graph of dependencies the ‘Pattern-Dependency
DAG’ (P-DAG for short). Each node in the P-DAG represents a pattern, and the edges
represent the dependencies between different patterns. The P-DAG is acyclic as applications
often generate new dependent pattern tasks through extension of patterns, so there is an

edge from pattern p, to pp in the P-DAG only if p, is a subpattern of p.
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Void runApplication(Application a, UpdateBatch U) {
a.pDAG.markActive (a.affectedInputPatterns(U));
a.dataGraph.applyUpdates (U);

for (Int level in a.pDAG) {
Set<Pattern> patterns = a.pDAG.at(level);
parallel for (Pattern p in patterns) {
if (a.pDAG.isActive(p) and a.pDAG.isIncrementalTask(p)) {
for (Update e in U) {
deltaMatch(a, e, a.dataGraph[el, p, a.matchCallback);
}
if (a.extensionCallback(p)) {
if (a.filterCallback(p)) {
a.pDAG.addDependencies(p, extend(p));
}
a.pDAG.markActive (a.pDAG.dependents (p));
}
}
}

for (Pattern p in patterms) {
if (a.pDAG.isActive(p) and a.pDAG.isSnapshotTask(p)) {
parallelSnapshotMatch(a, a.dataGraph, p, a.matchCallback);
if (a.extensionCallback(p)) {
if (a.filterCallback(p)) {
a.pDAG.addDependencies (p, extend(p));
}
a.pDAG.markActive (a.pDAG.dependents (p));
}
}
}
}

for (key, val in a.completeResults) {
if (a.filterCallback(key)) {
a.resultStream.enqueue (key, val);
}
}
}

Figure 6.2: Protean’s Processing Model.

As shown in Figure 6.2, the P-DAG is traversed level by level starting with the smallest
patterns. At each level, the patterns that are affected by a given update are explored using
matching tasks. Unlabeled patterns are affected by all updates, but labeled patterns are only
affected if they contain an edge with the same labels as the updated edge. After a pattern
task is completed, edges to newly generated patterns are added to the P-DAG if the pattern
passes the application extension and filter callbacks. These new patterns may have multiple
incoming dependencies, as different patterns can extend to the same pattern; nevertheless,
the level-by-level traversal of P-DAG ensures that only a single matching task for the affected
pattern is generated to avoid redundant tasks due to different dependency edges.

Patterns are explored using either the differential task or the snapshot task, depending

on whether their aggregation results are available from previous explorations.
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Sample FSM Execution:

In FSM, the initial pattern set consists of edges, and the application contains an edge-
extension clause. Hence, the P-DAG will be traversed starting at the pattern with the same
labels as the updated edge. If the explored pattern is frequent (identified using the filter
callback) and smaller than the maximum size (identified using the extension callback), its
dependent pattern tasks are invoked to explore results on the extensions. If the dependent
pattern nodes do not exist in the P-DAG, they are first added to the P-DAG to reflect the new
cross-pattern dependency, and are then explored in the next level using snapshot tasks. For
dependent patterns that are already present in P-DAG, exploration happens using differential

tasks. This continues until every level of the P-DAG is traversed.
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Figure 6.3: P-DAG example.

K Snapshot Matching \

Dlﬁerentlal Pattern Matching

Figure 6.3 shows a 3-FSM example where P-DAG changes based on the edge update.
For the initial data graph, P-DAG only contains six patterns shown in Figure 6.3b. When
edge (u1,us3) gets added, new patterns are discovered that result into new pattern nodes
in P-DAG (shown in Figure 6.3c). These new pattern nodes are matched using snapshot

matching while the old ones are matched using differential pattern matching.

6.2.2 Parallelization Strategies

The computational requirements of differential tasks are significantly lower than the snapshot
tasks since the former only explores matches resulting from an update. We observe that the
differential matching tasks often finish in just 1-10ms whereas the snapshot matching tasks
take seconds to generate results for the entire snapshot. To reduce the latencies of matching
tasks, Protean utilizes different parallelization strategies for the two types of tasks.
Specifically, Protean invokes multiple differential tasks at the same P-DAG level in parallel.
The snapshot tasks, on the other hand, are invoked serially one after the other and each
individual snapshot task is executed in vertex-parallel manner, hence dedicating all available
cores to a single snapshot task at a time. This difference in parallelization strategy is observed
in Figure 6.2: the differential tasks are invoked inside a parallel for loop whereas snapshot

tasks are invoked in a sequential for loop.
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6.2.3 Aggregation Maintenance

Protean maintains the set of aggregation results for each pattern task in the P-DAG so
that differential tasks incrementally adjust the aggregation results. The commutativity,
associativity and invertibility properties of the aggregation are used to incrementally account
for positive matches and discount the negative matches. Even though exploration of certain
patterns within the P-DAG can become unnecessary over time (e.g. a pattern becoming
infrequent deeming its extensions unnecessary), the differential tasks are invoked to keep
the aggregation results up to date with the incoming updates in order to avoid expensive

snapshot tasks in future.

Garbage Collection:

As new patterns are added to P-DAG over time, the aggregation results corresponding to
those new patterns need to be maintained in memory as well. To make room for such
new aggregation results, we develop a lightweight garbage collector that carefully frees up
aggregation results that are no longer needed by the application based on the current state
of the data graph. The candidates for freeing are identified using: (a) aggregation results
that fail the application filter; and, (b) patterns in P-DAG that are no longer necessary to
be explored. Once the aggregation results are freed up, the corresponding pattern nodes are
removed from the P-DAG so that exploration of those patterns for future updates happens
using snapshot matching tasks. To maximize the availability of aggregation results for future
updates, the garbage collector is invoked only when the available memory capacity becomes

insufficient to hold the aggregation results for the new patterns in P-DAG.
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Chapter 7

Evaluation

We evaluate the performance of Protean on common graph mining benchmarks, and compare
the results with state-of-the-art purpose-built streaming systems: IncGM+ [1] for Frequent
Subgraph Mining and TurboFlux [19] for pattern matching.

7.1 Experimental Setup
7.1.1 System

We conducted all experiments on a c5.9xlarge Amazon EC2 instance which is equipped
with an Intel Xeon Platinum 8124M CPU, comprising 18 physical cores (36 logical cores)
and 68GB RAM.

7.1.2 Datasets

Table 7.1 lists the data graphs used in our evaluation. Patents (PA) is a patent citation
graph where each patent is labeled with its grant year. Orkut (OK) and Friendster (FR) are
unlabeled social network graphs where edges represent friendships between users. Youtube
contains videos posted from February 2007 to July 2008 where edges represent relationship
between videos and labels are generated by combining the video’s rating and length.

The graph updates that are streamed in are an even mix of edge additions and deletions.

In each experiment, we loaded 75% of the edges, and the remaining edges were treated as

Max. Avg.

e V@I IBG LG Dl e

(PA) Patents [17] 2.7M 13M 37 789 10
(YT) Youtube [7] 7.8M  44.5M 80 4039 11
(OK) Orkut [38] 3M  117TM 33133 76
(FR) Friendster [38] 65M 1.8B — 5214 55

Table 7.1: Real-world graphs used in evaluation.
'—’ indicates unlabeled graph.
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Figure 7.1: Patterns used in evaluation.

edge additions that were streamed in. Edges to be deleted were selected from the loaded

graph.

7.1.3 Applications

We evaluated Protean on a wide array of applications: counting motifs with 3, 4, and 5
vertices; Frequent Subgraph Mining (FSM) with patterns of 3 and 4 edges on labeled datasets

using various supports; and matching the patterns shown in Figure 7.1.

7.1.4 Baseline Implementation

To evaluate the efficacy of our differential pattern matching engine for different graph mining
applications, we implemented a parallel baseline using the straw-man differential matcher
described in Section 1. The baseline primarily replaces the differential pattern matching
engine in Protean with the bounded region-based subgraph exploration; we call this baseline
system BRBL.

While matching a pattern with n vertices, BRBL performs DFS to gather the vertices
within an (n—1)-hop neighborhood of each updated edge (i.e. identifying the abstract
subgraph that contains potential matches affected by the edge update). Then, BRBL performs
static pattern matching in the abstract subgraph using the static pattern matching engine
from Protean. Since BRBL ends up finding matches from the abstract subgraph that do
not contain the updated edge as well, it simply discards those matches to maintain correct

results corresponding to the updated edge.

7.2 Performance

To study the effectiveness of Protean in generating continuous results from streaming graph,
we measure the latency to process a single update, i.e. time taken to generate results for
the specific graph mining applications based on the single update. Later in Section 7.3, we
will measure the latency when multiple graph updates are applied simultaneously to be

processed in batches.

7.2.1 Pattern Matching

Figure 7.2 shows the median and 99th percentile single update latencies for pattern matching

executions on Protean. As we can see, Protean is efficient in generating results based on the
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Figure 7.2: Pattern matching latencies for Protean.

App G | Protean BRBL TurboFlux
Match p1  PA 0.02 5.66 0.27
YT 0.03 23.70 0.27

OK 0.05 122126 92.96

FR 0.03 X X

Match p2  PA 0.37 1522.83 1.91
YT 0.57 51917.70 2.93

OK 75.69 X X

FR 11.36 X X

Match ps  PA 0.09 587.60 3.63
YT 0.16 9165.75 3.56

OK 2.46 X 173544.35

FR 0.70 X X

Match ps  PA 0.07 90.78 0.47
YT 0.12 1960.53 0.70

OK 0.88 X 3359.90

FR 0.38 X X

Match ps  PA 0.06 76.32 0.49
YT 0.11 1263.99 0.73

OK 0.60 X 2182.98

FR 0.30 X X

Match ps  PA 0.10 11043.80 1.82
YT 0.22 253855 3.87

OK 5.44 X X

FR 1.04 X X

Table 7.2: Pattern matching latencies (in milli-seconds) for Protean, TurboFlux [19] and
BRBL.
‘%’ indicates the execution did not finish within 5 minutes.

update; the median latencies are less than a millisecond for the smaller Patents graph, and
they rise to a tens of milliseconds for the Orkut graph which is significantly denser. The 99th
percentile latencies are closer to the median for most patterns that are relatively easy to
explore. However, Protean does experience visible variation in latencies for expensive patterns
such as po and pg. While ps has few edges, its sparseness means there are many matches for
it in dense regions of the graph. On the other hand, pg is simply a very large pattern with
only one partial ordering, which ends up generating 17 relatively difficult subtasks in our
differential pattern matching engine. As patterns become expensive, the differences coming
from where each update is applied (e.g., dense region or sparse region of the graph) affect
the final latencies since the amount of work to be performed is non-trivially impacted by

differences from dense regions.

26



PA YT OK FR

30 A 80 A 60K A 300
E20 60 40K 200 A
2 40
=
g 10 20 20K 100
_1

A Y A A 'y vy A vy
0 @ n | 0 -« ‘T‘ | 0 < -« | 0 T T |
3-MC 4-MC 5-MC 3-MC 4-MC 5-MC 3-MC 4-MC 5-MC 3-MC 4-MC 5-MC
A P99 Median

Figure 7.3: motif counting latencies for Protean.

App G |Protean  BRBL

PA 0.02 1.08
YT 0.02 3.55
OK 0.02 5949.60
FR 0.02 101698.3

PA 0.10 95.03
YT 0.13 11440.45

3M

1M

OK 0.81 X
FR 0.44 X
PA| 16.20 X
5M YT| 39.70 X
OK|111.70 X
FR| 30.41 X

Table 7.3: Motif counting latencies (in milli-seconds) for Protean and BRBL.
"%’ indicates the execution did not finish within 5 minutes.

Table 7.2 compares the median latencies with the BRBL baseline and TurboFlux [19].
Protean outperforms TurboFlux by 5-70146x, and BRBL by up to six orders of magnitude.
BRBL suffers severe performance degradation when operating on dense graphs, as it naively
explores the neighborhood of updates and filters unnecessary matches. Similarly, TurboFlux
does not scale well on Orkut graph since its data-centric approach requires maintaining
expensive intermediate results. Protean’s differential matching engine achieves superior
performance as it matches only the subgraphs affected by an update, without unnecessary

exploration or intermediate results.

7.2.2 Motif Counting

Figure 7.3 shows the median and 99th percentile single update latencies for 3-, 4-, and
5-motif counting on Protean. The differential tasks handle few small patterns in counting
3-motifs and 4-motifs very easily, often in less than a millisecond. Latencies for counting
5-motifs are relatively higher because there are 21 pattern matching tasks, each of which
generates many differential matching subtasks based on the edge mappings. Furthermore,
size 5 patterns have more complex topologies and lead to more matches, and hence are more

expensive.
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Table 7.3 compares median latencies with the BRBL baseline. Protean is at least an order
of magnitude faster than BRBL with up to five orders of magnitude faster on cases where
BRBL finishes running in a reasonable amount of time. BRBL failed to process updates in
reasonable time as the size of patterns increases, since the abstract subgraph to be explored
enlarges, especially when the edge update is near high-degree vertices. Protean fares better in
this regard because its differential engine performs the same number of subtasks per update
per pattern, regardless of the edge update’s neighborhood. For example, BRBL suffered a
3222 x increase to latency between counting 3-motifs and 4-motifs on the YouTube graph,

whereas Protean’s performance differed by only 11ms.

7.2.3 Frequent Subgraph Mining

Figure 7.4 shows single update latencies for 3- and 4-FSM by Protean on the Patents and
YouTube graphs across different support thresholds. Note that lower support thresholds
increase the number of frequent patterns and thus increase the workload. To evaluate the
effectiveness of the differential matching engine, the graph updates in this experiment were
applied such that they do not lead to any static matching tasks. Later we perform another
experiment to show the results for FSM when snapshot tasks are invoked.

On the Patents graph, 3-FSM and 4-FSM have similar latencies because there are few
frequent patterns with 4 edges. Furthermore, 4-edge patterns are not much more difficult to
match due to the sparseness of the Patents graph and the selective power of its labels. On
the larger YouTube graph however, increasing pattern size does lead to significant increases
in latency. YouTube also has denser regions, which lead to more variations in performance.

Table 7.4 compares median FSM latencies to BRBL and IncGM+ [1]. Protean is up to
171.6x and 223.8x faster than BRBL and IncGM+, respectively, on workloads they are
able to execute. IncGM+ was unable to process any updates to YouTube graph within 3

hours, or updates to PA with support 20K, due to its pattern-unaware exploration approach

PA YT
3-FSM 4-FSM 3-FSM 4-FSM
60 60 15 15
—~ s L
240 A a0 = 10 10 A
& A = &
= 0,
g /\ . o\ . AR
520 20 X % X X 5 O
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Figure 7.4: FSM latencies for Protean across different support thresholds (on x-axis).
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G Support | Protean  BRBL  IncGM+

20K 43.01 23533 x
21K 33.46 19525 7017
SFSMPA 9o 23.11  156.02 4982
23K 18.97 14563 4246
180K 4.1 70355 x
190K 3.97  695.62 X
SFSMYT 550K 3.71  619.06 X
210K 3.5 57354 X
20K 44.6  242.63 x
21K 34.42 19546 X
4FSMPA 5o 2250 155.93 X
23K 19.03 143,54 X
190K 10.61  691.54 x
AFSM YT 200K 8.47 613.16 X
210K 6.38  569.60 X

Table 7.4: FSM latencies (in seconds) for Protean, IncGM+ [1] and BRBL.
x indicates the execution did not finish within 15 minutes.

which necessitates numerous expensive isomorphism checks as well as large intermediate
state. Even BRBL outperforms IncGM+, since it is pattern-based and hence does not require

either isomorphism checks nor intermediate state.

Updates Resulting in Snapshot Matching Tasks:

To assess the performance impact of snapshot tasks and P-DAG traversal, we profiled the
3-FSM execution on the YouTube graph with support threshold 210K. Figure 7.5 shows the
performance breakdown for a period of execution containing 36 updates. Snapshot tasks are
generated whenever the update leads to exploring new patterns (because their subpattern
became frequent). We observe that snapshot tasks can be over 2x more expensive than
differential tasks, leading to latency spikes in execution. The spikes were associated with
newly discovered patterns by that update, numbered above the corresponding bar. As each
new pattern generates a snapshot task, execution time increases as a function of the new

pattern set.

20 M Differential Matching Bl P-DAG Management Snapshot Matching

—_
(9,1

48

212122 2323

5
NLLEELOELLLCUL R LU L P LTI T
0 3 6 9 12 15 18 21 24 27 30 33 36

Incremental Updates Over Time

Latency (s)
=

Figure 7.5: 3-FSM latencies (in seconds) for Protean on YouTube graph with 210K support.
Numbers near the bars indicate the new patterns explored with snapshot matching.
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Figure 7.6: Local Clustering Coefficient latencies for Protean.

While P-DAG management is relatively inexpensive, growing and traversing the P-DAG
on certain updates consumes about a second. For certain updates where the labels of an
edge update affect a pattern hitherto unexplored, Protean generates a large number of
candidate patterns (depending on edge mappings) and traverses the P-DAG to determine
which to match. Throughout the execution of the 36 updates, the P-DAG contained over
10,000 patterns that were searched for each update in order to identify 158 new patterns.

7.2.4 Local Clustering Coeffiecient

Figure 7.6 shows single update latencies for local clustering coefficient on Protean. Since we
compute changes in the frequency of triangles and wedges for the updated vertices only, we
were able to process the updates in less than half a millisecond for most of the updates on

all the graphs.

7.3 Sensitivity Analysis

We study the sensitivity of Protean to varying update batch sizes, varying number of

concurrent tasks, and impact of micro-batching for multiversioned graph management.

7.3.1 Varying Update Batch Size

Figure 7.7a-b shows the effect of varying update batch sizes on execution times for several
applications on the Patents graph. Large batch sizes do not significantly affect latencies of
FSM, as Protean traverses the P-DAG to match only necessary patterns and labeled patterns
are extremely fast to match. Furthermore, as FSM deals with many different pattern tasks,
their subtasks are executed in parallel. For pattern matching, we show the latencies for
P1, P4, and pg to cover a range of difficulty: p; is relatively easy and pg is relatively hard to

match compared to ps. Here, increasing batch sizes leads to higher latency, especially for
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Figure 7.7: Sensitivity Analysis: (a) shows 3-FSM latencies for varying update batch sizes
with support thresholds 20K to 23K; (b) shows motif counting and pattern matching
latencies for varying update batch sizes; (c¢) shows the task waiting times for matching p;
with 1K, 10K and 100K updates; (d) shows memory consumption and update commit time
on the multiversioned graph with micro-batching (MB) and without micro-batching
(No-MB).

the more expensive workloads, since the individual updates within the batch are processed
as separate tasks, as explained in Section 6.1.

7.3.2 Varying Number of Concurrent Matching Tasks

To study the impact of concurrent execution on task waiting times, we fixed the update
stream to contain 1K, 10K, and 100K updates and matched p; on the Patents graph with
varying number of concurrent matching tasks.

As shown in Figure 7.7¢c, the task waiting time decreases as the number of concurrent
matching tasks increase, since Protean is able to process more updates concurrently. This
translates to improved end-to-end performance as individual updates correspond to indepen-
dent tasks that can be performed in parallel. The dispatch latencies for 100K updates are
higher and for 1K updates are lower than 10K updates, mainly because tasks contained in

10K updates have to wait for more number of tasks to finish before they are dispatched.

7.3.3 Impact of Micro-Batching for Multiversioning

We profiled the memory usage and the time taken to apply updates in the multiversioned
graph with varying update batch sizes, as well as with the micro-batching optimization
toggled with micro-batch size of 1000. Figure 7.7d shows the results. We observe that
micro-batching succeeds in keeping memory usage of the multiversioned graph low regardless
of batch sizes. Furthermore, micro-batching results in lower update times with large update

batch sizes as lesser number of version pointers are copied upon updates.
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Chapter 8

Conclusions & Future Directions

This thesis presents Protean, a general-purpose system for low-latency continuous graph
mining on streaming graphs. Protean also eliminates unnecessary explorations using a novel
differential pattern matching engine that maps the individual updates on to the patterns
of interest and constructs an efficient pattern exploration plan to find matches affected by
the corresponding updates. Moreover, Protean processes the streaming updates concurrently
without matching automorphisms by enforcing an ordering on streaming updates using
multiversioning strategy.

In addition to applications like motif counting where patterns of interest are know
apriori, Protean also efficiently handles applications like frequent subgraph mining that
dynamically determine the patterns to be explored at runtime. Protean tracks the cross-
pattern dependencies in form of directed acyclic graph called P-DAG, and upon graph
update it uses P-DAG to correctly invoke either differential pattern matching tasks or
snapshot matching tasks for each pattern. To maximize performance, Protean uses different
parallelization strategies for the two different tasks (differential matching tasks and snapshot
matching tasks): the light-weight differential pattern matching tasks are invoked concurrently,
whereas snapshot tasks are invoked serially such that each snapshot task is performed
in parallel to leverage the available cores. Throughout this process, Protean coordinates
incremental and non-incremental (i.e., from-scratch) computations to adjust aggregation
results without maintaining intermediate subgraphs or incurring unnecessary explorations.

Protean’s programming model enables users to express graph mining applications as
static pattern programs and provides users with the option of synchronous (blocking) and
asynchronous (non-blocking) output streams. This allows users to apply user-defined callbacks
to the streaming results without blocking the Protean’s pattern matching progress.

Our evaluation showed that Protean achieves low latency response to updates, often
achieving sub-millisecond latencies for various graph mining use cases. Protean’s update-
driven parallel processing model enables orders of magnitude better performance than
existing purpose-built streaming graph mining solutions, and scales to graphs with billions

of edges.
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8.1 Future Directions

Being the first general-purpose system for incremental graph mining on streaming graphs,
Protean can be extended to use approximation techniques while processing graph updates,
trading off exact results for better latencies. We can also broaden the scope of Protean to
support graph processing and graph mining use cases using a general purpose programming

interface.

8.1.1 Approximation Computing

Applications like FSM are often less sensitive to small number of graph updates since
the support values increase with matches resulting in new mappings. Hence, maintaining
up-to-date aggregation values for all patterns in P-DAG using differential matching and
snapshot matching tasks might not result in new frequent patterns. This can be potentially
leveraged by maintaining out-of-date or approximate results as updates get applied to reduce
the update latencies and make Protean more responsive. The approximate results can be
incrementally readjusted after certain updates depending on how stale the results are and

where in the graph the updates get applied.

8.1.2 Unifying Graph Processing and Graph Mining

Several streaming graph processing solutions have been developed in literature [23, 32] that
focus on iterative graph analytics workloads like pagerank and shortest paths. Protean can
be extended using incremental iterative graph processing models in order to express complex

graph mining queries that also rely on iterative graph analytics.
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