
Optimal and Bounded-Suboptimal
Multi-Goal Task Assignment and

Pathfinding
by

Xinyi Zhong

B.Sc., Carleton University, 2019

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Xinyi Zhong 2021
SIMON FRASER UNIVERSITY

Fall 2021

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Xinyi Zhong

Degree: Master of Science

Thesis title: Optimal and Bounded-Suboptimal Multi-Goal
Task Assignment and Pathfinding

Committee: Chair: Angelica Lim
Assistant Professor, Computing Science

Hang Ma
Supervisor
Assistant Professor, Computing Science

Mo Chen
Committee Member
Assistant Professor, Computing Science

David G. Mitchell
Examiner
Associate Professor, Computing Science

ii

Abstract

We formalize and study the multi-goal task assignment and pathfinding (MG-TAPF) prob-
lem from both theoretical and algorithmic perspectives. The MG-TAPF problem is to
compute an assignment of tasks to agents, where each task consists of a sequence of goal
locations, and plan collision-free paths for agents that visit all goal locations of their as-
signed tasks in sequence. Theoretically, we prove that the MG-TAPF problem is NP-hard
to solve optimally. We present algorithms that build upon algorithmic techniques for the
multi-agent pathfinding problem and solve the MG-TAPF problem optimally and bounded-
suboptimally. We experimentally compare these algorithms on a variety of different bench-
mark domains.

Keywords: Multi-Agent Pathfinding, Task Assignment and Pathfinding, Multi-Goal Tasks,
Multi-Robot System

iii

Acknowledgements

First of all, I would like to pay my special regards to my senior supervisor Dr.Hang Ma, for
introducing me to the areas of task assignment and pathfinding, and for providing technical
supports and patience throughout my Master’s study. This project would not have been
possible without his invaluable comments and guidance.

I would like to express my appreciation to my supervisory committee member Dr. Mo
Chen for providing research discussions and answering my questions.

Many thanks to my examiner Dr. David Mitchell and my chair Dr. Angelica Lim for
devoting time to read my thesis and providing useful comments.

I would like to thank all the members of AIRob Lab: Qinghong Xu, Dingyi Sun, Baiyu
Li, Qiushi Lin, Danoosh Chamani, with whom I had lots of fun and inspiring conversations.

In the end, I am grateful to my parents, Hua Gao and Chongwang Zhong, for their
unbounded support and encouragement. I would also like to thank my boyfriend, Hongyang
Dong, for his patience and support during my study.

iv

Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Contributions . 1

2 Background 3
2.1 Pebble Motion on Graphs . 3
2.2 Multi-Agent Pathfinding . 3

2.2.1 Problem Definition . 3
2.2.2 Complexity . 4
2.2.3 Conflict-Based Search (CBS) . 4

2.3 Target-Assignment and Pathfinding . 8
2.3.1 Problem Definition . 8
2.3.2 Complexity . 9
2.3.3 Conflict-Based Search with Task Assignment (CBS-TA) 10

2.4 Lifelong Task-Assignment and Pathfinding 11
2.4.1 Problem Definition of Multi-Agent Pickup and Delivery 11
2.4.2 Mult-Label Space-Time A* . 13

3 Problem Definition 14

4 Complexity 16

5 Conflict-Based Search with Task Assignment with Multi-Label A* 19

v

5.1 High-level: Conflict-Based Search with Task Assignment 19
5.2 Low-level: Multi-Label Space-Time A* . 22
5.3 Properties . 23
5.4 Example . 23

6 Extensions 26
6.1 CBS-TA-MLA with Heuristics (CBSH-TA-MLA) 26

6.1.1 Multi-Valued Decision Diagram Construction 26
6.1.2 Collision Graph (CG) Heuristic . 26
6.1.3 Dependency Graph (DG) Heuristic 27
6.1.4 Weighted Dependency Graph (WDG) Heuristic 27
6.1.5 Techniques application . 28

6.2 Enhanced CBS-TA-MLA (ECBS-TA-MLA) 28
6.2.1 Low-level focal search . 28
6.2.2 High-level focal search . 29

6.3 Greedy CBS-TA-MLA (TA+CBS-MLA) . 29

7 Experiments 30
7.1 CBSH-TA-MLA . 30
7.2 ECBS-TA-MLA . 30
7.3 TA+CBS-MLA . 31

8 Conclusion and Future Work 35

Bibliography 36

vi

List of Tables

Table 7.1 Results for CBSH-TA-MLA . 32
Table 7.2 Results for ECBS-TA-MLA with different ω 33
Table 7.3 Results for ECBS-TA-MLA with different numbers of goal locations . 33
Table 7.4 Results for comparison between TA+CBS-MLA and CBS-TA-MLA . 34

vii

List of Figures

Figure 1.1 Layout of an Amazon automated warehouse 2

Figure 4.1 Example of the reduction from a ≤3,=3-SAT problem instance . . . 18

Figure 5.1 Example for comparing MLA* with calling A* many times 22
Figure 5.2 An example instance with agents and tasks 24
Figure 5.3 A search forest of the high-level search of CBS-TA-MLA 24

Figure 6.1 The MDDs and joint MDD for the example instance. 27

Figure 7.1 Dense map . 31
Figure 7.2 Sparse map . 32

viii

Chapter 1

Introduction

In recent years, the multi-agent pathfinding (MAPF) problem [29] has been well-studied in
artificial intelligence and robotics; and has many applications such as warehouse automation
[36], autonomous traffic management [4], autonomous aircraft towing [22], and video games
[14]. In the MAPF problem, each agent must move from its current location to pre-assigned
goal location while avoiding collisions with other agents in a known environment.

The MAPF problem has recently been extended to many real-world settings [24, 16]
where goal locations are not pre-assigned to agents. For example, in a modern automated
warehouse (Figure 1.1), each warehouse robot (orange square) needs to pick up an inventory
pod from its storage location (green cell), deliver it to the inventory stations (pink and purple
squares) that request one or several products stored in it, and send it back to its storage
location. Such automated warehouse systems often employ a task planner to determine a
set of tasks consisting of a sequence of goal locations. The problem is then to assign these
tasks to the warehouse robots and plan paths for them.

We thus formalize and study the multi-goal task assignment and pathfinding (MG-
TAPF) problem, where as many tasks as agents are given and each task consists of a
sequence of goal locations. The MG-TAPF problem is to compute a one-to-one assignment
of tasks to agents and plan collision-free paths for the agents from their current locations
to the goal locations of their assigned tasks such that each agent visits the goal locations
in the correct order specified by its assigned task and the flowtime (sum of the timesteps
when each agent has reached the last goal location of its assigned task and stops moving)
is minimized.

1.1 Contributions

In this thesis, we study the general version of TAPF problem where each task consists of a
sequence of multiple ordered goal locations, denoted as MG-TAPF problem. Our contribu-
tions are as follows:

1

Figure 1.1: Layout of part of an Amazon automated warehouse, reproduced from [36].

1. We formalize the MG-TAPF problem as an extension of the MAPF problem that aims
to minimize the flowtime. We prove that it is NP-hard to solve optimally, even for
the case where each task only contains two goal locations. The proof is based on a
reduction [20] from a specialized version of Boolean satisfiability problem [33] to the
MG-TAPF problem.

2. We present an algorithm Conflict-Based Search with Task Assignment with Multi-
Label A* (CBS-TA-MLA), that solves the MG-TAPF problem optimally for flowtime
minimization. CBS-TA-MLA is a hierarchical algorithm. It uses CBS-TA [8], which is
a best-first search algorithm, on the high level to search over all possible assignments
of tasks to agents and resolve collisions among paths, and MLA* [7] on the low level
to compute a time-optimal path for each agent that visits the goal locations of its
assigned task. We prove that CBS-TA-MLA is correct, complete and optimal.

3. We develop three admissible heuristics for the high-level best-first search of CBS-
TA-MLA based on the existing admissible heuristics [13] for CBS for the MAPF
problem and generalize the Multi-Valued Decision Diagrams (MDDs) from the case
of one goal location to the case of multiple goal locations. We also extend CBS-TA-
MLA to a bounded-suboptimal version called ECBS-TA-MLA using ideas from the
bounded-suboptimal version of CBS [1]. Finally, we experimentally compare the pro-
posed algorithms in a variety of benchmark domains, showcasing their practicability
for many real-world applications.

2

Chapter 2

Background

Many problems that are similar or related to our problem have been proposed and studied
in recent years.

2.1 Pebble Motion on Graphs

The 15-puzzle problem [9] can be viewed as a special case of the MAPF problem where the
graph is a 4 × 4 2D connected grid with 15 agents. The pebble motion problem [10] can
be viewed as a generalization of the 15-puzzle problem where the number of agents (m) is
at most |V | − 1. In the pebble motion on the graph problem, an agent can move from its
current vertex to an adjacent vertex which is not occupied by another agent. The solution
is the total number of edge traversals where each agent moves from its start vertex to its
goal vertex [10, 25]. There exists a linear-time algorithm to decide whether an instance of
the pebble motion on the graph problem is solvable, and an O(|V |3) algorithm for planning
complete paths for the problem [6].

2.2 Multi-Agent Pathfinding

2.2.1 Problem Definition

The multi-agent pathfinding problem (MAPF) is a generalization of the single-agent pathfind-
ing problem for the number of agents m > 1. It consists of

• an undirected graph G = (V, E) where V corresponds to the set of locations and E

corresponds to the unit-weight edges connecting locations that agents can move along;

• a set of m agents {a1, · · · , am}, and for each agent ai, there is a start location si ∈ V

and a pre-assigned goal location gi ∈ V . All start locations are pairwise different and
all goal locations are pairwise different.

3

Let πi(t) denote the location of agent ai at time t. A timestep t means the move from
time t to time t+1. A path πi = ⟨πi(0), · · · , πi(Ti), πi(Ti +1), · · · ⟩ for agent ai is a sequence
of locations that satisfies the following conditions:

1. The agent starts at its start location, πi(0) = si.

2. In each timestep t, the agent either moves to a neighboring location πi(t + 1) ∈ V , so
(πi(t), πi(t + 1)) ∈ E; or stays in its current location so πi(t) = πi(t + 1).

3. The agent ends at its goal location at the finish time Ti, which is the minimum time
Ti such that for all times t = Ti, · · · ,∞, πi(t) = gi.

Agents need to avoid collisions while moving to their goal location. A collision between
agent ai and agent aj is either

• a vertex collision ⟨ai, aj , u, t⟩ where two agents ai and aj are in the same location
u = πi(t) = πj(t) at timestep t;

• an edge collision ⟨ai, aj , u, v, t⟩ where two agents traverse the same edge (u, v), where
u = πi(t) = πj(t + 1) and v = πi(t + 1) = πj(t), in the opposite direction at timestep
t.

A MAPF plan consists of a path πi assigned to each agent ai. A MAPF solution is a plan
whose paths are collision-free. The MAPF problem is to find a solution which minimizes

• makespan, which is the maximum of the finish times of all agents at their goal locations
maxi≤i≤m Ti; or,

• flowtime, which is the sum of the finish times of all agents at their goal locations∑m
i=1 Ti.

2.2.2 Complexity

The makespan and flowtime of MAPF instances are bounded by O(|V |3) based on the
results of a complete O(|V |3) algorithm that finds a solution of O(|V |3) edge traversals or
distinguishes an unsolvable instance [40]. The MAPF problem is NP-hard to solve optimally
for flowtime minimization [39] and even to approximate within any constant factor less than
4/3 for makespan minimization [32, 20].

2.2.3 Conflict-Based Search (CBS)

Existing MAPF algorithms include reductions to other well-studied problems [38, 31, 5]
and specialized rule-based, search-based hybrid algorithms [17, 35, 3, 27, 34, 26, 12]. In
particular, Conflict-Based Search (CBS) [26] is a popular two-level optimal MAPF algorithm
that computes time-optimal paths for individual agents on low level and performs a best-first
tree search to resolve collisions among paths on the high level.

4

High-Level Search of CBS

CBS performs a best-first search on the high-level to build a constraint tree (CT) and resolve
constraints among agents. Each node N in the constraint tree contains:

• a set of constraints, where a vertex constraint ⟨ai, u, t⟩ prohibits agent ai from being
at location u at timestep t, and an edge constraint ⟨ai, u, v, t⟩ prohibits agent ai from
moving along the edge (u, v) ∈ E from u to v at timestep t;

• a set of paths that obey the constraints; and

• a cost, which is the flowtime of the paths.

Algorithm 1 shows the high-level search of CBS. CBS starts with a root node R with
an empty set of constraints and an empty set of paths. For each agent, it performs the
low-level space-time A* [28] to find a time-optimal path independently. If the low-level
space-time A* could not find a feasible path for any agent and returns no path, the high-
level search terminates unsuccessfully. Otherwise, successfully planned paths are added to
paths in R so the root node contains paths for all agents. The cost of the root node is
the flowtime of paths. The root node is added to the OPEN list. CBS chooses a node
N with the smallest cost and removes it from the OPEN list (breaking ties in favor of
the node with the smallest number of collisions, then the node with the earliest generated
time). If the paths of node N have no collision, then N is a goal node; CBS terminates
successfully and returns N.paths. Otherwise, CBS chooses a vertex collision ⟨ai, aj , u, t⟩ or
an edge collision ⟨ai, aj , u, v, t⟩ it needs to resolve, and generates two child nodes. Each node
inherits N.paths and N.constraints. CBS adds a vertex constraint ⟨ai, u, t⟩ to the first child
node and the other vertex constraint ⟨aj , u, t⟩ to the second child node when resolving a
vertex collision ⟨ai, aj , u, t⟩. CBS adds an edge constraint ⟨ai, u, v, t⟩ to the first child node
and the other edge constraint ⟨aj , v, u, t⟩ to the second child node when resolving an edge
collision ⟨ai, aj , u, v, t⟩. For each child node, CBS performs a low-level space-time A* search
to find a time-optimal path for agent ai (or aj) that obeys all constraints of the child node
relevant to ai (or aj). If the low-level space-time A* search successfully find such a path,
CBS replaces the old path of ai (or aj) with the new one, updates the cost of the child node
accordingly and adds the child node into the OPEN list. If the OPEN list becomes empty,
the algorithm declares a failure of the search.

Low-Level Search of CBS: Space-Time A*

The low-level space-time A* search finds a time-optimal path for agent ai that obeys the
constraints of node N . A space-time A* search is an A* search whose states are pairs of a
location and a timestep ⟨v, t⟩. It starts from the state ⟨si, 0⟩, indicating agent ai being at
its start location si at timestep 0. A directed edge exists from state ⟨u, t⟩ to state ⟨v, t + 1⟩

5

Algorithm 1: High Level of CBS
1 OPEN ← ∅

/* initialize root node R */
2 R.constraints ← ∅
3 R.paths ← ∅
4 for each agent ai do
5 if LowLevel(ai, R.constraints) returns no path then
6 return No Solution
7 R.paths[ai] ← LowLevel(ai, R.constraints)
8 R.cost ← flowtime(R.paths)
9 OPEN ← OPEN ∪ {R}

10 while OPEN ̸= ∅ do
11 N ← minN ′∈OPEN N ′.cost
12 OPEN ← OPEN \{N}
13 if N.paths has no collision then
14 return N.paths
15 collision ← ⟨ai, aj , u, v/NULL, t⟩ in N.plan

/* generate child nodes */
16 for agent ak in {ai, aj} do
17 Q ← new node
18 Q.constraints ← N.constraints ∪{⟨ak, u, v/NULL, t⟩}
19 Q.paths ← N.paths;
20 if LowLevel(ak, Q.constraints) returns a path then
21 Q.paths[ak] ← LowLevel(ak, Q.constraints)
22 Q.cost ← flowtime(Q.paths)
23 OPEN ← OPEN ∪{ Q }

24 return No Solution

if and only if u = v or (u, v) ∈ E. To obey the given constrains, the set of states {⟨u, t⟩} is
removed from the state space of agent ai if and only if there is a vertex constraint ⟨ai, u, t⟩;
similarly, the set of edges {(⟨u, t⟩, ⟨v, t + 1⟩)} is removed if and only if there is an edge
constraint ⟨ai, u, v, t⟩. CBS uses an upper bound U on the makespan [40] to guarantee the
optimality and completeness. The makespan of paths is bounded by U if and only if the
finish times of all agents are bounded by U . So the low-level space-time A* search is also
bounded by U . So the space-time A* search terminates unsuccessfully and returns no paths
if it tries to expand a state whose timestep is larger than U .

Properties of CBS

Theorem 1. CBS is guaranteed to find an optimal flowtime solution if the given MAPF
instance is solvable, or identify an unsolvable MAPF instance [26].

6

Heuristics for High-Level Search of CBS

Recent research [2, 13] introduce three admissible heuristics for the high-level search of CBS
to significantly reduce the number of expanded nodes and speed up the search. Collisions
found in N.paths can be classified into three types based on the cost of resulting child nodes:

• cardinal collision if both of the resulting child nodes have larger cost than N ;

• semi-cardinal collision if only one child node has a larger cost than N ;

• non-cardinal collision if both of the resulting child nodes have the same cost as N .

The classification of collisions is based on Multi-Valued Decision Diagrams (MDDs). An
MDD for agent ai at node N is a directed acyclic graph consisting of all cost-optimal paths
of ai from si to gi that satisfy N.constraints. A collision between two agents ai and aj at
timestep t is a cardinal collision if and only if the contested vertex or edge is the only vertex
or edge at level t of the MDDs of both agents.
Collision Graph (CG) Heuristic: CG heuristic only considers cardinal collision between
agents. The admissible heuristic value is the size of the minimum vertex cover of a collision
graph of N , whose vertices represent the agents and edges represent cardinal collisions
between agents.
Dependency Graph (DG) Heuristic: DG heuristic considers all types of collisions be-
tween agents. Two agents are dependent if (1) their paths have cardinal collisions; or (2)
their paths have other types of collisions and the joint MDD of their MDDs are empty.
The joint MDD of two agents consists of all combinations of their cost-optimal collision-
free paths. An empty joint MDD indicates that two agents are dependent. The admissible
heuristic value is the size of minimum vertex cover of the pairwise dependency graph, whose
vertices represent the agents and edges represent the dependencies between two agents.
Weighted Dependency Graph (WDG) Heuristic: Based on the pairwise dependency
graph from DG, the weights of edges can be calculated. The weight of an edge is the
difference between the minimum flowtime of the collision-free paths of corresponding agents
satisfying N.constraints and the sum of the cost of their paths in N.paths. The admissible
heuristic value is the size of the edge-weighted minimum vertex cover of the edge-weighted
pairwise dependency graph.

Enhanced Conflict-Based Search

Enhanced CBS is a bounded-suboptimal MAPF algorithm. It uses Focal search on both
high-level and low-level of CBS. Focal search maintains two lists of nodes: the OPEN list
and the FOCAL list. The OPEN list is the regular OPEN list of A*. FOCAL list contains
a subset of nodes from the OPEN list. Focal search uses two functions f1 and f2. f1 is an
admissible function that defines which nodes are in the FOCAL list. Let f1min denote the

7

minimal f1 value in the OPEN list. Given a suboptimality factor ω, FOCAL contains all
nodes N in the OPEN list whose costs are less than or equal to ω · f1min . f2 is used to
prioritize nodes in the FOCAL list. It is guaranteed that the returned solution is at most
ω · f1min .
Low level focal search: apply focal search to find a single agent path where f1(n) is
the regular f1(n) = g(n) + h(n) of A* search and f2(n) is the number of conflicts between
current planning agent and other agents. The low-level search returns f1min(ai) which is a
lower bound on the optimal path, as well as the planned paths.
High level focal search: with the lower bound returned by low-level search, for a node
N , let LB(N) = ∑m

i=1 f1min(ai), which is the sum of lower bounds of low-level searches.
The cost of N is guaranteed to be less than or equal to the suboptimality factor times the
the sum of lower bounds of low-level searches. The lower bound value LB(N) is used to
prioritize nodes in the OPEN list. Let LB = min(LB(N)), N ∈ OPEN denote a lower
bound in the OPEN list and on the optimal solution of the entire MAPF problem, and the
FOCAL list contain all nodes N where N.cost ≤ ω · LB. Once a solution is found, it is
guaranteed to have cost at most ω · LB.

2.3 Target-Assignment and Pathfinding

2.3.1 Problem Definition

An instance of the target-assignment and pathfinding (TAPF) problem consists of:

1. an undirected graph G = (V, E) where V corresponds to the set of locations and E

corresponds to the unit-weight edges connecting locations that agents can move along;

2. a set of m agents that are partitioned into K teams team1, · · · , teamk. Each team
teamk consists of mk agents ak

1, · · · , ak
mk

. Each team has mk targets (single-goal tasks)
gk

1 , · · · , gk
mk

such that m = ∑K
k=1 mk. Each agent ak

i has a unique start locations sk
i ;

all start locations are pairwise different and all targets are pairwise different.

An assignment of targets to agents in a team teamk is a one-to-one mapping σk that
maps each agent ak

i to a target gk
j = σk(ak

i) of the same team. An agent in a team can
be assigned to any one of the targets of the same team. An agent cannot be assigned to a
target of a different team.

Let πk
i (t) denote the location of agent ak

i at time t. A path πk
i = ⟨πk

i (0), · · · , πk
i (T k

i), πk
i (T k

i +
1), · · · ⟩ for agent ak

i is a sequence of locations that satisfies the following conditions:

1. The agent starts at its start location, πk
i (0) = sk

i .

2. In each timestep t, the agent either moves to a neighboring location πk
i (t + 1) ∈ V ,

where (πk
i (t), πk

i (t + 1)) ∈ E, or stays in its current location πk
i (t) = πk

i (t + 1).

8

3. The agent ends at its assigned target at the finish time T k
i , which is the minimum

time T k
i such that for all timesteps t = T k

i , · · · ,∞, πk
i (t) = gk

j = σk(ak
i).

Agents need to avoid collisions while moving to its assigned target. A collision between
teams k and k′ ̸= k can be a vertex collision or an edge collision, where:

• a vertex collision between an agent ak
i in team teamk and a different agent ak′

j in
team teamk′ is a tuple ⟨teamk, teamk′ , u, t⟩, where agents ak

i and ak′
j occupy the same

location u = πk
i (t) = πk′

j (t) at time t;

• an edge collision between an agent ak
i in team teamk and a different agent ak′

j in team
teamk′ is a tuple ⟨teamk, teamk′ , u, v, t⟩, where agents ak

i and ak′
j traverse the same

edge (u, v), where u = πk
i (t) = πk′

j (t + 1) and v = πk
i (t + 1) = πk′

j (t), in the opposite
direction between times t and t + 1.

If k′ = k, the collision occurs between agents within the same team. A collision between
agents within the same team can be

• a vertex collision ⟨ak
i , ak

j , u, t⟩ where two agents ak
i and ak

j are in the same location
u = πk

i (t) = πk
j (t) at time t;

• an edge collision ⟨ak
i , ak

j , u, v, t⟩ where two agents traverse the same edge (u, v), where
u = πk

i (t) = πk
j (t + 1) and v = πk

i (t + 1) = πk
j (t), in the opposite direction between

times t and t + 1.

A TAPF plan consists of an assignment σk of targets to agents for each team teamk and
a path πk

i for each agent ak
i in each team teamk. A TAPF solution is a TAPF plan whose

paths are collision-free. The TAPF problem is to find a solution which minimizes

• makespan, which is the maximum of the finish times of all agents at their assigned
targets maxi∈mk,k∈K T k

i ; or

• flowtime, which is the sum of the finish times of all agents at their assigned targets∑
i∈mk,k∈K T k

i .

The special case of TAPF when the number of agents k = 1 is also known as anonymous
MAPF. Targets can be assigned to any agents.

2.3.2 Complexity

TAPF can be solved optimally in polynomial time for makespan minimization by Conflict-
based min-cost flow algorithm [37, 18]. We consider the another special case of TAPF where
the number of teams is the same as the number of agents, i.e. m = K, which is known as the
MAPF problem. Since the makespan of any optimal MAPF solution is bounded by O(|V |3),
the makespan of any optimal TAPF solution is also bounded by O(|V |3) [18]. For flowtime
minimization, its complexity remains unclear.

9

Algorithm 2: firstAssignment
Input : cost matrix C
Output: best task assignment, ASG_OPEN

1 R ← new node
2 R.O ← ∅
3 R.I ← ∅;
4 R.solution ← constrainedAssignment(R, C)
5 ASG_OPEN ← { R }
6 return R.solution

2.3.3 Conflict-Based Search with Task Assignment (CBS-TA)

Conflict-Based Search with Task Assignment (CBS-TA) [8] solves the TAPF problem with
k = 1 (anonymous MAPF problem) optimally for flowtime minimization. Based on CBS as
described above, CBS-TA only changes the high-level search. Each high-level node has two
additional fields:

• a Boolean value root, indicating whether a node is a root node;

• an assignment, which is the task assignment of the node.

Instead of building a search tree as CBS does, CBS-TA builds a search forest where
each tree in the forest corresponds to a different task assignment. CBS-TA starts with a
single root node with the best task assignment. A new root node is created only if the
current expanding node is a root node. An m×m cost matrix C contains the lower bound
for agent ai to reach each target gj . Each element in the cost matrix is the length of the
shortest path for each pair of agent and task, ignoring all other agents. The Hungarian
method compute the optimal task assignment for the cost matrix C. An assignment OPEN
list (ASG_OPEN) is used to maintain all assignments which has been generated but not
expanded. Algorithms 2, 3 and 4 show pseudo code for task assignments. The basic idea is
to partition the solution space such that forbidding some assignments (denoted as O) and
forcefully include others (donated as I). It is shown that such partitioning can cover the
complete solution space [23].

Property of CBS-TA

Theorem 2. CBS-TA computes a solution that minimizes the flowtime of all agents if a
solution exists [8].

10

Algorithm 3: nextAssignment
Input : cost matrix C, ASG_OPEN
Output: next best task assignment

1 if ASG_OPEN = ∅ then
2 return No next assignment
3 P ← best node from ASG_OPEN
4 for i ← 1 to m do
5 if i is not in P.I then
6 Q ← new node
7 Q.O ← P.O ∪{P.solution[i]}
8 Q.I ← P.I ∪{P.solution[j] : j < i}
9 Q.solution ← constrainedAssignment(Q, C)

10 if Q.solution is not None then
11 ASG_OPEN ← ASG_OPEN ∪{ Q }

12 return solution of best node from ASG_OPEN

Algorithm 4: constrainedAssignment
Input : cost matrix C, P
Output: task assignment

1 C ′ ← C
2 for each pair (i, j) in P.O do
3 C ′

(i,j) ←∞

4 for each pair (i, j) in P.I do
5 C ′

(i,j) ← 0
6 assignment ← Hungarian(C ′)
7 if assignment is not None then
8 return assignment

2.4 Lifelong Task-Assignment and Pathfinding

Recent research has considered the online multi-agent pickup and delivery (MAPD) prob-
lem. In the MAPD problem, agents have to execute a stream of delivery tasks, where tasks
appear at unknown times, and each task has a sequence of two goal locations [19].

2.4.1 Problem Definition of Multi-Agent Pickup and Delivery

An instance of a multi-agent pickup and delivery (MAPD) problem consists of:

1. an undirected graph G = (V, E) where V corresponds to the set of locations and E

corresponds to the unit-weight edges connecting locations that agents can move along;

2. a set of m agents {a1, · · · , am}, and for each agent ai, there is a start location si ∈ V .
All start locations are pairwise different;

11

3. a set of tasks T that contains all unexecuted tasks. Each task τj contains a pickup
location sj ∈ V and a delivery location gj ∈ V . An unexecuted task τj is added to
the task set T at unknown timestep. A task is available for execution only when it
has been added to the task set T .

Let πi(t) denote the location of agent ai at time t. A path πi = ⟨πi(0), · · · , πi(Ti), πi(Ti +
1), · · · ⟩ for agent ai is a sequence of locations that satisfies the following conditions:

1. The agent starts at its start location, πi(0) = si.

2. In each timestep t, the agent either moves to a neighboring location πi(t + 1) inV ,
where (πi(t), πi(t + 1)) ∈ E, or stays in its current location πi(t) = πi(t + 1).

Agents need to avoid collisions while moving to its goal location. A collision between
agent ai and agent aj is either

• a vertex collision ⟨ai, aj , u, t⟩ where two agents ai and aj are in the same location
u = πi(t) = πj(t) at timestep t;

• an edge collision ⟨ai, aj , u, v, t⟩ where two agents traverse the same edge (u, v), where
u = πi(t) = πj(t + 1) and v = πi(t + 1) = πj(t), in the opposite direction between
timesteps t and t + 1.

An agent is free if and only if it is not currently executing any task, otherwise it is
occupied. A free agent can be assigned any task τj ∈ T . In order to execute a task τj , the
agent needs to move from its current location to the pickup location sj of the task and then
move from the pickup location sj to the delivery location gj . The agent starts to execute
a task τj when it reaches the pickup location sj , and finishes executing the task when it
reaches the delivery location gj . An agent can be assigned a different task when it is moving
to the pickup location of the currently assigned task. But, an agent has to finish executing
the task after it has reached the pickup location of the task before it can be assigned another
task.

The MAPD problem is to find collision-free paths to finish executing all tasks, while
minimizing:

• service time, which is the average number of timesteps needed to finish executing each
task after it was added to the task set; or

• makespan, which is the earliest time when all tasks are finished.

12

2.4.2 Mult-Label Space-Time A*

Grenouilleau et al.[7] introduced the Multi-Label Space-Time A* (MLA*) algorithm, which
computes a time-optimal path for an agent that visits two goal locations and solves the task
assignment and the pathfinding independently.

MLA* uses the space-time A* algorithm structure described above. The search space of
MLA* is a tuple of a location, a time and a label {⟨v, t, l⟩|l ∈ {1, 2}} where l = 1 indicates
the agent is seeking a path to the pickup location and l = 2 indicates the agent is seeking
a path to the delivery location. Let π1 and π2 denote the pickup location and the delivery
location, respectively. The heuristic value of a state is defined

h(⟨v, t, l⟩) =

dist(v, π1) + dist(π1, π2) if l = 1

dist(v, π2) if l = 2

where dist(·, ·) is the distance between two points in the graph G.

13

Chapter 3

Problem Definition

An MG-TAPF instance consists of:

1. an undirected graph G = (V, E), where V is the set of locations, and E is the set of
unit-weight edges connecting locations;

2. m agents {a1, a2, . . . , am} and for each agent ai, there is a start location si ∈ V ;

3. m tasks {g1, g2, . . . , gm}, where each task gj is characterized by a sequence of Kj goal
locations gj = ⟨gj [1], . . . , gj [Kj]⟩.

An assignment of tasks to agents is a one-to-one mapping σ that maps each agent ai to
a task gj . Each agent ai can be assigned any task gj .

Let πi(t) denote the location of agent ai at time t. A path πi = ⟨πi(0), . . . , πi(Ti), πi(Ti +
1), . . .⟩ for agent ai is a sequence of locations that satisfies the following conditions:

1. The agent starts at its start location, πi(0) = si;

2. In each timestep t, the agent either moves to a neighboring location πi(t + 1) ∈ V

where (πi(t), πi(t + 1)) ∈ E, or stays in its current location, πi(t) = πi(t + 1);

3. The agent visits all goal locations of its assigned tasks gj in sequence and remains in
the final goal location at the finish time Ti, which is the minimum time Ti such that
πi(t) = σ(ai) = gj [Kj], for all times t = Ti, . . . ,∞.

Agents need to avoid collisions while moving to their goal locations. A collision between
agents ai and aj is either

1. a vertex collision ⟨ai, aj , u, t⟩ where two agents ai and aj are in the same location
u = πi(t) = πj(t) at time t; or

2. an edge collision ⟨ai, aj , u, v, t⟩ where two agents ai and aj traverse the same edge
(u, v) in the opposite directions u = πi(t) = πj(t + 1) and v = πi(t + 1) = πj(t + 1) in
the same timestep t.

14

A plan consists of an assignment σ of tasks to agents and a path for each agent. A
solution is a plan whose paths are collision-free. The problem of MG-TAPF is to find a
solution which minimizes:

• flowtime ∑m
i=1 Ti, which is the sum of the finish times of paths of all agents; or

• makespan max1≤i≤m Ti, which is the maximum of the finish times of all agents.

In this thesis, we only consider the flowtime objective, even though many of our results
could be easily generalized to other objectives such as makespan minimization, partially
because the flowtime objective matches the throughput objective in the lifelong problems
(for example, MAPD) well.

15

Chapter 4

Complexity

We show that the MG-TAPF problem is NP-hard to solve optimally for flowtime min-
imization, even when each task has only two goal locations. Similar to [20, 21], we use
a reduction from ≤3,=3-SAT [33], an NP-complete version of the Boolean satisfiability
problem. A ≤3,=3-SAT instance consists of N Boolean variables {X1, . . . , XN} and M

disjunctive clauses {C1, . . . , CM}, where each variable appears in exactly three clauses, un-
complemented at least once and complemented at least once. Each clause contains at most
three literals. Its decision question asks whether there exists a satisfying assignment. We
first show a constant-factor inapproximability result for makespan minimization.

Theorem 3. For any ϵ > 0, it is NP-hard to find a (4/3 − ϵ)-approximate solution to
the MG-TAPF problem for makespan minimization, even if each task has only two goal
locations.

Proof. We use a reduction similar to that is used in the proof of Theorem 3 in [20] to
construct an MG-TAPF instance with m = M +2N agents and m tasks that has a solution
with makespan three, if and only if a given ≤3,=3-SAT instance with N Boolean variables
and M disjunctive clauses is satisfiable. Figure 4.1 shows an example.

For each variable Xi in the ≤3,=3-SAT instance, we construct two “literal” agents aiT

and aiF , with start locations siT and siF respectively, and two tasks giT and giF , each with
two goal locations, namely giT [1] = siT , giT [2] = tiT , giF [1] = siF , giF [2] = tiF . Therefore,
any optimal solution must assign every task to the agent whose start location is the first goal
location of the task and let the agent execute the task. For each literal agent, we construct
two paths to move it from its start location to the final goal location in three timesteps:
“shared” paths, namely ⟨siT , uiT , vi, tiT ⟩ for aiT and ⟨siF , uiF , vi, tiF ⟩ for aiF ; and “private”
path, namely ⟨siT , wiT , xiT , tiT ⟩ for aiT and ⟨siF , wiF , xiF , tiF ⟩ for aiF . The shared paths piT

and piF intersect at vertex vi. Only one of the two paths can thus be used if a makespan of
three is to be achieved. Moving literal agents aiT (or aiF) along the shared path corresponds
to assigning True (or False) to Xi in the ≤3,=3-SAT instance.

16

For each clause Cj in the ≤3,=3-SAT instance, we construct a “clause” agent aj with
the start location cj and a task gj with two goal locations gj [1] = cj and gj [2] = dj . It has
multiple but at most three “clause” paths to move the agent from its start location to its
goal locations in three timesteps, which have a one-to-one correspondence to the literals in
Cj . Every literal Xi (or Xi) can appear in at most two clauses. If Cj is the first clause that it
appears in, the clause path is ⟨cj , wiT , bj , dj⟩ (or ⟨cj , wiF , bj , dj⟩). If Cj is the second clause
that it appears in, a vertex ej is introduced and the clause path is instead ⟨cj , ej , xiT , dj⟩
(or ⟨cj , ej , xiF , dj⟩). The clause path of each Cj with respect to any literal in that clause
and the private path of literal intersect. Only one of the two paths can thus be used if a
makespan of three is to be achieved.

If a satisfying assignment to the≤3,=3-SAT instance exists, the a solution with makespan
three to the MG-TAPF instance is obtained by moving literal agents along their private
paths and clause agents along the clause paths corresponding to one of the true literals in
those clauses.

Conversely, if a solution with makespan three to the MG-TAPF instance exists, then
each clause agent traverses the clause path corresponding to one of the literals in that
clause, and the corresponding literal agent traverses its shared path. Since the agents of a
literal and its complement cannot both use their shared path if a makespan of three is to
be achieved, we can assign True to every literal whose agent uses its shared path without
assigning True to every literal to both the uncomplemented and complemented literals. On
the other hand, if the agents of both literals use their private paths, we can assign True to
any one of the literals and False to the other one. A solution to the MG-TAPF instance
with makespan three thus yields a satisfying assignment to the ≤3,=3-SAT instance.

Thus, we can show that the constructed MG-TAPF instance has a solution with makespan
three if and only if the ≤3,=3-SAT instance is satisfiable; and always has a solution with
makespan four, even if the ≤3,=3-SAT instance is unsatisfiable. For any ϵ > 0, any MG-
TAPF algorithm with approximation ratio 4/3− ϵ thus computes a solution with makespan
three whenever the ≤3,=3-SAT instance is satisfiable and thus solves ≤3,=3-SAT.

In the proof of Theorem 3, the MG-TAPF instance reduced from the given ≤3,=3-SAT
instance has the property that the length of every path from the start location of every
agent to the last (second) goal location of the task assigned to the agent is at least three.
Therefore, if the makespan is three, every agent arrives at the last location of the task
assigned in exactly three timesteps, and the flowtime is 3m. Moreover, if the makespan
exceeds three, the flowtime exceeds 3m, yielding the following theorem.

Theorem 4. It is NP-hard to find the optimal solution to the MG-TAPF problem for
flowtime minimization, even if each task has only two goal locations.

17

s1T

w1T u1T

x1T

t1T

s1F

u1F w1F

x1F

t1F

v1

c1

b1

d1

c2

e2

b2

d2

s2T s2F

w2T u2T u2F w2F

x2T v2 x2F

t2T t2F

c3

e3

b3

d3

s3T s3F

w3T u3T u3F w3F

x3T v3 x3F

t3T t3F

Figure 4.1: Example of the reduction from a ≤3,=3-SAT problem instance (X1∨X2∨X3)∧
(X1∨X2∨X3)∧ (X1∨X2∨X3). Clause C1 is the first clause that literal X1 appears in. The
corresponding clause path is ⟨c1, w1T , b1, d1⟩. Since clause C3 is the second clause that X1 ap-
pears in, vertex e3 is introduced. The corresponding clause path is ⟨c3, e3, x1T , d3⟩. The blue
(directed) edges represent one optimal solution to the MG-TAPF instance of the makespan
three, which corresponds to the satisfying assignment (X1, X2, X3) = (False, True, False).

18

Chapter 5

Conflict-Based Search with Task
Assignment with Multi-Label A*

The Conflict-Based Search with Task Assignment with Multi-Label A* (CBS-TA-MLA)
algorithm is a two-level search algorithm, where the low-level MLA* plans an optimal path
for each agent based on the task assignment and the constraints provided by the high-level
algorithm CBS-TA.

5.1 High-level: Conflict-Based Search with Task Assignment

Conflict-Based Search with Task Assignment (CBS-TA) is a best-first search algorithm,
which was initially designed to solve the TAPF problem with k = 1 [8]. We extend it to
solve MG-TAPF by replacing the low-level search algorithm with Multi-Label Space-Time
A* [7]. Algorithm 5 shows the pseudo-code. CBS searches a binary tree called the constraint
tree (CT), while CBS-TA searches a forest that contains multiple constraint trees. Each tree
in the forest corresponds to a different task assignment. Each node in the tree (CT node)
contains:

1. a Boolean value root, indicating whether the node is a root of a constraint tree;

2. an assignment, which is the task assignment of the node (nodes in the same tree have
the same task assignment);

3. a set of constraints, where a vertex constraint ⟨ai, u, t⟩ prohibits agent ai from being
at location u at time t, and an edge constraint ⟨ai, u, v, t⟩ prohibits agent ai from
moving along the edge (u, v) ∈ E from u to v at timestep t;

4. a set of paths that obey the assignment and the constraints; and

5. a cost, which is the flowtime of the paths.

An m×m cost matrix C contains the distances from the start locations of each agent to
the final goal locations of each task (all intermediate goal locations of the task are visited

19

in order) while ignoring the other agents. CBS-TA starts with a single root node with the
best task assignment (the task assignment with the lowest flowtime that ignores collisions
between agents). The best task assignment is calculated by applying the Hungarian method
[11] to the cost matrix C (Algorithms 2 and 4 show the pesudo code). A new root node with
the next best task assignment will be created if the current expending node is a root node.
The idea of computing the next best task assignment is as follows [8] (Algorithms 3 and 4
show the pseudocode). The basic idea is to partition the solution space such that forbidding
some assignments (denoted as O) and forcefully include others (donated as I). It is shown
that such partitioning can cover the complete solution space [23]. Then we compute a new
cost matrix C ′ by copying C except that the costs of entries in I are changed to 0 and the
costs of entries in O are changed to ∞. The Hungarian method is applied to the new cost
matrix C ′ to calculate the new task assignment. So, the entries in I are always included
and the entries in O are always excluded in the new assignment.

Once the task assignment is computed, the corresponding paths of the agents are planned
by the low-level search algorithm MLA*. CBS-TA then finds collisions among planned paths,
stores the number of collisions in the node and adds the node to the OPEN list.

CBS-TA chooses a node N with the lowest cost N.cost from the OPEN list to expand
(breaking ties in favor of the node with the smallest number of collisions, then the node
with the earliest generated time). First, it checks whether the number of collisions is 0. If
so, N is declared as the goal node, and N.assignment and N.paths will be returned as the
solution to the instance. Otherwise, CBS-TA chooses the resolve the earliest vertex collision
Col = ⟨ai, aj , u, t⟩ (that is, the paths of agents ai and aj have a collision at vertex u at time
t) or the earliest edge collision Col = ⟨ai, aj , u, v, t⟩ (that is, the paths of agents ai and aj

have a collision at edge (u, v) at timestep t), and generates two child nodes. Child nodes
inherit the constraint set and paths from their parent node N. It CBS-TA resolves a vertex
collision Col = ⟨ai, aj , u, t⟩, CBS-TA adds an vertex constraint ⟨ai, u, t⟩ to the constraint set
of one child node and the other vertex constraint ⟨aj , u, t⟩ to the constraint set of the other
child node. If CBS-TA resolves an edge collision Col = ⟨ai, aj , u, v, t⟩, CBS-TA adds an edge
constraint ⟨ai, u, v, t⟩ to the constraint set of one child node and the other edge constraint
⟨aj , v, u, t⟩ to the constraint set of the other child node. It then calls the low-level search
algorithm MLA* to replan the path of ai (or aj) for each child node while satisfying its
constraint sets. If such a path does not exist, the child node is pruned. Otherwise, CBS-TA
detects the collisions between the newly planned path and former paths of the other agents,
updates the number of collisions and adds the child node to the OPEN list. If the OPEN
list becomes empty, the algorithm declares a failure of search.

20

Algorithm 5: High Level of CBS-TA-MLA
1 OPEN ← ∅

/* initialize first root node R */
2 R ← new node
3 R.root ← True
4 R.assignment ← firstAssignment()
5 R.constraints ← ∅
6 for each agent ai do
7 if MLA*(ai, R.assignment[ai], R.constraints) returns no path then

/* no solution for this task assignment, try next assignment */
8 continue to line 4 with R.assignment ← nextAssignment()
9 R.paths[ai] ← MLA*(ai, R.assignment[ai], R.constraints)

10 R.cost ← flowtime(R.paths)
11 R.collisions ← findCollisions(R)
12 OPEN ← OPEN ∪ {R}
13 while OPEN ̸= ∅ do
14 N ← lowest cost node from OPEN
15 if N.collisions = ∅ then
16 return N.assignment, N.paths
17 if N.root is True then

/* initialize new root node R with next best assignment */
18 R ← new node
19 R.root ← True
20 R.assignment ← nextAssignment()
21 R.constraints ← ∅
22 for each agent ai do
23 if MLA*(ai, R.assignment[ai], R.constraints) returns no path then

/* no solution for this task assignment */
24 continue to the next iteration in line 13
25 R.paths[ai] ← MLA*(ai, R.assignment[ai], R.constraints)
26 R.cost ← flowtime(R.paths)
27 R.collisions ← findCollisions(R)
28 OPEN ← OPEN ∪ {R}
29 OPEN ← OPEN \{N}
30 Collision ← ⟨ai, aj , u, v/NULL, t⟩ by chooseCollision(N)
31 for agent ak in {ai, aj} do
32 Q ← new node
33 Q.root ← False
34 Q.assignment ← N.assignment
35 Q.constraints ← N.constraints ∪{⟨ak, u, v/NULL, t⟩}
36 Q.paths ← N.paths
37 if MLA*(ak, Q.assignment[ak], Q.constraints) returns a path then
38 Q.paths[ak] ← MLA*(ak, Q.assignment[ak], Q.constraints)
39 Q.cost ← flowtime(Q.paths)
40 Q.collisions ← findCollisions(Q)
41 OPEN ← OPEN ∪{ Q }

42 return No Solution 21

S1 S2ga[1] ga[2]gb[1]gb[2]

A

B

1 2 3 4 5 6 7 8

Figure 5.1: Example for comparing MLA* with calling A* many times

5.2 Low-level: Multi-Label Space-Time A*

Multi-Label Space-Time A* (MLA*) finds a time-optimal path for an agent ai (a path
with the smallest finish time Ti) that visits all goal locations gj [Kj] of assigned task gj in
sequence and obeys a set of constraints. MLA* was first introduced for two goal locations
[7], and then was extended to more than two goal locations [15]. MLA* extends Space-
Time A* [28] by adding a label dimension indicating the different segments between goal
locations, where label k represents that the next goal location to visit is gj [k].

We formally describe MLA* in the context of CBS-TA-MLA. MLA* is an A* search
algorithm whose states are tuples of a location, a timestep and a label. It starts from state
⟨si, 0, 1⟩, indicating agent ai being at its start location si at timestep 0 with label 1. A
directed edge exists from state ⟨u, t, k⟩ to state ⟨v, t + 1, k′⟩ if and only if (1) u = v or
(u, v) ∈ E, and (2) k′ = k + 1 if v = gj [k] and k′ = k otherwise. To obey the given
constraints, the set of states {⟨u, t, k⟩|k = 0, . . . , Kj} is removed from the state space of
agent ai if and only if there is a vertex constraint ⟨ai, u, t⟩; and similarly, the set of edges
{(⟨u, t, k⟩, ⟨v, t+1, k′⟩)|k = 0, . . . , Kj−1} is removed if and only if there is an edge constraint
⟨ai, u, v, t⟩. If MLA* expands a goal state ⟨gj [Kj], t, Kj + 1⟩ and the agent can stay at the
goal location forever (without violating any vertex constraints), it terminates and returns
the path (a sequence of locations) from the start state to the goal state.

During the search, the h-value of each state ⟨v, t, k⟩ is calculated by:

h(⟨v, t, k⟩) = dist(v, gj [k]) +
Kj−1∑
k′=k

dist(gj [k′], gj [k′ + 1])

that is, the shortest distance from location v to visit all unvisited goal locations in task
gj in sequence. The distances dist(v, gj [k]) from each location v ∈ V to all goal locations
gj [k] with j = 1, . . . , m and k = 1, . . . , Kj are pre-computed by searching backward once
from each goal location gj [k] on the graph G.

Comparing MLA* with calling A* many times

Consider an example in Figure 5.1 with two agents a1 and a2 located at their start locations
s1 = B1 and s2 = B7. Two tasks ga and gb will be assigned and executed by two agents,

22

where ga[1] = B4, ga[2] = B8, gb[1] = B6 and gb[2] = B5. If we choose to use A* and
only consider the first goal locations of tasks at the beginning, the task assignment is ga

to a1 and gb to a2. At time 2, a2 reaches the final goal location gb[2] and stays there for
the remaining times. At time 3, a1 reaches its first goal location ga[1] and starts planning
a path to its next goal location ga[2]. It finds that a2 blocks its way to ga[2], resulting in
more collisions. However, if we consider every goals in the tasks at the beginning, a2 will
first move to the alcove way to let a1 pass by. With MLA*, we could reduce unnecessary
collisions with other agents, which also benefits the high-level search.

5.3 Properties

We now show that CBS-TA-MLA is complete and optimal. Yu and Rus [40] suggested
that there exists and upper bound for any solvable MAPF instance of O(|V |3) single agent
steps required for all agents move from their start locations to their goal locations. There
even exists a linear algorithm to detect an unsolvable MAPF instance [40]. However, it is
difficult to detect unsolvable MG-TAPF instances using existing algorithms. We still provide
an upper bound for any solvable MG-TAPF instances.

Theorem 5. CBS-TA-MLA is guaranteed to find an optimal solution if the given MG-
TAPF instance is solvable and correctly identifies an unsolvable MG-TAPF instance with
an upper bound of O(|V |3 ·∑m

j=0 Kj) on the finish time Ti of any agent at the final goal
location of its assigned tasks.

Proof. The proof of the optimally of CBS-TA-MLA is trivial as CBS-TA and MLA* have
been proved to be optimal in[8] and [7], respectively. As for the completeness, consider an
arbitrary optimal solution to the given MG-TAPF instance with paths πi(t). The solution
can be divided chronologically into at most K = ∑m

j=0 Kj segments at breakpoints t(0) =
0, t(1), . . . , t(K) = maxi Ti where the label of at least one agent changes (at least one agent
reaches a new goal location of its assigned task) at each t(κ), ∀κ ≥ 1. Since there exists
a solution with at most U = O(|V |3) agent movements (edge traversals) to any solvable
MAPF instance [40], there exist collision-free paths for all agents with makespan at most
U that move each ai from π(t(κ−1)) to π(t(κ)),∀κ ≥ 1, and thus t(κ) − t(κ−1) ≤ U,∀t ≥ 1.

Therefore, t(K) ≤ U ·
∑m

j=0 Kj . CBS-TA-MLA can thus safely prune any state whose
timestep is larger than U ·

∑m
j=0 Kj on the low level search and terminate for any given

unsolvable MG-TAPF instance when the OPEN list eventually becomes empty in finite
time.

5.4 Example

Consider the example in Figure 5.2 with two agents a1 and a2 located at their start locations
s1 = B1 and s2 = A2 respectively. Two tasks ga and gb will be assigned to two agents, where

23

S2

ga[1]

ga[2]

gb[1]gb[2]

1 2 3

A

B

C

1 2 3

A

B

C

Agents Tasks

S1

Figure 5.2: An example instance with agents and tasks

Cost: 8
<a1, a2, B2, 1>

Cost: 9
No Collision

Cost: 9
No Collision

N1 N2

N3 N4

<a1, a2, B2, 1>
Cost: 8

... ...

Figure 5.3: A search forest of the high-level search of CBS-TA-MLA of the example shown
in Figure 5.2. The earliest collision found among paths is shown at the bottom of each node.

ga[1] = C2, ga[2] = A2, gb[1] = B3 and gb[2] = B1. The cost matrix C which contains the
distance between all start locations and all final goal locations is:

(4 4
4 4

)
.

The corresponding high-level search forest of CBS-TA-MLA is shown in Figure 5.3.
CBS-TA-MLA starts with generating its first root node N1 with the best task assignment
ga to a1 and gb to a2 by applying Hungarian method to the cost matrix C, plans path for
each agent with respect to its assigned task, and adds it to the OPEN list. N1 is the only
node in the OPEN list, the algorithm chooses to expand it. Since N1 is a root node, the
algorithm generates a new root node with the next best task assignment ga to a2 and gb to
a1, plans paths and adds it to the OPEN list. The algorithm detects two collisions in the
planned paths in N1, ⟨a1, a2, B2, 1⟩ and ⟨a1, a2, B2, 3⟩, and it chooses the earliest collision
⟨a1, a2, B2, 1⟩ to resolve. The collision is resolved by creating two child nodes N3 and N4.
The assignment, constraints (empty set so far) and paths of N3 and N4 are copied from N1.

24

A new constraint ⟨a1, B2, 1⟩, where a1 is prohibited from being at location B2 at timestep 1,
is added to N3.constraint; and similarly, a new constraint ⟨a2, B1, 1⟩, where a2 is prohibited
from being at location B2 at timestep 1, is added to N4.constraint. As the low-level MLA*
search can find valid paths for the replanning agents with respect to the constraints in each
node, both child nodes can be added to the OPEN list. In the next iteration, N2 is picked
for expansion because it has the smallest cost N2.cost = 8 in the OPEN list. No more root
node will be created since there are only two possible task assignments. The paths in N2

have collisions, and thus the algorithm generates two child nodes and adds them to the
OPEN list (omitted in the figure). Then N3 is chosen to expanded and the algorithm finds
there is no collision among planned paths in N3. So, N3 is declared as the goal node and
N3.assignment and N3.paths are returned as the result.

25

Chapter 6

Extensions

This section introduces three extensions of CBS-TA-MLA, namely an improved optimal
version (with heuristics on the high-level), a bounded-suboptimal version and a greedy
version.

6.1 CBS-TA-MLA with Heuristics (CBSH-TA-MLA)

CBS with heuristics [13] introduces three admissible heuristics for the high level search of
CBS, which can significantly reduce the number of expanded CT nodes. Collisions in a CT
node can be classified into three types:

1. cardinal collision, if both of the resulting child nodes have a larger cost than the node;

2. semi-cardinal collision, if only one child nodes increases the cost; and

3. non-cardinal collision, if both of the child nodes have the same cost as the node itself.

6.1.1 Multi-Valued Decision Diagram Construction

The technique used to classify collisions is based on Multi-Valued Decision Diagrams (MDDs)
[13]. An MDD for agent ai at CT node N is a directed acyclic graph consisting of all possible
cost-optimal paths of agent ai with respect to the assignment N.assignment and the con-
straint set N.constraints. In the original MDD [13], each node ⟨v, t⟩ consists of a location
v and a level/timestep t. A collision between agent ai and agent aj at timestep t is cardinal
if the contested vertex or edge is the only vertex or edge at level t of their MDDs. To make
the MDD applicable in our case in which the cost-optimal paths contain all goal locations
of the assigned task in the correct sequence, we add a label l to each MDD node, and each
node ⟨v, t, l⟩ is a tuple of location v, level t and label l (see Figure 6.1).

6.1.2 Collision Graph (CG) Heuristic

If N.paths contains one cardinal collision, a cost of one is an admissible h-value for N since
the cost of its child nodes should be at least one larger than N.cost. If N.paths contains

26

e

0

1

2

3

MDD for a1

B1, 1

B2, 1

B3, 2

B2, 2

B1, 24

MDD for a2

A2, 1

B2, 1

C2, 2

B2, 2

A2, 2

(Empty) joint MDD

B1, 1, A2, 1

B2, 1, B2, 1

Figure 6.1: The MDDs and joint MDD for the example instance in Figure 5.2. Each node
⟨v, t(omitted), l⟩ contains a tuple of location v, level/timestep t and label l. Levels t of MDD
nodes are shown on the left and omitted in the node.

multiple cardinal collisions, a collision graph of N is built, whose vertices represent agents
and edges represent cardinal collisions between agents. The size of the minimum vertex
cover (MVC) of this collision graph is an admissible h-value for N, which we call the CG
heuristic.

6.1.3 Dependency Graph (DG) Heuristic

While CG only considers cardinal collisions, DG considers all collisions to decide whether
two agents associated with the collisions are dependent or not. Two agents are dependent if
(1) their paths have cardinal collisions, or (2) their paths have semi-cardinal or non-cardinal
collisions and the joint MDD of their MDDs are empty. The joint MDD of two agents’
MDDs consists all combinations of the cost-optimal collision-free paths of the agents that
obey N.constraints. An empty joint MDD indicates that no such paths exist. Similar to
CG, a pairwise dependency graph, a generalization of the collision graph, is built, where
edges represent the dependencies between two agents. The size of the MVC of the pairwise
dependency graph is an admissible h-value for N, which we call the DG heuristic.

6.1.4 Weighted Dependency Graph (WDG) Heuristic

WDG improves DG by building a weighted pairwise dependency graph. The weight of the
edges between two vertices(agents) is the difference between the minimum flowtime of the
collision-free paths of corresponding agents satisfying N.constraints and the flowtime of their
paths in N.paths. The minimum flowtime of two agents’ collision-free paths is calculated
by running the two-agent CBS-TA-MLA algorithm (with or without CG heuristic). The
size of the edge-weighted MVC of the weighted pairwise dependency graph is an admissible
h-value for N, which we call the WDG heuristic.

27

6.1.5 Techniques application

We adopt the techniques of CBS to form the CBS-TA-MLA with Heuristics algorithm
(CBSH-TA-MLA). We maintain a new variable min_f_val as the minimum f -value of all
the nodes in the OPEN list. Each node N has two additional fields: N.h_val to represent
the admissible h-value and N.f_val = N.cost + N.h_val for prioritization in the OPEN
list. Instead of calculating N.h_val immediately after generating a new node, we compute
a cheaper and admissible h-value by a lazy computation method (refer to [13] for more
details). Initially, the R.f_val for the root nodes are their actual cost R.cost and the
R.h_val = 0. When a node N is chosen to expand, if N.h_val has not been computed yet,
CBSH-TA-MLA computes the N.h_val according to the heuristic method and updates the
N.f_val. If the N.f_val is larger than min_f_val, N is put back to the OPEN list, and
a new node is picked to expand. The chooseCollision(N) function chooses cardinal collisions
first, semi-cardinal collisions then and non-cardinal collisions last (breaking ties in favor of
the earliest collision).

6.2 Enhanced CBS-TA-MLA (ECBS-TA-MLA)

Similar to Enhanced CBS (ECBS) [1], ECBS-TA-MLA is a bounded sub-optimal algorithm
for MG-TAPF. If uses a focal search instead of a best-first search with the same sub-
optimality factor ω on both its high and low level searches. A focal search maintains two
lists: the OPEN list and the FOCAL list. The OPEN list is a regular OPEN list as the
best-first search, sorting nodes according to the f -values. The best node Nbest is the node
with the minimum f -value in the OPEN list, and we use fbest to denote the f -value of the
node. The FOCAL list contains a subset of nodes of the OPEN list whose f -values are less
than or equal to ω · fbest. The FOCAL list is sorted according to some other heuristic. It
guarantees to find solutions at most ω times worse than the optimal solution by always
expanding the best node (with respect to heuristic) in the FOCAL list.

6.2.1 Low-level focal search

The low-level focal search of ECBS-TA-MLA prioritizes nodes in the OPEN list with their
regular f -value. The heuristic used for prioritizing nodes in the FOCAL list is the number
of collisions between the current planning agent and the paths of the other agents. When it
finds a solution, it returns not only the path, but also the f -value of the best node n in the
OPEN list, which is guaranteed to be the lower bound on the cost of the time-optimal path.
We denote this lower bound by fbest(ai), where ai is the agent doing the low-level search.

28

6.2.2 High-level focal search

The high-level search of ECBS-TA-MLA sorts CT nodes in the OPEN list according to the
sum of lower bounds of all agents LB(N) = ∑m

i=1 fbest(ai). Let Nbest denote the node in
the OPEN list with the minimum LB(N). The FOCAL list contains a subset of CT nodes
N such that N.cost < ω · LB(Nbest). The nodes in the FOCAL list are sorted according
the number of collisions among N.paths. Since LB(Nbest) is provably a lower bound on the
optimal flowtime C∗, the cost of any CT node in the FOCAL list is no higher than ω · C∗.
As a result, once a solution is found, its flowtime is no larger than ω · C∗, so it is bounded
sub-optimal with the pre-defined suboptimality constant ω.

6.3 Greedy CBS-TA-MLA (TA+CBS-MLA)

The greedy version of CBS-TA-MLA, called TA+CBS-MLA, is the best task assignment
(TA) followed by the CBS-MLA algorithm. TA+CBS-MLA implements the same CBS-TA-
MLA structure except for the single-root expansion. Thus, it starts with the root node with
the best task assignment and does not generate any other root nodes. TA+CBS-MLA has
no optimality or completeness guaranteed.

29

Chapter 7

Experiments

This section describes our experimental results on a 2.3GHz Intel Core i5 laptop with 16GB
RAM. The algorithms are implemented in Python and tested on three maps: (1) a dense
map which is a 20×20 warehouse map with 30% obstacles from the MAPF benchmarks [30]
(Figure 7.1); (2) a sparse map which is a 32× 32 random map with 10% obstacles (Figure
7.2); and (3) an empty map of size 32× 32.

7.1 CBSH-TA-MLA

We evaluate CBSH-TA-MLA in three different maps in two test sets. In the first test set,
we use the dense map (Figure 7.1) with 10 randomly generated agents/tasks and report
the success rate, the average number of expanded CT nodes, and the average run time over
100 instances with a time limit of 120 seconds. In the second test set, we use the sparse
map (Figure 7.2) and the empty map with the same size 32 × 32 and report the above
three values over 50 instances with a time limit of 300 seconds. Table 7.1 shows that WDG
always has the smallest number of expanded nodes, while DG always have the shortest
average runtime of all instances. This is because WDG needs to compute the weights of the
edges of pairwise dependency graph, which exquires executing the two-agent CBS-TA-MLA
algorithm. Although we set a small time limit of 5 seconds and use the CG heuristic for the
two-agent CBS-TA-MLA algorithm, it still requires a significant amount of time.

7.2 ECBS-TA-MLA

We evaluate ECBS-TA-MLA with two maps with different suboptimality bound ω, different
number of agents/tasks and different number of goal locations in the task in two test sets.
We use the dense map in our first test set and report the success rate, the average number
of expanded CT nodes, the average run time and the average cost over 100 instances in
Table 7.2. The last three values are averaged over instances that are successfully solved
by ECBS-TA-MLA with all four different ω. As expected, ECBS-TA-MLA achieves a high
success rate on the instances with smaller number of agents/tasks. However, it only achieves

30

Figure 7.1: Dense map (20× 20 warehouse map with 30% obstacles)

a high success rate with ω = 1.3 when the number of agents/tasks is 30 on the dense map.
In addition, when we increase ω, the average number of expanded CT nodes and the average
run time reduce, while the average cost increases. The second test set uses the sparse map.
We vary the number of agents/tasks and the number of goal locations in one task (2 goal
locations per task and 10 goal locations per task). When the number of goal locations per
task is 10, the success rate decreases as ω increases from 1.05 to 1.3.

We also test ECBS-TA-MLA on instances with different numbers of goal locations per
task. We use 10 agents/tasks and report the same values as in Table 7.1 with a time limit
of 60 seconds in Table 7.3. The experiment shows that with appropriate ω, the success rate
is still over 80% within a minute, even with a maximum of 20 goal locations per task.

7.3 TA+CBS-MLA

We compare TA+CBS-MLA against CBS-TA-MLA on the dense map and report the success
rate, average flowtime and the average runtime with 10 agents/tasks and 2 goal locations
per task, 15 agents/tasks and 2 goal locations per task and 10 agents/tasks and 5 goal
locations per task with a time limit of 60 seconds in Table 7.4. CBS-TA-MLA outperforms
TA+CBS-MLA in the average cost, but TA+CBS-MLA outperforms CBS-TA-MLA in both
success rate and average runtime in all three tests. The reason is that the number of possible
task assignment with the same cost is large, so CBS-TA-MLA spends a significant amount
of time computing task assignments and finding paths with the same costs.

31

Figure 7.2: Sparse map (32× 32 random map with 10% obstacles)

Maps Agents Heuristics Success Rate Nodes Expanded Run time (s)

Dense map 10

No 98/100 34.18 2.54
CG 98/100 28.86 2.23
DG 98/100 25.54 2.09

WDG 97/100 8.98 3.53

Sparse map 20

No 44/50 42.59 15.68
CG 44/50 34.65 13.21
DG 46/50 30.58 11.8

WDG 46/50 4.63 13.17

Empty map

20

No 46/50 23.02 6.96
CG 46/50 12.08 4.03
DG 50/50 3.48 1.52

WDG 48/50 2.11 2.82

30

No 40/50 20.225 9.55
CG 40/50 14.75 7.15
DG 46/50 7.375 4.24

WDG 46/50 4.375 4.52

Table 7.1: Results for CBSH-TA-MLA using different heuristics on three maps with different
number of agents/tasks, where each task has two goal locations.

32

Maps Agents Goal
Locations ω

Success
Rate

Nodes
Expanded Runtime (s) Cost

Dense map

10 2

1.0 100/100 22.68 2.2 144.69
1.05 100/100 6.0 0.7 145.57
1.1 100/100 3.27 0.32 146.77
1.3 100/100 0.85 0.08 148.19

20 2

1.0 29/100 247.46 28.47 249.46
1.05 78/100 20.42 2.22 255.75
1.1 97/100 6.68 0.83 260.21
1.3 100/100 3.46 0.58 262.32

30 2

1.0 0/100 / / /
1.05 14/100 / / /
1.1 48/100 / / /
1.3 96/100 / / /

Sparse map

10 2

1.0 100/100 3.14 0.58 304.79
1.05 100/100 0.47 0.12 305.64
1.1 100/100 0.36 0.11 306.32
1.3 100/100 0.35 0.10 306.79

20 2

1.0 76/100 28.34 9.22 537.49
1.05 100/100 1.96 0.79 541.38
1.1 100/100 1.48 0.69 543.28
1.3 100/100 1.35 0.73 544.36

10 10

1.0 73/100 9.33 13.35 1846.46
1.05 88/100 0.68 4.52 1856.49
1.1 86/100 0.65 3.56 1858.03
1.3 85/100 0.65 0.75 1858.03

Table 7.2: Results for ECBS-TA-MLA with different ω on different maps with different
numbers of agents/tasks and different numbers of goal locations per task.

Goal Locations ω Success Rate Nodes Expanded Runtime (s)

2-5 1.1 95/100 1.26 1.96
1.3 95/100 1.26 2.13

5-10 1.1 72/100 2.04 3.51
1.3 72/100 2 3.61

10-15 1.1 80/100 7.03 18.36
1.3 83/100 7.2 19.46

15-20 1.1 78/100 14.61 48.11
1.3 83/100 15.15 51.37

Table 7.3: Results for ECBS-TA-MLA with different numbers of goal locations per task
with different ω on the sparse map. The number of goal locations differs in different tasks.

33

Agents Goal
Locations Algorithm Success

Rate
Average
Runtime

Average
Cost

Cost
Saving

Runtime
Saving

10 2 TA+CBS-MLA 99/100 0.3957 152.4947 1.1578 -0.7597CBS-TA-MLA 95/100 1.1555 151.3368

15 2 TA+CBS-MLA 94/100 2.9499 208.6086 2.3333 -7.8878CBS-TA-MLA 71/100 10.8377 206.2753

10 5 TA+CBS-MLA 71/100 4.6151 395.8297 0.7234 -5.6129CBS-TA-MLA 48/100 10.228 395.1063

Table 7.4: Results for comparison between TA+CBS-MLA and CBS-TA-MLA on the dense
map with different number of agents/tasks and different number of goal locaitons.

34

Chapter 8

Conclusion and Future Work

In this thesis, we presented the CBS-TA-MLA algorithm to solve the MG-TAPF problems
optimally. We then presented three enhanced variants of CBS-TA-MLA, namely (1) optimal
variant CBSH-TA-MLA, which speeds up CBS-TA-MLA by adding heuristics, (2) bounded
suboptimal variant ECBS-TA-MLA, which speeds up CBS-TA-MLA by using focal search,
and (3) greedy variant greedy CBS-TA-MLA, which commits to the most promising task
assignment and does not explore the other assignments. We conducted an extensive set of
experiments to evaluate these algorithms in different settings with different maps, different
numbers of agents/tasks, and different numbers of goal locations per task.

The future direction is to combine other enhancement techniques (such as disjoint split-
ting on the high-level search and incremental A* on the low-level search) to further improve
the efficiency of CBS-TA-MLA.

35

Bibliography

[1] M. Barer, G. Sharon, R. Stern, and A. Felner. Suboptimal variants of the conflict-based
search algorithm for the multi-agent pathfinding problem. In SoCS, pages 19–27, 2014.

[2] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betzalel, and
Solomon Eyal Shimony. ICBS: Improved conflict-based search algorithm for multi-agent
pathfinding. In IJCAI, pages 740–746, 2015.

[3] B. de Wilde, A. W. ter Mors, and C. Witteveen. Push and rotate: Cooperative multi-
agent path planning. In AAMAS, pages 87–94, 2013.

[4] Kurt Dresner and Peter Stone. A multiagent approach to autonomous intersection
management. Journal of Artificial Intelligence Research, 31:591–656, 2008.

[5] E. Erdem, D. G. Kisa, U. Oztok, and P. Schueller. A general formal framework for
pathfinding problems with multiple agents. In AAAI, pages 290–296, 2013.

[6] Gilad Goraly and Refael Hassin. Multi-color pebble motion on graphs. Algorithmica,
58(3):610–636, nov 2010.

[7] Florian Grenouilleau, Willem-Jan van Hoeve, and John N Hooker. A multi-label a*
algorithm for multi-agent pathfinding. In ICAPS, pages 181–185, 2019.

[8] Wolfgang Hönig, Scott Kiesel, Andrew Tinka, Joseph Durham, and Nora Ayanian.
Conflict-based search with optimal task assignment. In AAMAS, 2018.

[9] Wm. Woolsey Johnson and William E. Story. Notes on the "15" puzzle. American
Journal of Mathematics, 2(4):397–404, 1879.

[10] D. Kornhauser, G. Miller, and P. Spirakis. Coordinating pebble motion on graphs, the
diameter of permutation groups, and applications. In Annual Symposium on Founda-
tions of Computer Science, pages 241–250, 1984.

[11] Harold W. Kuhn. The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.

[12] Edward Lam, Pierre Le Bodic, Daniel Harabor, and Peter J. Stuckey. Branch-and-cut-
and-price for multi-agent pathfinding. In IJCAI, pages 1289–1296, 2019.

[13] Jiaoyang Li, Ariel Felner, Eli Boyarski, Hang Ma, and Sven Koenig. Improved heuristics
for multi-agent path finding with conflict-based search. In IJCAI, pages 442–449, 2019.

36

[14] Jiaoyang Li, Kexuan Sun, Hang Ma, Ariel Felner, T. K. Satish Kumar, and Sven
Koenig. Moving agents in formation in congested environments. In AAMAS, pages
726–734, 2020.

[15] Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W Durham, TK Satish Kumar, and
Sven Koenig. Lifelong multi-agent path finding in large-scale warehouses. In AAMAS,
pages 1898–1900, 2020.

[16] Minghua Liu, Hang Ma, Jiaoyang Li, and Sven Koenig. Task and path planning for
multi-agent pickup and delivery. In AAMAS, pages 2253–2255, 2019.

[17] R. Luna and K. E. Bekris. Push and Swap: Fast cooperative path-finding with com-
pleteness guarantees. In IJCAI, pages 294–300, 2011.

[18] H. Ma and S. Koenig. Optimal target assignment and path finding for teams of agents.
In AAMAS, pages 1144–1152, 2016.

[19] H. Ma, J. Li, T. K. S. Kumar, and S. Koenig. Lifelong multi-agent path finding for
online pickup and delivery tasks. In AAMAS, pages 837–845, 2017.

[20] H. Ma, C. Tovey, G. Sharon, T. K. S. Kumar, and S. Koenig. Multi-agent path finding
with payload transfers and the package-exchange robot-routing problem. In AAAI,
pages 3166–3173, 2016.

[21] Hang Ma, Glenn Wagner, Ariel Felner, Jiaoyang Li, T. K. Satish Kumar, and Sven
Koenig. Multi-agent path finding with deadlines: Preliminary results. In AAMAS,
pages 2004–2006, 2018.

[22] R. Morris, C. Pasareanu, K. Luckow, W. Malik, H. Ma, S. Kumar, and S. Koenig.
Planning, scheduling and monitoring for airport surface operations. In AAAI Workshop
on Planning for Hybrid Systems, 2016.

[23] Katta G. Murty. Letter to the editor - an algorithm for ranking all the assignments in
order of increasing cost. Oper. Res., 16:682–687, 1968.

[24] V. Nguyen, P. Obermeier, T. C. Son, T. Schaub, and W. Yeoh. Generalized target
assignment and path finding using answer set programming. In IJCAI, pages 1216–
1223, 2017.

[25] G. Röger and M. Helmert. Non-optimal multi-agent pathfinding is solved (since 1984).
In SoCS, 2012.

[26] G. Sharon, R. Stern, A. Felner, and N. Sturtevant. Conflict-based search for optimal
multi-agent pathfinding. Artificial Intelligence, 219:40–66, 2015.

[27] G. Sharon, R. Stern, M. Goldenberg, and A. Felner. The increasing cost tree search
for optimal multi-agent pathfinding. Artificial Intelligence, 195:470–495, 2013.

[28] D. Silver. Cooperative pathfinding. In AIIDE, pages 117–122, 2005.

[29] Roni Stern, Nathan Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne Walker,
Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Eli Boyarski, and Roman
Bartak. Multi-agent pathfinding: Definitions, variants, and benchmarks. In SoCS,
pages 151–159, 2019.

37

[30] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T.
Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Eli Boyarski,
and Roman Bartak. Multi-agent pathfinding: Definitions, variants, and benchmarks.
Symposium on Combinatorial Search (SoCS), pages 151–158, 2019.

[31] P. Surynek. Reduced time-expansion graphs and goal decomposition for solving coop-
erative path finding sub-optimally. In IJCAI, pages 1916–1922, 2015.

[32] Pavel Surynek. An optimization variant of multi-robot path planning is intractable. In
AAAI, pages 1261–1263, 2010.

[33] C. A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Math-
ematics, 8:85–90, 1984.

[34] Glenn Wagner. Subdimensional Expansion: A Framework for Computationally
Tractable Multirobot Path Planning. PhD thesis, Carnegie Mellon University, 2015.

[35] K. Wang and A. Botea. MAPP: A scalable multi-agent path planning algorithm with
tractability and completeness guarantees. Journal of Artificial Intelligence Research,
42:55–90, 2011.

[36] P. R. Wurman, R. D’Andrea, and M. Mountz. Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. AI Magazine, 29(1):9–20, 2008.

[37] J. Yu and S. M. LaValle. Multi-agent path planning and network flow. In E. Frazzoli,
T. Lozano-Perez, N. Roy, and D. Rus, editors, Algorithmic Foundations of Robotics X,
Springer Tracts in Advanced Robotics, volume 86, pages 157–173. 2013.

[38] J. Yu and S. M. LaValle. Planning optimal paths for multiple robots on graphs. In
ICRA, pages 3612–3617, 2013.

[39] J. Yu and S. M. LaValle. Structure and intractability of optimal multi-robot path
planning on graphs. In AAAI, pages 1444–1449, 2013.

[40] J. Yu and D. Rus. Pebble motion on graphs with rotations: Efficient feasibility tests
and planning algorithms. In Algorithmic Foundations of Robotics XI, Springer Tracts
in Advanced Robotics, volume 107, pages 729–746. 2015.

38

	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Contributions

	Background
	Pebble Motion on Graphs
	Multi-Agent Pathfinding
	Problem Definition
	Complexity
	Conflict-Based Search (CBS)

	Target-Assignment and Pathfinding
	Problem Definition
	Complexity
	Conflict-Based Search with Task Assignment (CBS-TA)

	Lifelong Task-Assignment and Pathfinding
	Problem Definition of Multi-Agent Pickup and Delivery
	Mult-Label Space-Time A*

	Problem Definition
	Complexity
	Conflict-Based Search with Task Assignment with Multi-Label A*
	High-level: Conflict-Based Search with Task Assignment
	Low-level: Multi-Label Space-Time A*
	Properties
	Example

	Extensions
	CBS-TA-MLA with Heuristics (CBSH-TA-MLA)
	Multi-Valued Decision Diagram Construction
	Collision Graph (CG) Heuristic
	Dependency Graph (DG) Heuristic
	Weighted Dependency Graph (WDG) Heuristic
	Techniques application

	Enhanced CBS-TA-MLA (ECBS-TA-MLA)
	Low-level focal search
	High-level focal search

	Greedy CBS-TA-MLA (TA+CBS-MLA)

	Experiments
	CBSH-TA-MLA
	ECBS-TA-MLA
	TA+CBS-MLA

	Conclusion and Future Work
	Bibliography

