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Abstract

The current literature on mortality has mainly focused on model specification, giving less
regard to parameter estimation. Indeed, over the last three decades, multiple mortality
models have been introduced, most being extensions of the well-known Lee-Carter model
or the Cairns-Black-Dowd (CBD) model. However, the estimation of these models has been
somewhat overlooked; most papers focus on frequentist methods, such as the (two-stage)
maximum likelihood estimation method that estimates the mortality parameters first and
then the parameters of the mortality improvement dynamics second. In this report, we
present a new Bayesian-based estimation procedure for CBD-type models that relies on
the particle Markov chain Monte Carlo (pMCMC) method of Andrieu et al. (2010). This
methodology captures the dynamic nature of the mortality improvement factors (and their
underlying parameters) consistently, unlike most two-stage estimation methods used in the
literature.
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Chapter 1

Introduction

Longevity risk is one of the most significant risks that insurance companies, pension plan
sponsors, and government are exposed to. Longevity risk arises when people live longer than
expected, which means pensions or annuities need to be paid for a much longer time than
expected, resulting in higher pension plan and insurance liabilities.

To capture and understand longevity risk, a wide variety of stochastic mortality models
has been developed during the last three decades. Most of these are extensions of the well-
known Lee-Carter (LC) model or of the Cairns-Black-Dowd (CBD) model. Lee and Carter
(1992) introduce the first stochastic mortality model, and since then, multiple LC-type
mortality models were proposed; for instance, Renshaw and Haberman (2006) extend the
LC model to incorporate cohort effect. Currie et al. (2006) introduce a simpler age-period-
cohort model, which can be seen as a special case of the Renshaw and Haberman (2006)
model.

Cairns et al. (2006) contribute the main mortality modelling alternative to the LC model.
Their framework is also extended; for instance, Cairns et al. (2009) propose new CBD-type
models that include cohort-effect factors and other features. Plat (2009) combines the CBD
model with cohort effect with some features of the LC model. Inspired by Plat (2009), Dowd
et al. (2020) extend the CBD-type models of Cairns et al. (2009) by including a static age
function αx; these are called CBD-X models.

All the mortality models above are constructed from a mixture of independent deter-
ministic and stochastic components which capture age, period and, in some cases, cohort
effects. The number and form of these effects usually distinguish one model from another.
We focus on the CBD-X models in this report and ignore the cohort-effect factors for ease
of presentation.

Alongside the development of stochastic mortality models, various estimation methods
for these models have also been proposed. Early work by Lee and Carter (1992) and Koissi
et al. (2006) estimates stochastic mortality models based on a singular value decomposition
(SVD) approach—a method that decomposes a matrix into three components by factoriza-
tion.
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Specifically, the authors above set αx as the arithmetic average of the logarithm of the
central death rate (i.e., log(mx,t)) over time; then, they apply SVD on (log(mx,t) − αx) to
extract the other parameters. For mortality forecasting purposes, period-effect factor time-
series dynamics are assumed, and the parameters of this time-series model are estimated
from the parameters obtained in the previous step.

Nowadays, most mortality studies rely on maximum likelihood estimation method (e.g.,
Brouhns et al., 2002; Cairns et al., 2009; Plat, 2009, and Dowd et al., 2020). This is usually
done in two stages: first, by postulating a Poisson distribution for the number of deaths to
facilitate maximum likelihood estimation; then, same as in the SVD method, some time-
series dynamics for the period-effect factors are assumed. However, these two-stage esti-
mation methods do not capture the dynamic nature of the period-effect factors and their
underlying parameters consistently.

In contrast, a one-step approach incorporates the dynamic nature of the period-effect
factors within the model estimation and thus can solve the inconsistency problem. The
one-step approach can be achieved by at least two different methods: Markov chain Monte
Carlo (MCMC) or state-space representation. Czado et al. (2005) use MCMC methods to
estimate parameters within the LC model and test it on French male data. Cairns et al.
(2011) propose a two-population Bayesian stochastic mortality model, which is designed for
modelling sub-population (e.g., UK male insured lives) within a dominant population (e.g.,
the populations of England and Wales males) based on the MCMC approach. Cairns et al.
(2019) apply the MCMC method to estimate parameters within a new multi-population
Bayesian CBD model, which is used to capture the socio-economic difference in the mortality
of Danish males.

Pedroza (2006) proposes an alternative solution; that is, recasting the LC model in a
state-space formulation. State-space models (SSM) describe the probabilistic dependence
between the observed measurement (i.e., the observed death rates) from a system and
the latent variables (i.e., period-effect factors) that drive the dynamics of that system.
By recasting the mortality model in a state-space representation, we can incorporate the
dynamics of period-effect factors within the model estimation. Reichmuth and Sarferaz
(2008) further extend such frameworks to the Renshaw and Haberman (2006) model. All
the authors mentioned above use the Kalman filter method to estimate the distributions of
the latent variables, but this filter requires the SSM to be linear and Gaussian. Fung et al.
(2017) introduce particle filters for sampling non-linear and non-Gaussian SSM and apply
this method to estimate different LC-type mortality models. The distributions of the latent
variables are estimated by particle filters, while the unknown parameters within the SSM
can be estimated either by MLE or MCMC methods.

We follow the study of Fung et al. (2017), and we sample the distribution of the latent
variables using particle filters and estimating the other unknown parameters in the SSM
using a sample-based approach—MCMC methods. This estimation procedure is also known
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as the particle Markov chain Monte Carlo (pMCMC) method. As stated in Andrieu et al.
(2010), the pMCMC method is more computationally efficient than classic MCMC methods.
Therefore, in this report, we present a new Bayesian-based estimation procedure for CBD-X
models that relies on the pMCMC method of Andrieu et al. (2010).

The contributions of this report lie in explaining the technicalities of pMCMC sampling
for single-population CBD-X mortality models under the Bayesian paradigm and applying
these models to Canadian mortality data. Although Bayesian estimation has been widely
used in recent years (see, e.g., Cairns et al., 2019, apply MCMC methods to estimate the
CBD-X model for the Danish population, and Fung et al., 2017, use the pMCMC method
for the LC models), we are the first to apply the pMCMC method to estimate the CBD-X
models. The CBD-X models in this report are estimated with Canadian male data to assess
the quality of mortality estimations and predictions. Statistical diagnostic tests and model
selection are also conducted. We further compare the model forecasting performance with
the forecasts obtained with the maximum likelihood method.

This report consists of seven chapters. In Chapter 2, we review some important mortality
models and the standard approach for specifying the structure of the period effects in
the actuarial literature. In Chapter 3, we introduce a state-space representation of the
preferred mortality model and explain filtering. The state-space formulation of the CBD-X
models and the sequential Monte Carlo algorithm are also given in Chapter 3. Chapter
4 focuses on Bayesian inference and the methodology applied for model estimation; that
is, the Metropolis-Hastings algorithm, the Gibbs sampler, and the pMCMC algorithm. In
Chapter 5, we estimate the CBD-X models introduced in Chapter 2 using Canadian male
mortality data. Chapter 6 compares model predictions estimated under both frequentist
and Bayesian approaches. Chapter 7 concludes.
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Chapter 2

One-Population Mortality Models

Sound mortality models are essential for pension plans and life insurers to correctly price
annuities, value pension liabilities, and hedge against losses due to mortality and longevity
risk. Several deterministic mortality laws were established during the 19th and 20th centuries,
(e.g., Gompertz (1825) law for the force of mortality). Deterministic models are adequate
for forecasting expected present values but do not capture the uncertainty about future
mortality developments. Thus, a stochastic mortality model is necessary and, since the early
1990s, multiple stochastic mortality models were developed to provide accurate predictions
of mortality improvements.

The force of mortality µx,t is commonly used to estimate and forecast mortality, where
x ≥ 0 represents ages and t ≥ 0 represents calendar years. For fixed age x and time t, µx,t
expresses the instantaneous probability of immediate death. It cannot be directly observed,
unfortunately, as mortality data are not recorded in continuous time.

Typically, the central death rate mx,t is used as a proxy for µx,t. We define the central
death rate mx,t for person aged x during year t for x ∈ [xmin, xmax] and t ∈ [tmin, tmax] by

mx,t = Dx,t

Ex,t
,

where xmin is the youngest age fitted within a mortality model and xmax is the oldest age.
Likewise, tmin is the first calendar year fitted within a mortality model and tmax is the last
calendar year. For convenience, we set tmin = 1 and tmax = T . Variable Dx,t represents the
death count during calendar year t at age x, and Ex,t is the exposure of the population at
age x during year t. That is to say, mx,t is the proportion of the number of deaths over the
total exposure at age x during year t.

To obtain the force of mortality from discrete observations, a constant force of mortality
assumption is commonly imposed. Under this assumption, µx,t = mx,t. Also, µx,t = − log(1−
qx,t), where qx,t is the mortality rate for an individual aged x during year t, so we have the

4



following relationship:

qx,t = 1− exp(−µx,t) = 1− exp(−mx,t).

Age effects represent mortality variation by age, regardless of birth cohort. Period effects
capture mortality changes over time that equally affect all ages during a particular calendar
year. Cohort effects represent mortality variations resulting from different generations rep-
resented by the year of birth. Throughout this report, we use c = t−x to represent the year
of birth or cohort year. According to Hunt and Blake (2021), most of the existing stochastic
mortality models in the literature can be written as the following age-period-cohort effect
model,

ηx,t = αx +
N∑
i=1

β(i)
x κ

(i)
t γ

(i)
c , (2.1)

where

• ηx,t can be the death rate on logarithmic scale (i.e., ηx,t = log(mx,t)) or the mortality
rate in logit scale (i.e., ηx,t = log

(
qx,t

1−qx,t

)
= logit(qx,t)) for people aged x in year t;

• αx is a static age function, which is the basic age effect and can be treated as the
mortality table without mortality improvement;

• N is the number of period and/or cohort terms within the model;

• β
(i)
x is the ith age-effect factor, which variations are associated with physiological and

social ageing processes;

• κ
(i)
t is the ith period-effect factor that affects mortality trend for people of all ages

that are alive in period t; for example, this can be related to environmental conditions,
medical developments, and living conditions;

• γ
(i)
c represents the ith cohort effect; that is, the impact of the past conditions on current

mortality rate. For instance, generation-specific habits, wars, and catastrophes, for
individuals born in the same year.

The two major mortality model families used in actuarial science are nested within this
general model. They are the LC-type models and the CBD-type models.

2.1 Generalized Lee and Carter-Type Models

Lee and Carter (1992) present an original model that fits and predicts mortality rates for the
United States. It is a two-factor model that has one period-effect factor and two age-effect
factors. Due to its simplicity and relatively good performance, this type of model has been

5



widely used for various countries’ demographic and actuarial applications (e.g., Lundström
and Qvist, 2004; Haqqi Anna Zili et al., 2018; Kamaruddin and Noriszura, 2018).

2.1.1 The Original LC Model

Lee and Carter (1992) propose the following two-factor model for death rates:

ηx,t = αx + β(1)
x κ

(1)
t ,

where ηx,t = log(mx,t) and parameters αx describe the basic pattern of log(mx,t) averaged
over time for each age. Parameters κ(1)

t express the overall evolution of mortality over time;
their related impacts on the basic mortality patterns are weighted for the the different ages
through β(1)

x . This model can be written as a nested case of Equation (2.1) by setting N = 1
and γ(1)

c = 1 for all c.

2.1.2 The Renshaw and Haberman Model

Renshaw and Haberman (2006) conclude that the original LC model does not fit mortality
data from England and Wales well; however, they find that adding a cohort-effect term can
increase the goodness-of-fit significantly. The resulting model is as follows:

ηx,t = αx + β(1)
x κ

(1)
t + β(2)

x γ(2)
c ,

where ηx,t = log(mx,t), parameters αx, β(1)
x , and κ

(1)
t have the same meaning as those in

the original LC model, and parameters β(2)
x adjust the cohort effect across age groups. This

model can be written as a nested case of Equation (2.1) by setting N = 2, κ(2)
t = 1 for all

t, and γ(1)
c = 1 for all c.

2.2 Generalized CBD-Type Models

Cairns et al. (2006) develop another stochastic mortality model originally used for fore-
casting United Kingdom mortality data. This model plays an important role in predicting
mortality at older ages (i.e., people older than 60). This model relies on two period-effect
factors. The first factor affects mortality equally for all ages, whereas the second factor has
a higher impact on older ages. This type of model has been accepted widely and applied in
pension funds, life insurance, and pricing longevity bonds (e.g., Cairns et al., 2009; Cairns,
2011; Chan et al., 2014; Cairns et al., 2019).

2.2.1 The Original CBD Model

Cairns et al. (2006) propose the original CBD model as follows:

ηx,t = κ
(1)
t + κ

(2)
t (x− x),
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where x =
∑x=xmax

x=xmin
x

xmax−xmin+1 is the average of fitted ages. This model can be written as a nested
version of Equation (2.1) by setting N = 2, αx = 0 for all x, β(1)

x = 1 for all x, β(2)
x =

(x − x), and γ
(1)
c = γ

(2)
c = 1 for all c. The first period-effect factor κ(1)

t represents the
overall mortality improvement over time, and the second κ(2)

t captures the different mortality
improvement by ages; specifically, people aged below the mean age x have larger mortality
improvements than people aged above the mean age x. They use two period-effect factors
because the quantification of mortality improvement through only one period-effect factor
is not adequate. The same authors point out that having only one period-effect factor κ(1)

t

in the LC model implies perfect correlation among the changes of central death rates for
all ages (Cairns et al., 2009). The original CBD paper sets ηx,t = logit(qx,t) and uses the
England and Wales data. For those data, the logit(qx,t) increases approximately linearly
in age x, but this is not necessarily true for all data sets. Thus, it is not necessary to set
ηx,t = logit(qx,t) for all CBD-type mortality models.

2.2.2 The CBD Model with a Cohort Effect

Since a cohort effect might exist in some populations and can become an important factor
in mortality modelling, Cairns et al. (2009) extend the original CBD model to include a
cohort effect, as follows:

ηx,t = κ
(1)
t + κ

(2)
t (x− x) + γ(3)

c ,

where ηx,t = logit(qx,t). This model is not as widely used as the three-factor CBD model
discussed below because the three-factor CBD model performs better, as shown in Cairns
et al. (2009). The CBD model with a cohort effect is nested in the general framework of
Equation (2.1) by setting N = 3, αx = 0 for all x, β(1)

x = β
(3)
x = 1 for all x, β(2)

x = (x− x),
κ

(3)
t = 1 for all t, and γ(1)

c = γ
(2)
c = 1 for all c.

2.2.3 A Three-Factor CBD Model

Cairns et al. (2009) extend the CBD model with a cohort effect above by adding a quadratic
age effect, which is inspired by the curvature that appears in the logit(qx,t) plot when fitting
US mortality data. Figure 2.1, which is taken from the working paper version of Cairns et al.
(2009), shows logit(qx,t) for the year 2003 and ages x ∈ [60, 89] when fitting US mortality
data. Cairns et al. (2009) point out that the curvature is not all that prominent, but it
impacts the results when the different models are compared. This model is called M7 in
Cairns et al. (2009), but we call it the three-factor CBD model because it has three period-
effect factors. The formula of this generalization is as follows:

ηx,t = κ
(1)
t + κ

(2)
t (x− x) + κ

(3)
t ((x− x)2 − σ2

x) + γ(4)
c ,
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where ηx,t = logit(qx,t) and σ2
x =

∑x=xmax
x=xmin

(x−x)2

xmax−xmin+1 . This model can be written as a nested case
of Equation (2.1) by setting N = 4, αx = 0 for all x, β(1)

x = β
(4)
x = 1 for all x, β(2)

x = (x−x),
β

(3)
x = ((x − x)2 − σ2

x), κ(4)
t = 1 for all t, and γ(1)

c = γ
(2)
c = γ

(3)
c = 1 for all c. Parameters

κ
(1)
t and κ(2)

t have the same meaning as their counterparts in the original CBD model, and
κ

(3)
t captures non-linearity with respect to age in year t.

Figure 2.1: US mortality rates for the year 2003. The dots are logit(qx,t) calculated from
the observed data and the solid line is the model-based estimated mortality rate in logit
scale, logit(q̂x,t).

2.3 The CBD-X Models

Several extensions of the CBD-type model are introduced by Dowd et al. (2020), which
originate from Plat (2009). These models combine elements of LC-type and CBD-type
models. The resulting models can be used for full age ranges while capturing the cohort
effect.

2.3.1 The Plat Model

Plat (2009) assumes a static age function αx, three period-effect terms, and cohort effect.
The Plat model is thus given by:

ηx,t = αx + κ
(1)
t + κ

(2)
t (x− x) + κ

(3)
t (x− x)+ + γ(4)

c ,
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where ηx,t = log(mx,t) and (x−x)+ = max(0, x−x). This model can be written as a nested
case of the Equation (2.1) by setting N = 4, β(1)

x = β
(4)
x = κ

(4)
t = γ

(1)
c = γ

(2)
c = γ

(3)
c = 1 for

all x, t, or c, β(2)
x = (x− x), and β(3)

x = (x− x)+.
Plat (2009) suggests removing the third period-effect term if the user is only interested

in the older ages. The two-factor reduced Plat model then becomes:

ηx,t = αx + κ
(1)
t + κ

(2)
t (x− x) + γ(3)

c .

This model is virtually the same as the CBD-X(2) model that we will discuss in the following
section.

2.3.2 The CBD-X Models

Inspired by Plat (2009), Dowd et al. (2020) investigate a new type of mortality model which
combines the static age function αx with the CBD-type models. Models of this type are
called CBD-X1 models. The CBD-X models are used to model mortality of groups of adults
over a wider range of ages than usually advisable for the CBD-type models. The CBD-X
models create a hybrid between the LC and the CBD models, just like the Plat model,
as the LC model can be written in the CBD-X form. The CBD-X(1) model is the CBD-
X model with one period effect, and the same naming logic applies to the other CBD-X
models in this report. The CBDX model in Hunt and Blake (2020) is the CBD-X(2) model
without cohort effect. Also, the CBD-X model in Cairns et al. (2019) can be treated as a
multi-population version of the CBD-X(2) model without cohort effect.

The CBD-X models are given by the following:

CBD-X(1) : ηx,t = αx + κ
(1)
t + γ(2)

c , (2.2)

CBD-X(2) : ηx,t = αx + κ
(1)
t + κ

(2)
t (x− x) + γ(3)

c , (2.3)

CBD-X(3) : ηx,t = αx + κ
(1)
t + κ

(2)
t (x− x) + κ

(3)
t ((x− x)2 − σ2

x) + γ(4)
c , (2.4)

where ηx,t = log(mx,t). The CBD-X(1) model can be written as a nested case of Equation
(2.1) by setting N = 2, and β(1)

x = β
(2)
x = κ

(2)
t = γ

(1)
c = 1 for all x, t, or c. The CBD-X(1)

model without cohort effect is essentially the special case of the LC model with β
(1)
x = 1.

The CBD-X(2) model is an extension of the CBD model with a cohort effect, and it can
be written as a nested case of Equation (2.1) by setting N = 3, β(1)

x = β
(3)
x = κ

(3)
t =

γ
(1)
c = γ

(2)
c = 1 for all x, t, or c, and β

(2)
x = (x − x). The CBD-X(3) extends the three-

factor CBD model, and it can be written as a nested case of Equation (2.1) by setting
N = 4, β(1)

x = β
(4)
x = κ

(4)
t = γ

(1)
c = γ

(2)
c = γ

(3)
c = 1 for all x, t, or c, β(2)

x = (x − x), and

1Please note that in Dowd et al. (2020), these models are called CBDX models, but we prefer to call
them as CBD-X models.
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β
(3)
x = (x − x)2 − σ2

x. Moreover, αx, β(i)
x , κ(i)

t , and γ
(i)
c have the same meaning as their

counterparts in the CBD-type models.
We will focus on the CBD-X models in this report because they combine the best features

of the LC-type and CBD-type models. Furthermore, we will ignore the cohort effect to ease
the model estimation.

2.4 Structure of the Period Effects

The dynamics of mortality are driven by the period effects κ(i)
t for i = 1, ..., N . Therefore,

we usually need to specify a structure for them by applying time-series techniques. The
standard approach in the actuarial literature (e.g., Lee and Carter, 1992; Cairns et al.,
2006, 2011; Georgios et al., 2017), is to assume that period effects follow a (multivariate)
random walk with drift.

A random walk is a stochastic process that forces dependence from one time step to the
next. The dependence provides some consistency from one step to the next. A random walk
with drift is a special case such that, at each point in time, the series takes a random step
away from its last position with a trend equal to the so-called drift term. A random walk
with drift can be written as

κt = µ+ κt−1 +Zt, Zt ∼ N (0,Σ), (2.5)

where κt =
[
κ

(1)
t . . . κ

(N)
t

]>
, µ is an N -dimensional vector of drift parameters, and

Σ is the N × N covariance matrix of the multivariate white noise Zt. Moreover, 0 is an
N -dimensional vector of zeros.

For the CBD-X(3) model, we can specify Equation (2.5) as follows:

κt =
[
κ

(1)
t κ

(2)
t κ

(3)
t

]>
, µ = [µ1 µ2 µ3]> , and Σ =


v11 v12 v13

v12 v22 v23

v13 v23 v33

 .
The CBD-X(2) and CBD-X(1) models can be treated as special cases of the CBD-X(3)

model by setting κ(i)
t = 0 for i = 3 and i = 2, 3, respectively.
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Chapter 3

Particle Filters for State-Space
Models

3.1 State-Space Model

The estimation of the mortality models mainly adopts two-stage frequentist methods, which
use a maximum likelihood-based approach first, and then estimate a model for the period
effects for forecasting purposes. However, by using this two-stage method, the dynamics of
the period effects are not directly incorporated in the first step. Fung et al. (2017) argue that
recasting different classes of mortality models in a state-space formulation allows for state-
space-based inference under either the frequentist or Bayesian paradigm. A key advantage of
this approach is that we can reduce the two-stage estimation into a single step by including
the dynamics of the period effects within the model estimation.

A state-space model (SSM) is a model that describes the probabilistic dependence be-
tween the observed measurement from a system and the latent variables that drive the
dynamics of that system. Latent variables cannot be directly observed; we need to infer
them through other directly observed variables. A general SSM consists of two equations:
the transition equation and the measurement equation. The transition equation explains the
relationship between latent variables at the current time and those at the previous time. In
the SSM, we assume that latent variables satisfy the Markov property, so the current state
of the latent variables only depend on previous states. Mathematically, we have that

κt = f (κt−1,Zt) , for t ∈ {1, . . . , T}, (3.1)

where κt ∈ RN is a vector of latent variables at time t, and the random vector Zt ∈ RN

contains the error terms used within the transition equation. The function f : RN ×RN →
RN explains how the latent variables change from one step to the next. Because the latent
variables are unobserved, we use a measurement equation to link them to the observations.
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The measurement equation can be written as:

yt = g (κt, εt) , for t ∈ {1, . . . , T}, (3.2)

where yt ∈ Rn is the vector of observed data at time t, κt are the latent variables, and
εt ∈ Rn is the vector of error terms used in the measurement equation. The function
g : RN ×Rn → Rn handles the relationship between the current state of the latent variables
and the observations. If g and f are both linear functions, then the SSM is linear; otherwise,
it is non-linear. If the error terms εt and Zt are modelled with Gaussian distributions, then
we have a Gaussian SSM; otherwise, we have a non-Gaussian SSM.

The transition and measurement equations usually involve some unknown parameters
Θ. In the model, both the latent variables κt and these unknown parameters Θ need to
be estimated. The difference between them is that latent variables vary from time to time
while parameters are fixed. They should, therefore, be estimated differently.

3.1.1 State-Space Formulation of the CBD-X Models

The mortality models introduced in Chapter 2 are cast into a state-space representation.
The latent variables are the period effects. The observed data are the logged estimated
central death rates, m̂x,t.

Recall that the CBD-X(3) model can be written as in Equation (2.4):

log(mx,t) = αx + κ
(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t

(
(x− x̄)2 − σ2

x

)
.

Let the logged observed central death rate, log(m̂x,t), be the true logged central death rate
plus some noise:

log(m̂x,t) = log(mx,t) + εx,t.

Let yt = [log(m̂xmin,t) . . . log(m̂xmax,t)]> be the set of log(m̂x,t) for all the age x in year
t. The latent variables are the period effects κt =

[
κ

(1)
t κ

(2)
t κ

(3)
t

]>
. The error terms

within the measurement equation are εt = [εxmin,t ... εxmax,t]>. Thus, by using matrix
notation, we obtain

yt = αx + βxκt + εt,

where

αx = [αxmin . . . αxmax ]> ,

βx =


1 (xmin − x̄) (xmin − x̄)2 − σ2

x
...

...
...

1 (xmax − x̄) (xmax − x̄)2 − σ2
x

 .
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The transition equation is

κt = µ+ κt−1 +Zt, Zt ∼ N (0,Σ),

where

κt =
[
κ

(1)
t κ

(2)
t κ

(3)
t

]>
, µ = [µ1 µ2 µ3]> , Σ =


v11 v12 v13

v12 v22 v23

v13 v23 v33

 .
A key component of the state-space representation is the distribution of the measurement
errors. We assume that log(m̂x,t) ∼ N (log(mx,t), 1

D̂x,t
) yields εx,t ∼ N (0, 1

D̂x,t
), where D̂x,t

is the observed number of deaths at age x in year t. See Appendix A for the justification of
this assumption.

By writing the CBD-X models in the state-space form, the dynamics of the observations
yt and the dynamics of the period effect κt are combined into one system. Furthermore, since
logged observed central death rates follow normal distribution, the measurement density for
single population mortality models listed in Chapter 2 can be written as:

p(y1:T |κ0:T , Θ) ∝
∏
x,t

√
D̂x,t

2π exp
(
−D̂x,t

2 (log(m̂x,t)− log(mx,t))2
)

∝ exp

−∑
x,t

D̂x,t

2 (log(m̂x,t)− log(mx,t))2

 . (3.3)

3.2 Filtering

The uncertainty about the latent variables is expressed via a joint conditional probability
distribution p (κ0:t |y1:t,Θ), where κ0:t = {κ0, ...,κt}, y1:t = {y1, ...,yt}, and t ∈ {1, ..., T}.
We can find the joint conditional probability distribution p (κ0:T |y1:T ,Θ) by applying filter-
ing. The unknown parameter Θ is assumed to be known in this section as running filtering
algorithms require fixed and known values for Θ. The estimation of Θ will be discussed in
the next chapter.

Filtering allows us to estimate the distribution of the current latent state of an SSM
given the observations up to and including the current time, p (κt |y1:t,Θ) . We find the joint
conditional probability distribution by calculating the one-step ahead predictive distribu-
tion p (κt |y1:t−1,Θ) and the filtering distribution p (κt |y1:t,Θ) recursively. The recursive
approach begins by setting an initial distribution for the latent factors, p (κ0 |Θ). Then,
each iteration can be divided into two steps. The first step is called the prediction step: at
each time t, we obtain the one-step ahead predictive distribution of the latent variable κt
based on the information from the last period’s filtering distribution p (κt−1 |y1,...t−1, Θ)
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and the transition density:

p (κt |y1:t−1, Θ)︸ ︷︷ ︸
Predictive Distribution

=
∫
p (κt |κt−1, Θ)︸ ︷︷ ︸
Transition Density

p (κt−1 |y1:t−1, Θ)︸ ︷︷ ︸
Filtering Distribution

dκt−1,

where the transition density p (κt |κt−1,Θ) is implied by the transition equation as κt =
f (κt−1,Zt).

Second, in the update step, we apply Bayes’ rule to update the filtering distribution by
combining the predicted κt with the additional time-t observations yt:

p (κt|y1:t,Θ) = p (yt,κt |y1:t−1,Θ)
p (yt |y1:t−1,Θ)

= p (yt |κt, y1:t−1,Θ) p (κt |y1:t−1,Θ)∫
p (yt |κt,Θ) p (κt |y1:t−1,Θ) dκt

.

Given κt, the observations yt are statistically independent with the previous observations
y1:t−1, thus the filtering distribution becomes:

p (κt |y1:t,Θ) = p (yt |κt,Θ) p (κt |y1:t−1,Θ)∫
p (yt |κt,Θ) p (κt |y1:t−1,Θ) dκt

.

If the dynamics of the latent variables are linear and Gaussian, we can derive analytical
solutions for this filtering distribution by using the Kalman filter. However, as most of the
SSMs are non-linear and non-Gaussian, it is not possible to derive analytical solutions, and
we therefore need to approximate the joint conditional probability distribution numerically.
The most efficient and popular method to do so is the sequential Monte Carlo algorithm
(SMC; also called particle filter or PF), which uses simulation to approximate the target
distribution.

Although the dynamics of the period effects in our models are linear Gaussian, we
still use the sequential Monte Carlo algorithm to allow for possible non-linear period-effect
dynamics in the future.

3.2.1 Sequential Monte Carlo Algorithm

The SMC is less restrictive than the Kalman filter in the SSM context as it does not re-
quire assumptions about the linearity or normality of the state distributions. The aim of
applying the SMC methods for the state-space model is to approximate the joint condi-
tional distribution p (κ0:T |y1:T ,Θ) sequentially. More precisely, SMC aims to approximate
p (κ0:1 |y1,Θ) and p (y1 |Θ) first, then p (κ0:2 |y1:2,Θ) and p (y1:2 |Θ), and so on. Instead
of deriving an analytical equation as the Kalman filter does, the PF approximates the joint
conditional distribution by using a sequence of weighted random samples of p (κ0:t |y1:t,Θ)
called particles.
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If we sample J independent random variables, κ0:t ∼ p (κ0:t |y1:t,Θ), then standard
Monte Carlo methods approximate p (κ0:t |y1:t,Θ) by generating an empirical distribution
made up of J samples of κj0:t:

p̂ (κ0:t |y1:t,Θ) = 1
J

J∑
j=1

δ
κj

0:t
(κ0:t),

where δx(x) is a Dirac mass function centred at x. However, if p (κ0:t |y1:t,Θ) is a complex
high-dimensional probability distribution, then we cannot sample κ0:t directly from it. The
SMC algorithm addresses this problem by sampling κ0:t from the proposal distribution
q (κ0:t |y1:t,Θ). The proposal distribution can be any distribution from which it is easy to
generate a sample. The approximation of the conditional probability becomes:

p̂ (κ0:t |y1:t,Θ) ∝
J∑
j=1

W j
t δκj

0:t
(κ0:t),

where W j
t is the normalized importance weight associated with particle κj0:t to correct for

the fact that κ0:t are not sampled from the right distribution. We define the importance
weight wjt as

wjt =
p
(
κj0:t

∣∣∣y1:t,Θ
)

q
(
κj0:t

∣∣∣y1:t,Θ
) ,

and the normalized importance weight is given by:

W j
t = wjt∑J

k=1w
k
t

. (3.4)

To avoid having to recompute the entire expression for the importance weights at each
iteration, and to increase computational efficiency, instead of sampling all the particles κj0:t
from a joint proposal distribution at once, we sample particles from a sequence of conditional
distributions. We rewrite the proposal distribution in recursive form:

q
(
κj0:t

∣∣∣y1:t,Θ
)
≡ q

(
κjt

∣∣∣κj0:t−1, y1:t,Θ
)
q
(
κj0:t−1

∣∣∣y1:t−1,Θ
)
.

To obtain particles κj0:t at time t, we sample κ1 from a proposal distribution of κ1,
q (κ1 |κ0, y1,Θ) at time 1, then append to these the new sample κ2 from a proposal dis-
tribution of κ2, q (κ2 |κ0:1, y1:2,Θ), and repeat this procedure until time t. The joint con-
ditional distribution can be written as

p
(
κj0:t

∣∣∣y1:t,Θ
)

=
p
(
yt
∣∣∣κj0:t, y1:t−1,Θ

)
p
(
κj0:t

∣∣∣y1:t−1; Θ
)

p (yt |y1:t−1; Θ)
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=
p
(
yt
∣∣∣κj0:t, y1:t−1,Θ

)
p
(
κjt

∣∣∣κj0:t−1, y1:t−1; Θ
)
p
(
κj0:t−1

∣∣∣y1:t−1; Θ
)

p (yt |y1:t−1; Θ) .

In the SSM, latent variables satisfy the Markov property and, given κt, the observations yt
are independent of y1:t−1, leading to

p
(
κj0:t

∣∣∣y1:t,Θ
)

=
p
(
yt
∣∣∣κjt ,Θ) p (κjt ∣∣∣κjt−1,Θ

)
p
(
κj0:t−1

∣∣∣y1:t−1; Θ
)

p (yt |y1:t−1; Θ) .

Then, the importance weight becomes:

wjt =
p
(
yt
∣∣∣κjt ,Θ) p (κjt ∣∣∣κjt−1,Θ

)
p
(
κj0:t−1

∣∣∣y1:t−1; Θ
)

p (yt |y1:t−1; Θ) q
(
κjt

∣∣∣κj0:t−1, y1:t,Θ
)
q
(
κj0:t−1

∣∣∣y1:t−1,Θ
)

∝
p
(
yt
∣∣∣κjt ,Θ) p (κjt ∣∣∣κjt−1,Θ

)
q
(
κjt

∣∣∣κj0:t−1, y1:t,Θ
) wjt−1.

We thus define

w̃jt ≡
p
(
yt
∣∣∣κjt ,Θ) p (κjt ∣∣∣κjt−1,Θ

)
q
(
κjt

∣∣∣κj0:t−1, y1:t,Θ
) ,

which is known as the incremental importance weight. The denominator of the incremental
importance weight is typically reduced to q(κjt |κ

j
t−1, yt,Θ) for computational convenience,

so

w̃jt =
p
(
yt
∣∣∣κjt ,Θ) p (κjt ∣∣∣κjt−1,Θ

)
q
(
κjt

∣∣∣κjt−1, yt,Θ
) .

As a result, at each iteration, only the incremental importance weight needs to be computed,
and a new sequence of particles is obtained by keeping the trajectories of the particles
sampled up to time t− 1.

The SMC produces its approximation by an iterative process. The algorithm presented
below is based on Andrieu et al. (2010). At first, we need to generate initial values for our
particles κ0. Then, for each time t, we start by sampling, J random samples of κt, denoted
by κjt , from a proposal distribution q (κt |yt,κt−1,Θ) to approximate p (κt |yt,κt−1,Θ) .
Then, the particles are weighted and the corresponding normalized importance weights are
calculated; the latter is needed as we sample particles from the proposal distribution and
not the target distribution.

The importance weight of one particle might grow exponentially over time and, as
the number of iterations increases, all the probability mass will eventually be allocated
to that particle; that is, one particle could end up with normalized importance weight close
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to one, while the other particles’ normalized importance weights would be close to zero.
This is known as weight degeneracy. Adding a resampling step can prevent the weight
degeneracy problem. Thus, the last step of the SMC algorithm is resampling. Resampling
means a new sequence of particles is replicated from the existing particles based on their
normalized importance weights. The simplest resampling method (and the one used in
this study) is called multinomial resampling. Specifically, in this study, we draw J random
variables with replacement from a multinomial distribution with probabilities Wt, where
Wt = [W 1

t ... W J
t ], and W J

t is obtained by Equation (3.4). As a consequence of this
resampling, the particles with small weights will be eliminated while those with large weights
will be duplicated. The resampled particle’s weights are set equal to wjt = 1

N for t ∈
{1, . . . , T}, which forces the weights not to permanently degenerate. If resampling is done
at the end of every step, then the importance weight becomes

wjt ∝
p
(
yt
∣∣∣κjt ,Θ) p (κjt ∣∣∣κjt−1,Θ

)
q
(
κjt

∣∣∣κj0:t−1, y1:t,Θ
)

∝ w̃jt .

Andrieu et al. (2010) introduce an ancestor variable, Ajt , to keep track of the particles.
Instead of resampling κt, the resampling step is done by resampling Ajt from a multinomial
distribution. Hence, in the sampling step, we sample κjt ∼ q

(
κt

∣∣∣∣yt; κAj
t−1

t−1 ,Θ
)

and set

κj0:t =
[
κ
Aj

t−1
0:t−1,κ

j
t

]
. The ancestor particles will be useful in the next chapter. Then, we

repeat this process for each time t until time T . The pseudocode of the SMC algorithm is
summarized in Algorithm 1.

3.2.2 Bootstrap Filter

If we use the transition equation as the proposal distribution, then the filter is called the
bootstrap filter. In the bootstrap filter, because q

(
κjt

∣∣∣∣yt;κAj
t−1

t−1 ,Θ
)

= p

(
κjt

∣∣∣∣κAj
t−1

t−1 ,Θ
)
,

the importance weights are simply given by wjt = p
(
yt
∣∣∣κjt ,Θ), and the bootstrap filter does

not use the information in the current observation yt to generate a new particle, because
the importance density is unconditional to yt. We apply the bootstrap filter in our model
estimation.

3.2.3 Likelihood Evaluation

In addition to a sequence of particles, we can also obtain an evaluation of the likelihood
function by:

L (y1:T |Θ) = p (y1 |Θ)
T∏
t=2

p (yt |y1:t−1,Θ) , (3.5)
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Algorithm 1 Sequential Monte Carlo

1: sample κj0 ∼ q (κ0 |Θ) and set Aj0 = j
2: for t = 1, ..., T do
3: sample κjt ∼ q

(
κt

∣∣∣∣yt; κAj
t−1

t−1 ,Θ
)

and set κj0:t =
[
κ
Aj

t−1
0:t−1,κ

j
t

]
4: compute the weight:

wjt =
p
(
κj0:t, y1:t,Θ

)
p
(
κj0:t−1, y1:t−1,κ

)
q

(
κjt

∣∣∣∣yt; κAj
t−1

t−1 ,Θ
)

=
p
(
yt
∣∣∣κjt ,Θ) p(κjt ∣∣∣∣κAj

t−1
t−1 ,Θ

)
q

(
κjt

∣∣∣∣yt; κAj
t−1

t−1 ,Θ
)

5: normalize the weight: W j
t = wj

t∑J

k=1 w
k
t

6: sample Ajt from a multinomial distribution with support 1 to J and weights Wt

7: end for

where

p (yt |y1:t−1,Θ) =
∫
p (κt−1 |y1:t−1,Θ) p (κt |κt−1,Θ) p (yt |κt,Θ) dκt−1:t,

=
∫
wt p (κt−1 |y1:t−1,Θ) q (κt |yt, κt−1, Θ) dκt−1:t.

The estimated marginal likelihood within the SMC algorithm is given by

p̂ (y1:T |Θ) = p̂ (y1 |Θ)
T∏
t=2

p̂ (yt |y1:t−1,Θ) ,

where

p̂ (yt |y1:t−1,Θ) ≈ 1
J

J∑
j=1

wjt .

The likelihood can be used to estimate the unknown parameters by either maximizing
the function (i.e., frequentist-based methods) or constructing a posterior distribution of
the parameters (i.e., Bayesian-based methods). We will discuss the details of the latter
estimation paradigms in the next chapter.
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Chapter 4

Bayesian Inference

The values of the unknown parameters within the transition and measurement equations
need to be estimated. The estimation can be done by frequentist or Bayesian methods. Be-
cause Bayesian and frequentist inference differ in their basic philosophies, the core features
of both paradigms are reviewed in the next section.

4.1 Comparison of Frequentist and Bayesian Paradigms

In frequentist estimation, any unknown model parameter is generally assumed constant.
The rationale is that even if a parameter cannot be observed, there exists one true value,
and randomness stems from natural deviations of anything unknown when experiments are
repeated. The fundamental measure of such uncertainty is captured by probability, which is
the limit of the relative frequency of an event in a very long, theoretically infinite, sequence
of the same experiment conducted independently of each other. The results of a frequentist
approach can be represented by a confidence interval or a hypothesis test. Confidence in-
tervals use data from a sample to estimate a population parameter. For example, a 100p%
confidence interval includes the true but unknown value with confidence p ∈ (0, 1). However,
it is wrong to state that the unknown parameter lies with this interval with probability p.
Similarly, given a statistic to test a null hypothesis H0 related to the problem, the corre-
sponding frequentist p-value is not the probability that H0 is true, but rather the probability
of observing a result at least as extreme for the outcome under the null distribution in a
sequence of similar inferences.

Bayesian inference is different from frequentist methods in multiple ways. First, the
probability actually expresses the chance of an event happening in this case. Second, un-
known parameters are treated as random variables that can be described with probability
distributions. Under the Bayesian paradigm, a probability expresses a degree of belief in
an event. Essentially, this methodology starts with a set of prior beliefs based on scientific
knowledge of the underlying problem. Then, one needs to update the prior belief in light of
the observed data to come up with posterior beliefs. In the end, one analyzes the model fit
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and sensitivity with respect to model assumptions. Because the model is set up via a full
probabilistic approach, any probabilistic statements can be immediately interpreted as such
without relating it to a sequence of independent repetitions. A 100p% probability interval
then expresses a range for the quantity of interest with coverage probability p, and a p-value
is interpreted as the probability of replicated data being more extreme than observed data
evaluated under a specified test statistic.

We perform Bayesian inference conditional on observations to estimate the unknown
parameters as we want to assess the parameter uncertainty. Unlike the frequentist methods
that yield point estimates of unknown parameters, Bayesian methods yield a posterior
distribution of the unknown parameters, which allows us to understand their uncertainty.

4.2 Bayesian Inference

The fundamental usage of Bayesian inference is based on Bayes’ theorem; that is, given the
probability distribution for the parameters of interest Θ and the data y1:T , the posterior
distribution for Θ, on which all inference is based, depends on the observed values. In
particular, the likelihood distribution represents the data generating mechanism.

In the case of state-space models, the likelihood has two forms: the marginal likelihood
and the complete data likelihood. The marginal likelihood is shown in Equation (3.5). In
constructing the marginal likelihood, we consider all possible values of latent variables that
can have been generated by observed data. Typically, the marginal likelihood is hard to
evaluate in closed form as it involves multidimensional integrals.

The complete data likelihood is constructed assuming that the values of the latent
variables are known. Indeed, it is not true, but the value of each latent variables can be
imputed as part of the estimation procedure when using Bayesian methods. In our case, the
complete data likelihood can be written as

L (y1:T , κ0:T |Θ) = p (κ0 |Θ)
T∏
t=1

p (κt |κt−1, Θ)
T∏
t=1

p (yt |κt, Θ) ,

= p (κ0 |Θ) p (κ1:T |Θ)︸ ︷︷ ︸
Transition

p (y1:T |κ0:T , Θ)︸ ︷︷ ︸
Measurement

, (4.1)

where p (κt |κt−1, Θ) is the transition density obtained from Equation (3.1), the measure-
ment density p (yt |κt, Θ) is implied by the measurement equation of Equation (3.2), and
p (κ0 |Θ) is the initial distribution for the latent factors. The prior belief on Θ are converted
into the probability distribution p (Θ). Then, Bayes’ theorem states that

p (Θ, κ0:T |y1:T ) = p (Θ, κ0:T , y1:T )
p (y1:T ) = L (y1:T , κ0:T |Θ) p (Θ)∫

L (y1:T , κ0:T |Θ) p (Θ) dΘ ,
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where the denominator ∫
L (y1:T , κ0:T |Θ) p (Θ) dΘ

is a constant, leading to the following expression:

p (Θ, κ0:T |y1:T )︸ ︷︷ ︸
Posterior

∝ L (y1:T , κ0:T |Θ)︸ ︷︷ ︸
Likelihood

p (Θ)︸ ︷︷ ︸
Prior

, (4.2)

which summarizes the key elements of Bayesian inference. Each component of Equation
(4.2) is discussed in the rest of this section.

4.2.1 The Likelihood

A likelihood function takes the data set as given and gives all of the relevant information
to the evaluation of statistical evidence. The likelihood function can be obtained by using
Equation (4.1). The transition density can be obtained by using Equation (2.5), and the
general form of the measurement part of Equation (4.1) is given in Equation (3.3). Finally,
for the CBD-X(3) model, the measurement part of Equation (4.1) is given by:

p (y1:T |κ0:T , Θ)

∝ exp

−∑
x,t

Dx,t

2
(
log (m̂x,t)− αx − κ(1)

t − κ
(2)
t (x− x)− κ(3)

t ((x− x)2 − σ2
x)
)2
 .

4.2.2 The Prior

The prior distribution plays a vital role in determining the posterior distribution. In practice,
prior distributions are specified using available information, such as experts’ opinions or the
results of previous studies. In this latter case, the prior distribution is called an informative
prior distribution. Similarly, if the prior does not contain any information based on prior
beliefs, it is called a non-informative prior distribution.

To obtain the posterior distribution within the CBD-X models, uniform prior distribu-
tions are assumed throughout this report, except for the variance (i.e., vii) and covariance
(i.e, vij for i 6= j) parameters of the covariance matrix Σ in Equation (2.5).

The variance parameters vii are assumed to follow the half-normal distribution with a
mean parameter equal to 0 and a variance equal to 10 such that the variance parameters
vii have positive values. The variance value is chosen because a large value makes sure that
the distribution is proper and yet non-informative. The prior probability density function
(pdf) of the variance parameter vii is

f(vii) ∝ e
−v2

ii
20 , vii ∈ (0,∞).
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The prior distribution of the covariance parameters vij follows a truncated-normal distri-
bution with the same mean and variance as the variance parameters, but are assumed to
be within the interval (−√viivjj ,

√
viivjj) ensuring the correlation coefficients between the

series are within (−1, 1). The prior pdf of the covariance parameter vij is

f
(
vij
∣∣∣ {vss}3s=1

)
∝

φ
(
vij√
10

)
−2Φ

(√
viivjj√

10

) , vij ∈ (−√viivjj ,
√
viivjj),

where φ(x) is the standard normal distribution evaluated at x, and Φ(x) is its cumulative
distribution function evaluated at x as well.

4.2.3 The Posterior

The posterior distribution is the probability distribution of unknown parameters, treated as
a random variable, conditional on the data. The aim of the Bayesian estimation procedure
for the CBD-X models is to identify joint posterior distributions for the latent variables
κt and the parameters Θ. Due to the complexity of both the prior distributions and the
likelihood function, no closed-form solutions for this joint posterior distributions can be
derived.

4.3 Markov Chain Monte Carlo

Because we cannot derive the closed-form solution of the joint posterior distribution for
all the unknown parameters within the CBD-X models, we estimate them by applying a
sample-based approach called Markov chain Monte Carlo (MCMC) methods. MCMC meth-
ods generate samples from a given probability distribution, which is also called the target
distribution, and features of this probability distribution can then be estimated from the
samples generated. In our case, the target distribution is the joint posterior distribution
p (Θ, κ0:T |y1:T ). However, we sample the latent variables and unknown parameters sep-
arately and use different methods. We first sample unknown parameters using traditional
MCMC methods; then, we sample latent variables by the SMC method. We already intro-
duced the SMC method in Chapter 3, and in this section, we will introduce the sampling
method for the unknown parameters.

MCMC methods combine two main elements. Monte Carlo focuses on drawing a set
of independent random samples from a target distribution, and these samples can be used
to approximate the target distribution with an empirical distribution as shown in Chapter
3. Markov Chain, on the other hand, means that the next sample is dependent only on
the current sample value. Therefore, MCMC is a class of methods aimed at generating
successive samples from a target probability distribution. We will now introduce the two
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main sampling algorithms used in this study: the Metropolis-Hastings algorithm and the
Gibbs sampler.

4.3.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm is one of the most useful methods to construct
MCMC samples. The Markov chain constructed from this method asymptotically reaches a
unique stationary distribution π (Θ, κ0:T |y1:T ), such that π (Θ, κ0:T |y1:T ) approaches to
the target distribution p (Θ, κ0:T |y1:T ).

This algorithm has two main ingredients: a proposal distribution and an acceptance
probability. The algorithm starts by setting initial parameters Θ(0). Then, at iteration i and
depending on the previous parameter value Θ(i−1), the algorithm generates a candidate for
the new parameter value Θ(New) from a proposal distribution q

(
Θ(New)

∣∣∣Θ(i−1)
)
. Same as

the proposal distribution in the SMC algorithm, it can be any distribution. We define the
transition density p

(
Θ(New)

∣∣∣Θ(i−1)
)
as the conditional probability of moving to Θ(New)

from Θ(i−1).
A sufficient but not necessary condition for the existence of stationary distribution is

that the Markov chain be reversible. A Markov chain is reversible if each transition is
reversible; that is, for every pair of parameters Θ(New) and Θ(i−1), the probability of being
in state Θ(i−1) and transitioning to state Θ(New) must be equal to the probability of being
in state Θ(New) and transitioning to state Θ(i−1):

p
(
Θ(New)

∣∣∣Θ(i−1)
)
p
(
Θ(i−1)

)
= p

(
Θ(i−1)

∣∣∣Θ(New)
)
p
(
Θ(New)

)
. (4.3)

The transition density can be decomposed into

p
(
Θ(New)

∣∣∣Θ(i−1)
)

= q
(
Θ(New)

∣∣∣Θ(i−1)
)
r
(
Θ(New),Θ(i−1)

)
,

where r
(
Θ(New),Θ(i−1)

)
, called the acceptance probability, is the probability of moving to

the proposed value Θ(New). To ensure the equilibrium in Equation (4.3) is reached in each
iteration, the acceptance probability is thus defined as

r
(
Θ(New),Θ(i−1)

)
= min

p
(
Θ(New)

∣∣∣y1:T ,κ0:T
)
q
(
Θ(i−1)

∣∣∣Θ(New)
)

p
(
Θ(i−1)

∣∣y1:T ,κ0:T
)
q
(
Θ(New)

∣∣Θ(i−1)) , 1

 .
If the proposal distribution is symmetric, i.e., q

(
Θ(i−1)

∣∣∣Θ(New)
)

= q
(
Θ(New)

∣∣∣Θ(i−1)
)
,

then the acceptance probability collapses to

r
(
Θ(New),Θ(i−1)

)
= min

p
(
Θ(New)

∣∣∣y1:T ,κ0:T
)

p
(
Θ(i−1)

∣∣y1:T ,κ0:T
) , 1

 ,
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and this algorithm is called the Metropolis algorithm. Furthermore, if a random walk pro-
posal is used, i.e.,

Θ(New) = Θ(i−1) + ζ,

where ζ is a symmetric multivariate distribution centred at 0, then this algorithm is known
as a random walk MH algorithm.

After the acceptance probability is calculated, a random number u is generated from
the uniform distribution over (0, 1) as probabilities must fall between 0 and 1. If u ≤
r
(
Θ(New),Θ(i−1)

)
, then the new parameter value Θ(New) is accepted and the parameter

value moves from the current parameter value Θ(i−1) to parameter value Θ(New). Otherwise,
Θ(New) is rejected and the parameter value remains the same.

Assuming the number of iterations required is M , the MH algorithm summarized in
Algorithm 2.

4.3.2 Gibbs Sampler

The Gibbs sampler can be treated as a special case of the MH algorithm. It works if closed-
from solution of the full conditional posterior distributions of Θg ∈ Θ, Θ = [Θ1 ... Θd],
are available; that is, for g ∈ {1, ..., d}, the full conditional probability for Θg given all
other parameters, p (Θg |Θ−g,y1:T ,κ0:T ), is available, where the set Θ−g contain all the
parameters except for parameter Θg. Just like in the MH algorithm, the Gibbs sampler
starts with setting initial values for each unknown parameter. Then, instead of sampling
a new candidate from a proposal distribution, the Gibbs sampler generates a candidate
directly from the full conditional posterior distribution of this parameter p (Θg |Θ−g,y1:T )
and, thus, it always accepts the new candidate because

r
(
Θ(New)
g ,Θ(i−1)

g

)
= min

p
(
Θ(New)
g

∣∣∣y1:T ,κ0:T
)
p
(
Θ(i−1)
g

∣∣∣Θ(i)
−g,y1:T ,κ0:T

)
p
(
Θ(i−1)
g

∣∣∣y1:T ,κ0:T
)
p
(
Θ(New)
g

∣∣∣Θ(i)
−g,y1:T ,κ0:T

) , 1


= min

p
(
Θ(New)
g

∣∣∣y1:T ,κ0:T
)
p
(
Θ(i)
−g,y1:T ,κ0:T

)
p
(
Θ(i−1)
g

∣∣∣Θ(i)
−g,y1:T ,κ0:T

)
p
(
Θ(i−1)
g

∣∣∣y1:T ,κ0:T
)
p
(
Θ(i)
−g,y1:T ,κ0:T

)
p
(
Θ(New)
g

∣∣∣Θ(i)
−g,y1:T ,κ0:T

) , 1


= min



p

(
Θ(New)

g ,y1:T ,κ0:T

)
p

(
Θ(i)

−g ,y1:T ,κ0:T

)
p

(
Θ(i−1)

g ,Θ(i)
−g ,y1:T ,κ0:T

)
p(y1:T ,κ0:T ) p

(
Θ(i)

−g ,y1:T ,κ0:T

)
p

(
Θ(i−1)

g ,y1:T ,κ0:T

)
p

(
Θ(i)

−g ,y1:T ,κ0:T

)
p

(
Θ(New)

g ,Θ(i)
−g ,y1:T ,κ0:T

)
p(y1:T ,κ0:T ) p

(
Θ(i)

−g ,y1:T ,κ0:T

) , 1


= min (1, 1) = 1,
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where at iteration i, Θ(i)
−g contains the parameters’ value at iteration i for parameters ap-

pearing before Θg and the parameters’ value at iteration i − 1 for those appearing after,
because the Gibbs sampler updates parameters’ value sequentially.

The Gibbs sampler is summarized in Algorithm 3.

Algorithm 2 Metropolis-Hastings Algorithm
1: set initial parameters Θ(0)

2: for i = 1, ...,M do
3: sample Θ(New) ∼ q

(
Θ(New)

∣∣∣Θ(i−1)
)

4: compute the acceptance probability:

r
(
Θ(New),Θ(i−1)

)
= min

p
(
Θ(New)

∣∣∣y1:T ,κ0:T
)
q
(
Θ(i−1)

∣∣∣Θ(New)
)

p
(
Θ(i−1)

∣∣y1:T ,κ0:T
)
q
(
Θ(New)

∣∣Θ(i−1)) , 1


5: generate u ∼ Uniform(0, 1)
6: set

Θ(i) =
{

Θ(New) if u ≤ r
(
Θ(New),Θ(i−1)

)
,

Θ(i−1) otherwise.
7: end for

Algorithm 3 Gibbs Sampler

1: set initial parameters Θ(0) = [Θ(0)
1 ... Θ(0)

d ]
2: for i = 1, ...,M do
3: for g = 1, ..., d do
4: set Θ(i)

−g = [Θ(i)
1 , . . . ,Θ(i)

g−1,Θ
(i−1)
g+1 , . . . ,Θ(i−1)

d ]
5: sample Θ(i)

g ∼ π
(
Θg

∣∣∣Θ(i)
−g,y1:T ,κ0:T

)
6: end for
7: set Θ(i) = [Θ(i)

1 ... Θ(i)
d ]

8: end for

4.4 Particle Markov Chain Monte Carlo

To incorporate the dynamics of the period effects within the model estimation procedure
and thus reduce the two-stage estimation approach into a single stage, we apply the particle
Markov chain Monte Carlo (pMCMC) algorithm. In general, a pMCMC sampling method
uses the SMC algorithm to generate a proposal distribution within an MCMC algorithm.
The two main algorithms in the pMCMC framework are the particle Metropolis-Hastings
sampler and the particle Gibbs (PG) sampler. We will focus on the particle Gibbs sampler
in this report.
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4.4.1 Conditional Sequential Monte Carlo

The PG sampler, introduced by Andrieu et al. (2010), is an extension of the Gibbs sampler.
Instead of generating random variables sequentially at each iteration, the PG sampler gen-
erates all random variables at the same time. The main idea of the PG sampler is to run a
conditional sequential Monte Carlo (cSMC) algorithm iteratively. The cSMC algorithm is
similar to the standard SMC algorithm introduced in Chapter 3, except that a pre-specified
path κ∗0:T is retained in all the resampling steps, whereas the remaining J − 1 particles
are generated as in the standard SMC algorithm. For simplicity, we set the last particle
κJt = κ∗t , and its ancestor variable AJt = J for all t. The cSMC algorithm is summarized in
Algorithm 4.

Algorithm 4 Conditional Sequential Monte Carlo

1: sample κj0 ∼ q (κ0 |Θ) for j = 1, ..., J − 1 and set κJ0 = κ∗0
2: set Aj0 = j for j = 1, ..., J
3: for t = 1, ..., T do
4: sample κjt ∼ q

(
κt

∣∣∣∣yt; κAj
t−1

t−1 ,Θ
)

5: set κj0:t =
[
κ
Aj

t−1
0:t−1,κ

j
t

]
for j = 1, ..., J − 1, and set κJt = κ∗t

6: compute the weight for j = 1, ..., J :

wjt =
p
(
κj0:t, y1:t,Θ

)
p
(
κj0:t−1, y1:t−1,κ

)
q

(
κjt

∣∣∣∣yt; κAj
t−1

t−1 ,Θ
)

=
p
(
yt
∣∣∣κjt ,Θ) p(κjt ∣∣∣∣κAj

t−1
t−1 ,Θ

)
q

(
κjt

∣∣∣∣yt; κAj
t−1

t−1 ,Θ
)

7: normalize the weight: W j
t = wj

t∑J

k=1 w
k
t

for j = 1, ..., J

8: sample Ajt from a multinomial distribution with support 1 to J − 1 and weights Wt

9: set AJt = J
10: end for

Once the cSMC algorithm is completed, we get J sets of sampled latent variables κ0:T .
We then select randomly a trajectory of κ0:T by using the ancestor variables Aj0:T . Recall
that the ancestor variables Aj1:T allow us to keep track of the particles. From the cSMC

algorithm, we have that κj0:t =
[
κ
Aj

t−1
0:t−1,κ

j
t

]
at time t for j = 1, ..., J .

To make the tracking process easier, Andrieu et al. (2010) introduce an ancestral lineage
Bj
t , which is the index of the particles κ0:t with ancestor variable at time t for j = 1, ..., J .

They define Bj
T = j for j = 1, ..., J , and Bj

t = A
Bj

t+1
t for t = T − 1, . . . , 1. As a result,

κj0:T = {κB
j
0

0 , . . . ,κ
Bj

T
T } and B

j
0:T = {Bj

1, . . . , B
j
T } for any j = 1, ..., J . To select a trajectory
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of κ0:T , we sample an index j from a multinomial distribution with weights WT as the last
step does not allow for resampling within the cSMC algorithm.

A set of latent variables κ0:T is generated from the cSMC algorithm, and the correspond-
ing ancestor variables Aj0:T are shown in Figure 4.1 for J = 4 particles and T = 2. Assume
the index j = 2 is sampled from the multinomial distribution, then the path in darker blue
is the selected trajectory. As Bj

2 = 2, Bj
1 = A

Bj
2

1 = A2
1 = 3, and Bj

0 = A
Bj

1
0 = A3

0 = 3, we
have that Bj

0:2 = {3, 3, 2} and κj0:2 = {κ3
0,κ

3
1,κ

2
2}.

Figure 4.1: Example of ancestral lineages generated by a cSMC algorithm for J = 4 and
T = 2.

4.4.2 Particle Gibbs

The particle Gibbs sampler starts by setting initial values for all the particles κ0:T and
the unknown parameters Θ. Then, for each iteration, we sample the unknown parameters
by using the full conditional posterior distribution as in the Gibbs sampler. The difference
with the original Gibbs sampler comes from the last step: the particle Gibbs runs a cSMC
targeting p (κ0:T |y1:T , Θ), that is, we sample κ0:T ∼ p̂ (κ0:T |y1:T , Θ). Thus, instead of
sampling κt for t ∈ {0, ..., T} one by one as done under the Gibbs sampler, we sample all
the κ0:T at once. The particle Gibbs algorithm is summarized in Algorithm 5.

4.4.3 pMCMC Strategy for the Estimation of CBD-X Models

We apply cSMC for estimating the latent variables in the CBD-X models and apply an
MCMC method to estimate the other parameters Θ. The MCMC method we use is called
the Metropolis-within-Gibbs algorithm, where parameters are updated sequentially via the
MH algorithm in each iteration, conditional on the rest of the parameters. In the case where
the full conditional posterior distribution is available in closed-form, the Gibbs sampler is
used.
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Algorithm 5 Particle Gibbs

1: set initial values Θ(0) and κ(0)
0:T

2: for i = 1, ...,M do
3: for g = 1, ..., d do
4: Θ(i)

−g = [Θ(i)
1 , . . . ,Θ(i)

g−1,Θ
(i−1)
g+1 , . . . ,Θ(i−1)

d ]
5: sample Θ(i)

g ∼ p
(
Θ(i)
g

∣∣∣Θ(i)
−g, y1:T , κ

(i−1)
0:T

)
6: end for
7: Θ(i) = [Θ(i)

1 . . . Θ(i)
d ]

8: sample κ(i)
0:T ∼ p̂

(
κ

(i)
0:T

∣∣∣y1:T , Θ(i)
)
using the cSMC

9: end for

For the sake of conciseness, we use the CBD-X(3) model. The complete data likelihood
function derived in the previous section is

L (y1:T , κ0:T |Θ)

∝ exp

−∑
x,t

Dx,t

2
(
log (m̂x,t)− αx − κ(1)

t − κ
(2)
t (x− x)− κ(3)

t ((x− x)2 − σ2
x)
)2


T∏
t=1

1
(2π)2 |Σ| exp

(
−1

2 (κt − µ∗t )
>Σ−1 (κt − µ∗t )

)
,

where

κt =
[
κ

(1)
t κ

(2)
t κ

(3)
t

]>
, µ∗t =

[
κ

(1)
t−1 − µ1 κ

(2)
t−1 − µ2 κ

(3)
t−1 − µ3

]>
,

and

Σ =


v11 v12 v13

v12 v22 v23

v13 v23 v33

 .
Furthermore, to overcome the identification issue when estimating the CBD-X models, one
has to impose a non-unique choice of constraints to restrict the model. In this report, we
assume κ(1)

0 = 0, κ(2)
0 = 0, and κ(3)

0 = 0.2

We assume that the prior distribution for each αx is uniform for each age x and that
αx and κt are independent. Then, the full conditional posterior distribution of αx for each
age x is

f(αx |Θ−αx ,κ0:T ,y1:T )

2Please note that our constraints are different from that in Dowd et al. (2020), but similar to those used
in Cairns et al. (2019).
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∝ exp
(
−

T∑
t=1

D̂x,t

2
(
log (m̂x,t)− αx − κ(1)

t − κ
(2)
t (x− x̄)− κ(3)

t

(
(x− x)2 − σ2

x

))2
)

∝ exp
(
−

T∑
t=1

D̂x,t

2

(
α2
x − 2αx

(
log(m̂x,t)− κ(1)

t − κ
(2)
t (x− x̄)

− κ(3)
t

(
(x− x)2 − σ2

x

))))

∝ exp
(
−

T∑
t=1

D̂x,t

2 α2
x + 2αx

T∑
t=1

D̂x,t

2

(
log(m̂x,t)− κ(1)

t − κ
(2)
t (x− x̄)

− κ(3)
t ((x− x)2 − σ2

x)
))

∝ exp
(∑T

t=1 D̂x,t

−2

(
α2
x − 2αx

T∑
t=1

D̂x,t

(
log(m̂x,t)− κ(1)

t − κ
(2)
t (x− x̄)

− κ(3)
t ((x− x)2 − σ2

x)
) 1∑T

t=1 D̂x,t

))

∝ exp
(∑T

t=1 D̂x,t

−2

(
αx −

T∑
t=1

D̂x,t

(
log(m̂x,t)− κ(1)

t − κ
(2)
t (x− x̄)

− κ(3)
t ((x− x)2 − σ2

x)
) 1∑T

t=1 D̂x,t

)2)
,

and thus

αx |Θ−αx ,κ0:T ,y1:T

∼ N

∑T
t=1 D̂x,t

(
log(m̂x,t)− κ(1)

t − κ
(2)
t (x− x̄)− κ(3)

t ((x− x)2 − σ2
x)
)

∑T
t=1 D̂x,t

,
1∑T

t=1 D̂x,t

 .
Let Σ−1 be the inverse of the covariance matrix Σ such that:

Σ−1 =


a11 a12 a13

a12 a22 a23

a13 a23 a33

 .
Also, let

b
(1)
t = κ

(1)
t − κ

(1)
t−1 − µ1, b

(2)
t = κ

(2)
t − κ

(2)
t−1 − µ2, and b

(3)
t = κ

(3)
t − κ

(3)
t−1 − µ3.

Then,

(κt − µ∗t )>Σ−1(κt − µ∗t ) =(a11b
(1)
t + a12b

(2)
t + a13b

(3)
t )b(1)

t
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+ (a12b
(1)
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(3)
t )b(2)

t

+ (a13b
(1)
t + a23b

(2)
t + a33b

(3)
t )b(3)

t ,

and the full conditional posterior distribution of µ1 with uniform prior can be written as

f(µ1 |Θ−µ1 ,κ0:T )
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so
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Similarly,

µ2 |Θ−µ2 ,κ0:T

∼ N

 T∑
t=1

a22(κ(2)
t − κ

(2)
t−1) + a12(κ(1)

t − κ
(1)
t−1 − µ1) + a23(κ(3)
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a22T
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1
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and

µ3 |Θ−µ3 ,κ0:T

∼ N

 T∑
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a33(κ(3)
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.

1
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 ,
For the variance (i.e., v11, v22, and v33) and covariance parameters (i.e, v12, v13, and v23)

of the covariance matrix Σ, there is no closed-form solution for the full conditional posterior
distribution. We thus apply the MH algorithm to update them with the prior distributions
discussed in the previous section. The proposal distributions for the variance parameters are
a truncated normal distribution centred at the values from the previous iteration and with
lower bound at zero to make sure the value of variance is positive. The proposal distribution
for the covariance parameters is a normal distribution centred at the last observation in the
chain.
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Chapter 5

Empirical Results

In this chapter, we present the results of the fitting procedures discussed above and the
models’ forecasting performance. First, we describe the data used in model estimation.
Second, we discuss the estimation results of the three CBD-X models. Third, we show the
10-year out-of-sample forecasting results for each model. Finally, we apply the deviance
information criterion for model selection.

5.1 Data Description

Data are from the Human Mortality Database for the Canadian male population. The
Human Mortality Database provides detailed mortality and population data for several
countries. Original data for the Canadian population are collected from Statistics Canada
except the exposure of population, Ex,t for 1961 and 1966, which are census enumerations.
The observed number of deaths and the corresponding exposures are available for all ages
x = 0, ..., 109 and all remaining ages, which are denoted by 110+. The Canadian data are
available from the year 1921 to the year 2018.

We are interested in longevity risks, so we select the data from retirement age 65 to age
89. Although data are available for older ages, age at death is often misreported at these
old ages, resulting in unreliable estimated death rates. We select the data from the year
1959 to the year 2008. This provides a large enough data set (i.e., covering 50 years) while
allowing us to test the out-of-sample models’ forecasting performance.

5.2 Estimation Results

The output of a pMCMC algorithm is a sequence of sampled parameters. Each of these
sequences is called a chain. A trace plot shows the value of a parameters at each iteration
in the algorithm against the iteration number. Usually, the first portion of the chain is
discarded. This is called the burn-in period. A burn-in period increases the quality of sample
by dropping early values which may be biased by the starting values. As shown in Figure
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5.1, the early part of the chain for κ(1)
1 behaves differently from the remaining part and is

discarded.

Figure 5.1: Trace plot of κ(1)
1 with 3,000 particles and 120,000 iterations for the CBD-X(3)

model.

The remaining samples in the chain produced by the pMCMC method yield the posterior
distribution of each model parameter. For example, the posterior distribution of µ1 shown
in Figure 5.2.

When constructing a pMCMC algorithm, the speed of convergence should be within
the practical constraints of time and computational power. The speed of convergence is
mainly influenced by the number of iterations and the number of particles. The number of
iterations within a pMCMC algorithm represents the total sample size simulated for each
parameter, and the number of particles determines how many particles are used in the
cSMC algorithm at each iteration. The number of iterations required for convergence varies
from application to application. However, several tests can assess convergence. We choose
the number of iterations and the number of particles by first looking at the trace plots. We
then apply the Gelman-Rubin test to perform further convergence diagnostics. These tests
will be discussed in Section 5.2.1.

The algorithm set-up for each model is summarized in Table 5.1. There are more parti-
cles in the CBD-X(3) model than for the other two models because it has three period-effect
factors. Thus, it needs more particles in the cSMC algorithm to generate consistent approx-
imations. Usually, we will set more iterations for models with more parameters as conver-
gence tends to be slower in these cases. However, we use fewer iterations for the CBD-X(3)
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model than the CBD-X(2) model to save on the run-time as we have more particles in the
CBD-X(3) model.

Figure 5.2: Trace plot of µ1 with 3,000 particles after burn-in period within the CBD-X(3)
model (left-hand side) and the corresponding posterior distribution (right-hand side).

Model Numbers of Iterations (M) Burn-In Period Numbers of Particles (J)
CBD-X(1) 30,000 6,000 500
CBD-X(2) 300,000 60,000 500
CBD-X(3) 120,000 24,000 3,000

Table 5.1: Algorithm set-up for each model.

5.2.1 Convergence Diagnostics

As noted above, the outputs of the CBD-X models under the pMCMC algorithm must
be diagnosed for convergence before performing any type of statistical inference. To assess
convergence, we look at the trace plot first. Trace plots give insight into the behaviour of the
Markov chain and point out possible flaws in the algorithm. If the pMCMC chain is stuck
in some part of the state space, the trace plots show flat bits indicating slow convergence.
Such a trace plot is observed if too many proposed values are rejected, for example, as
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shown in Figure 5.3. Therefore, using 1,000 particles is not enough for the CBD-X(3) model
to converge, and we increased the number of particles to 3,000 for this model. If too many
proposed values are accepted consecutively, trace plots may move slowly and not explore
the rest of the state space. If a trace plot exhibits rapid up-and-down variation with no
long-term trends or drifts, then the parameter appears to have converged, as in Figure 5.4.

Figure 5.3: Trace plot of κ(1)
1 with 1,000 particles and 300,000 iterations within the CBD-

X(3) model.

Once we are satisfied with visual inspection of the trace plots, we run the pMCMC
algorithm with different starting values for each CBD-X model to perform Gelman-Rubin
tests. Specifically, Gelman and Rubin (1992) evaluate pMCMC convergence by compar-
ing the estimated between-chain and within-chain variances for each parameter Ψ, where
Ψ ≡ (κ0:T ,Θ). Large differences between these variances indicate nonconvergence because,
when running multiple chains with different starting values in parallel with many iterations,
they should converge to the same stationary distribution. Suppose we have H chains with
different starting values, and each of lengthM . Let Ψ̄h and σ̂2

h be the sample posterior mean
and variance of the estimated parameter Ψ in hth chain. Let the overall sample posterior
mean be Ψ̄ = 1

H

∑H
h=1 Ψ̄h. Then, the between-chains variance is given by:

B

M
=
∑H
h=1

(
Ψ̄h − Ψ̄

)2

H − 1 ,
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which measures how the means in each chain vary around the overall mean. The within-chain
variance is given by:

W = 1
H

H∑
h=1

σ̂2
h,

which is the averaged variances of the chains. Under certain stationary conditions, the
combined variance

V̂ = M − 1
M

W + H + 1
H

B

M

is an unbiased estimator of the marginal posterior variance of Ψ. However, if the chains
have converged, the within-chain variance W is also an unbiased estimate of the marginal
posterior variance of Ψ. Hence if the chains converged, then for each parameter, the ratio

R =

√
V̂

W
≈ 1.

By implementing the Gelman-Rubin test, we confirm that all chains for the three models
converged under the pMCMC method. Detailed results are shown in Appendix B.

Figure 5.4: Trace plot of µ1 with 3,000 particles and 120,000 iterations within the CBD-X(3)
model.
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5.2.2 Estimated Parameters

A few 95% posterior credible intervals for each parameter are shown in Figues 5.5 to 5.8.
Credible intervals are an important concept in Bayesian statistics. Their core purpose is to
describe and summarize the uncertainty related to the unknown estimated parameters. A
credible interval is an interval that contains a value with a certain probability. For instance,
a 95% posterior credible intervals for αx means that αx is within this interval with 95%
probability. For the posterior credible intervals, we assume the mean exists and choose the
interval for which the mean is the central point.

Figure 5.5 shows the 95% posterior credible intervals for αx for all x ∈ {65, . . . , 89}. As
discussed in Chapter 2, αx can be treated as the basic mortality table without any mortality
improvement factors. In the plot, we can observe that it increases as age increases. We can
also observe that the variance of αx increases as we add more parameters within the model.

Similar patterns can be observed for κ(1)
t and κ

(2)
t : their variance is larger in models

with more parameters. Figure 5.6 shows the 95% posterior credible intervals for κ(1)
t from

1959 to 2008. Period effect κ(1)
t is decreasing with time and more rapidly so in recent years.

This may be due to medical improvements and better living conditions. Figures 5.7 and 5.8
show the 95% posterior credible intervals for κ(2)

t and κ(3)
t , respectively, from 1959 to 2008.

Period effects κ(2)
t and κ(3)

t generally have larger variance; consequently, trends are less easy
to detect and thus harder to interpret.

Figure 5.5: 95% posterior credible intervals for αx for all ages. The solid line is the mean
value of αx.
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Figure 5.6: 95% posterior credible intervals for κ(1)
t from 1959 to 2008. The solid line is the

mean value of κ(1)
t .

Figure 5.7: 95% posterior credible intervals for κ(2)
t from 1959 to 2008. The solid line is the

mean value of κ(2)
t .
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Figure 5.8: 95% posterior credible intervals for κ(3)
t from 1959 to 2008. The solid line is the

mean value of κ(3)
t .

5.2.3 Forecasting Death Rates

Once a sufficiently large sample of the posterior distribution of the latent variables κt and
parameters Θ are simulated, they are used to forecast death rates. We incorporate different
sources of uncertainty in forecast intervals by using the following steps. We draw simulated
values of the parameters Θ and the latent variables at the final year (i.e., κT ) at random
from the pMCMC outputs after discarding the burn-in period. Then, we predict the future
period-effect factor κT+h, where h are years after T , by using the random walk structure
we imposed for the period effect in Equation (2.5). We compute the forecasted death rates
mT+h by using the predicted latent variables κT+h and the parameters sampled from the
pMCMC output. We repeat this process 10,000 times to get a distribution of the forecasted
death rates.

The forecasting performance of the CBD-X models is assessed through the 10-year out-
of sample forecasted death rates (i.e., from the year 2009 to the year 2018), that is, h ∈
{1, . . . , 10}. Figures 5.9, 5.10, and 5.11 show the 10-year out-of-sample forecast death rates
for the Canadian male population for ages 65, 75, and 85 under the three CBD-X models,
respectively. The solid line in each plot is the observed death rate m̂x,t and shaded areas are
95% credible intervals. From the following figures, we can observe that the CBD-X(3) model
has the best forecasting performance as the 95% credible intervals capture the observed
death rates most of the time.
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Figure 5.9: 10-year out-of-sample forecasted death rates for the Canadian male population
under CBD-X models. The solid line shows the observed m̂x,t for age 65 from 2009 to 2018.
Shaded areas are 95% credible intervals.
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Figure 5.10: 10-year out-of-sample forecasted death rates for the Canadian male population
under CBD-X models. The solid line shows the observed m̂x,t for age 75 from 2009 to 2018.
Shaded areas are 95% credible intervals.
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Figure 5.11: 10-year out-of-sample forecasted death rates for the Canadian male population
under CBD-X models. The solid line shows the observed m̂x,t for age 85 from 2009 to 2018.
Shaded areas are 95% credible intervals.
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5.2.4 Model Selection

The problem of model selection requires us to consider two competing notions: one is a mea-
sure of model fit that promotes selecting more accurate models, and the other is a measure
of model complexity. The deviance information criterion (DIC) proposed by Spiegelhalter
et al. (2002) is a useful method in Bayesian model selection. Under the DIC, the goodness
of fit is measured by the posterior mean deviance, denoted by Deviance(Ψ). The deviance
is defined as

Deviance(Ψ) = −2 log (L (y1:T , κ0:T |Θ)) + C,

where C is a constant that can be canceled out when comparing different models as it is
the same for all the models, and the likelihood function comes from Equation (4.1).

The model complexity in DIC is represented by the effective number of parameters of
the model being evaluated, denoted by pD. Spiegelhalter et al. (2002) define pD as

pD = Deviance(Ψ)−Deviance(Ψ̄),

where Ψ̄ is a point estimate of parameters Ψ. Although the posterior mean of the parameters
is often used as the point estimate, other values can be substituted such as the median or
the mode.

Gelman et al. (2004) propose an alternative way of calculating pD. In their version, pD
is estimated as

pD = 1
2Var (Deviance(Ψ)) ,

where Var (Deviance(Ψ)) is the overall variance of Deviance(Ψ) and thus, pD will not
depend on the point estimate.

We use the method of Gelman et al. (2004) to calculate the effective number of param-
eters pD. Combining the two components discussed above, we obtain the DIC as:

DIC = pD + Deviance(Ψ)

= 1
2Var (Deviance(Ψ)) + Deviance(Ψ).

The value of Deviance(Ψ) decreases as the number of parameters in a model increases, and
models with smaller DIC values should be preferred.

The DIC values for the three CBD-X models are shown in Table 5.2. The CBD-X(3) is
the best model as it has the smallest DIC value.
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Model DIC pD Posterior Mean Deviance

CBD-X(1) 12,547.210 87.718 12,459.490

CBD-X(2) 1,563.776 184.093 1,392.704

CBD-X(3) 766.372 387.507 378.864

Table 5.2: Deviance information criterion for CBD-X models.
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Chapter 6

Forecasting Performance In
Different Estimation Methods

One of the advantages of using the Bayesian method is that we can incorporate all the
uncertainty within our model estimation and forecasting. This chapter investigates the
impact of including the uncertainty by comparing the forecasting performance of the CBD-
X(3) model estimated under the maximum likelihood method to that estimated under the
pMCMC method. We only compare the performance in the CBD-X(3) model because it
has the best performance in both model selection and forecasting, as shown in the previous
chapter.

The maximum likelihood method in this chapter is different from the two-stage maxi-
mum likelihood estimation method we introduced at the beginning of Chapter 3. Instead
of estimating all the parameters (i.e., Θ and κ0:T ) by using a frequentist method as in the
two-stage maximum likelihood estimation method, the maximum likelihood method in this
chapter is only used to estimate the unknown parameters Θ by means of the PF. That
is to say, the mortality model is still in a state-space representation as in Chapter 3 but
instead of applying the Bayesian method to estimate the unknown parameters Θ, we use
a frequentist method and specifically, the MLE. First, we use the mean of the posterior
distribution of Θ from pMCMC as the starting value to maximize the likelihood function
obtained in the SMC algorithm (i.e., Equation (3.5)) of the CBD-X(3) model by using the
Nelder and Mead (1965) method. Then, the latent variables κ0:T are estimated from the
SMC algorithm with the optimal value of Θ obtained from MLE.

Similar to the forecasting algorithm in the pMCMC estimation introduced in Chapter
5, the latent variables κT+h are predicted using the random walk model for the period
effect; that is, Equation (2.5). Then, we compute the forecasted death rate mT+h by using
the predicted latent variables κT+h and the constant parameters Θ obtained by MLE. We
repeat this process 10,000 times to get a distribution of the forecasted death rate.

The 95% confidence intervals under MLE and the 95% credible intervals under pMCMC
of the 10-year out-of-sample forecasted death rates for the Canadian male population at
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ages 65, 70, 75, 80, 85, and 89 are shown in Figures 6.1 to 6.6. Overall, the 95% confidence
intervals under MLE are narrower than the 95% credible intervals under pMCMC. This
means, if we estimate mortality models with the frequentist method, there is a part of
uncertainty that will be missed, which may have a negative financial impacts on certain
companies.

Figure 6.1: 10-year out-of-sample forecasted death rates for the Canadian male population
under MLE method (shaded purple area) and pMCMC method (shaded green area). The
solid line shows the observed m̂x,t for age 65 from 2009 to 2018.
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Figure 6.2: 10-year out-of-sample forecasted death rates for the Canadian male population
under MLE method (shaded purple area) and pMCMC method (shaded green area). The
solid line shows the observed m̂x,t for age 70 from 2009 to 2018.

Figure 6.3: 10-year out-of-sample forecasted death rates for the Canadian male population
under MLE method (shaded purple area) and pMCMC method (shaded green area). The
solid line shows the observed m̂x,t for age 75 from 2009 to 2018.
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Figure 6.4: 10-year out-of-sample forecasted death rates for the Canadian male population
under MLE method (shaded purple area) and pMCMC method (shaded green area). The
solid line shows the observed m̂x,t for age 80 from 2009 to 2018.

Figure 6.5: 10-year out-of-sample forecasted death rates for the Canadian male population
under MLE method (shaded purple area) and pMCMC method (shaded green area). The
solid line shows the observed m̂x,t for age 85 from 2009 to 2018.
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Figure 6.6: 10-year out-of-sample forecasted death rates for the Canadian male population
under MLE method (shaded purple area) and pMCMC method (shaded green area). The
solid line shows the observed m̂x,t for age 89 from 2009 to 2018.
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Chapter 7

Conclusion

This report presented a Bayesian method—specifically the pMCMC method—to estimate
CBD-X models combining features of the LC and CBD models. By using this method, the
dynamics of the period effect κ0:T can be incorporated within the model estimation. Also,
parameter uncertainty can be obtained readily and used in calculating forecasting intervals.

First, the CBD-X model was recast into state-space formulation. By doing so, we were
able to incorporate the dynamics of period effects into the model estimation. Although the
dynamics of the period effects in our models are linear and Gaussian, we still applied the
SMC method to allow for more flexibility in choosing the structure of period effects in the
future.

Second, a Bayesian approach was used to estimate the unknown parameters Θ and their
uncertainty, as Bayesian approaches yield posterior distributions of model parameters as well
as mortality rates. A sampling-based approach called MCMC was used because we cannot
derive the closed-from solution of joint posterior distributions for unknown parameters. The
models were estimated based on Canadian male mortality data.

After fitting the models, we were able to perform model comparison and predictions.
The CBD-X(3) model is the best model as it leads to the smallest DIC values and the best
forecasting performance. Its 95% credibility intervals of the 10-year out-of-sample forecasted
death rate capture the observed death rates in most cases.

To assess how including the parameter uncertainty influenced the forecasting perfor-
mance, we compared the 95% confidence intervals obtained with pMCMC to those obtained
with MLE for 10-year out-of-sample forecasted death rates. We observed that the 95%
confidence intervals are generally smaller than the 95% credibility intervals. Thus, in con-
trast to frequentist estimation methods, the Bayesian approach captures more uncertainty
in forecasting—consistently with the fact that mortality models’ parameter uncertainty is
large.

The Bayesian-based estimation approach proposed in this report is flexible and easy to
implement as it can be applied to other mortality models. For future extensions, one pos-
sible direction would be applying this estimation approach for multi-population mortality
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models. Due to globalization, different populations’ mortality are closely linked together.
Therefore, developing multi-population mortality models to analyze and forecast the mor-
tality of more than one population in a joint way, such as modelling population between
different countries, is of paramount importance. Another possible extension of our work
would include the addition of cohort effects within model estimation as it might improve
the model performance. Changing the structure of period effects might also be another
interesting avenue for future research.
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Appendix A

Distribution of the Error Term

The standard actuarial approach in mortality modelling assumes that, conditional on the
model central death rate mx,t and the observed exposures Êx,t, the observed number of
deaths D̂x,t has a Poisson distribution with mean and variance both equal to mx,tÊx,t.1
Cairns et al. (2016) assumes that for each t and x, the observed number of deaths D̂x,t is
conditionally independent and has a lognormal distribution; that is, log(D̂x,t) has a nor-
mal distribution with mean µd and variance σ2

d. The lognormal distribution is chosen for
computational convenience. As in Cairns et al. (2016), we equate the mean and variance
of the lognormal distribution to the mean and variance of a matching Poisson distribution.
By matching the mean, we obtain:

mx,tÊx,t = exp
(
µd + σ2

d

2

)
,

which is equivalent to

µd = log(mx,tÊx,t)−
σ2
d

2 .

By matching the variance, on the other hand, we have

mx,tÊx,t =
(
exp(σ2

d)− 1
)
exp

(
2µd + σ2

d

)
,

so (
exp(σ2

d)− 1
)

= mx,tÊx,t

exp
(
2 log(mx,tÊx,t)− σ2

d + σ2
d

)

= 1
mx,tÊx,t

= 1
mx,tEx,t

1In this report, the observed and theoretical exposures are assumed to be the same, i.e., Ex,t = Êx,t
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= 1
Dx,t

.

By using the first-order Taylor series expansion about zero, we have that:

exp(x)− 1 ≈ x,

thus, σ2
d ≈

1
Dx,t

. Since Dx,t is unobserved, we use the observed number of deaths D̂x,t to
approximate it, meaning that σ2

d ≈
1

D̂x,t
. This approximation is accurate if D̂x,t is large.

Also, assuming that D̂x,t is large enough to make the above approximation accurate, then
the term σ2

d
2 in µd will be smaller enough to ignore it, as done in Cairns et al. (2019) .

We follow the same logic and assume the estimated central death rate m̂x,t is lognormal.
Hence,

log(D̂x,t) = log(m̂x,t Êx,t) ∼ N
(

log(mx,tEx,t),
1

D̂x,t

)
,

which implies that

log(m̂x,t) ∼ N
(

log(mx,t),
1

D̂x,t

)
.
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Appendix B

Summary Tables

The Gelman-Rubin test for each CBD-X models are summarized in the following tables.

CBD-X(1) Model Mean Standard Deviation Gelman-Rubin Test
α1 −3.529 0.012 1.014
α2 −3.461 0.012 1.014
α3 −3.362 0.012 1.015
α4 −3.280 0.012 1.014
α5 −3.190 0.011 1.014
α6 −3.096 0.011 1.015
α7 −3.027 0.011 1.015
α8 −2.919 0.011 1.014
α9 −2.834 0.011 1.014
α10 −2.741 0.011 1.014
α11 −2.653 0.011 1.014
α12 −2.565 0.011 1.014
α13 −2.476 0.011 1.015
α14 −2.381 0.011 1.015
α15 −2.284 0.011 1.015
α16 −2.178 0.011 1.014
α17 −2.097 0.011 1.015
α18 −1.995 0.011 1.014
α19 −1.898 0.012 1.014
α20 −1.796 0.012 1.014
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CBD-X(1) Model Mean Standard Deviation Gelman-Rubin Test
α21 −1.712 0.012 1.014
α22 −1.616 0.012 1.014
α23 −1.520 0.012 1.014
α24 −1.431 0.012 1.014
α25 −1.348 0.012 1.014
κ

(1)
1 −0.008 0.011 1.014
κ

(1)
2 −0.029 0.012 1.013
κ

(1)
3 −0.035 0.012 1.013
κ

(1)
4 −0.039 0.012 1.013
κ

(1)
5 −0.027 0.012 1.014
κ

(1)
6 −0.048 0.012 1.013
κ

(1)
7 −0.034 0.012 1.014
κ

(1)
8 −0.045 0.012 1.014
κ

(1)
9 −0.060 0.012 1.014
κ

(1)
10 −0.047 0.012 1.013
κ

(1)
11 −0.057 0.012 1.014
κ

(1)
12 −0.067 0.012 1.014
κ

(1)
13 −0.080 0.012 1.013
κ

(1)
14 −0.066 0.012 1.014
κ

(1)
15 −0.075 0.012 1.013
κ

(1)
16 −0.072 0.012 1.014
κ

(1)
17 −0.087 0.012 1.014
κ

(1)
18 −0.093 0.012 1.014
κ

(1)
19 −0.118 0.012 1.013
κ

(1)
20 −0.135 0.012 1.014
κ

(1)
21 −0.160 0.012 1.014
κ

(1)
22 −0.155 0.012 1.014
κ

(1)
23 −0.176 0.012 1.014
κ

(1)
24 −0.171 0.012 1.014
κ

(1)
25 −0.190 0.012 1.014
κ

(1)
26 −0.207 0.012 1.013
κ

(1)
27 −0.203 0.012 1.014
κ

(1)
28 −0.215 0.012 1.014
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CBD-X(1) Model Mean Standard Deviation Gelman-Rubin Test
κ

(1)
29 −0.238 0.012 1.014
κ

(1)
30 −0.229 0.012 1.014
κ

(1)
31 −0.259 0.012 1.013
κ

(1)
32 −0.290 0.012 1.014
κ

(1)
33 −0.297 0.012 1.014
κ

(1)
34 −0.320 0.012 1.013
κ

(1)
35 −0.305 0.012 1.014
κ

(1)
36 −0.327 0.012 1.014
κ

(1)
37 −0.333 0.012 1.014
κ

(1)
38 −0.349 0.012 1.014
κ

(1)
39 −0.361 0.012 1.014
κ

(1)
40 −0.368 0.012 1.014
κ

(1)
41 −0.391 0.012 1.014
κ

(1)
42 −0.440 0.012 1.014
κ

(1)
43 −0.472 0.012 1.014
κ

(1)
44 −0.490 0.012 1.014
κ

(1)
45 −0.508 0.012 1.014
κ

(1)
46 −0.546 0.012 1.014
κ

(1)
47 −0.567 0.012 1.014
κ

(1)
48 −0.613 0.012 1.014
κ

(1)
49 −0.615 0.012 1.014
κ

(1)
50 −0.636 0.012 1.014
µ1 −0.013 0.003 1.000
v11 0.000 0.001 1.000
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CBD-X(2) Model Mean Standard Deviation Gelman-Rubin Test
α1 −3.438 0.025 1.000
α2 −3.372 0.024 1.000
α3 −3.276 0.023 1.000
α4 −3.198 0.022 1.000
α5 −3.111 0.021 1.000
α6 −3.021 0.021 1.000
α7 −2.956 0.020 1.000
α8 −2.852 0.019 1.000
α9 −2.772 0.019 1.000
α10 −2.683 0.018 1.000
α11 −2.600 0.018 1.000
α12 −2.518 0.018 1.000
α13 −2.434 0.018 1.000
α14 −2.345 0.018 1.000
α15 −2.254 0.018 1.000
α16 −2.155 0.018 1.000
α17 −2.080 0.018 1.000
α18 −1.985 0.018 1.000
α19 −1.895 0.019 1.000
α20 −1.801 0.019 1.000
α21 −1.725 0.020 1.000
α22 −1.636 0.020 1.000
α23 −1.549 0.021 1.000
α24 −1.467 0.022 1.000
α25 −1.393 0.023 1.000
κ

(1)
1 −0.049 0.017 1.000
κ

(1)
2 −0.073 0.018 1.000
κ

(1)
3 −0.081 0.018 1.000
κ

(1)
4 −0.082 0.018 1.000
κ

(1)
5 −0.068 0.018 1.000
κ

(1)
6 −0.090 0.018 1.000
κ

(1)
7 −0.076 0.018 1.000
κ

(1)
8 −0.088 0.018 1.000
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CBD-X(2) Model Mean Standard Deviation Gelman-Rubin Test
κ

(1)
9 −0.104 0.018 1.000
κ

(1)
10 −0.091 0.018 1.000
κ

(1)
11 −0.101 0.018 1.000
κ

(1)
12 −0.113 0.018 1.000
κ

(1)
13 −0.123 0.018 1.000
κ

(1)
14 −0.110 0.018 1.000
κ

(1)
15 −0.118 0.018 1.000
κ

(1)
16 −0.117 0.018 1.000
κ

(1)
17 −0.131 0.018 1.000
κ

(1)
18 −0.138 0.018 1.000
κ

(1)
19 −0.166 0.018 1.000
κ

(1)
20 −0.182 0.018 1.000
κ

(1)
21 −0.208 0.018 1.000
κ

(1)
22 −0.201 0.018 1.000
κ

(1)
23 −0.220 0.018 1.000
κ

(1)
24 −0.216 0.018 1.000
κ

(1)
25 −0.233 0.018 1.000
κ

(1)
26 −0.249 0.018 1.000
κ

(1)
27 −0.243 0.018 1.000
κ

(1)
28 −0.254 0.018 1.000
κ

(1)
29 −0.277 0.018 1.000
κ

(1)
30 −0.266 0.018 1.000
κ

(1)
31 −0.295 0.018 1.000
κ

(1)
32 −0.325 0.018 1.000
κ

(1)
33 −0.333 0.018 1.000
κ

(1)
34 −0.355 0.018 1.000
κ

(1)
35 −0.340 0.018 1.000
κ

(1)
36 −0.362 0.018 1.000
κ

(1)
37 −0.368 0.018 1.000
κ

(1)
38 −0.385 0.018 1.000
κ

(1)
39 −0.398 0.018 1.000
κ

(1)
40 −0.405 0.018 1.000
κ

(1)
41 −0.430 0.018 1.000
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CBD-X(2) Model Mean Standard Deviation Gelman-Rubin Test
κ

(1)
42 −0.479 0.018 1.000
κ

(1)
43 −0.513 0.018 1.000
κ

(1)
44 −0.532 0.018 1.000
κ

(1)
45 −0.553 0.018 1.000
κ

(1)
46 −0.592 0.018 1.000
κ

(1)
47 −0.616 0.018 1.000
κ

(1)
48 −0.663 0.018 1.000
κ

(1)
49 −0.666 0.018 1.000
κ

(1)
50 −0.690 0.018 1.000
κ

(2)
1 −0.001 0.001 1.000
κ

(2)
2 −0.002 0.001 1.000
κ

(2)
3 −0.003 0.001 1.000
κ

(2)
4 −0.002 0.001 1.000
κ

(2)
5 −0.001 0.001 1.000
κ

(2)
6 −0.002 0.001 1.000
κ

(2)
7 −0.002 0.001 1.000
κ

(2)
8 −0.003 0.001 1.000
κ

(2)
9 −0.005 0.001 1.000
κ

(2)
10 −0.005 0.001 1.000
κ

(2)
11 −0.006 0.001 1.000
κ

(2)
12 −0.007 0.001 1.000
κ

(2)
13 −0.004 0.001 1.000
κ

(2)
14 −0.005 0.001 1.000
κ

(2)
15 −0.003 0.001 1.000
κ

(2)
16 −0.004 0.001 1.000
κ

(2)
17 −0.003 0.001 1.000
κ

(2)
18 −0.003 0.001 1.000
κ

(2)
19 −0.004 0.001 1.000
κ

(2)
20 −0.003 0.001 1.000
κ

(2)
21 −0.004 0.001 1.000
κ

(2)
22 −0.003 0.001 1.000
κ

(2)
23 −0.002 0.001 1.000
κ

(2)
24 −0.002 0.001 1.000
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CBD-X(2) Model Mean Standard Deviation Gelman-Rubin Test
κ

(2)
25 −0.001 0.001 1.000
κ

(2)
26 −0.000 0.001 1.000
κ

(2)
27 0.001 0.001 1.000
κ

(2)
28 0.002 0.001 1.000
κ

(2)
29 0.002 0.001 1.000
κ

(2)
30 0.004 0.001 1.000
κ

(2)
31 0.005 0.001 1.000
κ

(2)
32 0.006 0.001 1.000
κ

(2)
33 0.008 0.001 1.000
κ

(2)
34 0.009 0.001 1.000
κ

(2)
35 0.010 0.001 1.000
κ

(2)
36 0.010 0.001 1.000
κ

(2)
37 0.011 0.001 1.000
κ

(2)
38 0.011 0.001 1.000
κ

(2)
39 0.013 0.001 1.000
κ

(2)
40 0.014 0.001 1.000
κ

(2)
41 0.016 0.001 1.000
κ

(2)
42 0.016 0.001 1.000
κ

(2)
43 0.017 0.001 1.000
κ

(2)
44 0.017 0.001 1.000
κ

(2)
45 0.018 0.001 1.000
κ

(2)
46 0.018 0.001 1.000
κ

(2)
47 0.019 0.001 1.000
κ

(2)
48 0.020 0.001 1.000
κ

(2)
49 0.019 0.001 1.000
κ

(2)
50 0.020 0.001 1.000
v11 0.000 0.000 1.000
v22 0.000 0.000 1.000
v12 0.000 0.000 1.000
µ1 −0.013 0.003 1.000
µ2 0.000 0.000 1.000
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CBD-X(3) Model Mean Standard Deviation Gelman-Rubin Test
α1 −3.482 0.026 1.010
α2 −3.415 0.023 1.010
α3 −3.318 0.021 1.010
α4 −3.238 0.019 1.010
α5 −3.150 0.017 1.010
α6 −3.059 0.017 1.009
α7 −2.993 0.016 1.008
α8 −2.889 0.016 1.006
α9 −2.808 0.016 1.005
α10 −2.719 0.016 1.004
α11 −2.636 0.017 1.003
α12 −2.553 0.017 1.003
α13 −2.470 0.017 1.002
α14 −2.381 0.017 1.002
α15 −2.291 0.017 1.002
α16 −2.192 0.018 1.002
α17 −2.119 0.018 1.002
α18 −2.025 0.019 1.002
α19 −1.937 0.020 1.002
α20 −1.845 0.021 1.001
α21 −1.772 0.023 1.001
α22 −1.686 0.025 1.001
α23 −1.602 0.028 1.001
α24 −1.525 0.032 1.001
α25 −1.454 0.036 1.001
κ

(1)
1 −0.012 0.015 1.006
κ

(1)
2 −0.035 0.016 1.006
κ

(1)
3 −0.042 0.016 1.006
κ

(1)
4 −0.040 0.017 1.006
κ

(1)
5 −0.026 0.016 1.006
κ

(1)
6 −0.050 0.016 1.006
κ

(1)
7 −0.033 0.016 1.006
κ

(1)
8 −0.043 0.016 1.006
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CBD-X(3) Model Mean Standard Deviation Gelman-Rubin Test
κ

(1)
9 −0.060 0.016 1.006
κ

(1)
10 −0.046 0.017 1.006
κ

(1)
11 −0.057 0.016 1.006
κ

(1)
12 −0.071 0.016 1.006
κ

(1)
13 −0.081 0.016 1.006
κ

(1)
14 −0.068 0.016 1.006
κ

(1)
15 −0.077 0.016 1.006
κ

(1)
16 −0.076 0.016 1.006
κ

(1)
17 −0.089 0.016 1.006
κ

(1)
18 −0.097 0.016 1.006
κ

(1)
19 −0.126 0.017 1.006
κ

(1)
20 −0.142 0.017 1.006
κ

(1)
21 −0.169 0.016 1.006
κ

(1)
22 −0.162 0.017 1.006
κ

(1)
23 −0.180 0.017 1.006
κ

(1)
24 −0.177 0.017 1.006
κ

(1)
25 −0.195 0.016 1.006
κ

(1)
26 −0.212 0.016 1.006
κ

(1)
27 −0.203 0.017 1.006
κ

(1)
28 −0.216 0.016 1.006
κ

(1)
29 −0.239 0.016 1.006
κ

(1)
30 −0.225 0.016 1.006
κ

(1)
31 −0.254 0.016 1.006
κ

(1)
32 −0.286 0.016 1.006
κ

(1)
33 −0.291 0.016 1.006
κ

(1)
34 −0.314 0.016 1.006
κ

(1)
35 −0.298 0.016 1.006
κ

(1)
36 −0.320 0.016 1.006
κ

(1)
37 −0.326 0.016 1.006
κ

(1)
38 −0.343 0.016 1.006
κ

(1)
39 −0.356 0.016 1.006
κ

(1)
40 −0.363 0.016 1.006
κ

(1)
41 −0.387 0.016 1.006
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CBD-X(3) Model Mean Standard Deviation Gelman-Rubin Test
κ

(1)
42 −0.438 0.016 1.006
κ

(1)
43 −0.471 0.016 1.006
κ

(1)
44 −0.487 0.016 1.006
κ

(1)
45 −0.508 0.016 1.006
κ

(1)
46 −0.547 0.016 1.006
κ

(1)
47 −0.570 0.016 1.006
κ

(1)
48 −0.617 0.016 1.006
κ

(1)
49 −0.620 0.016 1.006
κ

(1)
50 −0.643 0.016 1.006
κ

(2)
1 −0.001 0.001 1.002
κ

(2)
2 −0.002 0.002 1.002
κ

(2)
3 −0.003 0.002 1.002
κ

(2)
4 −0.001 0.002 1.002
κ

(2)
5 −0.000 0.002 1.002
κ

(2)
6 −0.002 0.002 1.002
κ

(2)
7 −0.002 0.002 1.002
κ

(2)
8 −0.002 0.002 1.002
κ

(2)
9 −0.004 0.002 1.002
κ

(2)
10 −0.004 0.002 1.002
κ

(2)
11 −0.005 0.002 1.002
κ

(2)
12 −0.006 0.002 1.002
κ

(2)
13 −0.004 0.002 1.002
κ

(2)
14 −0.004 0.002 1.002
κ

(2)
15 −0.003 0.002 1.002
κ

(2)
16 −0.003 0.002 1.002
κ

(2)
17 −0.002 0.002 1.002
κ

(2)
18 −0.002 0.002 1.002
κ

(2)
19 −0.004 0.002 1.002
κ

(2)
20 −0.003 0.002 1.002
κ

(2)
21 −0.004 0.002 1.002
κ

(2)
22 −0.003 0.002 1.002
κ

(2)
23 −0.001 0.002 1.002
κ

(2)
24 −0.002 0.002 1.002
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CBD-X(3) Model Mean Standard Deviation Gelman-Rubin Test
κ

(2)
25 −0.001 0.002 1.002
κ

(2)
26 0.000 0.002 1.002
κ

(2)
27 0.001 0.002 1.002
κ

(2)
28 0.002 0.002 1.002
κ

(2)
29 0.002 0.002 1.002
κ

(2)
30 0.005 0.002 1.002
κ

(2)
31 0.006 0.002 1.002
κ

(2)
32 0.007 0.002 1.002
κ

(2)
33 0.008 0.002 1.002
κ

(2)
34 0.010 0.002 1.002
κ

(2)
35 0.010 0.002 1.002
κ

(2)
36 0.011 0.002 1.002
κ

(2)
37 0.011 0.002 1.002
κ

(2)
38 0.012 0.002 1.002
κ

(2)
39 0.014 0.002 1.002
κ

(2)
40 0.015 0.002 1.002
κ

(2)
41 0.017 0.002 1.002
κ

(2)
42 0.016 0.002 1.002
κ

(2)
43 0.017 0.002 1.002
κ

(2)
44 0.018 0.002 1.002
κ

(2)
45 0.019 0.002 1.002
κ

(2)
46 0.019 0.002 1.002
κ

(2)
47 0.020 0.002 1.002
κ

(2)
48 0.020 0.002 1.002
κ

(2)
49 0.020 0.002 1.002
κ

(2)
50 0.020 0.002 1.002
κ

(3)
1 0.000 0.000 1.001
κ

(3)
2 −0.000 0.000 1.001
κ

(3)
3 −0.000 0.000 1.001
κ

(3)
4 0.000 0.000 1.001
κ

(3)
5 0.000 0.000 1.001
κ

(3)
6 0.000 0.000 1.001
κ

(3)
7 0.000 0.000 1.001
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CBD-X(3) Model Mean Standard Deviation Gelman-Rubin Test
κ

(3)
8 0.000 0.000 1.001
κ

(3)
9 0.000 0.000 1.001
κ

(3)
10 0.000 0.000 1.001
κ

(3)
11 0.000 0.000 1.001
κ

(3)
12 0.000 0.000 1.001
κ

(3)
13 0.000 0.000 1.001
κ

(3)
14 0.000 0.000 1.001
κ

(3)
15 0.000 0.000 1.001
κ

(3)
16 0.000 0.000 1.001
κ

(3)
17 0.000 0.000 1.001
κ

(3)
18 −0.000 0.000 1.001
κ

(3)
19 −0.000 0.000 1.001
κ

(3)
20 −0.000 0.000 1.001
κ

(3)
21 −0.000 0.000 1.001
κ

(3)
22 −0.000 0.000 1.001
κ

(3)
23 −0.000 0.000 1.001
κ

(3)
24 −0.000 0.000 1.001
κ

(3)
25 −0.000 0.000 1.001
κ

(3)
26 −0.000 0.000 1.001
κ

(3)
27 −0.000 0.000 1.001
κ

(3)
28 −0.000 0.000 1.001
κ

(3)
29 −0.000 0.000 1.001
κ

(3)
30 −0.000 0.000 1.001
κ

(3)
31 −0.000 0.000 1.001
κ

(3)
32 −0.000 0.000 1.001
κ

(3)
33 0.000 0.000 1.002
κ

(3)
34 0.000 0.000 1.001
κ

(3)
35 0.000 0.000 1.001
κ

(3)
36 0.000 0.000 1.001
κ

(3)
37 0.000 0.000 1.001
κ

(3)
38 0.000 0.000 1.001
κ

(3)
39 0.000 0.000 1.001
κ

(3)
40 0.000 0.000 1.001
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CBD-X(3) Model Mean Standard Deviation Gelman-Rubin Test
κ

(3)
41 0.000 0.000 1.001
κ

(3)
42 0.000 0.000 1.002
κ

(3)
43 0.000 0.000 1.001
κ

(3)
44 0.000 0.000 1.001
κ

(3)
45 0.000 0.000 1.001
κ

(3)
46 0.000 0.000 1.001
κ

(3)
47 0.001 0.000 1.001
κ

(3)
48 0.001 0.000 1.001
κ

(3)
49 0.001 0.000 1.001
κ

(3)
50 0.001 0.000 1.001
v11 0.000 0.000 1.000
v22 0.000 0.000 1.000
v33 0.000 0.000 1.000
v12 0.000 0.000 1.000
v13 0.000 0.000 1.000
v23 0.000 0.000 1.000
µ1 −0.013 0.003 1.000
µ2 0.000 0.000 1.000
µ3 0.000 0.000 1.000
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