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Abstract

The discretization of surface intrinsic PDEs has challenges that one might not face in flat
spaces. The closest point method (CPM) is an embedding method that represents surfaces
using a function that maps points in the flat space to their closest points on the surface.
This mapping brings intrinsic data onto the embedding space, allowing us to numerically
approximate PDEs by standard methods in a tubular neighbourhood of the surface. Here,
we solve the surface intrinsic positive Helmholtz equation by the CPM paired with finite
differences which usually yields a large, sparse, and non-symmetric linear system. Domain
decomposition methods, especially Schwarz methods, are robust algorithms to solve these
linear systems. In this work, we investigate the convergence of four Schwarz-CPM methods
for 1-manifolds in Rd. The analysis is followed by numerical experiments for verification.

Keywords: Surface intrinsic partial differential equations; closest point method; domain
decomposition methods; parallel and alternating Schwarz; classical and optimized Schwarz
methods.
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Chapter 1

Introduction

Surface differential equations arise in a wide variety of natural phenomenon such as bio-
logical systems, fluid dynamics, and image processing. For instance, the development of a
human brain is investigated by solving a Gray-Scott reaction-diffusion equation on a sphere
with a finite element approach in [36]. Coat markings of animals and pigmentation pat-
terns on butterfly wings are modelled using differential equations (mostly reaction-diffusion
equations) posed on surfaces. In an interesting work, the evolution of the stripes in the fish
Pomacanthus is analyzed in [34]. In fluid dynamics, thin films can be modelled on surfaces.
For example, in [30], a theoretical model is developed for surfactant and liquid delivery
to lungs. Also, solidification on surfaces is another important field of study where surface
differential equations arise. For example, ice accumulation on the surface of aircrafts has
been a bottleneck in the design process [46].

Herein, we consider the surface intrinsic positive Helmholtz equation

(c−∆S)u = f, (1.1)

where ∆S denotes the Laplace–Beltrami operator associated with the surface S ⊂ Rd, and
c > 0 is a constant. We provide various fields of study that the surface intrinsic positive
Helmholtz equation becomes of interest. The Laplace–Beltrami operator appears in the flat-
tening of human brain surface [3]. A flattened representation of the brain is important for
visualizing magnetic imaging data that translates neural activity within the brain folds. In
order to diagnose neurodegenerative diseases – particularly Alzheimer’s disease – in early
stages using MRI images, cortical thickness of the human brain is estimated using the
Laplace–Beltrami operator applied on the brain [56]. In another application, Equation (1.1)
with f = 0 is solved on graphs to perform dimensionality reduction [5]. Dimensionality
reduction plays an important role in data representation and can be exploited for clustering
a dataset. Suppose that for an n×n gray scale image of an object under a fixed lighting that
each pixel represents the brightness with a value from zero to one. Such images belong to the
space of [0, 1]n2, however, all images of a specific object form a manifold in the embedding
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space of [0, 1]n2. Learning the manifold of interest, the dataset can be represented in the
lower dimensional space of the manifold. Further, the learned manifold can be used later to
categorize data. Hence, the process is also called manifold learning. Having a set of data,
a graph is constructed in the embedding space. The eigenmaps of the Laplace–Beltrami
operator are evaluated on the graph to represent the data in a lower dimensional space.
In [13], the authors introduce a novel method to classify a given data point by perturbing
the manifold where a specific category of the data live. Another interesting application of
the surface intrinsic positive Helmholtz equation is in shape analysis. The eigenfunctions
of the Laplace–Beltrami operator on 3D surfaces are visionary as they provide insights
into the morphology and structure of the surface [49]. Note that the eigenproblem of the
Laplace–Beltrami operator is equivalent to Equation (1.1) with f = 0. In [49], the eigen-
functions of the Laplace–Beltrami operator are utilized for shape segmentation. Moreover,
the eigenfunctions of the operator have been used for shape comparison [51]. In another
work, corresponding points in an object with several poses are found by the eigenfunctions
[17]. The same approach is used for determining the corresponding points in a symmetric
3D triangulated object [17]. As the gradient and divergence operators are defined over the
Riemannian structure of the manifold, the spectrum of the Laplace–Beltrami operator –
which depends on the gradient and divergence operators – is isometry invariant. In addi-
tion, scaling an object by a factor of a can be compensated by normalizing the eigenvalues
by 1/a2. These properties of the Laplace–Beltrami operator along with some other proper-
ties stated in [50] make the Laplace–Beltrami operator a valuable asset in statistical shape
analysis. See [10] for an application of the Laplace–Beltrami operator for reconstructing
colored surfaces obtained from 3D scans. There are also some other possible applications
of the eigenfunctions of the Laplace–Beltrami listed in [37]: signal processing on surfaces,
registration and pose transfer, and parameterization. The Laplace–Beltrami operator also
appears in the modelling of thermal behaviour of thin membranes coated on nanoparticles
[2]. Lastly, discretization of this equation arises from the time-stepping of reaction-diffusion
equations on surfaces [42]. As a consequence, considerable recent work has taken place to
develop efficient, high-speed solvers for this and other related PDEs on surfaces.

There are several methods to solve surface intrinsic differential equations. If a surface
parameterization (a mapping from the surface to a parameter space) is known, then the
equation can be solved in the parameter domain [14]. For a one-dimensional manifolds em-
bedded in a higher dimensional space, obtaining the parameterization is a fairly easy task.
The given curve can be parameterized along the arc length. The parameterization method
follows by discretizing the differential equations along the curve length. The parameteriza-
tion of higher dimensional manifolds is more difficult and cannot be performed analytically
for general manifolds. Expensive computational and numerical approaches are required for
the parameterization of general manifolds. An ideal parameterization preserves the metric
structure of the manifold, such as area and angles of shapes for a two-dimensional manifold.
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However, such a parameterization does not exist in general, and a single metric structure is
traded off against the others. In [54], an angle preserving model for the parameterization of
a 2D manifold is proposed that minimizes the angular distortion without any constraints on
the area distortion. For preserving both area and angles of the manifold of interest, a func-
tional energy is defined in [14] whose minimizer is a parameterization of the surface. Here,
there is a parameter involved that can be tuned to switch between angle preserving and area
preserving parameterizations. Another angle preserving approach is introduced in [38] that
results in conformal parameterization of the manifold. There have also been some works on
optimizing the parameterization that maintain the overall structure of parameterizations
while reducing memory requirements [53]. An excellent discussion on the parameterization
of surfaces can be found in [21]. After finding an appropriate parameterization of the man-
ifold, we discretize the surface intrinsic differential operators in the parameter space. Note
that the discretization needs special treatment if the parameterization is not conformal.
This is the drawback of the parameterization approach for solving surface intrinsic differ-
ential equations, as a conformal parameterization of manifolds cannot be easily obtained.
Indeed, the process of finding a conformal parameterization is computationally expensive
and is closely related to finding the eigenfunctions of the Laplace–Beltrami operator [38].
It has to be pointed out that the error analysis of such approaches strongly depends on the
parameterization, and switching between different parameterizations leads to a completely
different accuracy. Further, the new coordinates achieved by a parameterization may end
up in establishing artificial singularities such as the poles of spherical coordinates

Another approach that has been widely used in the literature for solving the surface
intrinsic differential equations is the finite element method. For a one-dimensional curve,
the finite element method is equivalent to the parameterization approach described above.
Hence, we restrict the discussion to higher dimensional manifolds. In order to utilize the
finite element method for solving a surface differential equation, one first needs a triangula-
tion of the surface. If a triangulation of the manifold is not available, one must be created.
There are many techniques for constructing a triangulation of a manifold such as [31], but
this is beyond the scope of this thesis. Supposing a triangulated surface is in hand, a fi-
nite element discretization of the surface intrinsic differential operator can be created. It is
shown in [18] that there exists a unique discrete solution in the space of piecewise linear
functions to an elliptic surface intrinsic differential equation such as Equation (1.1) on a
compact surface. The finite element approach has been used in various fields of study for
solving surface differential equations; e.g., pattern formation on evolving biological surfaces
[4], the Cahn–Hilliard equation on surfaces [20], and diffusion smoothing on brain surface
[11]. Some finite element discretizations of the Laplace–Beltrami operator can be found in
[15, 47]. Although the approach has been widely used, the accuracy of the method strongly
depends on the quality of the triangulation and intrinsic properties of the geometry, and it
is not well understood for general surfaces [18].
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Alternatively, we can solve the differential equation in a neighbourhood of the surface
using standard PDE methods in the underlying embedding space. The advantage of dis-
cretizing the equivalent partial differential equation in the embedding space over the other
approaches is its accurate error, stability, and robustness measures – which are unknown for
the finite element and parameterization methods described above. Note that the implemen-
tation is also quite simple. We, herein, list some methods of this kind. In [8], the level set
of the embedded manifold of co-dimension one is used to transform the surface differential
equation into an equivalent PDE in the embedding space. If an implicit representation of
the manifold is in hand, the level set representation of the manifold is obtained by solving
the classical Hamilton–Jacobi equation ||∇ψ|| = 1 where ψ : Rd → R denotes the level set
of the manifold. The surface is the zero level set, i.e., S = {x ∈ Rd|ψ(x) = 0}. Otherwise,
if a triangulated surface is given, one can employ a variety of approaches [58, 35] to find
the implicit representation of the surface. Surface properties can be simply computed using
the level set representation ψ, if needed. PDE approximations are also simplified, since we
are now able to use standard finite difference schemes in the embedding space. Further,
the method is capable of solving a PDE on a surface that simultaneously evolves [1]. The
method introduced in [8] has a number of drawbacks, especially in the case of diffusion equa-
tions on surfaces. Since we solve a PDE (consistent with the surface differential equation)
in one higher dimension, it is usually solved in a small band around the manifold to reduce
the cost of solving in a higher dimension. Subsequently, suitable boundary conditions are
required for the PDE in the underlying embedding space. However, the analytic solution
does not depend on the boundary conditions. Dirichlet and Neumann boundary conditions
lead to a jump in the solution and the gradient of solution, respectively, and this results in
large errors [29]. Hence, how to choose appropriate boundary conditions is unclear. Another
limitation involved in the method is that there is no capability of the method for open
manifolds or manifolds of co-dimension higher than one.

The closest point method (CPM) is an embedding method suitable for the discretization
of PDEs on surfaces that addresses the drawbacks of the other approaches discussed above
[52]. The CPM can be simply implemented as the discretization is done using finite differ-
ences on a fixed point Cartesian grid. The method is discussed in detail in Chapter 2. The
closest method typically leads to non-symmetric linear systems to solve [43]. On complex
geometries or when varying scales arise, iterative solvers can be slow despite the sparsity
of the underlying systems [44]. In order to develop an efficient iterative solver which is also
capable of parallelism, parallel Schwarz and optimized parallel Schwarz algorithms have
been applied to the CPM for (1.1) in [44]. The Schwarz methods have also been used as a
preconditioner for Krylov space iterative methods [44] to boost the convergence. In [44], the
CPM coupled with the Schwarz methods shows promising results and decent convergence,
however, a robust convergence analysis is missing. The ultimate goal of this thesis is to
provide a convergence analysis of such methods. Before proceeding, we give a brief litera-
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Ω1 Ω2

Γ2 Γ1

Figure 1.1: A complex domain decomposed into two simple subdomains, namely a rectangle
and a circle.

ture review of domain decomposition methods, particularly Schwarz methods, on surface
intrinsic differential equations.

Domain decomposition methods solve a boundary value problem by splitting the original
problem into smaller boundary value problems called subproblems. The classical alternating
Schwarz method is the first introduced domain decomposition method (Hermann Schwarz,
1860). At first, the main goal of the algorithm was to prove the Dirichlet principle over
complex geometries, at a time when the principle had been introduced and proved by
Riemann over simple geometries where Fourier analysis is applicable. Suppose the domain
of interest Ω is decomposed into two overlapping subdomains, Ω1 and Ω2. In addition,
the interfaces are defined as Γ1 = ∂Ω1 ∩ Ω2 and Γ2 = ∂Ω2 ∩ Ω1. These are illustrated in
Figure 1.1. Schwarz introduced the first domain decomposition algorithm (which we call
the classical alternating Schwarz method) for the Dirichlet problem ∆u = 0 in Ω and u = g

on ∂Ω as:

∆un+1
1 = 0 in Ω1, ∆un+1

2 = 0 in Ω2,

un+1
1 = un2 on Γ1, un+1

2 = un+1
1 on Γ2.

Note that un+1
1 and un+1

2 both must satisfy the boundary condition on ∂Ω, but we have
ignored them for simplicity. Since each subproblem uses the very last information from the
other subdomain, the method is called alternating. Indeed, the subproblems communicate
through the artificially imposed boundary conditions. The iteration continues until un+1

1 and
un+1

2 match on the overlapping region. Schwarz also proved the convergence of the method
at the continuous level. The convergence factor of the method for a one-dimensional positive
Helmholtz equation at the continuous and discrete levels is obtained by explicitly solving the
subproblems and can be found in [16]. Moreover, the convergence factor of the method on
the whole R2 plane is found by Fourier analysis [16]. Later, in 1988 when parallel computers
were becoming important, Pierre-Louis Lions proposed the parallel variant of the Schwarz
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method described above:

∆un+1
1 = 0 in Ω1, ∆un+1

2 = 0 in Ω2,

un+1
1 = un2 on Γ1, un+1

2 = un1 on Γ2.

We call this method the classical parallel Schwarz method and its only difference with
the classical alternating Schwarz method is the indexing of the boundary condition of the
second subproblem. The optimized Schwarz methods were proposed with the additional
idea of a better communication between the subdomains by using linear operators across
the interfaces. Imposing a Robin boundary condition, B = ∂/∂n̂ + α where n̂ denotes the
outward normal to the interface and α is called the Robin parameter, gives the optimized
alternating Schwarz method:

∆un+1
1 = 0 in Ω1, ∆un+1

2 = 0 in Ω2,

Bun+1
1 = Bun2 on Γ1, Bun+1

2 = Bun+1
1 on Γ2,

and the optimized parallel Schwarz method:

∆un+1
1 = 0 in Ω1, ∆un+1

2 = 0 in Ω2,

Bun+1
1 = Bun2 on Γ1, Bun+1

2 = Bun1 on Γ2.

The optimized methods benefit from better information exchange through subdomains and
consequently converge faster compared to the classical methods [25]. However, the general
convergence of the optimized Schwarz methods has been elusive [40]. See [23] for the con-
vergence analysis of the optimized Schwarz methods for the Helmholtz equation defined
over the free space Rd. The convergence is shown for a special partitioning of the space
and only for the case with two subdomains. For an extensive discussion on generalizing
the methods for more subdomains, please refer to [16]. One can also see [16, 25] for the
discretized versions of the methods. Although the Schwarz methods were introduced for
elliptic PDEs, they have shown potential for solving other type of PDEs. For instance, the
Schwarz methods have been applied to the advection diffusion equations [22] and parabolic
equations [24].

While there has been substantial work carried out on Schwarz methods, they have not
been widely applied to surface intrinsic differential operators. The Schwarz iterations have
been applied to the shallow-water equation defined over a rotating sphere that typically
arises in atmospheric and oceanic modelling [33, 57]. The domain used in [33, 57] is a
cubed-sphere which is naturally decomposed to 6 subdomains, and the differential equa-
tions are discretized using a finite volume scheme. The classical parallel Schwarz [12] and
optimized parallel Schwarz [39] iterations for the surface intrinsic Laplace equation have
also been investigated on the unit sphere. In these works, the analysis is based on latitu-
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dinal subdomains that are periodic in longitude. The Schwarz methods have been proved
to converge for the spherical Laplacian when the sphere is partitioned to two and three
subdomains in a latitudinal fashion. Hence, the Fourier transform is a natural choice to
solve the subproblems analytically and obtain the contraction factor. An optimal transmis-
sion condition is also proposed in [39] that improves the convergence. The classical and
optimized parallel Schwarz methods are also analyzed with an overset grid for the shallow-
water equation in [48]. In that work, the discretization in 1D is reduced to the positive
definite Helmholtz problem on the unit circle. The unit circle case is investigated with two
equal-sized subdomains, and a convergence factor is derived for the configuration in terms
of the overlap parameter. Moreover, the optimization problem associated with the optimal
Robin parameter is given, but no solution is provided. The 2D positive definite Helmholtz
problem on the sphere is also analyzed where the subdomains are derived from a Yin-Yang
grid system.

In this thesis, we study the convergence of the Schwarz iterations for the CPM at the
continuous level for smooth, simple closed 1-manifolds where periodicity is inherent in the
geometry. After a review of the CPM and Schwarz-CPM in Chapter 2, we will show in Chap-
ter 3 that this problem, posed in Rd, is equivalent to a one-dimensional periodic problem.
This leads us to study the convergence of Schwarz methods for the 1-dimensional periodic
problem in detail, an analysis that is missing in the literature. However, the convergence
of the Schwarz iterations for general manifolds of co-dimension two remains unknown. It is
worth noting a key difference between this thesis and [48]. In our problem, domain subdivi-
sion is carried out in the underlying embedding space. As a consequence, the unequal-sized
subdomain case is essential to our understanding of the problem. In addition, we prove
the convergence and derive the convergence factor for more than two subdomains, while
the analysis in [48] is restricted to only two equal-sized subdomains. We also prove the
convergence of the optimized Schwarz iterations for the one-dimensinonal periodic positive
Helmholtz equation and derive the convergence factor. Although (1.1) on 1-manifolds can
be simply solved through parameterization, we investigate the convergence of the Schwarz-
CPM for 1-manifolds in this paper with the hope of extending our work to higher dimen-
sional manifolds in the future. The optimal Robin parameter is also found for this problem.

The rest of the thesis is organized as follows: Chapter 2 reviews the CPM and the Schwarz
iterations for the CPM. Chapter 3 studies the Schwarz-CPM combinations for the surface
intrinsic positive Helmholtz equation (1.1) by analyzing an equivalent one-dimensional pe-
riodic problem. This section proves convergence and derives convergence factors. Chapter 4
provides a numerical experiment in which the Schwarz-CPM contraction factor converges
to its Schwarz iteration counterpart by increasing the grid resolution. Finally, Chapter 5
gives conclusions.
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Chapter 2

The Closest Point Method

In this chapter, we will introduce the Closest Point Method (CPM) for solving surface
intrinsic partial and ordinary differential equations. We start with the CPM and extend our
discussion to domain decomposition for the CPM (DDCPM).

2.1 The Closest Point Method

The Closest Point Method (CPM) is an embedding method that discretizes surface intrin-
sic PDEs in the embedding space. It was first introduced in [52] with the aim of solving
evolutionary PDEs on surfaces. At the heart of the CPM, there is a closest point mapping
cpS which maps any point in the computational domain (each of which belongs to the
embedding space) onto a point lying on the manifold:

cpS(x) = argmin
s∈S

||x− s||. (2.1)

This mapping gives the closest point in Euclidean distance to the surface S for any point
x in the embedding space. It is well-defined for any point in the embedding space within a
distance R0 of a smooth surface, where R0 is a lower bound for the surface radii of curvature
[9]. We need the closest point mapping to extend functions and surface values defined on
the surface to the embedding space. Hence, efficient and accurate methods are required to
construct the closest point function. The closest point mapping can be computed analytically
for simple manifolds with analytic representation such as circles, spheres, tori, while we need
computational tools when it comes to complex manifolds. Standard numerical optimization
techniques can be utilized to compute the closest point function for parameterized surfaces
[45]. For triangulated surfaces, more complex methods such as the tree-based algorithms of
Strain [55] might be used to determine the closest point function at grid nodes. However,
a simple search algorithm over the computational nodes of the CPM for finding the closest
nodes from the manifold is often effective. Further, restricting the radius of the search
significantly improves the efficiency. This simple approach has a work estimate that scales
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linearly with the number of triangles for a triangulated surface [52]. Thus, this approach is
often sufficient for problems of practical interest.

Although a rigorous convergence study of the method has not been provided in the
literature, one can state results for the consistency of the CPM with the original surface
intrinsic PDE. Two principles are fundamental to the CPM: equivalence of gradients and
equivalence of divergence [52]. We state the principles and show that the CPM for the
surface intrinsic positive Helmholtz equation is equivalent to the original PDE. Though,
one may make use of the principles to show the consistency of the CPM for general PDEs.
The principles are as follows:

1. Equivalence of Gradients. For any function v defined on Rd which is constant along
the directions normal to a manifold S with a well-defined closest point function, the equiv-
alence of gradients principle indicates the following on the manifold:

∇v = ∇Sv.

2. Equivalence of Divergence. Suppose v ∈ Rd is a vector field that is tangent to all
level-sets of the distance function to S with a well-defined closest point representation. The
equivalence of divergence principle states that on the manifold:

∇ · v = ∇S · v.

The first principle indicates that v only varies along the surface, while equivalence of di-
vergence states that there is no flux going through the manifold when v is a vector field
directed along the manifold.
Suppose the closest point mapping of the manifold S is well-defined over Ω ∈ Rd. We in-
troduce ũ : Ω→ R as the solution to the embedding CPM problem for the surface intrinsic
positive Helmholtz equation (1.1). Since ũ(cpS) is constant in the normal direction to the
manifold, the equivalence of gradients principle gives us

∇ũ(cpS) = ∇Su,

on the surface, where u is the solution to the original surface PDE. Further, ∇ũ(cpS) is
directed along the manifold. By applying the equivalence of divergence principle,

∇ · (∇ũ(cpS)) = ∇S · (∇ũ(cpS)),

is obtained on the surface. Therefore, on the manifold, we recover the surface differential
operator by combining the two principles:

∆ũ(cpS) = ∇ · (∇ũ(cpS)) = ∇S · (∇ũ(cpS)) = ∇S · (∇Su) = ∆Su. (2.2)
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It follows that the embedding PDE is consistent with the original surface PDE.
While the CPM was introduced for solving evolutionary surface differential equations,

it is also capable of solving time-independent surface PDEs [43]. In the evolutionary case,
given an initial condition, we extend values off the surface to the computational domain of
the embedding space. Then, the embedding PDE is computed using regular discretization
methods for one time step. In the last step, the surface values are interpolated using the
embedding solution for the future extension to the embedding space. The procedure iterates
with an explicit time-stepping to reach the ultimate time. It is shown that the implicit time-
stepping lacks stability at the discrete level. A modified version of (2.2) offers improved
stability at the discrete level and is normally used in elliptic problems [43, 41, 27]. The
regularized Laplace operator is

∆#
h ũ = ∆ũ(cpS)− 2d

h2 [ũ− ũ(cpS)] , (2.3)

where 0 < h� 1. As in [43, 41], we take the parameter h to be equal to the mesh spacing
in the fully discrete setting. In fact, ∆#

h ũ can be seen as ∆ũ(cpS) penalized for large change
in the normal direction. Note that ũ− ũ(cpS) = 0 on the manifold.

Equation (2.3) gives our replacement for the Laplace-Beltrami operator. Applying it,
and extending the function f off the manifold using the closest point mapping gives our
embedding equation for (1.1):

(c−∆#
h )ũ = f(cpS). (2.4)

Standard numerical methods in the embedding space may be applied to (2.4) to complete
the discretization. Herein, we apply standard second order finite differences on regular grids
to approximate the derivative operators. Because discrete points do not necessarily lie on
S, an interpolation scheme is needed to recover surface values. Utilizing tensor product
barycentric Lagrangian interpolation [7] in a dimension-by-dimension fashion, an extension
matrix E is defined to extend values off the manifold. Note that the extension matrix may
be viewed as a discretization of the closest point mapping.

In practice, one computes on a narrow tubular region around the manifold rather than
the entire embedding space. As mentioned earlier, the manifold values are interpolated. In
order to perform the interpolation to a desired accuracy, it is required to have sufficient nodes
clustered around the interpolated node. We call the points associated with the interpolation
active nodes. The active nodes appear in the interpolation stencil for at least one point on
the manifold. The ultimate aim is to discretize the differential operator over the active nodes
with the second order centred finite difference approximation of the Laplacian. Thus, we
complete the computational domain by introducing another list of nodes called ghost nodes.
The ghost nodes are located at the boundaries of the computational domain. Figure 2.1
illustrates the active and ghost nodes for an arbitrary 1-manifold in R2. Using a mesh
spacing h and degree-p interpolation polynomials, it is sufficient to numerically approximate
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Active Nodes Ghost Nodes

Figure 2.1: Active and ghost nodes for a curve with degree-four polynomial interpolation.

equation (2.4) in a narrow tube around S of radius [52]

λ =
√

(d− 1)(p+ 1)2 + (p+ 3)2h/2. (2.5)

Suppose na and ng represent the number of the active and ghost nodes in a problem,
respectively. Further, we have n = na + ng nodes lying on the manifold – each corresponds
to a node in the computational domain. The extension matrix E is an n × na matrix that
performs n linear interpolations over the active nodes for all points in the computational
domain. The differential operator matrix ∆h ∈ Rna×n approximates the Laplacian on the
active nodes with the aid of the ghost nodes. By defining M̃ = ∆hE, the embedding PDE
at the discrete level for u ∈ Rna×1 is

(cIna − M̃)u = f , (2.6)

where Ina ∈ Rna×na denotes the identity matrix, and f ∈ Rna×1 is a vector corresponding
to f in (1.1) and extends f to the active nodes in the embedding space. As mentioned
before, Equation (2.6) is numerically unstable. The modified version with the regularized
differential equation described in Equation (2.4) is given by:

M = diag ∆h + (∆h − diag ∆h)E, (2.7)
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Figure 2.2: Active nodes (black circles) and ghost nodes (red cross marks) for the unit circle
in R2 with h = 0.1 and p = 2.

or diagrammatically,

diag ∆h (∆h − diag ∆h) E

M = ,

where the diag operator extracts the diagonal elements of the matrix and forms a square
matrix with the extracted diagonal elements.

Assuming S is the unit circle in R2, the computational nodes in the embedding space
for a degree-two interpolation with mesh spacing of h = 0.1 is shown in Figure 2.2. There
are 240 active and 116 ghost points for this problem. Further, the structure of the asso-
ciated extension and operator matrices along with the stabilized matrix M are shown in
Figure 2.3. The number of nonzero elements in the matrix M is 3744, resulting in ∼ 93.3%
sparsity. Refining the mesh increases the sparsity of the matrix M [43]. This motivates the
development of efficient algorithms for solving the linear system in Equation (2.6).

2.2 Domain Decomposition for The Closest Point Method

Following the discussion in Chapter 1, efficient solvers and preconditioners are required
for the CPM. The linear system that arises from the discretization is usually large which
makes a direct solve inefficient. On the other hand, iterative solvers can be slow for complex
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M h E

Figure 2.3: Sparsity structure of the CPM matrices for the unit circle shown in Figure 2.2.

geometries or when varying scales arise. Domain decomposition methods serve well when
they are employed as solvers or preconditioners for the CPM [44]. The parallel classical
and optimized Schwarz methods are coupled with the CPM for solving the surface intrinsic
positive Helmholtz equation (1.1) on some manifolds of co-dimension one in [44]. Although
one can apply other domain decomposition methods to the CPM, we herein mainly focus
on the parallel and alternating Schwarz methods.

Before the computation begins, an appropriate decomposition of the domain is needed.
Before detailing the decomposition at the discrete level, we state the partitioning at the
continuous level, explained in the following definition.

Definition 2.2.1. Suppose the closed manifold S is split into N disjoint subdomains,
each called S̃j for j = 1, . . . , N . For a parallel algorithm, the ordering of the subdomains
is not important as they all will be solved simultaneously. There is a family of domain
decomposition methods introduced later in this chapter in which the ordering becomes
notable. Hence, we order the subdomains in a way that S̃j for j = 2, . . . , N is adjacent to at
least one of its previous subdomains on the list. That is, S̃j has at least a common interface
with S̃k for k = 1, . . . , j − 1. Note that there is no condition on the first subdomain. After
having a set of disjoint subdomains, we expand each subdomain by a desired amount in the
normal directions to the interfaces to form the overlapping subdomains, Sj , for j = 1, . . . , N .
We define γjk := ∂Sj ∩ Sk, j 6= k, as the part of the boundary of the jth overlapping
subdomain located within the kth overlapping subdomain. Now that a partitioning of the
underlying geometry is in hand, we attempt to construct the overlapping subdomains for
the CPM. Recall that the computational domain of the CPM is a tubular region around
the manifold denoted as Ω, and the closest point representation of the manifold S is well-
defined. The disjoint subdomain Ω̃j , j = 1, . . . , N , consists of all x ∈ Ω such that cp(x) ∈ S̃j .
Likewise, all x ∈ Ω such that cp(x) ∈ Sj create the overlapping subdomain j for the CPM,
Ωj . Recall that before applying the CPM, a tubular neighbourhood around the manifold is
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Figure 2.4: Illustration of the domain decomposition for the CPM at the continuous level
detailed in Definition 2.2.1.

needed, while there is no such tube around the boundaries of the overlapping subdomains.
This is more clear at the discrete level as the interpolation stencil associated with the
CPM is not complete for the boundary nodes. In order to address the issue, we define the
part of the boundary for the overlapping subdomain j lying in the subdomain k to be
Γjk := {x ∈ Ωk

∣∣||γjk − x|| ≤ λ} where λ is defined in Equation (2.5), and || · || denotes the
Euclidean distance. It also gives a modification to the closest point representation of the
subdomain j:

cpSj
(x) =


cpS(x); x ∈ Ωj ,

argmin
s∈γjk

||x− s||; x ∈ Γjk, k 6= j.
(2.8)

Definition 2.2.1 provides the details on the partitioning of the computational domain
of the CPM at the continuous level which is sufficient for our analysis. See Figure 2.4
for an illustration. The black curve represents S, and the black shaded area depicts the
computational domain of the CPM, Ω.

Definition 2.2.1 provides no practical information on partitioning at the discrete level.
We will introduce the partitioning at the discrete level in Chapter 4. A thorough explanation
at the discrete level also can be found in [44].

Now with a rigorous partitioning of the closed manifold S detailed in Definition 2.2.1,
the Schwarz-CPM for the positive surface intrinsic Helmholtz equation (1.1) reads:

(c−∆#
h )ũn+1

j (cpSj
) = f(cpSj

), in Ωj ,

Bũn+1
j (cpSj

) = Bũ
n+1(method)

jk

k (cpSj
), on Γjk, k 6= j,

(2.9)
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where the symbol 1(method)
jk is defined as

1(method)
jk =


0; method = 1,

0; method = 2, j < k,

1; method = 2, j > k,

(2.10)

method = 1 represents the parallel Schwarz methods, while method = 2 represents alter-
nating Schwarz algorithm.

Parallel Schwarz algorithms are members of the vast family of Schwarz domain de-
composition methods. These algorithms are iterative methods which concurrently solve
subproblems and are perfect fits for parallel computing. One can simultaneously pass each
subproblem to a different computational unit. Then, we modify the subproblems according
to the solution of the adjacent subproblems on the central processing unit and pass the new
subproblems to the computational units for the next iteration. We iterate until a desired
convergence criteria is met.

Alternating Schwarz algorithms benefit from the most recent available information, and
subsequently show better convergence as compared to parallel Schwarz algorithms. In these
algorithms, each subproblem at an iteration is modified and solved based on the previous
subproblems solved at the same iteration. If a subproblem has not been solved yet in the
ongoing iteration, we use its solution at the previous iteration. Therefore, these methods
are not capable of parallelism. Starting from the first subproblem j = 1 with boundary
values obtained from the previous iteration n, one obtains ũn+1

1 . By using the new solution
obtained for the first subdomain ũn+1

1 , the boundary values for the adjacent subproblem
j = 2 are updated and its solution is computed.

It is possible to define different boundary operators Bk in Equation (2.9) for each in-
terface k. This could improve the convergence of the iteration but increases the complexity
of the analysis. Therefore, we only consider the case where the boundary operators remain
the same among the interfaces, i.e., Bk = B.

Herein, we only investigate two well-known boundary operators. Assuming the boundary
operator is the identity operator, i.e., B = I, we arrive at the classical Schwarz method which
transmits the information subdomain-by-subdomain through Dirichlet boundary conditions.
For a better performance, one can utilize the Robin boundary condition by setting B =
∂/∂n̂ + α where n̂ denotes the outward normal to the interface and α is called the Robin
parameter. This approach is called the optimized Schwarz method. It benefits from a better
transmission of information throughout the subdomains at the cost of a more difficult
implementation.

Using the two introduced algorithms – parallel and alternating Schwarz – and the iden-
tity and Robin boundary operators gives four Schwarz-CPM methods which are introduced
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in the following sections. Convergence analysis for these methods is provided in the next
section.

2.2.1 Classical Parallel Schwarz

Assuming the identity operator for the boundary condition, i.e., B = I, Iteration (2.9)
reduces to: 

(c−∆#
h )ũn+1

j (cpSj
) = f(cpSj

), in Ωj ,

ũn+1
j (cpSj

) = ũnk(cpSj
), on Γjk, k 6= j.

(2.11)

We call this algorithm the Classical Parallel Schwarz for the CPM (CPS-CPM). This it-
eration is anticipated to have the slowest rate of convergence as it does not benefit from
the newest available data in the alternating Schwarz methods nor does it use the extensive
transmission of information associated with the Robin operator.

2.2.2 Classical Alternating Schwarz

From the definition of the alternating Schwarz methods and using the identity operator as
the boundary operator, the Classical Alternating Schwarz applied to the CPM (CAS-CPM)
for equation (1.1) reads:



(c−∆#
h )ũn+1

j (cpSj
) = f(cpSj

), in Ωj ,

ũn+1
j (cpSj

) = ũn+1
k (cpSj

), on Γjk, k < j,

ũn+1
j (cpSj

) = ũnk(cpSj
), on Γjk, k > j.

(2.12)

2.2.3 Optimized Parallel Schwarz

By choosing the Robin boundary condition for the transmission operator, i.e., B = ∂/∂n̂+α,
we arrive at Optimized Parallel Schwarz for the CPM (OPS-CPM):

(c−∆#
h )ũn+1

j (cpSj
) = f(cpSj

), in Ωj ,

∂

∂n̂
ũn+1
j (cpSj

) + αũn+1
j (cpSj

) = ∂

∂n̂
ũnk(cpSj

) + αũnk(cpSj
), on Γjk, k 6= j.

(2.13)
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2.2.4 Optimized Alternating Schwarz

Similarly, the Optimized Alternating Schwarz method applied to the CPM (OAS-CPM) for
equation (1.1) reads:

(c−∆#
h )ũn+1

j (cpSj
) = f(cpSj

), in Ωj ,

∂

∂n̂
ũn+1
j (cpSj

) + αũn+1
j (cpSj

) = ∂

∂n̂
ũn+1
k (cpSj

) + αũn+1
k (cpSj

), on Γjk, k < j,

∂

∂n̂
ũn+1
j (cpSj

) + αũn+1
j (cpSj

) = ∂

∂n̂
ũnk(cpSj

) + αũnk(cpSj
), on Γjk, k > j.

(2.14)

This iteration is anticipated to have the best convergence rate among the introduced meth-
ods as it gains benefit from both alternating iterates and the Robin operator.

In this format of Schwarz algorithm, there is no concept of a global solution. In order
to construct the global solution, a weighted average of subdomain solutions is utilized.
Throughout the thesis, we construct the global solution by gluing together the portion
of local solutions restricted to their disjoint subdomains. This gives classical or optimized
restricted additive Schwarz (RAS) methods.
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Chapter 3

Convergence of the DDCPM

We wish to prove the convergence of the domain decomposition algorithms introduced in
Chapter 2. Numerical experiments in [44] suggest that the classical and optimized parallel
Schwarz methods coupled with the CPM are convergent. In this chapter, we prove the con-
vergence of the Schwarz-CPM equation (2.9) for a one-manifold for two different iterations
and with the two different transmission operators.

3.1 Convergence of the Schwarz-CPM

This section begins with a fundamental theorem relating the Schwarz-CPM to an equivalent
Schwarz domain decomposition iteration at the continuous level.

Theorem 3.1.1. Consider the following Schwarz-CPM applied to the positive surface in-
trinsic Helmholtz equation (1.1) on a closed, smooth manifold S with the partitioning
detailed in Definition 2.2.1:

(c−∆#
h )ũn+1

j (cpSj
) = f(cpSj

), in Ωj ,

Bũn+1
j (cpSj

) = Bũ
n+1(method)

jk

k (cpSj
), on Γjk, k 6= j,

In the limit h→ 0, this is equivalent to:
(c−∆S)un+1

j = f, in Sj ,

Bun+1
j = Bu

n+1(method)
jk

k , on γjk, k 6= j,

(3.1)

for j, k = 1, . . . , N , where u is the solution on the manifold.

Proof. For a closed, smooth manifold S, the regularized operator is consistent with the
Laplace operator on the manifold [43]. Moreover, the CPM without the regularization is
consistent with the surface intrinsic PDE problems in the limit h→ 0 where h denotes the
mesh size. This yields our result.
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Theorem 3.1.1 plays an important role in our analysis. In order to prove the convergence
of the Schwarz-CPM at the continuous level for a closed, smooth manifold with a well-
defined closest point representation, the theorem suggests that it is sufficient to show the
convergence of the equivalent Schwarz method. Notice that the limit h → 0 yields the
continuous problem.

Furthermore, we may use the linearity of the positive surface intrinsic Helmholtz equa-
tion (1.1) to remove f from the Schwarz method in (3.1). We define the subdomain error,

εj = uj − u
∣∣∣
Sj

,

where u
∣∣∣
Sj

is the exact solution on subdomain j for j = 1, . . . , N . Thus, from the linearity of
Equation (1.1), we have the following iteration for the subdomains error for j, k = 1, . . . , N :

(c−∆S)εn+1
j = 0, in Sj ,

Bεn+1
j = Bε

n+1(method)
jk

k , on γjk, k 6= j.

(3.2)

Equation (3.2) is a homogeneous PDE which is easier to solve than the non-homogeneous
PDE of Equation (3.1). Note that both share the same convergence behaviour.

To provide a rigorous proof of convergence for Iteration (3.2), we need to analytically
solve the PDE. In general, it is not possible to obtain an analytic solution for Equation (3.2).
We therefore introduce some simplifications on the manifold to help us to find the solution.
For instance, if we assume that S is a curve in Rd (i.e., of dimension one) then the Laplace-
Beltrami operator ∆S becomes the ordinary differential operator d2/ ds2 where s denotes
the arclength.

Theorem 3.1.1 indicates that the Schwarz-CPM converges with the same rate that the
equivalent Schwarz method converges at the continuous level. Thus, our problem has reduced
to the convergence of the equivalent Schwarz method on the manifold. That is, supposing
S is a curve, we are required to show convergence of iterations (3.1). Convergence of the
classical alternating Schwarz for the 1D positive Helmholtz equation with two subdomains
is investigated in [16] where the boundary conditions of the differential equation are the
homogeneous Dirichlet. Herein, we consider simple closed one-manifolds where the boundary
condition is naturally periodic. The convergence of Equation (3.1) on closed one-manifolds
has not been widely investigated. In [48], the convergence of (3.1) is studied on the unit circle
partitioned into two equal-sized subdomains. The partitioning arising from the Schwarz-
CPM problems in (2.9) is performed within the embedding space. As a consequence, our
subdomains are more likely to be unequal. This motivates us to investigate the convergence
of the methods for an unequal-sized partitioning of a closed curve in Rd. Furthermore, we
restrict the closed manifold to be simple. That is, the manifold does not self-intersect.
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To start analyzing this case, we need to refine the subdomain definitions. The following
definition provides essential details for the subdomains in the 1-manifold case.

Definition 3.1.1 (Subdomains for 1-Manifolds). We introduce N disjoint subdomains and
let them be S̃j , j = 1, . . . , N . We parameterize the one-manifold by arclength s starting
at a boundary of S̃1. Next, by extending the disjoint subdomains, we let the overlapping
subdomains be Sj = [aj , bj ] and define `j ≡ bj − aj to be the subdomain lengths. Further,
let δj denote the subdomain overlaps given by:

δj =


bj − aj+1, j = 1, . . . , N − 1,

bN − (a1 + L), j = N.

Now, we establish some restrictions on the introduced parameters. First, `j = bj − aj > 0
to avoid negative length for the subdomains. To ensure that the whole curve is included,
we set a1 ≤ 0 and bN ≥ L where L is the curve length. We also assume δj−1 + δj < `j ,
otherwise subdomain j would be enfolded by the overlap of the adjacent subdomains. In
this case, subdomains j − 1 and j + 1 are overlapping, and consequently, we can eliminate
subdomain j. Finally, negative overlaps are not permitted, i.e., we require δj ≥ 0, otherwise
our partitioning would not cover the original manifold. In addition, we define an overlap-
ping partitioning by restricting the overlap parameters to be positive, i.e., δj > 0 for all
subdomains.

Remark. Since the periodicity is intrinsic to closed manifolds, we set δ0 ≡ δN and δN+1 ≡
δ1 throughout the thesis for ease of notation.

Before beginning the proof of convergence, we provide a careful definition of equal-sized
partitioning since it is central to our analysis.

Definition 3.1.2 (Equal-Sized Subdomains for 1-Manifolds). Borrowing the parameters
introduced in Definition 3.1.1 for an equal-sized partitioning of a curve with length L, we
have N disjoint partitions each with the length of L/N . Extending the disjoint subdomains
by δ/2 from each side, we arrive at the subdomain lengths L/N + δ. Notice that δj = δ

and `j = ` = L/N + δ for all j = 1, . . . , N . Following the discussion in Definition 3.1.1
regarding the restrictions, we have 0 ≤ δ < L/N in this case. Note that for an overlapping
partitioning, the inequality becomes 0 < δ < L/N .
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Using the assumption that S is a 1-manifold partitioned according to Definition 3.1.1,
we rewrite Equation (3.2) as:

(c− d2

ds2 )εn+1
j = 0, for s ∈ [aj , bj ],

Bεn+1
j (aj) = Bεn+1(method)

j−1 (aj),

Bεn+1
j (bj) = Bεnj+1(bj),

(3.3)

for j = 1, . . . , N where

1(method) =

0; method = 1,

1; method = 2,

where method = 1 represents the parallel Schwarz methods, while method = 2 represents
alternating Schwarz algorithm.

Remark. The boundary conditions of the first and last subdomains are Bεn+1
1 (a1) =

Bεn+1(method)

0 (a1) and Bεn+1
N (bN ) = BεnN+1(bN ), respectively. We need to clarify the notation

since the terms Bεn0 (a1) and BεnN+1(bN ) are not explicitly defined. Hence, we set

Bεn+1(method)

0 (a1) ≡ BεnN (a1 + L), BεnN+1(bN ) ≡ Bεn+1(method)

1 (bN − L). (3.4)

We added (and subtracted) the manifold length L because εnN (and εn1 ) is not defined for
a1 (and bN ), hence, we use the periodicity of the problem to evaluate εnN (and εn1 ) at the
mirror point a1 +L (and bNS

−L). This is done for the sake of simplicity, however, one can
suggest different equations for j = 1, 1 < j < N , and j = N . Equation (3.4) is applicable
throughout this thesis.

We say a domain decomposition iteration is convergent if and only if εj converges to
zero for all j. Moreover, by the maximum principle for Equation (3.3), the maximum of |εj |
occurs at the boundaries. Note that we can still utilize the maximum principle for the Robin
boundary condition [26]. Therefore, εj converges to zero if and only if the boundary values
converge to zero. Thus, the ultimate goal is to evaluate boundary values at each iteration
and determine how fast they decay.

Equation (3.3) is a system of decoupled ordinary differential equations and can be solved
analytically if the boundary operator and the iterating option are specified. Since the solu-
tion depends on the boundary operator and the choice of iteration, we need to separately
prove the convergence for the different boundary operators.

3.1.1 The CPS-CPM

Using Theorem 3.1.1 and the subdomains detailed in Definition 3.1.1, the CPS-CPM al-
gorithm (2.11) for the positive surface intrinsic Helmholtz equation on a closed, smooth
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1-manifold is equivalent to the following reduction of Equation (3.3) at the continuous
level: 

(c− d2

ds2 )εn+1
j = 0, for s ∈ [aj , bj ],

εn+1
j (aj) = εnj−1(aj),

εn+1
j (bj) = εnj+1(bj).

(3.5)

This has the solution

εn+1
j (s) = e

√
c(s−aj) − e

√
c(bj−s+`j)

1− e2
√
c`j

εnj−1(aj) + e
√
c(bj−s) − e

√
c(s−aj+`j)

1− e2
√
c`j

εnj+1(bj), (3.6)

for j = 1, . . . , N . Note that (3.4) still applies to Equation (3.6).
We define an error vector at iteration n which is comprised of the error values at the

boundaries:

εn := [εn1 (bN − L), εn1 (a2), εn2 (b1), εn2 (a3), . . . , εnN (bN−1), εnN (a1 + L)]T . (3.7)

One can evaluate the errors at the boundaries using the solution provided in Equation (3.6)
in terms of the error values at the boundaries in the previous iteration:

εn+1
j (bj−1) = pjε

n
j−1(aj) + rjε

n
j+1(bj),

εn+1
j (aj+1) = sjε

n
j−1(aj) + qjε

n
j+1(bj),

(3.8)

where for j = 1, . . . , N ,

pj = 1− e2
√
c(`j−δj−1)

1− e2
√
c`j

e
√
cδj−1 , rj = 1− e2

√
cδj−1

1− e2
√
c`j

e
√
c(`j−δj−1),

qj = 1− e2
√
c(`j−δj )

1− e2
√
c`j

e
√
cδj , sj = 1− e2

√
cδj

1− e2
√
c`j
e
√
c(`j−δj), (3.9)

are constants depending only on the partitioning.
Now that the error values at the boundaries at iteration n+ 1 are evaluated in terms of

the error values at the boundaries at iteration n in Equation (3.8), we may collect them in
matrix form using the quantities defined in (3.9),

εn+1 = MCPSεn, (3.10)
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where MCPS is a 2N × 2N matrix called the iteration matrix for the classical parallel
Schwarz method, and is given by

MCPS =



0 0 r1 p1

0 0 q1 s1

p2 0 0 r2

s2 0 0 q2

p3 0 0 r3

s3 0 0 q3
. . . . . . . . . . . .

. . . . . . . . . . . .
pN−1 0 0 rN−1

sN−1 0 0 qN−1

rN pN 0 0
qN sN 0 0



. (3.11)

Definition 3.1.3. We define the convergence factor κ as the ratio of the ∞-norm of the
error vector at two consecutive steps,

κ = ||ε
n+1||∞
||εn||∞

.

Note that for the equation εn+1 = Mεn, ||M||∞ is an upper bound for the convergence
factor since ||εn+1||∞ ≤ ||M||∞||εn||∞. That is,

κ ≤ ||M||∞.

To prove the convergence, the following lemma and corollaries for the quantities defined
in Equation (3.9) are essential for the analysis.

Lemma 3.1.2. For a partitioning as specified in Definition 3.1.1 with overlap (δj > 0 for
1 ≤ j ≤ N), the following inequalities hold for the quantities introduced in (3.9):

|pj |+ |rj | < 1,

|qj |+ |sj | < 1.

Proof. From the restrictions partitioning in Definition 3.1.1 with overlap, we have δj−1+δj <
`j and δj > 0. The assumptions δj−1 + δj < `j and δj > 0 together result in 0 < δj−1 < `j

and 0 < δj < `j . Thus, we obtain e2
√
c(`j−δj−1) > 1, e2

√
c(`j−δj) > 1, e2

√
cδj−1 > 1, and

e2
√
cδj > 1. The denominators in (3.9) are negative, hence,

pj , rj , qj , sj > 0.
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Applying this and (3.9),

|pj |+ |rj | = pj + rj ,

= e
√
cδj−1 − e

√
c(2`j−δj−1)

1− e2
√
c`j

+ e
√
c(`j−δj−1) − e

√
c(`j+δj−1)

1− e2
√
c`j

,

= e
√
cδj−1(1− e

√
c`j ) + e

√
c(`j−δj−1)(1− e

√
c`j )

1− e2
√
c`j

,

= (e
√
cδj−1 + e

√
c(`j−δj−1))(1− e

√
c`j )

1− e2
√
c`j

,

= e
√
c(`j−δj−1) + e

√
cδj−1

e
√
c`j + 1

,

= 1 + e
√
c(`j−δj−1) − e

√
c`j + e

√
cδj−1 − 1

e
√
c`j + 1

,

= 1 + e
√
c`j (e−

√
cδj−1 − 1)− e

√
cδj−1(e−

√
cδj−1 − 1)

e
√
c`j + 1

,

= 1 + (e−
√
cδj−1 − 1) · e

√
c`j − e

√
cδj−1

e
√
c`j + 1

,

< 1,

where the last inequality uses e−
√
cδj−1 < 1 and e

√
c`j > e

√
cδj−1 . Similarly,

|qj |+ |sj | < 1,

and the proof is complete.

Now, the proof of convergence for the CPS algorithm shown in Equation (3.5) is given
by the following theorem.

Theorem 3.1.3. Under the restrictions on the partitioning of the 1-manifold S detailed in
Definition 3.1.1 with δj 6= 0 for all j, the CPS iterations (3.5), with N ≥ 2, for the positive
Helmholtz equation on any closed 1-manifold converges globally on an arbitrary number of
subdomains.

Proof. We must show the spectral radius of the iteration matrix is less than one, i.e.,
ρ(MCPS) < 1, to prove the convergence. Any submultiplicative matrix norm is an upper
bound for the spectral radius. By picking the ∞-norm, we have

ρ(MCPS) ≤ ||MCPS||∞.

Therefore, convergence is obtained if ||MCPS||∞ < 1. In addition, the max-norm is equal to
the maximum of the absolute row sums. Then, the max-norm of MCPS is

||MCPS||∞ = max{|p1|+ |r1|, |q1|+ |s1|, . . . , |pN |+ |rN |, |qN |+ |sN |}.
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Figure 3.1: Three disjoint and overlapping subdomains for the unit circle.

In Lemma 3.1.2, we have shown that |pj |+ |rj | < 1 and |qj |+ |sj | < 1 for all j = 1, . . . , N
for the partitioning explained in Definition 3.1.1 with overlap. Consequently,

ρ(MCPS) ≤ ||MCPS||∞ = max{|p1|+ |r1|, |q1|+ |s1|, . . . , |pN |+ |rN |, |qN |+ |sN |} < 1.

Hence, the algorithm is convergent for any finite number of subdomains as long as they
overlap.

We now numerically verify the result in Theorem 3.1.3. Iterations (3.5) are implemented
in MATLAB. The closed one-manifold S is given as a set of discrete points in Rd. The disjoint
subdomains are created by splitting the one-manifold by some desired ratios. Next, given a
set of integers No that denotes the number of overlapping nodes, we form the overlapping
subdomains. Figure 3.1 depicts a partitioning of the unit circle with three unequal-sized
subdomains and different overlaps. The dotted curves are disjoint subdomains, while the
solid lines correspond to the overlapping partitioning.

The positive Helmholtz equation is locally discretized using a second-order centred finite
difference scheme for each subdomain. By identifying the boundary nodes in each overlap-
ping subdomain, the Dirichlet boundary conditions can be simply enforced. Using c = 1
and the initial guess u(s) = 1, the solution at several iterations are shown in Figure 3.2. To
construct the global solution, the local solutions at the disjoint parts are glued together,
i.e., εn = ⋃N

j=1 ε
n
j

∣∣∣
S̃j

. In Figure 3.2, the maximum of error occurs at s = b2. To verify The-
orem 3.1.3, we provide Figure 3.3 which illustrates the max-norm of the error vector (3.8)
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Figure 3.2: Global solution to (3.5) on the unit circle at different iterations with c = 1.

over different iterations along with the theoretical convergence factor and an upper bound
found in Theorem 3.1.3. The theoretical error in the figure is an error decaying with the
theoretical convergence factor, ρ(MCPS). The theoretical convergence factor is computed
by explicitly constructing the iteration matrix and determining the spectral radius. In ad-
dition, the upper bound on the theoretical error is obtained by multiplying the initial error
by ||MCPS||∞. Figure 3.3 clearly verifies our analysis for the CPS method. The algorithm
converges with the convergence factor ρ(MCPS), and the convergence factor κ is bounded
by ||MCPS||∞.

Since our theoretical analysis has been carried out at the continuous level, we should
ensure that the computations are independent of the mesh size ∆s. The convergence be-
haviours with three mesh sizes ∆s = π/500, π/1000, π/2000 are shown in Figure 3.4. As we
observe, the decay rates are quite similar since the error plots are parallel. It indicates that
the experiments are mesh independent. We have to address the fact that the simulations for
∆s = π/500, π/1000, π/2000 are not identical. When we halve the mesh size, No must be
doubled to keep the partitioning the same. However, since the overlapping subdomains are
constructed by addingNo discrete points to the corresponding disjoint subdomains, the over-
lapping subdomains obtained from different mesh sizes are not identical due to numerical
round-off errors. We provide an example to clarify this. The overlapping subdomains shown
in Figure 3.1 are S1 = [−0.25133, 3.3929], S2 = [3.0819, 4.4611], and S3 = [4.3385, 6.3429],
while doubling the resolution and No yields S1 = [−0.25133, 3.3929], S2 = [3.0803, 4.4611],
and S3 = [4.337, 6.3444]. These slight changes in the subdomains result in slightly different
theoretical convergence factors. We have ensured that the results obtained in the future
sections are mesh independent, but we omit the discussion on mesh-independency.

We now explore the case where subdomains are identical in terms of length and overlap.
This is an ideal setup which equally distributes computational load to each processor unit.
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Figure 3.3: Error decay for (3.5) with c = 1 on the unit circle shown in Figure 3.1.

Corollary 3.1.1. For an equal-sized overlapping partitioning of a simple closed 1-manifold
S based on Definition 3.1.2, the CPS iterations (3.5) with N ≥ 2 for the positive Helmholtz
equation on S converges globally on an arbitrary number of subdomains with the conver-
gence factor

κ = e
√
cL/N + e

√
cδ

e
√
c(L/N+δ) + 1

,

where L is the manifold length, and δ is the overlap.

Proof. For the overlapping equal-sized partitioning in Definition 3.1.2 with 0 < δ < L/N ,
we have

p1 = p2 = · · · = pN = q1 = q2 = · · · = qN ,

r1 = r2 = · · · = rN = s1 = s2 = · · · = sN .
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Figure 3.4: Error decay for (3.5) with c = 1 and three different mesh sizes on the unit circle
shown in Figure 3.1.

Define p = pj and r = rj for j = 1, . . . , N . Thus, the iteration matrix becomes

MCPS =



0 0 r p

0 0 p r

p 0 0 r

r 0 0 p

p 0 0 r

r 0 0 p
. . . . . . . . . . . .

. . . . . . . . . . . .
p 0 0 r

r 0 0 p

r p 0 0
p r 0 0



. (3.12)

The convergence is a direct consequence of Theorem 3.1.3, but we provide the convergence
factor in terms of manifold length L, number of subdomains N , and overlap parameter δ.
The iteration matrix is non-negative, i.e, all entries of the matrix are non-negative. The
Perron-Frobenius theorem states that the maximal eigenvalue in modulus of a non-negative
irreducible matrix is bounded by the minimum and maximum of the row sums [6]:

min
1≤i≤2N

σi ≤ ρ(MCPS) ≤ max
1≤i≤2N

σi,
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Figure 3.5: The CPS convergence factor obtained in Corollary 3.1.1 for equal-sized parti-
tioning of the unit circle.

where σi denotes the sum of entries in row i. Non-negativity of the iteration matrix (3.11)
is trivial. To show that it is irreducible, consider a directed graph with 2N vertices for the
matrix in which there is an edge from vertex i to vertex j when MCPSij > 0. Then, the
matrix MCPS is irreducible if and only if the graph is strongly connected, i.e., every vertex
is reachable from every other vertex. The maximum and minimum row sums are equal since
σ1 = · · · = σN = p+ r. Thus,

κ = ρ(MCPS) = ||MCPS||∞ = p+ r = e
√
cL/N + e

√
cδ

e
√
c(L/N+δ) + 1

,

which proves the corollary.

Figure 3.5 shows the convergence factor for the unit circle (L = 2π) with different
numbers of subdomains plotted against the overlap parameter. By increasing the number
of subdomains, it is more difficult to reach convergence. Moreover, increasing the amount
of overlap exponentially improves the convergence with an added computational load. The
result obtained in Corollary 3.1.1 can be interpreted differently. The convergence factor
depends on the overlap parameter δ and the length of disjoint subdomains L/N . That is,
the unit circle partitioned with four subdomains has the same convergence factor as a circle
with radius 2 which is partitioned with eight subdomains.

We finish this section by pointing out the fact that the CPS is an overlapping domain
decomposition method. For an equal-sized partitioning without overlap, the convergence
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factor is equal to one as we can see in Figure 3.5. We now prove this for a set of arbitrary
non-overlapping subdomains in the following corollary.

Corollary 3.1.2. For a non-overlapping partitioning of a 1-manifold based on Defini-
tion 3.1.1, the CPS iterations (3.5) for the positive Helmholtz equation on a closed surface
does not converge to zero.

Proof. For non-overlapping subdomains, that is δj = 0, we obtain pj = qj = 1 and rj =
sj = 0 by a direct substitution in Equation (3.9). Thus, the iteration matrix becomes

MCPS =



0 0 0 1
0 0 1 0

1 0 0 0
0 0 0 1

1 0 0 0
0 0 0 1

. . . . . . . . . . . .
. . . . . . . . . . . .

1 0 0 0
0 0 0 1

0 1 0 0
1 0 0 0



. (3.13)

The matrix in (3.13) is a doubly stochastic matrix with row and column sums of one and is
known to have spectral radius of one. To see this, the Greshgorin circle theorem [28] shows
that the eigenvalues of the matrix are within the unit circle, providing λ ≤ 1. Now, we
show that one is an eigenvalue of the stochastic matrix. Suppose v is the all-ones vector
of dimension 2N . Trivially, one can find MCPSv = 1 · v. Hence, it follows that one is an
eigenvalue. Hence,

ρ(MPCS) = 1,

and the algorithm stagnates and does not converge to the zero solution.
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3.1.2 The CAS-CPM

Using Theorem 3.1.1 and the partitioning detailed in Definition 3.1.1, the CAS-CPM for a
closed 1-manifold at the continuous level is equivalent to:

(c− d2

ds2 )εn+1
j = 0, for s ∈ [aj , bj ],

εn+1
j (aj) = εn+1

j−1 (aj),

εn+1
j (bj) = εnj+1(bj),

(3.14)

which has the solution

εn+1
j (s) = e

√
c(s−aj) − e

√
c(bj−s+`j )

1− e2
√
c`j

εn+1
j−1 (aj) + e

√
c(bj−s) − e

√
c(s−aj+`j )

1− e2
√
c`j

εnj+1(bj), (3.15)

for j = 1, . . . , N . Note that (3.4) still applies to Equation (3.15).
One can evaluate the errors at the boundaries using the solution provided in Equa-

tion (3.15) in terms of the error values at the boundaries:
εn+1
j (bj−1) = pjε

n+1
j−1 (aj) + rjε

n
j+1(bj),

εn+1
j (aj+1) = sjε

n+1
j−1 (aj) + qjε

n
j+1(bj),

(3.16)

where pj , rj , sj , and qj are quantities defined in (3.9). We wish to replace the terms contain-
ing εn+1

j−1 (aj) with an expression involving values from the previous iteration. By working
from the first subdomain to the jth subdomain in the second part (3.16), we can write
εn+1
j−1 (aj) as

εn+1
j−1 (aj) = sj−1sj−2 . . . s2q1ε

n
2 (b1) + sj−1sj−2 . . . s3q2ε

n
3 (b2) + . . .

+ qj−1ε
n
j (bj−1) + sj−1sj−2 . . . s1ε

n
N (a1 + L). (3.17)

Substituting (3.17) back into Equation (3.16), we obtain

εn+1
j (bj−1) = pj

[
sj−1sj−2 . . . s2q1ε

n
2 (b1) + sj−1sj−2 . . . s3q2ε

n
3 (b2) + . . .

+qj−1ε
n
j (bj−1) + sj−1sj−2 . . . s1ε

n
N (a1 + L)

]
+ rjε

n
j+1(bj),

εn+1
j (aj+1) = sj

[
sj−1sj−2 . . . s2q1ε

n
2 (b1) + sj−1sj−2 . . . s3q2ε

n
3 (b2) + . . .

+qj−1ε
n
j (bj−1) + sj−1sj−2 . . . s1ε

n
N (a1 + L)

]
+ qjε

n
j+1(bj).

(3.18)
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Now that the error expressions at the interfaces only depend on εnj (bj−1), we define an error
vector at iteration n which is comprised solely of the error values at the endpoints bj−1:

εn = [εn2 (b1), εn3 (b2), . . . , εnN (bN−1), εnN (a1 + L)]T . (3.19)

Next, we recast this in matrix form using the quantities defined in (3.9),

εn+1 = MCASεn, (3.20)

where MCAS is referred to as the iteration matrix. It has dimension of N×N for the classical
alternating Schwarz method, and is given by
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M
C

A
S

=

                                 

p
2q

1
r 2

p
2s

1

p
3s

2q
1

p
3q

2
r 3

p
3s

2s
1

p
4s

3s
2q

1
p

4s
3q

2
p

4q
3

r 4
p

4s
3s

2s
1

. . .
. .
.

. .
.

. . .

p
N
−

1s
N
−

2
· ·
·s

2q
1

p
N
−

1s
N
−

2
··
·s

3q
2
··
·

p
N
−

1q
N
−

2
r N
−

1
p
N
−

1s
N
−

2
··
·s

1

r N
r 1

+
p
N
s N
−

1
··
·s

2q
1

p
N
s N
−

1
··
·s

3q
2

··
·

p
N
s N
−

1q
N
−

2
p
N
q N
−

1
r N
p

1
+
p
N
s N
−

1
··
·s

1

q N
r 1

+
s N
s N
−

1
··
·s

2q
1

s N
s N
−

1
··
·s

3q
2

··
·

s N
s N
−

1q
N
−

2
s N
q N
−

1
q N
p

1
+
s N
s N
−

1
··
·s

1                                 .
(3
.2
1)
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Theorem 3.1.4. Under the restrictions on the partitioning of the 1-manifold S detailed in
Definition 3.1.1 with δj 6= 0 for j = 1, . . . , N , the CAS iterations (3.14), with N ≥ 2, for the
positive Helmholtz equation on any closed 1-manifold converges globally on an arbitrary
number of subdomains.

Proof. Following the discussion in Theorem 3.1.3, the convergence can be concluded if we
show ||MCAS||∞ < 1. The max-norm is equal to the maximum of the absolute row sums:

||MCAS||∞ = max{σ1, σ2, . . . , σN−1, σN},

where σj is the absolute sum of entities in the jth row. Considering the fact that the
quantities are all non-negative, the absolute row sums for 1 ≤ j ≤ N − 2 are

σj = pj+1sj . . . s2q1 + pj+1sj . . . s3q2 + · · ·+ pj+1qj + rj+1 + pj+1sj . . . s1,

which can be expressed using the nested product:

σj = pj+1(sj(sj−1(. . . (s2(s1 + q1) + q2) + . . . ) + qj−1) + qj) + rj+1.

Starting at the innermost bracket in the first term, we have s1 + q1 < 1 from Lemma 3.1.2.
The next bracket is s2(s1 + q1) + q2 < s2 + q2 < 1. Moving to the next set of brackets, we
have s3(s2(s1 + q1) + q2) + q3 < s3 + q3 < 1. Proceeding in this manner, we know that each
term contained within brackets will be less than one in magnitude, and as such we have:

σj = pj+1(sj(sj−1(. . . (s2(s1 + q1) + q2) + . . . ) + qj−1) + qj) + rj+1,

< pj+1(sj(sj−1(. . . (s2 + q2) + . . . ) + qj−1) + qj) + rj+1,

...

< pj+1 + rj+1,

< 1.

Similarly, for the last two rows,

σN−1 = rNr1 + pNsN−1 . . . s2q1 + pNsN−1 . . . s3q2 + · · ·+ pNsN−1qN−2 + pNqN−1

+ rNp1 + pNsN−1 . . . s1,

= pN (sN−1(sN−2(. . . (s2(s1 + q1) + q2) + . . . ) + qN−2) + qN−1) + rN (p1 + r1),

< pN (sN−1(sN−2(. . . (s2 + q2) + . . . ) + qN−2) + qN−1) + rN (p1 + r1),
...

< pN + rN ,

< 1,
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and

σN = qNr1 + sNsN−1 . . . s2q1 + sNsN−1 . . . s3q2 + · · ·+ sNsN−1qN−2 + sNqN−1,

+ qNp1 + sNsN−1 . . . s1,

= sN (sN−1(sN−2(. . . (s2(s1 + q1) + q2) + . . . ) + qN−2) + qN−1) + qN (p1 + r1),

< sN (sN−1(sN−2(. . . (s2 + q2) + . . . ) + qN−2) + qN−1) + qN (p1 + r1),
...

< sN + qN ,

< 1.

Now that the absolute row sums have been shown to be less than one, we have

ρ(MCAS) ≤ ||MCAS||∞ < 1.

Hence, the algorithm converges for any finite number of overlapping subdomains.

We now investigate the sharpness of the theorem above. The CAS method (3.14) is
implemented in MATLAB for the unit square. We will also use this example to verify the
fact that the smoothness of the manifold is not a necessary condition for the convergence
as the curve is parameterized along the curve length. Figure 3.6 depicts the unit square
partitioned with four subdomains with different overlaps. Having c = 1 and the initial guess
u(s) = 1, the solution at several iterations with the resolution ∆s = 0.001 is shown in
Figure 3.7. According to the figure, the last subdomain (the shortest in length) is disruptive
to the convergence. Finally, Figure 3.3 illustrates the max-norm of the error vector (3.18)
over different iterations along with the theoretical error [ρ(MCAS)]n||ε0||∞ and the upper
bound found in Theorem 3.1.4, ||MCAS||n∞||ε0||∞. The Figure 3.8 validates our analysis in
Theorem 3.1.4 for the CAS method.

Corollary 3.1.3. For an equal-sized overlapping partitioning of a closed 1-manifold S
based on Definition 3.1.2, the CAS iterations (3.14) with N ≥ 3 for the positive Helmholtz
equation on S converge with κ bounded as:

κ ≤ p2 + pr + r,

and for N = 2:
κ = p2 + 2pr + r2.
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Figure 3.6: The unit square with four overlapping subdomains.

Proof. The convergence can be concluded from Theorem 3.1.4. For an equal-sized partition-
ing, we have

p1 = p2 = · · · = pN = q1 = q2 = · · · = qN ,

r1 = r2 = · · · = rN = s1 = s2 = · · · = sN .

We set p = pj and r = rj for j = 1, . . . , N . Thus, the iteration matrix becomes:

MCAS =



p2 r pr

p2r p2 r pr2

p2r2 p2r p2 r pr3

... . . . . . . ...

p2rN−3 p2rN−4 · · · p2 r prN−2

r2 + p2rN−2 p2rN−3 · · · p2r p2 pr + prN−1

pr + prN−1 prN−2 · · · pr2 r2 p2 + rN



.

The spectral radius is bounded by the max-norm of the iteration matrix, and the max-norm
is the maximal absolute row sum. Suppose j is any row index from 2, . . . , N − 2. Since the
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Figure 3.7: Global solution to (3.14) on the unit square at different iterations with c = 1.

only differences between the rows j − 1 and j are the entries in the first and last columns,
we write

σj − σj−1 =
[
p2rj−1 + prj

]
−
[
prj−1

]
= prj−1

(
p+ r − 1

)
< 0,

because p+r < 1. Hence, σj < σj−1 for the rows 2 toN−2. Similarly by comparing σN−2 and
σN−1, one observes that σN−1 < σN−2. Hence, we obtain σN−1 < σN−2 < · · · < σ2 < σ1.
We only need to compare σ1 and σN to find the maximum row sum:

σN = r(r(r(. . . (r(r + p) + p) + . . . ) + p) + p) + pr + p2,

< r + pr + p2,

= σ1.

Hence,
κ ≤ ||MCAS||∞ = p2 + pr + r.

For the two-subdomain case, we can theoretically derive the convergence factor. In this case,
the iteration matrix reduces to

MCAS =
[
r2 + p2 2pr

2pr p2 + r2

]
,

where its spectral radius is κ = ||MCAS||∞ = p2 + 2pr + r2.

Unfortunately, we are not able to derive an analytical convergence factor for the equal-
sized partitioning with any number of subdomains. However, Corollary 3.1.3 gives us an
insight into the convergence factor by providing an upper bound. Figure 3.9 illustrates
the convergence factor of the CAS method on the square with side length two (L = 8)
partitioned equally into two, four, and eight subdomains. While the spectral radii are shown
for each case by explicitly constructing the iteration matrix, they are bounded by the max-
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Figure 3.8: Error decay for (3.14) with c = 1 on the unit square shown in Figure 3.6.

norm of the matrix. The obtained upper bound is quite close to the convergence factor
when the overlap is small (approximately less than 0.25δmax), while the spectral radius
diverges from the max-norm for larger overlaps. Notice that the convergence of the method is
improved when we increase the overlap. This is expected in domain decomposition methods
as the iterations on larger subdomains better mimic the original problem.

Similar to the CPS method, the CAS method (3.14) is only convergent to the zero
solution for an overlapping partitioning. This is proved in the following corollary.

Corollary 3.1.4. For a non-overlapping partitioning of a closed 1-manifold provided in
Definition 3.1.1, the CAS algorithm in (3.5) for the positive Helmholtz equation does not
converge.

Proof. In Corollary 3.1.2, we indicated that pj = qj = 1 and rj = sj = 0 for a non-
overlapping set of subdomains. Thus, the iteration matrix becomes

MCAS =



1
1

1
. . .

1
1

1


.

Consequently, ρ(MCAS) = 1, and the algorithm does not converge to the desired zero
solution unless the initial guess is zero.
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Figure 3.9: Convergence factor of the CAS method versus the overlap in an equal-sized
partitioning configuration.

As we have seen, the classical Schwarz methods only converge on subdomains with
overlap. This is the reason that the classical Schwarz algorithms are called overlapping
domain decomposition methods, while the optimized Schwarz methods are also convergent
without overlap. We will explore two optimized Schwarz methods in the following sections.
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3.1.3 The OPS-CPM

Assume B = ∂/∂n̂ + α is the Robin boundary operator where n̂ represents the outward
normal to the interface and α ≥ 0. Since we solve a one dimensional differential equation
along the curve length s, the boundary operator is either B+ := d/ ds + α or B− :=
− d/ ds + α. Hence, the equivalent Schwarz method to the OPS-CPM at the continuous
level is: 

(
c− d2

ds2

)
εn+1
j = 0, for s ∈ [aj , bj ],(

α− d
ds

)
εn+1
j (aj) =

(
α− d

ds

)
εnj−1(aj),(

α+ d
ds

)
εn+1
j (bj) =

(
α+ d

ds

)
εnj+1(bj).

(3.22)

The solution can be found in the form of:

εn+1
j (s) = e

√
c(s−aj) − e

√
c(bj−s+`j )

1− e2
√
c`j

B−εnj−1(aj)+ e
√
c(bj−s) − e

√
c(s−aj+`j )

1− e2
√
c`j

B+εnj+1(bj), (3.23)

for j = 1, . . . , N , with (3.4) defining εn0 (a1) and εnN+1(bN ).
We have to evaluate the errors at the boundaries in terms of the error values at the

boundaries in the previous iteration. Using Equation (3.23), we obtain
εn+1
j (bj−1) = pjB−εnj−1(aj) + rjB+εnj+1(bj),

εn+1
j (aj+1) = sjB−εnj−1(aj) + qjB+εnj+1(bj),

(3.24)

where for 1 ≤ j ≤ N ,

pj = (α− 1)− (α+ 1)e2
√
c(`j−δj−1)

(α− 1)2 − (α+ 1)2e2
√
c`j

e
√
cδj−1 , rj = (α− 1)− (α+ 1)e2

√
cδj−1

(α− 1)2 − (α+ 1)2e2
√
c`j
e
√
c(`j−δj−1)

qj = (α− 1)− (α+ 1)e2
√
c(`j−δj )

(α− 1)2 − (α+ 1)2e2
√
c`j

e
√
cδj , sj = (α− 1)− (α+ 1)e2

√
cδj

(α− 1)2 − (α+ 1)2e2
√
c`j
e
√
c(`j−δj).

(3.25)

We wish to have the right-hand-side of Equation (3.24) solely in terms of the error values.
By applying the boundary operator to Equation (3.23), one arrives at

B+εn+1
j (bj−1) = p†jB−εnj−1(aj) + r†jB+εnj+1(bj),

B−εn+1
j (aj+1) = s†jB−εnj−1(aj) + q†jB+εnj+1(bj),

(3.26)
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where

p†j = (α2 − 1)− (α2 − 1)e2
√
c(`j−δj−1)

(α− 1)2 − (α+ 1)2e2
√
c`j

e
√
cδj−1 , r†j = (α− 1)2 − (α+ 1)2e2

√
cδj−1

(α− 1)2 − (α+ 1)2e2
√
c`j

e
√
c(`j−δj−1),

q†j = (α2 − 1)− (α2 − 1)e2
√
c(`j−δj)

(α− 1)2 − (α+ 1)2e2
√
c`j

e
√
cδj , s†j = (α− 1)2 − (α+ 1)2e2

√
cδj

(α− 1)2 − (α+ 1)2e2
√
c`j
e
√
c(`j−δj).

(3.27)

Now, we define an error vector for iteration n which includes the error values at the
interfaces:

εn := [εn1 (bN − L), εn1 (a2), εn2 (b1), εn2 (a3), . . . , εnN (bN−1), εnN (a1 + L)]T .

We also collect Bεnj at the interfaces (these quantities appear in the error solutions) in
another vector:

Bεn := [B+εn1 (bS − L),B−εn1 (a2),B+εn2 (b1), . . . ,B+εnN (bN−1),B−εnN (a1 + L)]T .

By recasting the error values at the interfaces in Equation (3.24) in matrix form,

εn+1 = MBεn, (3.28)

and similarly Equation (3.26) in matrix form is

Bεn = M†Bεn−1, (3.29)
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where M and M† are 2N × 2N matrices defined as follows:

M =



0 0 r1 p1

0 0 q1 s1

p2 0 0 r2

s2 0 0 q2

p3 0 0 r3

s3 0 0 q3
. . . . . . . . . . . .

. . . . . . . . . . . .
pN−1 0 0 rN−1

sN−1 0 0 qN−1

rN pN 0 0
qN sN 0 0



, (3.30)

M† =



0 0 r†1 p†1
0 0 q†1 s†1

p†2 0 0 r†2
s†2 0 0 q†2

p†3 0 0 r†3
s†3 0 0 q†3

. . . . . . . . . . . .
. . . . . . . . . . . .

p†N−1 0 0 r†N−1
s†N−1 0 0 q†N−1

r†N p†N 0 0
q†N s†N 0 0



. (3.31)

Equation (3.28) and Equation (3.29) together result in:

εn+1 = MOPSεn (3.32)

where MOPS = MM†M−1.
Before proving the general convergence of the method, we need to state the following

lemma for the quantities in (3.27). Notice that the partitioning used in the lemma is not
necessarily overlapping.
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Lemma 3.1.5. Consider the partitioning specified in Definition 3.1.1. The quantities in-
troduced in (3.27) satisfy

|p†j |+ |r
†
j | < 1,

|q†j |+ |s
†
j | < 1,

for all α ≥ 0.

Proof. Due to the restrictions on the overlap and length parameters, all exponential terms
are greater than one. All four quantities have the same denominator which is always negative
for non-negative α since (α − 1)2 < (α + 1)2 and e2`j > 1 for all subdomains. The same
logic applies to the numerator of r†j and s

†
j , resulting in r†j > 0 and s†j > 0. By factoring out

(α2 − 1) from the numerator of p†j , we obtain

p†j = (α2 − 1) · 1− e2
√
c(`j−δj−1)

(α− 1)2 − (α+ 1)2e2
√
c`j
e
√
cδj−1 ,
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that is positive for α > 1 and negative for 0 < α < 1. We have to explore these two cases
separately. Starting with α ≥ 1:

|p†j |+ |r
†
j | = p†j + r†j ,

= (α2 − 1)e
√
cδj−1 − (α2 − 1)e

√
c(2`j−δj−1)

(α− 1)2 − (α+ 1)2e2
√
c`j

+ (α− 1)2e
√
c(`j−δj−1) − (α+ 1)2e

√
c(`j+δj−1)

(α− 1)2 − (α+ 1)2e2
√
c`j

,

=
(α+ 1)e

√
cδj−1

[
(α− 1)− (α+ 1)e

√
c`j
]

(α− 1)2 − (α+ 1)2e2
√
c`j

,

+
(α− 1)e

√
c(`j−δj−1)[(α− 1)− (α+ 1)e

√
c`j
]

(α− 1)2 − (α+ 1)2e2
√
c`j

,

=
[
(α− 1)e

√
c(`j−δj−1) + (α+ 1)e

√
cδj−1

][
(α− 1)− (α+ 1)e

√
c`j
]

(α− 1)2 − (α+ 1)2e2
√
c`j

,

= (α− 1)e
√
c(`j−δj−1) + (α+ 1)e

√
cδj−1

(α+ 1)e
√
c`j + (α− 1)

, (3.33)

= 1 + (α− 1)e
√
c(`j−δj−1) + (α+ 1)e

√
cδj−1 − (α+ 1)e

√
c`j − (α− 1)

(α+ 1)e
√
c`j + (α− 1)

,

= 1 + (α− 1)(e
√
c(`j−δj−1) − 1) + (α+ 1)e

√
cδj−1(1− e

√
c(`j−δj−1))

(α+ 1)e
√
c`j + (α− 1)

,

= 1− (e
√
c(`j−δj−1) − 1) · (α+ 1)e

√
cδj−1 − (α− 1)

(α+ 1)e
√
c`j + (α− 1)

,

< 1,

where the last inequality is concluded from e
√
c(`j−δj−1) > 1 and (α + 1)e

√
cδj−1 > (α − 1).

Similarly for α ≥ 1,
|q†j |+ |s

†
j | < 1.
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For α < 1, we need to change the sign of p†j :

|p†j |+ |r
†
j | = −p

†
j + r†j ,

= −(α2 − 1)e
√
cδj−1 − (α2 − 1)e

√
c(2`j−δj−1)

(α− 1)2 − (α+ 1)2e2
√
c`j

+ (α− 1)2e
√
c(`j−δj−1) − (α+ 1)2e

√
c(`j+δj−1)

(α− 1)2 − (α+ 1)2e2
√
c`j

,

=
−(α+ 1)e

√
cδj−1

[
(α− 1) + (α+ 1)e

√
c`j
]

(α− 1)2 − (α+ 1)2e2
√
c`j

+
(α− 1)e

√
c(`j−δj−1)[(α− 1) + (α+ 1)e

√
c`j
]

(α− 1)2 − (α+ 1)2e2
√
c`j

,

=
[
(α− 1)e

√
c(`j−δj−1) − (α+ 1)e

√
cδj−1

][
(α− 1) + (α+ 1)e

√
c`j
]

(α− 1)2 − (α+ 1)2e2
√
c`j

,

= (α− 1)e
√
c(`j−δj−1) − (α+ 1)e

√
cδj−1

−(α+ 1)e
√
c`j + (α− 1)

, (3.34)

= 1 + (α− 1)e
√
c(`j−δj−1) − (α+ 1)e

√
cδj−1 + (α+ 1)e

√
c`j − (α− 1)

−(α+ 1)e
√
c`j + (α− 1)

,

= 1 + (α− 1)(e
√
c(`j−δj−1) − 1) + (α+ 1)e

√
cδj−1(e

√
c(`j−δj−1) − 1)

−(α+ 1)e
√
c`j + (α− 1)

,

= 1 + (e
√
c(`j−δj−1) − 1)(α− 1) + (α+ 1)e

√
cδj−1

−(α+ 1)e
√
c`j + (α− 1)

,

< 1,

since α− 1 < 0 < (α + 1)e
√
cδj−1 and −(α + 1)e

√
c`j + (α− 1) < 0 for α < 1. Similarly, for

α < 1, we have
|q†j |+ |s

†
j | < 1.

Hence, the inequalities hold for any non-negative α.

Theorem 3.1.6. Let S be any closed 1-manifold partitioned according to Definition 3.1.1
with N ≥ 2. The OPS iterations (3.22) for the positive Helmholtz equation on S converges
globally on an arbitrary number of subdomains for any α ≥ 0.

Proof. We must show ρ(MOPS) < 1 to prove convergence. Noting that MOPS = MM†M−1,
we see that MOPS and M† are similar matrices, and consequently, they share common
eigenvalues, i.e., their spectral radii are equal. Thus, for convergence it is sufficient to show
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Figure 3.10: Partitioning of the edge of the Möbius strip.

ρ(M†) < 1. Further, one may use the inequality ρ(M†) ≤ ||M†||∞. Now,

ρ(MOPS) = ρ(M†) ≤ ||M†||∞ = max{|p†1|+ |r
†
1|, |q

†
1|+ |s

†
1|, . . . , |p

†
N |+ |r

†
N |, |q

†
N |+ |s

†
N |}

In Lemma 3.1.5, we have shown that |p†j |+ |r
†
j | < 1 and |q†j |+ |s

†
j | < 1 for any non-negative

values of α. Therefore, ||M†||∞, which is the maximum of absolute row sums, is strictly less
than one, i.e.,

ρ(MOPS) = ρ(M†) ≤ ||M†||∞ = max{|p†1|+ |r
†
1|, |q

†
1|+ |s

†
1|, . . . , |p

†
N |+ |r

†
N |, |q

†
N |+ |s

†
N |} < 1

Hence, the iterations of (3.22) converges for any α ≥ 0.

Once again, we emphasize that the partitioning used for the theorem is not necessarily
overlapping. That is, the OPS method is also convergent with non-overlapping subdomains.
In order to numerically verify the theorem, we solve (3.22) on the boundary of a Möbius strip
with width 1, whose center circle has radius 1. The edge of the Möbius strip is partitioned
into three disjoint subdomains with ratios 2:3:5 as shown in Figure 3.10. Once again, (3.22)
is implemented in MATLAB. The implementation is the same as the CPS iterations, but the
boundary conditions need to be changed. The Robin boundary condition B− is discretized
with first order forward finite differences, while B+ is approximated by first order backward
finite differences.

Given the initial condition ε0(s) = 1, the global solutions at different iterations are
shown in Figure 3.11. The error plots are shown in Figure 3.12 for α = 0.5 and α = 4. The
algorithm clearly converges for α = 0.5 and α = 4, while α = 0.5 shows a better decay
rate. α = 0.5 reaches the MATLAB threshold of 2−1023 ≈ 10−308 for the smallest positive
normalized floating-point number in IEEE® double precision. The decay rates are equal
to the spectral radii of the corresponding iteration matrices and are bounded by the max-
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Figure 3.11: Global solution to (3.22) on the the edge of the Möbius strip at different
iterations with c = 1 and α = 1.

Figure 3.12: Decay rate of the max-norm of error vector for different Robin parameters.

norms. The max-norm of the iteration matrix is a better upper bound on the spectral radius
when α = 4. We now present a corollary about the Robin parameter that is important to
our analysis.

Corollary 3.1.5. The OPS iterations (3.22) with α = α? ≥ 0 converges with the same
convergence factor as α = 1/α?.

Proof. We need to show the corresponding iteration matrices have the same spectral radii.
Further, it is sufficient to show the corresponding M† matrices share the same spectral
radii. By a direct substitution in (3.27), one obtains

p†j(α?) = −p†j(
1
α?

), r†j(α?) = r†j(
1
α?

).

Similarly,

q†j(α?) = −q†j(
1
α?

), s†j(α?) = s†j(
1
α?

).
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Figure 3.13: Convergence factor of (3.22) with a Robin parameter and its reciprocal.

Introducing a 2N × 2N permutation matrix P = [aij ] where

aij =


(−1)i+1; i = j,

0; i 6= j,

we have M†(α?) = P−1M†( 1
α?

)P . Notice that P−1 = P . Hence, M†(α?) and M†
( 1
α?

)
are

similar matrices, sharing the same spectral radii.

We can easily verify the corollary by comparing the decay rate of iterations (3.22) with
an arbitrary α and 1/α. Taking α = 3, Figure 3.13 shows the decay rate of the OPS method
on the partitioning shown in Figure 3.10 and indicates that the convergence factors for
α = 3 and α = 1/3 are identical. We draw our attention to the extreme cases of the Robin
parameter, α = 0 and α→∞. By a direct substitution, one obtains

lim
α→∞

p†j(α) = −p†j(α = 0) = 1− e2
√
c(`j−δj−1)

1− e2
√
c`j

e
√
cδj−1 ,

lim
α→∞

r†j(α) = r†j(α = 0) = 1− e2
√
cδj−1

1− e2
√
c`j

e
√
c(`j−δj−1),

for j = 1, . . . , N , where the right-hand sides are the quantities defined for the classical
Schwarz algorithms in (3.9). Likewise, q†j and s†j are equal to their counterparts in the
classical Schwarz methods in the limit α→∞. That is, the OPS method is consistent with
the CPS method in the limit α → ∞. In other words, increasing α decreases the effect
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of the Neumann part in the Robin boundary condition. Neglecting the Neumann part in
iterations (3.22) yields the same iterations as in (3.5). Moreover, α = 0 gives the same
values for r†j and s†j as rj and sj in (3.9), respectively. Although p†j and q†j are off by a
negative sign from pj and qj in (3.9) when α = 0, the convergence factors of the OPS and
CPS methods are equal, following Corollary 3.1.5. We continue the discussion on the OPS
method by presenting the convergence factor of the method on an equal-sized partitioning.
We show the convergence factor for α ≥ 1, but one can find the convergence factor for
0 ≤ α < 1 using the following corollary and Corollary 3.1.5.

Corollary 3.1.6. The OPS iterations (3.22) with α ≥ 1 for the positive Helmholtz equation
on any closed 1-manifold partitioned into N ≥ 2 equal-sized subdomains and overlaps,
according to Definition 3.1.2, converges with the rate of:

κ = (α− 1)e
√
cL/N + (α+ 1)e

√
cδ

(α+ 1)e
√
c(L/N+δ) + (α− 1)

.

Proof. We investigate the spectral radius of M† as it is similar to the iteration matrix
MOPS. For the overlapping equal-sized partitioning in Definition 3.1.2 with 0 ≤ δ < L/N ,
we have

p†1 = p†2 = · · · = p†N = q†1 = q†2 = · · · = q†N ,

r†1 = r†2 = · · · = r†N = s†1 = s†2 = · · · = s†N .

Setting p† = p†j and r† = r†j for j = 1, . . . , N , we have

M† =



0 0 r† p†

0 0 p† r†

p† 0 0 r†

r† 0 0 p†

p† 0 0 r†

r† 0 0 p†

. . . . . . . . . . . .
. . . . . . . . . . . .

p† 0 0 r†

r† 0 0 p†

r† p† 0 0
p† r† 0 0



. (3.35)

Note that the convergence is a direct consequence of Theorem 3.1.6. From Lemma 3.1.5 and
with α ≥ 1, M† is a non-negative matrix, i.e, all entries of the matrix are non-negative. In
addition, it has the same structure as the iteration matrix in (3.12), hence it is irreducible.
The Perron-Frobenius theorem states that the maximal eigenvalue of a non-negative irre-
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Figure 3.14: Convergence factor of the OPS method versus the overlap in an equal-sized
partitioning configuration with different N and α. In the left panel, the convergence factor
for α = 1 is e−L/2 ≈ 0.0015.

ducible matrix – the spectral radius – is bounded by the minimum and maximum of the
row sums [6]. Having the same row sums for all the rows yields

κ = ρ(MOPS) = ρ(M†) = ||M†||∞ = |p†|+ |r†| = (α− 1)e
√
cL/N + (α+ 1)e

√
cδ

(α+ 1)e
√
c(L/N+δ) + (α− 1)

,

where the last equality comes from Equation (3.33).

Note that the above corollary does not provide the convergence factor for 0 ≤ α < 1,
but utilizing Corollary 3.1.5 suggests

κ = (1/α− 1)e
√
cL/N + (1/α+ 1)e

√
cδ

(1/α+ 1)e
√
c(L/N+δ) + (1/α− 1)

= (1− α)e
√
cL/N + (1 + α)e

√
cδ

(1 + α)e
√
c(L/N+δ) + (1− α)

,

for 0 ≤ α < 1 when the domain with length L is partitioned into N ≥ 2 subdomains of equal
size and equal overlap δ. Figure 3.14 illustrates the convergence factor of the OPS algorithm
on the Möbius edge (L ≈ 13.006) against the overlap size for different α and N . We do not
provide the plots for 0 ≤ α < 1 as they have the same convergence as 1/α. In addition,
α = 1 results in the constant convergence factor κ = e−

√
cL/N for any amount of overlap.

Furthermore, α = 4098 behaves approximately similar to Figure 3.5, as the Dirichlet term
outweighs the Neumann term in the Robin boundary condition. Note that we still get a
convergent method for non-overlapping partitioning with an acceptable convergence factor.
As we observe, one can obtain the best convergence factor with α = 1. Moreover, this can
be obtained with the cheapest computational cost of non-overlapping partitioning. We can
theoretically prove that α = 1 is the Robin parameter with the best convergence factor for
an equal-sized partitioning, but a robust theory is needed for the general partitioning as the
convergence factor is highly affected by the Robin parameter. The following lemma helps
us to find the optimized α value which gives the best convergence factor.
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Lemma 3.1.7. Suppose the Robin parameter is restricted to be greater than 1, i.e., α ≥ 1.
For the partitioning specified in Definition 3.1.1, α = 1 is the minimizer of p†j , r

†
j , q
†
j and s

†
j

for all j = 1, . . . , N .

Proof. p†j in (3.27) can be rewritten as:

p†j = (α2 − 1) 1− e2
√
c(`j−δj−1)

(α− 1)2 − (α+ 1)2e2
√
c`j
e
√
cδj−1 .

The denominator (α− 1)2 − (α+ 1)2e2
√
c`j = (1− e2

√
c`j )α2 − 2(1 + e2

√
c`j )α+ (1− e2

√
c`j )

is a decreasing function for α ≥ 1, while the numerator α2 − 1 increases as α increases.
Thus, p†j is increasing over the interval [1,∞), and α = 1 minimizes p†j . Likewise, α = 1 is
the minimizer of q†j . Next, we show the proof that α = 1 minimizes r†j . The proof for s†j can
similarly be concluded. From (3.27),

r†j = (α− 1)2 − (α+ 1)2e2
√
cδj−1

(α− 1)2 − (α+ 1)2e2
√
c`j

e
√
c(`j−δj−1),

= (1− e2
√
cδj−1)α2 − 2(1 + e2

√
cδj−1)α+ (1− e2

√
cδj−1)

(1− e2
√
c`j )α2 − 2(1 + e2

√
c`j )α+ (1− e2

√
c`j )

· e
√
c`j

e
√
cδj−1

,

= e
√
c`j

e
√
cδj−1

· (1− e2
√
cδj−1)

(1− e2
√
c`j )

· α
2 − 2(1 + 2e2

√
cδj−1/(1− e2

√
cδj−1 ))α+ 1

α2 − 2(1 + 2e2
√
c`j/(1− e2

√
c`j ))α+ 1 ,

= e
√
c`j

e
√
cδj−1

· (1− e2
√
cδj−1)

(1− e2
√
c`j )

·

1 + 4
[

e2
√
cδj−1

1− e2
√
cδj−1

+ e2
√
c`j

1− e2
√
c`j

] [
α

α2 − 2(1 + 2e2
√
c`j/(1− e2

√
c`j ))α+ 1

]
︸ ︷︷ ︸

f(α)

 .

Differentiating f(α) with respect to α yields,

d
dαf = α2 − 2(1 + 2e2

√
c`j/(1− e2

√
c`j ))α+ 1− α(2α− 2(1 + 2e2

√
c`j/(1− e2

√
c`j )))

(α2 − 2(1 + 2e2
√
c`j/(1− e2

√
c`j ))α+ 1)2 ,

= −α2 + 1
(α2 − 2(1 + 2e2

√
c`j/(1− e2

√
c`j ))α+ 1)2 .

The critical points of r†j are α = ±1 and the zeros of its denominator are α = (1−e
√
c`j )/(1+

e
√
c`j ) and α = (1 + e

√
c`j )/(1 − e

√
c`j ). All the critical points are negative, except α = 1.

Hence, α = 1 minimizes r†j and s†j with a similar reasoning. Notice that the minimizer is
independent of the partitioning.
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We state a lemma on the monotonicity of the spectral radius for non-negative irreducible
matrices.

Lemma 3.1.8. Suppose A and B are two irreducible matrices with non-negative entries.
Further, we suppose A < B by which we mean that any non-zero component in A is less
than the corresponding entry in B. Hence, ρ(A) < ρ(B).

Proof. A similar proof of this lemma can be found in [6], however, we provide our proof as
well. From the Perron-Frobenius theorem, the spectral radius of a non-negative irreducible
matrix is an eigenvalue, and the elements of the corresponding eigenvector are all non-
negative [6]. Suppose r is the eigenvalue and x denotes the corresponding eigenvector.
Thus, AxA = rAxA and BxB = rBxB. If we multiply the inequality A < B by xB > 0,
we obtain AxB < BxB = rBxB. Thus, AxB < rBxB. We let || · ||xB be a norm such that
||xB||xB = 1. Thus, ||A||xB = sup||x||xB

=1 ||Ax||xB = ||AxB||xB since the matrix and the
vector are non-negative. Subsequently,

||A||xB = ||AxB||xB < ||rBxB||xB = rB.

Since the spectral radius is the infimum of all norms, rA ≤ ||A||xB < rB. Equivalently,
ρ(A) < ρ(B).

Employing Lemma 3.1.7 and Lemma 3.1.8, we find the α value that has the best decay
rate.

Theorem 3.1.9. For a given partitioning of a closed 1-manifold based on Definition 3.1.1,
the OPS iterations (3.22) with α = 1 for the positive Helmholtz equation converges faster
than any other α ≥ 0.

Proof. We show that the spectral radius of M† corresponding to α = 1 is less than the
the spectral radius of the same matrix with any α > 1. According to Lemma 3.1.7, α = 1
minimizes the quantities in Equation (3.27) which appear in M†. Hence, we write M†(α =
1) < M†(α) for any α > 1 to denote that any non-zero element in M†(α = 1) is less than the
element at the same row and column in M†(α). It has been shown in Corollary 3.1.5 that M†

is a non-negative irreducible matrix for any α ≥ 1. For now, let us define A = M†(α = 1)
and B = M†(α) for any α > 1. Since A and B are non-negative irreducible matrices, we
exploit the result of Lemma 3.1.8 to obtain ρ(A) < ρ(B). That is, the spectral radius of
M† with α = 1 is minimal over α ≥ 1. From the similarity of M† and the iteration matrix
MOPS, MOPS with α = 1 is the minimum for any other α ≥ 1. Corollary 3.1.5 also shows
that the OPS iteration with 0 ≤ α ≤ 1 converges with the same rate as the OPS iteration
with 1/α. Thus, α = 1 minimizes the spectral radius of MOPS.

The above theorem proves that the best convergence factor of the OPS iteration is
obtained with α = 1. With α = 1, we have the same weight for the Neumann and Dirichlet
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Figure 3.15: Convergence factor of the OPS method with different Robin parameters for
the Möbius strip shown in Figure 3.10.

terms in the transmission condition. The result is reasonable as we solve the one-dimensional
positive Helmholtz equation on a periodic domain, and we could expect that having the same
weights for the terms in the transmission condition is ideal for obtaining the best convergence
factor. We now numerically verify the theorem. We run the OPS algorithm on the curve
defined by the edge of the Möbius strip shown in Figure 3.10 with different values for the
Robin parameter. The results are shown in Figure 3.15. As we observe, α = 1 yields the best
convergence factor, and small changes to the optimal α results in a considerably different
convergence factor. In addition, one can interpret Theorem 3.1.9 as a proof of monotonicity
of the spectral radius of the OAS iteration with α. In Figure 3.15, the convergence factor
reduces as we increase the Robin parameter.
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3.1.4 The OAS-CPM

Similar to the OPS-CPM, the OAS-CPM for a closed 1-manifold is consistent with the
following Schwarz method:

(c− d2

ds2 )εn+1
j = 0, for s ∈ [aj , bj ],

(α− d
ds)εn+1

j (aj) = (α− d
ds)εn+1

j−1 (aj),

(α+ d
ds)εn+1

j (bj) = (α+ d
ds)εnj+1(bj),

(3.36)

with the solution:

εn+1
j (s) = e

√
c(s−aj) − e

√
c(bj−s+`j)

1− e2
√
c`j

B−εn+1
j−1 (aj)+ e

√
c(bj−s) − e

√
c(s−aj+`j)

1− e2
√
c`j

B+εnj+1(bj), (3.37)

for j = 1, . . . , N , and (3.4) still applies.
Using Equation (3.37), the error values at the boundaries are:

εn+1
j (bj−1) = pjB−εn+1

j−1 (aj) + rjB+εnj+1(bj),

εn+1
j (aj+1) = sjB−εn+1

j−1 (aj) + qjB+εnj+1(bj),
(3.38)

where the quantities pj , rj , qj , and sj are introduced in Equation (3.25). By applying the
boundary operator to Equation (3.37), one obtains

B+εn+1
j (bj−1) = p†jB−ε

n+1
j−1 (aj) + r†jB+εnj+1(bj),

B−εn+1
j (aj+1) = s†jB−ε

n+1
j−1 (aj) + q†jB+εnj+1(bj),

(3.39)

where p†j , r
†
j , q
†
j , and s

†
j are defined in Equation (3.27). It is needed to have only values at

iteration n on the right-hand side. Thus the terms containing B−εn+1
j−1 (aj) must be replaced.

Similar to the CAS-CPM section, by working from the first subdomain to the jth subdomain
in the second equation of (3.38), we find B−εn+1

j−1 (aj) as

B−εn+1
j−1 (aj) = s†j−1s

†
j−2 . . . s

†
2q
†
1B

+εn2 (b1) + s†j−1s
†
j−2 . . . s

†
3q
†
2B

+εn3 (b2) + . . .

+ q†j−1B
+εnj (bj−1) + s†j−1s

†
j−2 . . . s

†
1B
−εnN (a1 + L). (3.40)
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Substituting (3.40) back into Equations (3.38) and (3.39), we obtain

εn+1
j (bj−1) = pj

[
s†j−1s

†
j−2 . . . s

†
2q
†
1B+εn2 (b1) + s†j−1s

†
j−2 . . . s

†
3q
†
2B+εn3 (b2) + . . .

+q†j−1B+εnj (bj−1) + s†j−1s
†
j−2 . . . s

†
1B−εnN (a1 + L)

]
+ rjB+εnj+1(bj),

εn+1
j (aj+1) = sj

[
s†j−1s

†
j−2 . . . s

†
2q
†
1B+εn2 (b1) + s†j−1s

†
j−2 . . . s

†
3q
†
2B+εn3 (b2) + . . .

+q†j−1B+εnj (bj−1) + s†j−1s
†
j−2 . . . s

†
1B−εnN (a1 + L)

]
+ qjB+εnj+1(bj),

B+εn+1
j (bj−1) = p†j

[
s†j−1s

†
j−2 . . . s

†
2q
†
1B+εn2 (b1) + s†j−1s

†
j−2 . . . s

†
3q
†
2B+εn3 (b2) + . . .

+q†j−1B+εnj (bj−1) + s†j−1s
†
j−2 . . . s

†
1B−εnN (a1 + L)

]
+ r†jB+εnj+1(bj),

B−εn+1
j (aj+1) = s†j

[
s†j−1s

†
j−2 . . . s

†
2q
†
1B+εn2 (b1) + s†j−1s

†
j−2 . . . s

†
3q
†
2B+εn3 (b2) + . . .

+q†j−1B+εnj (bj−1) + s†j−1s
†
j−2 . . . s

†
1B−εnN (a1 + L)

]
+ q†jB+εnj+1(bj).

(3.41)

To rewrite the above equations in matrix form, we define an error vector at the s = bj

points:
εn := [εn2 (b1), εn3 (b2), . . . , εnN (bN−1), εnN (a1 + L)]T ,

and also,
Bεn := [B+εn2 (b1),B+εn3 (b2), . . . ,B+εnN (bN−1),B−εnN (a1 + L)]T .

Note that s = aj are not included in the error vectors since they can be directly calculated
using the error values at s = bj . Now, we arrive at

εn+1 = MBεn, (3.42)

and for Equation (3.39), we get

Bεn = M†Bεn−1, (3.43)

where M and M† are N ×N matrices defined as follows:
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M
=

                          

p
2
q† 1

r 2
p

2
s† 1

p
3
s† 2

q† 1
p

3
q† 2

r 3
p

3
s† 2

s† 1

p
4
s† 3

s† 2
q† 1

p
4
s† 3

q† 2
p

4
q† 3

r 4
p

4
s† 3

s† 2
s† 1

. . .
. .

.
. .

.
. . .

p
N
−

1
s† N
−

2
· ·

·s
† 2
q† 1

p
N
−

1
s† N
−

2
··

·s
† 3
q† 2

··
·

p
N
−

1
q† N
−

2
r N
−

1
p

N
−

1
s† N
−

2
··

·s
† 1

r N
r† 1

+
p

N
s† N
−

1
··

·s
† 2
q† 1

p
N

s† N
−

1
··

·s
† 3
q† 2

··
·

p
N

s† N
−

1
q† N
−

2
p

N
q† N
−

1
r N

p
† 1

+
p

N
s† N
−

1
··

·s
† 1

q N
r† 1

+
s N

s† N
−

1
··

·s
† 2
q† 1

s N
s† N
−

1
··

·s
† 3
q† 2

··
·

s N
s† N
−

1
q† N
−

2
s N

q† N
−

1
q N

p
† 1

+
s N

s† N
−

1
··

·s
† 1

                          ,
(3

.4
4)

M
†

=

                          

p
† 2
q† 1

r† 2
p
† 2
s† 1

p
† 3
s† 2

q† 1
p
† 3
q† 2

r† 3
p
† 3
s† 2

s† 1

p
† 4
s† 3

s† 2
q† 1

p
† 4
s† 3

q† 2
p
† 4
q† 3

r† 4
p
† 4
s† 3

s† 2
s† 1

. . .
. .

.
. .

.
. . .

p
† N
−

1
s† N
−

2
··

·s
† 2
q† 1

p
† N
−

1
s† N
−

2
··

·s
† 3
q† 2

··
·

p
† N
−

1
q† N
−

2
r† N
−

1
p
† N
−

1
s† N
−

2
··

·s
† 1

r† N
r† 1

+
p
† N

s† N
−

1
··

·s
† 2
q† 1

p
† N

s† N
−

1
··

·s
† 3
q† 2

··
·

p
† N

s† N
−

1
q† N
−

2
p
† N

q† N
−

1
r† N

p
† 1

+
p
† N

s† N
−

1
··

·s
† 1

q† N
r† 1

+
s† N

s† N
−

1
··

·s
† 2
q† 1

s† N
s† N
−

1
··

·s
† 3
q† 2

··
·

s† N
s† N
−

1
q† N
−

2
s† N

q† N
−

1
q† N

p
† 1

+
s† N

s† N
−

1
··

·s
† 1

                          .
(3

.4
5)
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Equation (3.42) and Equation (3.43) together result in:

εn+1 = MOASεn (3.46)

where MOAS = MM†M−1. We now prove that the OAS method is convergent.

Theorem 3.1.10. Let S be any closed 1-manifold partitioned according to Definition 3.1.1
with N ≥ 2. The OAS iterations (3.36) for the positive Helmholtz equation on S converges
globally on an arbitrary number of subdomains for any α ≥ 0.

Proof. We must show ρ(MOAS) < 1 to prove the convergence. Considering MOAS =
MM†M−1, MOAS and M† are similar matrices, and they share common eigenvalues. Con-
sequently, their spectral radii are equal. Thus, it is sufficient to show ρ(M†) < 1 for con-
vergence. Further, one may use the inequality ρ(M†) ≤ ||M†||∞. The max-norm is equal to
the maximum of the absolute row sums. Hence,

ρ(MOAS) = ρ(M†) ≤ ||M†||∞ = max{σ1, σ2, . . . , σN−1, σN},

where σj is the absolute sum of entities in the jth row:

σj = |p†j+1s
†
j . . . s

†
2q
†
1|+ |p

†
j+1s

†
j . . . s

†
3q
†
2|+ · · ·+ |p

†
j+1q

†
j |+ |r

†
j+1|+ |p

†
j+1s

†
j . . . s

†
1|

= |p†j+1||s
†
j | . . . |s

†
2||q
†
1|+ |p

†
j+1||s

†
j | . . . |s

†
3||q
†
2|+ · · ·+ |p

†
j+1||q

†
j |+ |r

†
j+1|+ |p

†
j+1||s

†
j | . . . |s

†
1|,

which can be expressed using the nested product:

σj = |p†j+1|(|s
†
j |(|s

†
j−1|(. . . (|s

†
2|(|s

†
1|+ |q

†
1|) + |q†2|) + . . . ) + |q†j−1|) + |q†j |) + |r†j+1|.

Starting at the innermost bracket in the first term, we have |s†1|+|q
†
1| < 1 from Lemma 3.1.5.

The next bracket is |s†2|(|s
†
1|+ |q

†
1|)+ |q†2| < |s

†
2|+ |q

†
2| < 1. Moving to the next set of brackets,

we have |s†3|(|s
†
2|(|s

†
1| + |q

†
1|) + |q†2|) + |q†3| < |s

†
3| + |q

†
3| < 1. Proceeding in this manner, we

know that each term contained within brackets will be less than one in magnitude, and as
such we have:

σj = |p†j+1|(|s
†
j |(|s

†
j−1|(. . . (|s

†
2|(|s

†
1|+ |q

†
1|) + |q†2|) + . . . ) + |q†j−1|) + |q†j |) + |r†j+1|,

< |p†j+1|(|s
†
j |(|s

†
j−1|(. . . (|s

†
2|+ |q

†
2|) + . . . ) + |q†j−1|) + |q†j |) + |r†j+1|,

...

< |p†j+1|+ |r
†
j+1|,

< 1.
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Likewise, for the last two rows,

σN−1 = |r†N ||r
†
1|+ |p

†
N ||s

†
N−1| . . . |s

†
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N ||s
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†
3||q
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2|+ . . .
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†
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†
N ||q

†
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†
N ||p

†
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†
N ||s

†
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†
1|,

= |p†N |(|s
†
N−1|(|s

†
N−2|(. . . (|s

†
2|(|s

†
1|+ |q

†
1|) + |q†2|) + . . . ) + |q†N−2|) + |q†N−1|)

+ |r†N |(|p
†
1|+ |r

†
1|),

< |p†N |(|s
†
N−1|(|s

†
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†
2|+ |q

†
2|) + . . . ) + |q†N−2|) + |q†N−1|) + |r†N |(|p

†
1|+ |r

†
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...

< |p†N |+ |r
†
N |,

< 1,

and

σN = |q†N ||r
†
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†
N ||s

†
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†
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†
N ||s

†
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†
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†
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+ |s†N ||s
†
N−1||q

†
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†
N ||q

†
N−1||q

†
N ||p
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N−1|(|s

†
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†
1|) + |q†2|) + . . . ) + |q†N−2|) + |qN−1)†|

+ |q†N |(|p
†
1|+ |r

†
1|),

< |s†N |(|s
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N−1|(|s

†
N−2|(. . . (|s

†
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†
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†
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†
1|),
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< |s†N |+ |q
†
N |,

< 1.

Now that the absolute row sums are shown to be less than one, we must have

ρ(MOAS) = ρ(M†) ≤ ||M†||∞ < 1.

Thus, the algorithm converges for any α ≥ 0 and N ≥ 2.

With a slight modification to the code implemented for the OPS method, we obtain
the implementation of the OAS algorithm. We verify the convergence of the algorithm on a
helix of 10 revolutions wrapped around the torus of major radius 3 and minor radius 1. The
toroidal helix is partitioned into four non-overlapping subdomains shown in Figure 3.16.
The solutions at different iterations are shown in Figure 3.17, assuming c = 1 and α = 0.25.
The max-norm of the error vector is shown in Figure 3.18 against the number of passed
iterations for two different α values. Similar to the OPS method, we show that one can
restrict the analysis to α ≥ 1 as the spectral radius obtained from α and 1/α are the same.
This is shown in the following corollary.
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Figure 3.16: The toroidal helix with four non-overlapping subdomains.

Figure 3.17: The global solution to (3.36) with c = 1 and α = 0.25 along the toroidal helix
shown in Figure 3.16 at different iterations.

Corollary 3.1.7. The OAS iterations (3.36) with α = α? > 0 converges with the same
convergence factor as the OAS iterations (3.36) with α = 1/α?.

Proof. We have to show the corresponding iteration matrices have the same spectral radii.
That is, it is sufficient to show the corresponding M† matrices for α = α? and α = 1/α?

share the same spectral radii. By a direct substitution in (3.27), one obtains

p†j(α?) = −p†j(
1
α?

), r†j(α?) = r†j(
1
α?

).

Similarly,

q†j(α?) = −q†j(
1
α?

), s†j(α?) = s†j(
1
α?

).
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Figure 3.18: Decay rate of the max-norm of the error vector for different Robin parameters.

The entry in row i ≤ N − 1 and column j ≤ i of M† has the terms p†i+1 and q†j . Thus,

p†i+1( 1
α?

)q†j(
1
α?

) = p†i+1(α?)q†j(α?). Hence, M†( 1
α?

) and M†(α?) have identical entries except
for the entries located in the last row or column. In those cases, the entry is off by a
negative sign. Note that the entry in the last row and column is the same for both matrices.
Introducing the N ×N permutation matrix P = [aij ] where

aij =



1; i = j 6= N,

−1; i = j = N,

0; i 6= j,

we have M†(α?) = P−1M†( 1
α?

)P . Notice that P−1 = P . Finally, M†(α?) and M†( 1
α?

) are
similar matrices and have identical spectral radii.

From the boundary condition, we anticipate to obtain the convergence behaviour of the
CAS method from the OAS method in the limit α→∞. Corollary 3.1.7 also suggests that
α = 0 has the same behaviour as α → ∞. The following corollary provides the proof of
equivalency between the OPS method and the OAS method with α→∞ and α = 0.

Corollary 3.1.8. For a given partitioning of a closed 1-manifold based on Definition 3.1.1,
the OPS iterations (3.22) in the limit α→∞ for the positive Helmholtz equation is equiv-
alent to the CPS iterations (3.5).
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Figure 3.19: The OAS (α = 4096) and CAS methods comparison.

Proof. By a direct substitution, one obtains

lim
α→∞

p†j(α) = −p†j(α = 0) = 1− e2
√
c(`j−δj−1)

1− e2
√
c`j

e
√
cδj−1 ,

lim
α→∞

r†j(α) = r†j(α = 0) = 1− e2
√
cδj−1

1− e2
√
c`j

e
√
c(`j−δj−1),

for j = 1, . . . , N where the right-hand sides are the quantities defined for the classical
Schwarz algorithms in (3.9). Likewise, q†j and s†j are equal to their counterparts in the
classical Schwarz methods in the limit α→∞. Thus, the OAS method in the limit α→∞
is consistent with the CAS method. In addition, they are equivalent in the limit α = 0 as
the OAS is identical to α→∞, according to Corollary 3.1.7.

To numerically verify the above corollary, we solve the positive Helmholtz equation with
c = 1 on the toroidal helix shown in Figure 3.16 using the OAS and CAS methods. Note
that the CAS method does not converge on a non-overlapping set of subdomains as in
Figure 3.16, thus we have to use an overlapping set of subdomains. Figure 3.19 illustrates
the error plots of the OAS method with a large Robin parameter and the CAS method. As
expected based on the above corollary, the error vectors of the two methods decay with the
same rate.

Corollary 3.1.9. The OPS iterations (3.22) with α ≥ 1 for the positive Helmholtz equation
on any closed 1-manifold partitioned according to Definition 3.1.2 with N ≥ 3 converges
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with the factor of
κ ≤ p†2 + p†r† + r†,

and for N = 2:
κ = (p† + r†)2

Proof. The convergence factor is equal to the spectral radius of MOAS. Since MOAS and
M† are similar, the spectral radius of MOAS is bounded by the infinity-norm of M†. On
the other hand, we have

p†1 = p†2 = · · · = p†N = q†1 = q†2 = · · · = q†N ,

r†1 = r†2 = · · · = r†N = s†1 = s†2 = · · · = s†N ,

for an equal-sized partitioning. By defining p† = p†j and r† = r†j for j = 1, . . . , N , M†

reduces to

MOAS =



p†
2

r† p†r†

p†
2
r† p†

2
r† p†r†

2

p†
2
r†

2
p†

2
r† p†

2
r† p†r†

3

... . . . . . . ...

p†
2
r†
N−3

p†
2
r†
N−4 · · · p†

2
r† p†r†

N−2

r†
2 + p†

2
r†
N−2

p†
2
r†
N−3 · · · p†

2
r† p†

2
p†r† + p†r†

N−1

p†r† + p†r†
N−1

p†r†
N−2 · · · p†r†

2
r†

2
p†

2 + r†
N



.

The iteration matrix in Corollary 3.1.3 has the same structure as above. Using the result
of Corollary 3.1.3 and noting that p† + r† < 1, we obtain the maximum row sum as p†2 +
p†r† + r†. Thus, the convergence factor is bounded by

κ ≤ p†2 + p†r† + r†,

Furthermore, if the number of subdomains is 2, the row sums are both equal to (p† + r†)2,
and the convergence factor is equal to κ = (p† + r†)2.

Although the above corollary gives the proof for α ≥ 1, one can use it for 0 ≤ α < 1
according to Corollary 3.1.7. We now draw our attention to finding the value of the Robin
parameter which secures the best convergence factor.
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Theorem 3.1.11. For a given partitioning of a simple closed 1-manifold based on Def-
inition 3.1.1, the OAS iterations (3.36) with α = 1 for the positive Helmholtz equation
converges faster than any other α ≥ 1.

Proof. We show that the spectral radius of M† corresponding to α = 1 is less than the
the spectral radius of the same matrix with any α > 1. According to Lemma 3.1.7, α = 1
minimizes the quantities in Equation (3.27) which appear in M†. Hence, we write M†(α =
1) < M†(α) for any α > 1 to denote that any non-zero element in M†(α = 1) is less than
the corresponding element in M†(α). It has been shown in Corollary 3.1.7 that M† is a
non-negative irreducible matrix for any α ≥ 1. For now, let us define A = M†(α = 1) and
B = M†(α) for any α > 1. Since A and B are non-negative irreducible matrices such that
A < B, we exploit the result of Lemma 3.1.8 to obtain ρ(A) < ρ(B). That is, the spectral
radius of M† with α = 1 is minimal over α ≥ 1. From the similarity of M† and the iteration
matrix MOAS, MOAS with α = 1 is the minimum for any other α ≥ 1. Corollary 3.1.7 also
shows that the OPS iteration with 0 ≤ α ≤ 1 converges with the same rate as the OAS
iteration with 1/α. Thus, α = 1 minimizes the spectral radius of MOAS.

Interestingly, we were able to find the optimal Robin parameter α without explicitly
computing the spectral radius. The optimal Robin parameter is independent of the problem
and partitioning. We verify Theorem 3.1.11 using a non-overlapping equal-sized partitioning
of the toroidal helix into 4 subdomains. The OAS iterations (3.36) on the helix are solved
with different values of the Robin parameter. The convergence factor for different α values
is shown in Figure 3.20 along with the theoretical convergence factor obtained directly from
the iteration matrix. As we observe, the numerical experiment is in a good agreement with
the analysis. Note that the convergence factor associated with α = 1 is κ ≈ 7 × 10−8. At
the discrete level, κ ≈ 7× 10−8 leads to convergence in only two iterations.
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Figure 3.20: The convergence factor of the OAS iterations for the toroidal helix shown in
Figure 3.16 as a function of the Robin parameter.
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Chapter 4

Numerical Results

In this chapter, we provide numerical experiments for the Schwarz-CPM methods. The
ultimate goal is to show that the convergence rate of the Schwarz-CPM methods is the
same as the convergence of the equivalent Schwarz problem obtained by Theorem 3.1.1.
Indeed, this chapter can be seen as a numerical verification of Theorem 3.1.1.

4.1 Implementation

The first step to implement the Schwarz-CPM methods is partitioning the global domain
of the CPM. We have addressed the partitioning at the continuous level in Chapter 2,
but partitioning at the discrete level must be specified. The domain decomposition usually
occurs at the discrete level where a mesh is generated for the domain. The mesh partitioning
usually is done on a single processor before the computation begins, while one may utilize
parallel mesh partitioning algorithms for a fully parallel approach. The mesh partitioning
problem is closely connected to the graph partitioning problem where a computational point
is a node in the graph with its connectivity determined from the numerical discretization of
the original problem. For a graph partitioning of a finite difference discretization, each graph
node can be connected to all nodes in the stencil of the discretized operator. Moreover, in a
finite element scheme, elements are treated as the nodes in the graph, followed by connecting
each pair if they share an interface. After having an appropriate graph, graph partitioning
tools, such as METIS [32] or its parallel version PARMETIS, can be used to efficiently
perform the partitioning.

If a global meshing of the CPM is in hand, one can find the disjoint subdomains of the
CPM computational domain using METIS. Given a size of overlap for each subdomain, usu-
ally as a number of overlapping layers, we obtain the overlapping subdomains by expanding
each disjoint subdomain. In the CPM, we extend the manifold values along the normal
direction to the manifold. Hence, it is intuitive to have the boundaries of a subdomain align
with the surface normal. METIS does not necessarily yield boundaries aligned with the
surface normal as it does not have a sense of the underlying geometry. Further, expanding
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the disjoint subdomains to get the overlapping subdomains will not fix this boundary issue.
Therefore, the alignment must be done manually. Starting with finding the interface nodes
between the partitions, we state that an interface point belongs to the subdomain contain-
ing the closest grid point to its closest point representation. This is an iterative procedure;
Once a set of interface nodes is visited and migrated to the corresponding subdomain, we
have a new set of interface nodes. We repeat the procedure up to the point that there
are no more interface nodes for migration. This yields interfaces which are aligned to the
surface normal. Finally, we need to complete the interpolation stencil for the boundary
nodes. This changes the closest point representation which has to be modified according to
Equation (2.8). Please refer to [44] for a thorough explanation of the interfaces alignment.

We introduce the sets of nodes that are essential to our implementation:

• Σ̃A
j , j = 1, · · · , N : Disjoint sets of active nodes obtained from partitioning of the

global domain, usually by a graph partitioning algorithm.

• ΣA
j , j = 1, · · · , N : Overlapping sets of active nodes by adding No

j layers of the global
active nodes to Σ̃A

j . First we suppose ΣA
j = Σ̃A

j . By identifying the adjacent active
nodes to ΣA

j and adding the adjacent points to ΣA
j , we construct the overlapping

set of active nodes for the subdomain j with No
j = 1. Note that after repeating

this procedure for No
j passes to form the overlapping set of active nodes ΣA

j for the
subdomain j, we are required to align the interfaces as explained.

• ΣBC
j (Active), j = 1, · · · , N : Sets of active boundary nodes obtained from completing

the interpolation stencil. This corresponds to the blue semi-circles shown in Figure 2.4.
Note that the closest point representation of these nodes will be modified. We use this
set to enforce the transmission condition later.

• Σ̃G
j , j = 1, · · · , N : Set of ghost nodes in the local subproblem j. Σ̃G

j is a layer sur-
rounding all active nodes of subproblem j.

• ΣBC
j (Ghost), j = 1, · · · , N : Sets of boundary ghost nodes over which we will modify

the closest point representation.

The introduced sets of nodes are illustrated in Figure 4.1 for a circular arc. We now
modify the closest point representation of the boundary nodes. First, we let ΣInterface

j be
the set of the final layer nodes in ΣA

j . The closest point representation of the nodes in
ΣInterface
j approximates the subsurface boundaries that we called γjk and γjk′ in Figure 2.4

in Chapter 2. We collect the boundary approximations of the subdomain j into a set Γj =
cpS(x) for x ∈ ΣInterface

j . These new introduced sets are shown in Figure 4.2. Thus, we
introduce the following modification to the closest point representation of the subproblem
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Figure 4.1: An example of the nodes required for a single subdomain in a Schwarz-CPM
method with polynomial degree-four interpolation.

j:

cpSj
(x) =


cpS(x), x ∈ ΣA

j ∪ ΣG
j \ΣBC

j (Ghost),

argmin
s∈Γj

||x− s||, x ∈ ΣBC
j (Active) ∪ ΣBC

j (Ghost).
(4.1)

The positive surface intrinsic Helmholtz equation for each subdomain can be discretized
using the CPM. We discretize with an approach similar to the discretization of the single-
domain CPM explained in Chapter 2. We obtain the extension matrix Ej and the differential
operator matrix ∆hj for each subdomain. The transmission conditions have to be enforced
at the boundary nodes. We impose the transmission conditions on the extension matrix [44].
For the Dirichlet transmission condition, a first order accurate discretization can be imposed
by zeroing out the row associated with the boundary node xi in Ej and setting to one the
entry in the column associated with the interface node y ∈ ΣInterface

j whose closest point
representation is the same as the closest point representation of xi, i.e., cpSj

(y) = cpSj
(xi)

[44]. Furthermore, for enforcing the Robin transmission condition with the Robin parameter
α to first order accuracy, we multiply the row associated with the boundary node xi by
the scalar 1/(1 + αdi · q̂i) where di = xi − cpSj

(xi) and q̂i is the unit tangent vector to
the one-manifold at cpSj

(xi). For further details on imposing the transmission conditions
at the discrete level, see [44]. After modifying the extension matrices corresponding to
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Figure 4.2: ΣInterface
j and Γj sets for Figure 4.1.

each subdomain, the regularized discretization of the Laplace-Beltrami operator Mj can be
constructed using Equation (2.3). Finally, the discrete local operator for each subdomain is
defined as Aj = cI−Mj where I is the identity matrix.

Thus, the linear systems of the form Ajuj = f j have to be solved for each subdomain.
The right-hand side of the subproblems can be determined by f j = f(cpSj

(x)) for all x ∈ ΣA
j .

Then, we update the rows associated with the active boundary nodes ΣBC
j (Active) for each

iteration. This requires applying the transmission condition to the adjacent subsolutions. To
avoid this, we exploit the linearity of the problem to instead solve for additive corrections
to the current solution [16]. Suppose that the single-domain CPM discretization leads to
the linear system Au = f . Starting with an initial guess over the active nodes of the global
solution, we compute the initial global residual as r0 = f − Au0. Next, the portion of
the global residual acting over the active nodes in the subdomain j is denoted as r0

j . To
enforce the boundary values, it is sufficient to zero out the rows corresponding to the active
boundary nodes. Hence, updating f j at the boundary nodes is not required anymore. After
solving for the additive corrections e0

j in Aje0
j = r0

j , we construct the global correction by
restricting the local corrections to their disjoint subdomains. The global correction is added
to the initial guess to create the new global solution, i.e., u1 = u0 + e0. We iterate until a
desired convergence criteria is met. This approach is called the Restricted Additive Schwarz
(RAS) and has the same convergence factor as the Schwarz-CPM methods introduced so
far [19].

4.2 Numerical Results

We now have all necessary details to perform the numerical experiments. The implemen-
tation is done in MATLAB. Throughout the experiments, we suppose No = N j

o for j =
1, . . . , N for simplicity. Moreover, the discretization of the CPM is done over a uniform
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Figure 4.3: The domain decomposition for the CPM with ∆x = 0.05 and p = 4 on the unit
circle. Note that the interfaces are aligned.

mesh in Rd with size ∆x. In addition, we suppose c = 1 and f = 0 since they have no effect
on convergence. Note that the Schwarz-CPM methods with the assumption f = 0 mimics
the iterations for the error.

We start the verification by solving the positive surface intrinsic Helmholtz equation
on the unit circle. After constructing the required computational nodes of the CPM for
a degree-p interpolation and the mesh size ∆x, we decompose the nodes into two disjoint
subdomains with the ratio 2:3. We investigate three configurations of (∆x = 0.05, p =
2), (∆x = 0.05, p = 4), and (∆x = 0.01, p = 2) for the CPM to compare the effect of
different parameters on the convergence factor. Furthermore, we assume α = 1 for the
Robin parameter involved in the optimized Schwarz methods. We add 5 layers of nodes
(No = 5) and 25 layers of nodes (No = 10) to disjoint subdomains in order to form the
overlapping sets of nodes when ∆x = 0.05 and ∆x = 0.01, respectively. This keeps the
overlapping subdomains unaffected by changing the mesh size. The disjoint sets of nodes
are shown in Figure 4.3. The error plots are illustrated in Figure 4.4. The numerical errors
are the max-norm of the error values computed at the sets ΣBC

j for j = 1, . . . , N . In
addition, the theoretical errors are computed by explicitly constructing the iteration matrix
associated with the partitioning. Indeed, the closest point representation of the boundary
nodes in ΣBC

j for j = 1, . . . , N gives the approximate boundary locations. The approximate
boundary locations are used to find the equivalent problem at the continuous level. Next,
the iteration matrix associated with the equivalent continuous problem is constructed whose
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Figure 4.4: Error plots for different Schwarz-CPM methods on the unit circle shown in
Figure 4.3.

spectral radius gives the theoretical decay rate of the error. As we observe, the convergence
factors of the methods agree with the theoretical errors obtained from the analysis as we
refine the mesh size. The degree of interpolation has roughly no effect on the convergence
factor.

We now investigate the effect of No on convergence. Figure 4.5 depicts the convergence
factor as a function of overlap. The experiments are done on an equal-sized partitioning of
the unit circle with four subdomains and varying overlap. The experiments are consistent
with the analysis carried out in Chapter 3, although the mesh size is not chosen too small.
In Chapter 3, we explained that the convergence factor of the OPS iterations with α = 1
for an equal-sized partitioning is given by κ = e−

√
cL/N . In Figure 4.5, we observe that the

convergence factor of the OPS-CPM method is close to the theoretical convergence factor
e−
√
cL/N = e−π/4 ≈ 0.2079
Next, we use the edge of the Möbius strip introduced in Chapter 3 to test the convergence

of the optimized Schwarz methods for the CPM with different Robin parameters. The edge
of the Möbius strip is partitioned with four equal-sized subdomains and No = 2. The
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Figure 4.5: The convergence factor of the Schwarz-CPM methods against the overlap size
on an equal-sized partitioning of the unit circle with four subdomains.

cloud points are shown in Figure 4.6. In Figure 4.7, we have plotted the convergence of
the optimized Schwarz-CPM methods versus the Robin parameter. As shown in Chapter 3,
α = 1 secures the best convergence factor. Furthermore, α = 1 is the optimal Robin
parameter for the experiments on manifolds of co-dimension one in [44].

Finally, we compare the Schwarz-CPM methods by solving the positive surface intrinsic
Helmholtz equation on a helix of 5 revolutions wrapped around the torus of major radius
3 and minor radius 1. The toroidal helix is decomposed into three subdomains with ratios
2:3:5. We have also set No = 10. Figure 4.8 illustrates each set of disjoint cloud points
with a different colour. We use ∆x = 0.05 and a degree-2 polynomial interpolation for the
CPM. Notice that the tubular band around the helix is thinner than the tubular region
around the Möbius edge in Figure 4.6 as the latter uses a degree-4 interpolation. The four
Schwarz-CPM methods introduced in this thesis are applied to the positive surface intrinsic
Helmholtz equation. We set the Robin parameter α = 1 to achieve the best convergence
factor. The methods are compared in Figure 4.9. The CPS-CPM has the slowest rate of
convergence since it applies the basic transmission condition (Dirichlet) on the solution
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Figure 4.6: The cloud points for the edge of the Möbius strip with ∆x = 0.05 and p = 4.

Figure 4.7: The convergence factor of the optimized Schwarz-CPM methods against the
Robin parameter on the partitioning of the Möbius edge shown in Figure 4.6.

obtained from the previous iteration. The CAS-CPM method utilizes the latest available
information at the boundaries, a property that boosts its convergence. The OPS-CPM
method is a parallel iteration with the optimized transmission condition (Robin). With an
appropriate choice of the Robin parameter, this method can outperform the CAS-CPM
method. Finally, the OAS-CPM iterations are the fastest methods because they benefit
from the Robin transmission condition and the latest available solution. As expected, the
optimized methods are more suitable for the CPM.
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Figure 4.8: The coloured disjoint cloud points for the toroidal helix with ∆x = 0.05 and
p = 2.

Figure 4.9: The decay rates of different Schwarz-CPM methods on the partitioning of the
toroidal helix shown in Figure 4.8.
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Chapter 5

Conclusion

Employing Schwarz methods as solvers for the CPM parallelizes the solution of PDEs on
surfaces and enhances the performance for large scale problems. In this thesis, convergence
of the (continuous) CPM equipped with four different Schwarz solvers was investigated for
an arbitrary one-dimensional simple and closed manifold in Rd. We first reduced the problem
to an equivalent Schwarz method for the positive surface intrinsic Helmholtz equation on a
periodic one-dimensional domain. We investigated the equivalent Schwarz methods in detail
and proved that they are convergent. We have found the convergence factor or an upper
bound on the convergence factor of the Schwarz methods in the case where the subdomains
are of equal size and overlap. The optimal Robin parameter α = 1 was also found for the
introduced optimized Schwarz methods. All the results on the equivalent Schwarz methods
were verified numerically. Next, we solved the positive surface intrinsic Helmholtz equation
on a one-dimensional manifold using the Schwarz-CPM to verify the equivalency between
the Schwarz-CPM and its equivalent Schwarz method. Observed convergence rates agree
with our theory as the mesh spacing is refined. Indeed, the results apply to any convergent
discretization (e.g., a finite element discretization) of Schwarz solvers applied to surface
PDEs as the mesh spacing approaches zero.

In order to extend this work, the convergence of the Schwarz-CPM methods at the
discrete level on one-dimensional manifolds could be investigated. In addition, showing
convergence of the Schwarz-CPMmethods on manifolds of co-dimension one is an interesting
potential future step. It could be followed by seeking the optimal Robin parameter for
optimized Schwarz methods. In addition, Schwarz methods employed as a preconditioner for
the CPM could be analyzed at the discrete level. How the constant c in the surface intrinsic
positive Helmholtz equation affects the convergence of domain decomposition methods could
be studied later. Finally, note that other domain decomposition methods could be utilized
and investigated as a solver or a preconditioner for the CPM.
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