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Abstract

Neural networks have been successful on many individual tasks. However, they work poorly
on a sequential stream of tasks when they do not have access to the previous data. This
problem is called Catastrophic Forgetting and recently has been studied in the field of
Continual Learning. In this thesis, we propose four Continual Learning methods which ap-
proximate the loss function on previous tasks by a second-order Taylor approximation and
use them as regularizers to maintain the performance on previous tasks without any access
to previous data. To do that, we use a Kronecker-factored Hessian approximation to make
the training process memory and computationally efficient. We evaluate our methods on
two Domain Incremental datasets called Permuted MNIST and Rotated MNIST and inves-
tigate the performance and efficiency trade-off on them.

Keywords: Continual Learning, Incremental Learning, Lifelong Learning, Hessian approx-
imation
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Chapter 1

Introduction

In recent years, deep learning has become very successful on some individual tasks because
of the availability of data and faster computation on GPUs [23, 26]. Many of these successful
research projects assume that training data is a stationary stream. This means the training
samples come from independent and identical distributions through time. Unfortunately,
this assumption often is not true in practice. To enforce this assumption, people save a
non-i.i.d. stream of data as a dataset and shuffle it before giving it to the network. So when
new data become available, we need to shuffle the whole previous and new data and train
the network on this new i.i.d. dataset.

However, this is not memory and computationally efficient. This is not memory efficient
because we cannot throw away the old data, and the accumulation of all previous data may
need a lot of storage space. It also may have privacy issues to save data for future training.
Furthermore, as the network needs to be trained on old data again after the availability of
new data, this is not a computationally efficient method.

On the other hand, if we do not use the i.i.d. assumption of the input stream and
just train the network incrementally on newly available data, the network will forget the
knowledge acquired from previous data. This phenomenon is known in Neural Networks
as Catastrophic Forgetting [18, 4]. Catastrophic Forgetting is the inability of a network
to perform well on previously seen data after updating with recent data [16]. In contrast,
humans and other animals do not forget previous knowledge catastrophically, even though
they may forget some part of it. Some research suggests that the mammalian brain may avoid
catastrophic forgetting by protecting previously-acquired knowledge in neocortical circuits
[3, 5]. Inspired by this observation, some recent research has been done on mitigating the
Catastrophic Forgetting problem in neural networks.

Continual Learning is a research direction that deals with acquiring new knowledge
without forgetting previous knowledge catastrophically. It is also known as Lifelong Learn-
ing, Sequential Learning and Incremental Learning, and they are used interchangeably in
the literature. Typically, these approaches are in three categories. Some are rehearsal-based
which save some samples from previous data to approximate the previous loss functions.
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The second type are parameter-isolation methods which dedicate a part of the network for
new available data. Finally, the last type is the regularized based methods which approx-
imate the loss function by a function that only depends on the network parameters. Our
work belongs to the third mentioned category.

In this thesis, we propose a quadratic penalty method to approximate the loss on the
previous data using Kronecker-factored Hessian approximation. The ideas behind this work
are based on Ritter et al. [22] which propose a Bayesian online learning framework that uses
Kronecker-factored Laplace approximation to solve Domain Incremental Learning. Inspired
by this work, we propose an approximation for Domain Incremental loss function. We inves-
tigate the trade-off between the accuracy and the required memory usage by proposing four
different cases of their method and evaluate them on the Permuted MNIST and Rotated
MNIST datasets. Our contribution in this work is proposing a Continual Learning method
that does not require more memory as we increase the number of tasks. Our method use
less memory than Ritter et al. [22] especially when we have a large number of tasks.
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Chapter 2

Related Work

2.1 Continual Learning

Most previous works on Continual Learning can be divided into three settings: 1) Task
Incremental Learning, 2) Class Incremental Learning, 3) Domain Incremental Learning. In
all these settings, the non-stationary data stream consists of some tasks. In each task, the
training and testing data stream is stationary but its distribution is different from other
tasks’ distributions. In (1), we have access to task-id (the identification of the task a sample
comes from) during training and inference time, but we don’t have this access in (2) and
(3) cases. In this work, we focus on the Domain Incremental setting. In the following, we
categorize methods with this setting and explain some state-of-the-art methods in each
category [8].

2.1.1 Regularization-based Methods

These methods do not save any samples from previous tasks, which ensures privacy and
decreases the memory requirements. They impose constraints on how network parameters
update by using an extra regularization term in their loss function [10, 1, 27, 22].

Elastic Weight Consolidation (EWC)

EWC [7] uses a quadratic term to regularize the update of model parameters that were
important to past tasks. It approximates the importance of parameters by the diagonal of
the Fisher Information matrix F. So if the learner has seen the previous task A and it finds
the best parameters for this task as ŵA, and then received a new task B, the loss function
L will be:

L = LB(w) +
∑

i

λ

2Fi(wi − ŵA,i)2 (2.1)

where LB(w) is the loss for task B only, λ sets how important the old task is compared to
the new one, and i labels each parameter.
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This method is a major baseline in our work. One important limitation of this method
is assuming the Fisher Information matrix to be diagonal is not accurate in practice. So in
our work, we try to approximate this Fisher Information more accurately.

Learning without Forgetting (LwF)

LwF [13] uses Knowledge Distillation [6] to maintain the performance on previous tasks.
After receiving a new task, it makes the output of the network on previous data after
updating close to its output before updating its weights. To do so, it uses the following loss
function:

L(w) = λoLold(Yo, Ŷo) + Lnew(Yn, Ŷn) +R(ŵs, ŵo, ŵn) (2.2)

where ws, wo, and wn are the shared parameters, task-specific parameters for the old and
new task; Yo and Ŷo are the computed output of old tasks for new data and old task output;
Yn and Ŷn are ground truths for the new task and new task output; λo shows the importance
of preserving old outputs and R is the network weight regularization term.

The main issue of this method is that the distribution of tasks should be related. This
means the features produced by one task are useful for the other task. So for example, when
tasks’ data comes from Permuted MNIST dataset, tasks are independent and this method
works poorly on it.

2.1.2 Memory-based Methods

These methods store samples in raw format or generate pseudo-samples with a generative
model for either replaying while training on a new task or adding a regularization term
based on them to the loss function [21, 14, 2, 25].

iCaRL

iCaRL [21] fills its memory buffer in a balanced way for all classes after seeing each task.
Then it updates the representation for new and saved data by optimizing this loss function:

L(w) = −
∑

(xi,yi)∈D
[

t∑
y=s

1y=yi log gy(xi) + 1y 6=yi
log(1− gy(xi))+

s−1∑
y=1

qy
i log gy(xi) + (1− qy

i ) log(1− gy(xi))]
(2.3)

where D is the union of new and saved training data, gy(xi) is the yth index of network
output on input xi, qy

i is the yth index of the stored network output on the saved samples
before updating its weights, and 1y=yi is an indicator function whose output is 1 where
y = yi and 0 otherwise. The first term in Equation 2.3 is the classification loss and the
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second term is the distillation loss. After updating the representation, iCaRL [21] uses a
Nearest Mean Classifier (NMC) to classify the data based on the generated representation.

GEM

Gradient Episodic Memory (GEM) [14] updates the network weight in such a way that it
does not increase the loss on saved samples from any previous tasks. Concretely, it solves
the following problem:

wt = arg min
w

L(fw,Dt)

s.t. L(fw,Mk) ≤ L(fwt−1 ,Mk) for all k < t
(2.4)

where wt is a vector of network parameters after training on t tasks, fw is a function which
shows a neural network with weights w, Dt is the training data of task t, Mk is the saved
samples from task k, and L(fw,Dt) and L(fw,Mk) are the total loss of a neural network
with with weights fw on task t dataset and saved memory of task k.

is the output of the network on input x in task t and Mk is the saved samples from task
k. GEM [14] solves this problem by formulating it as a Quadratic Programming problem.

2.1.3 Parameter-isolation-based Methods

These methods dedicate different model parameters to each task. They can be divided into
two groups: 1) Fixed architecture: they do not change the architecture and just activate
a subset of parameters for each task during training. 2) Dynamic architecture: they add
parameters to the network for each task. Most of the methods in this category need task-id
during the training and inference phase, but recently a few methods have been introduced
that can be used in the Class and Domain Incremental settings [11, 20].

Random Path Selection

Random Path Selection (RPS) [20] creates a grid of ` layers of M modules with skip con-
nections between them. After receiving each task, it randomly selects N paths in this grid.
Then for each path, it trains modules that are not in the set of modules trained in previous
tasks. In the end, it adds the best path among those N paths and adds it to the set of
trained module. The training loss function of this method is a combination of cross-entropy
and distillation loss.

2.1.4 Unsupervised Methods

Besides the supervised Continual Learning methods, recently there are some works in the
unsupervised setting, too. LifelongGAN [30] uses knowledge distillation to maintain the
performance of a neural network on a sequence of paired or unpaired image generation tasks.

5



However, as we mentioned for LwF [13], knowledge distillation struggles with the conflicts
among tasks. To fix this conflict, PiggybackGAN [28] introduces two kinds of convolutional
filters in each task. Some filters are created based on the filters from the previously trained
model which are frozen during the training time of the new task. Some other filters are
also created that are learned without any constraint in each new task. This increases the
memory requirement linearly by the number of tasks and makes this method not scalable.
Hyper-LifelongGAN [29] factorizes the convolutional and deconvolutional filters into three
matrices. One shared weight matrix W`, one task specific base filter Bi

` that is generated
using filter generator H i

`, and task-specific coefficients Ci
`. Therefore, the convolution or

deconvolution filter F i
` which is on layer ` for task i is the multiplication of these three

matrices:

W i
` = Ci

`W`

F i
` = R(Bi

`W
i
` )

(2.5)

where R is the reshaping operation that reshapes the output to 4D tensor. This method
introduces a small memory requirement for each new task which makes it more scalable.

2.2 Kronecker-factored Hessian Approximation

Martens and Grosse [17] proposed block-diagonal Kronecker-factored Hessian approxima-
tion to use it efficiently in natural gradient descent. They assumed parameters from different
layers to be independent and introduced positive semi-definite approximations of the Hes-
sian that can be calculated and stored efficiently. This approximation is the main block in
our methods, and we elaborate more on this approximation in the following.

We show the input of layer ` ∈ {1, 2, ...,K} of a neural network by a`−1, so the input
feature to the network will be shown by a0 = x. Each layer applies a linear transformation
with weights Wl to its input and produces a pre-activation h` = W`a`−1. After that, a non-
linear activation function f` will be applied to the pre-activation and produces the input of
the next layer a` = f`(h`). In the end, the output of the last layer will be compared to the
true label of the input data and produce a loss L(hK , y) that will be optimized by finding
the optimal values for network weights.

By considering different layers independent, we will have a block diagonal matrix for
the Hessian and each block will be Hessian of the loss L w.r.t. the weights of a certain layer
that we will show by H`. Then, H` can be written as a Kronecker product of two matrices
as below:

H` = ∂2L(hK , y)
∂vec(W`)∂vec(W`)

= Q` ⊗H` (2.6)
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where vec(W`) is the stacked form of layer ` weights, Q` is the covariance of the layer `
input, and H` is the pre-activation Hessian of layer ` that are defined as follows:

Q` = a`−1a
T
`−1 (2.7)

H` = ∂2L(hK , y)
∂h`∂h`

(2.8)

We can approximate Hl by the Fisher Information as follows:

H` = (∂L(hK , y)
∂h`

)(∂L(hK , y)
∂h`

)T (2.9)

In the next section, we show a derivation of this Hessian approximation.

2.2.1 Derivation of the Kronecker-factored Hessian Approximation

We derive the Kronecker-factored Hessian approximation in this chapter as an interpretation
of Ritter et al. [22] and Martens et al. [17]. The first assumption of this approximation is
that the layers of the neural network are independent. So the Hessian of loss on network
parameters is a block diagonal matrix which each diagonal belongs to one layer. So it
approximates the Hessian on the parameters of each layer (H`). As the input of the network
is a random variable X, we want to find the expected value of Hessian (E[H`] = E[ ∂2L

∂W `2 ]).
Using the chain rule, the gradient of the loss function w.r.t. the weights of layer ` is:

∂L

∂W l
a,b

=
∑

i

∂L

∂h`
a

∂h`
i

∂W `
a,b

= a`−1
b

∂L

∂h`
a

(2.10)

So we can write the Hessian of the loss function w.r.t. the layer ` weights by:

[H`](a,b),(c,d) = ∂2L

∂Wa,b∂Wc,d
= a`−1

b a`−1
d [H`](a,c) (2.11)

where
[H`](a,c) = ∂2L

∂h`
a∂h

`
c

(2.12)

is the pre-activation Hessian. This can be written as a Kronecker product as:

Hl = (a`−1a
T
`−1)⊗H` (2.13)

Now, we approximate the expected value of Kronecker product of two random variables
as the Kronecker product of their expected value. So

E[H`] = E[(a`−1a
T
`−1)⊗H`] ≈ E[(a`−1a

T
`−1)]⊗ E[H`] (2.14)
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Then, we want to write the pre-activation Hessian as the Fisher Information. The defi-
nition of the Fisher Information is:

I(W ) = −E[∂
2 log p(X|W )

∂W 2 ] = E[(∂ log p(X|W )
∂W

)(∂ log p(X|W )
∂W

)T ] (2.15)

where p(X|W ) is the probability density function of random variable X which depends on
W . As in the classification problem in this thesis we used cross entropy loss function, we
can substitute the first term of he Fisher Information definition in Equation 2.14 by the
second term. So we have:

E[H`] ≈ E[(a`−1a
T
`−1)]⊗ E[H`] = E[(a`−1a

T
`−1)]⊗ E[( ∂L

∂h`
)( ∂L
∂h`

)T ] (2.16)

We use this Hessian approximation to solve Domain Incremental Learning problem in
the next chapter.
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Chapter 3

Proposed Approach

In this section, we first introduce some background on the Domain Incremental Learning
problem and Kronecker-factored second-order Taylor approximation. Then, we introduce
our approach to solve the Domain Incremental Learning problem using Taylor approxima-
tion.

3.1 Problem Definition - Domain Incremental Learning

The main goal of Continual Learning is acquiring knowledge from new data without losing
the acquired knowledge from previous data. We also want to exploit previous data to perform
better on new data (forward transfer) and exploit new data to increase the performance on
previous data (backward transfer). In this thesis, we focus on a specific type of this problem
which is Domain Incremental Learning.

In this scenario, we have N tasks Ti, each consisting of labeled data that has different
input distribution but the same output spaces:

Tt = [(xt,1, yt,1), (xt,2, yt,2), ..., (xt,mt , yt,mt)] (3.1)

mt⋃
i=1

yt,i =
m′t⋃
i=1

yt′,i = C for all t, t′ ≤ N (3.2)

where t is the index of a task, (xt,i, yt,i) are the input features and label of ith data point
in task t, and C is the set of classes for all tasks.

We sequentially receive training data of task Ti and after each one, we evaluate our
trained model on testing data of current and previous tasks.

3.2 Single Task Loss Approximation

One way of maintaining the performance of our model on previous tasks is approximating
the loss on them and optimizing the model parameters such that we keep the approximated
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loss as low as possible. A straightforward method of function approximation is Taylor ex-
pansion. To make the approximation not computationally heavy, we use second-order Taylor
approximation as follows:

Lprox
t (w) = Lt(ŵ) + (w − ŵt)>∇Lt(ŵ) + 1

2(w − ŵ)>Ht(w − ŵ) (3.3)

where Lprox
t (w) and Lt(w) are the approximated and true loss value of model with weights

w on task t, and Ht = ∇2Lt(ŵ) is the hessian of task t loss at weights ŵ. In the context of
optimizing w in this equation: 1) the constant term (Lt(ŵ)) does not depend of w and thus
can be ignored 2) after training the parameters w on task t, the gradient term (∇Lt(ŵ))
is usually small, so this term is usually skipped in practice. Therefore, we use second-order
Taylor approximation of task t loss function in practice by:

Lprox
t (w) = 1

2(w − ŵ)>Ht(w − ŵ) (3.4)

As modern Neural Networks typically have millions of parameters, finding the exact
Hessian would be too memory and computationally expensive (it has N2 elements where
N is the number of parameters of the network).

One way to decrease the computation and memory is block-wise Kronecker-factored
Hessian approximation (Section 2.2). Kronecker product has a property for matrix multi-
plication of a Kronecker product to the vectorized form of another matrix that says:

(BT ⊗A)vec(X) = vec(AXB) (3.5)

where A, B, and C are three matrices and vec(X) denotes the vectorization of the matrix
X, formed by stacking the columns of X into a single column vector [24]. By using this
property, we can calculate the second-order Taylor loss approximation without finding the
result of Q` ⊗H` which takes O(I2

`O
2
` ) amount of memory and computation for layer ` (I`

and O` are the input and output size of layer `). Therefore, we can rewrite Equation 3.4 as:

Lprox
t (w) = 1

2

L∑
`=1

vec(W` − Ŵ`)>(Q` ⊗H`)vec(W` − Ŵ`) =

1
2

L∑
`=1

vec(W` − Ŵ`)>vec(H`(W` − Ŵ`)Q`)
(3.6)

where L is the number of layers in the network. Therefore, we instead need O(I2
` + O2

` )
memory and computation to compute this approximation after using this property for layer
`.

In the next section, we show how to use this approximation to define a loss function for
the Domain Incremental Learning problem.
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3.3 Domain Incremental Loss Approximation Methods

Ritter et al. [22] proposed a Bayesian online learning framework that uses Kronecker-
factored Laplace approximation to solve Domain Incremental Learning. Inspired by [22],
we propose an approximation for Domain Incremental loss function. There is a trade-off
between the amount of memory/computation used in this approximation and how much
error it produces. Based on this trade-off, we introduce four cases in the following.

3.3.1 One Approximation For Each Task’s Loss

In this case, we approximate the loss function of a task by Kronecker-factored second-order
Taylor approximation (Section 3.2) after training the Neural Network on that task. So after
receiving the training data of a new task, we can approximate the loss on a previous task
by using the stored parameters of our approximation without having access to any previous
data. Therefore, we can optimize the network on a combination of the loss on current task
data and all previously stored loss approximation of previous tasks to learn new knowledge
and maintain the old one.

Formally, we optimize the network parameters after receiving task t data by:

ŵ1:t = argminw
1
t
[Lt(w) + λt

t−1∑
t′=1

1
2(w − ŵ1:t′)>Ht′(w − ŵ1:t′)] (3.7)

where λt is the coefficient for task t loss, Lt(w) is the true loss on task t data for a network
with weights w, and ŵ1:t′ and Ht′ are the parameters of the network and the approximated
Hessian of loss function after optimizing on task t′. Figure 3.1 shows the steps of this method
for three tasks on a neural network that has just one weight just for illustration.

3.3.2 One Approximation For All Previous Tasks’ Loss

In the previous case, the size of approximation parameters grows linearly by increasing the
number of tasks. For mitigating this issue, we propose a new case where we approximate
the sum of all previous tasks’ loss by storing one set of approximation parameters.

First, we assume that we have Q1:t and H1:t−1 that their Kronecker products approxi-
mate the Hessian of the loss on task 1 to t− 1, and the optimum ŵ1:t−1 shows the weights
which minimizes the loss value on task 1 to t− 1 data. Then, we find the new optimum by

ŵ1:t = argminw
1
t
[Lt(w) + λtL

prox
1:t−1(w)] (3.8)

where

Lprox
1:t−1(w) = 1

2(w − ŵ1:t−1)>(H1:t−1)(w − ŵ1:t−1) =
1
2(w − ŵ1:t−1)>(Q1:t−1 ⊗H1:t−1)(w − ŵ1:t−1)

(3.9)
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Task 1:

Task 2:

Task 3:

Figure 3.1: One Approximation For Each Task’s Loss steps on a simple network with one
dimensional weights for 3 tasks

We also find the hessian approximation of current task (Qt, Ht) after finding ŵ1:t.
Second, we need to derive one set of parameters for Kronecker-factored Hessian and

optimum from these parameters from previous tasks and the current one. Suppose we have
approximated the Hessian of previous tasks as H1:t−1 = Q1:t−1 ⊗H1:t−1 and the optimum
as ŵ1:t−1. We also have approximated the Hessian of current tasks as Ht = Qt ⊗ Ht and
the optimum as ŵ1:t. So the sum of the approximated loss for all previous and current task
will be:

Lprox
1:t (w) = 1

2[(w − ŵ1:t−1)>H1:t−1(w − ŵ1:t−1) + (w − ŵ1:t)>Ht(w − ŵ1:t)]

≈ 1
2[(w − ŵ1:t)>(H1:t−1 +Ht)(w − ŵ1;t)]

= 1
2[(w − ŵ1:t)>(Q1:t−1 ⊗H1:t−1 +Qt ⊗Ht)(w − ŵ1;t)]

≈ 1
2[(w − ŵ1:t)>[(Q1:t−1 +Qt)⊗ (H1:t−1 +Ht)](w − ŵ1;t)]

(3.10)

Therefore, we save Q1:t = Q1:t−1 +Qt, H1:t = H1:t−1 +Ht and ŵ1:t as the new parameters
for loss approximation of all previous and current tasks, which does not grow linearly by
increasing the number of tasks. Figure 3.2 shows the steps of this method for three tasks
on a neural network that has just one weight just for illustration.
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Task 1:

Task 2:

Task 3:

Figure 3.2: One Approximation For All Previous Tasks’ Loss steps on a simple network with
one dimensional weights for 3 tasks

3.3.3 Ensemble Of Approximations For Each Task’s Loss

In this case, we allow constant more memory and computation to achieve a better loss
approximation by using a second-order Taylor approximation ensemble.

As the error of Taylor approximation increases by going away from the approximation
point, we can decrease this error by approximating the loss function on multiple points and
estimate the loss of any point in the weight space by calculating the approximation value
for the closest Taylor approximator. So after receiving task t data, we find a set of optima
ŵ1:t,i by:

ŵ1:t,i = argminw
1
t
[Lt(w) + λt

t−1∑
t′=1

1
2(w − ŵ1:t′,m)>Ht′,m(w − ŵ1:t′,m)] (3.11)

where
m = argmini||w1:t′,i − w||2 (3.12)

which means ŵ1:t′,m is the closest Taylor approximator of task 1 to t′ to w, and Ht′,m

is the Kronecker-factored Hessian approximation of loss function of task 1 to t′ on ŵ1:t′,m.
At the first task, as we do not have previous loss approximators, we find M weights ŵ1,i

(i ∈ {1, 2, ...,M}) by minimizing the true loss on the first task data (L̂1(w)) starting from
different random weights initialization using Stochastic Gradient Descent (SGD). After that,
to find the ith optimum of tasks 1 to t (ŵ1:t,i) we start from from ith optimum of tasks 1 to
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t− 1 (ŵt−1,i), and find a solution for Equation 3.11 by SGD. Figure 3.3 shows the steps of
this method for three tasks on a neural network that has just one weight just for illustration.

Task 1:

Task 2:

Task 3:

Figure 3.3: Ensemble Of Approximations For Each Task’s Loss steps on a simple network
with one dimensional weights for 3 tasks

3.3.4 Ensemble Of Approximations For All Previous Tasks’ Loss

In this method, we allow a constant more memory and computation than one approximation
for all previous tasks method mentioned in Section 3.3.2. To do this, we start fromM weights
ŵ1,i by minimizing the true loss on the first task data (L̂1(w)) similar to Section 3.3.3. After
receiving task t > 1 data, we find a set of optima ŵ1:t,i by:

ŵ1:t,i = argminw
1
t
[Lt(w) + λt

1
2(w − ŵ1:t−1,m)>H1:t−1,m(w − ŵ1:t−1,m)] (3.13)

where
m = argmini||w1:t−1,i − w||2 (3.14)

which means ŵ1:t−1,m is the closest Taylor approximator of task 1 to t− 1, and H1:t−1,m is
the Kronecker-factored Hessian approximation of loss function of task 1 to t−1 on ŵ1:t−1,m.
The approximated Hessian H1:t−1,i is the Kronecker product of Q1:t−1,i and H1:t−1,i and
similar to Section 3.3.2, we approximate these matrices for all task 1 to t by adding Qt,i

and Ht,i to the previous ones:

H1:t,i = Q1:t,i ⊗H1:t,i ≈ (Q1:t−1,i +Qt,i)⊗ (H1:t−1,i +Ht,i) (3.15)
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After calculating the new Q and H after training each task, we can remove the previous
values for these matrices to save the storage. Figure 3.4 shows the steps of this method for
three tasks on a neural network that has just one weight just for illustration.

Task 1:

Task 2:

Task 3:

Figure 3.4: Ensemble Of Approximations For All Previous Tasks’ Loss steps on a simple
network with one dimensional weights for 3 tasks
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Chapter 4

Experiments

In this chapter, We evaluate four methods explained in Chapter 3 on the Domain Incre-
mental Learning problem and compare their results with several baselines.

4.1 Datasets

We evaluate all methods on these two datasets:

• Permuted MNIST: This dataset consists of a sequence of datasets, one for each task in
Domain Incremental Learning. Each dataset has been produced by applying a fixed
permutation of pixels to all images in MNIST [9] dataset and not changing their
assigned labels. So each task dataset is a collection of 60,000 training and 10,000
testing samples. Each sample consists of a 28× 28 resolution image and a label from
0 to 9.

• Rotated MNIST: This dataset is also based on MNIST [9] dataset. In this dataset, the
360 degrees have been divided into equal-length intervals which each one belongs to
one task. Then, from each interval, one degree is selected randomly and all images in
MNIST are rotated by that degree. This process keeps the labels of images the same,
so each task will have 60,000 training and 10,000 testing pairs of rotated images and
their labels.

We used 50 tasks Permuted MNIST or Rotated MNIST for all experiments.

4.2 Network Architecture and Optimization

We used a three-layer Multilayer perceptron (MLP) with two hidden layers of 100 units and
ReLU nonlinearities. We optimize all methods using SGD with momentum [19]. We set the
initial learning rate to 10−2, the momentum to 0.9 and the weight decay to 10−4. We also
used the batch size of 128 for all experiments. In some experiments, we show the results for
training for one epoch on the training data of each task, and the others show the results for
10 epochs.
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4.3 Performance Measure

In the literature, there are three major metrics to evaluate a continual learning method [15]:

Average Accuracy (ACC) = 1
t

t∑
i=1

Rt,i (4.1)

Backward Transfer (BWT) = 1
t− 1

t−1∑
i=1

Rt,i −Ri,i (4.2)

Forward Transfer (FWT) = 1
t− 1

t∑
i=2

Ri−1,i − b̄i (4.3)

where Ri,j is the test accuracy of the model on task Tj after observing the data of task
Ti, and b̄i is the test accuracy for task Ti after initialization. Average accuracy shows the
average value of accuracy of a model trained on t task on task 1 to t. Backward transfer
shows how training the model on a new task helps it to perform well on previous tasks. On
the other hand, forward transfer shows how training the model on a new task helps it to
perform well on upcoming tasks.

4.4 Results

In the first experiment, we compare the results of the proposed algorithms in Chapter 3
with these baselines:

• Finetune: This method updates the model greedily with the data of the current task
without considering the previous task performance. It suffers from Catastrophic For-
getting and is a lower bound among all methods.

• Multi-task: This method saves the training data of all previous tasks and optimizes the
loss on randomly selected mini-batches from all previous and current tasks’ training
data. It is an upper bound for all methods but requires a high storage space.

• EWC: As described in Chapter 2, EWC [7] approximated the Hessian as a diagonal
matrix. Except for its Hessian approximation, this method is similar to the one model
per task method.

Alongside these baselines, we show the results for these four methods:

• 1 model per task: This method refers to Section 3.3.1 which approximates the loss
function of each task separately and adds them to the current task true loss to find a
model that performs well on all tasks. It is an interpretation of Ritter et al. [22].
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• 5 models per task: This method refers to Section 3.3.3 when parameter M is set to 5.
It starts from 5 random initialized models and approximates each task loss function
on 5 different points in the parameters space.

• 1 model for all previous tasks: This method refers to Section 3.3.2 which approximates
the total loss function of all previous tasks as a parabola and adds it to the current
task’s true loss.

• 5 models for all previous tasks: This method refers to Section 3.3.4 when parameter
M is set to 5. It starts from 5 random initialized models and approximates the total
loss function of all previous tasks as parabolas centered on 5 different points in the
parameters space.

(a) Training each task for 1 epoch (b) Training each task for 10 epochs

Figure 4.1: Average test accuracy of continual learners on Permuted MNIST

(a) Training each task for 1 epoch (b) Training each task for 10 epochs

Figure 4.2: Average test accuracy of continual learners on Rotated MNIST
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Figure 4.1 and 4.2 show the average accuracy of 5 continual learners through the course
of learning 50 tasks on Permuted MNIST and Rotated MNIST respectively. The vertical
axis of these figures show the average test accuracy in percentage. To calculate this, we
evaluate the model after observing task t on the test data of all seen tasks t′ 6= t and
show the average value of them. For model ensembling methods, we also show the standard
deviation of models using error bars. The blue line shows the results for having an ensemble
of 5 loss approximators for each task. The orange one shows the results for having one loss
approximator for each task. The red one shows it for having 5 loss approximator for all
previous tasks. The green one also shows the results for having one loss approximator for
all previous tasks, and the purple one shows the results for EWC [7] method.

As we can see in this figure, 5 models per task and 1 model per task have the best
results among all methods. In all experiments except 10 epochs Rotated MNIST, after the
mentioned methods, 5 models for all previous tasks performs slightly better than one model
for all previous tasks, and the next one is EWC [7]. In 10 epochs Rotated MNIST, EWC [7]
performs better than 1/5 model(s) for all previous tasks. So using an ensemble of models
doesn’t change results for having a model per task, but it improves the results slightly in
the case of having one model for all previous tasks. We also see that even when one model
for all previous tasks doesn’t increase the memory space constantly by increasing tasks, it
works better than EWC [7] in most cases.

Table 4.1 shows the memory requirement of the 4 proposed models in megabytes that are
trained on Permuted MNIST. One model for all previous tasks method needs the smallest
amount of memory, and the 5 models per task method needs the largest amount of memory.
So 5 models and 1 model for all tasks are scalable methods, but the other two are not
scalable as we increase the number of tasks.

(a) Training each task for 1 epoch (b) Training each task for 10 epochs

Figure 4.3: Average test accuracy for different λt on Permuted MNIST
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1 model per
task

5 models per
task

1 model for
all tasks

5 models for
all tasks

Memory
(MB)

146.6 733.0 2.9 14.7

Table 4.1: Memory requirement of the proposed methods on Permuted MNIST

(a) Forward Transfer (1 epoch) (b) Forward Transfer (10 epochs)

(a) Backward Transfer (1 epoch) (b) Backward Transfer (10 epochs)

Figure 4.4: Forward and Backward Transfer of Continual Learning methods on Permuted
MNIST

In Figure 4.3, we investigate the effect of changing λt in Equation 3.6 on the performance
of one model per task method for Permuted MNIST. In this figure, task_id ∗ 1e2 means λt

is equal to the multiplication of task id and 102. As we increase λt, the performance gets
better until it reaches a threshold which is 1e5 in this figure. When we reach this threshold,
the norm of the gradient explodes in a training iteration because the large step size prevents
the optimizer to converge to a minima, and it starts to diverge from the minima and increase
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the loss. Increasing λt in the training phase by task id also increases the performance. As
we can see in this figure, the pink line (task_id ∗ 1e3) is above the orange one (1e3), and
the brown line (task_id ∗ 1e2) is above the blue one (1e2).

Figure 4.4 shows the Forward and Backward transfer of 5 Domain Incremental Learning
methods. As the distributions of tasks in Permuted MNIST are independent, we see that the
forward transfer for all methods converges to zero. We also see that the methods have the
same ordering based on backward transfer as on average test accuracy depicted in Figure
4.1.

(a) Training each task for 1 epoch (b) Training each task for 10 epochs

Figure 4.5: Test Accuracy of Tasks 1, 10, 20, 30, 40 and 50 on one Approximation Per Task
model on Permuted MNIST

Figure 4.5 shows how test accuracy changes for 11 tasks as we train the network by one
model per task method for Permuted MNIST. As we expected, the older a model is, the
forgetting is higher. Therefore, the test accuracy on task 1 has decreased more than the the
accuracy on tasks after this task.An interesting point in this figure is that the test accuracy
on tasks 20 to 50 decreased less than tasks before 20 even after the same new training tasks.

In Figure 4.6 and 4.7, we visualized the loss landscape of neural networks on different
tasks for Permuted MNIST. The models in these figures are trained for 1 epoch on each task.
We used [12] which considers two random directions normalized on each filter of the network
and plots the loss function on the 2D surface passes these vectors. Concretely, if w is the
network weights and θ1 and θ2 are the normalized random directions, this method create a
contour plot on L(w+ coef1 × θ1 + coef2 × θ2) where coef1 and coef2 are coeficients of each
direction between -1 and 1. Figure 4.6 shows the loss landscape of model i on task j (Li,j)
and Figure 4.7 shows the approximated loss landscape of model i on Kronecker-factored
approximator created in task j (Lprox

i,j ).
In these figures, the true and approximated loss of model i on task j > i are large which

is expected because model i is not trained on task j. However the loss does not increase in
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Figure 4.6 as we increase j, but it increases in our approximated loss in Figure 4.7. This is
because the origin of task j which we approximate Hessian on that point, gets further of
model i weights. It makes the error of Taylor approximation bigger as we increase the id of
the destination task j. This phenomenon is also observed when the task id j is lower than
model id i. In Figure 4.6, as we go right from the diagonal, the true loss increases, but the
approximated loss increases less in Figure 4.7.

L1,1 L1,10 L1,20 L1,30 L1,40 L1,50

L10,1 L10,10 L10,20 L10,30 L10,40 L10,50

L20,1 L20,10 L20,20 L20,30 L20,40 L20,50

L30,1 L30,10 L30,20 L30,30 L30,40 L30,50

L40,1 L40,10 L40,20 L40,30 L40,40 L40,50

L50,1 L50,10 L50,20 L50,30 L50,40 L50,50

Figure 4.6: Loss space visualization of 6 models created during training one approximation
for each task method on 6 tasks on Permuted MNIST. Li,j shows the true loss of model i
on task j.
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Lprox
1,1 Lprox

1,10 Lprox
1,20 Lprox

1,30 Lprox
1,40 Lprox

1,50

Lprox
10,1 Lprox

10,10 Lprox
10,20 Lprox

10,30 Lprox
10,40 Lprox

10,50

Lprox
20,1 Lprox

20,10 Lprox
20,20 Lprox

20,30 Lprox
20,40 Lprox

20,50

Lprox
30,1 Lprox

30,10 Lprox
30,20 Lprox

30,30 Lprox
30,40 Lprox

30,50

Lprox
40,1 Lprox

40,10 Lprox
40,20 Lprox

40,30 Lprox
40,40 Lprox

40,50

Lprox
50,1 Lprox

50,10 Lprox
50,20 Lprox

50,30 Lprox
50,40 Lprox

50,50

Figure 4.7: Kronecker-factored loss space approximation visualization of 6 models created
during training one approximation for each task method on 6 tasks on Permuted MNIST.
Lprox

i,j shows the approximated loss of model i with Kronecker-factored approximator created
on task j.

Figure 4.8 shows the total loss of tasks 1 and 2 during training of task 2 for five methods
on Permuted MNIST. In this figure, the methods with better performance in Figure 4.1 have
lower loss as expected. Training for more epochs helps all methods to reach lower training
loss except for Finetune. In Finetune, training for more epochs means that the new optimum
can go further away from the optimum of task 1. Because this method does not use any
regularization to maintain the performance on task 1, the loss of this task increases as we
go further away from the previous optimum.
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Figure 4.8: Total loss during training of task 2 on Permuted MNIST
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Chapter 5

Conclusion

We presented three different methods to mitigate the Catastrophic Forgetting problem in
Domain Incremental Learning. In these methods, we used Kronecker-factored approximation
of Hessian to approximate each task loss function by second-order Taylor approximation. In
these methods, we considered the trade-off between accuracy and memory and computation.
The experiments showed how these methods work on the Permuted MNIST and Rotated
MNIST which are Domain Incremental datasets. We also visualized the loss space for the
true and the approximated loss with one of these methods. We conclude by discussing
limitations and future work.

5.1 Limitations and Future Work

One limitation of the presented methods is that they rely on having access to task-id during
the training time, but the transition between different domains can be gradual in practice.
Therefore, detecting a specific point in the data stream when the domain changes needs extra
effort and supervision and sometimes be hard because of the gradual change. Therefore,
detecting when a task is finished automatically would be an interesting line for future
works.

Another limitation of this work is the precision of the second-order Taylor approximation
to approximate the loss function of one or multiple tasks. One interesting future work can
be learning the loss function of a task around one of its optimum using a neural network.
The main problem to do so is memory limitation because neural networks usually have in
the order of power two of their input size parameters which is a large number when the
input size is the parameter size of another neural network. Therefore, we need to design a
specific network structure that has the number of parameters that grows linearly with its
input size.

In this work, we just investigate the supervised setting. In future work, we can investigate
if having access to a non-stationary source of unlabeled data stream helps us to get better
results than using just the labeled samples.
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