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Abstract 

We conducted the portfolio optimization on the selected benchmarks for nine asset 

classes with a time range starting from January 2007 to December 2016 in Canadian 

Currency, to prove whether the mean-variance approach by Markowitz (1952) combined 

with a covariance matrix blended from a quiet time and a turbulent time as introduced by 

Chow, G., Jacquier, E., Kritzman, M., and Lowry, K. (1999) is still valid with recent years’ 

data. 

As a result, the optimal portfolios with different covariance matrices blended from 

turbulent and quiet periods have shown sensitivity of optimal weights to both possibilities 

of occurrence for the turbulent and quiet periods, and different risk aversion to turbulent 

and quiet periods. The outlier-sample optimal portfolio is the most conservative one and 

provides a lowest expected return. Besides, the optimal weights of Cash are much higher 

due to the higher volatilities of ours benchmarks for US equity, emerging market equity, 

US bonds, high-yield bonds, and commodities.  
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1: Introduction 

Financial markets were shaken by a series of shocks from mid-2007 through the 

first quarter of 2009. Major indices, such as the S&P 500 Index and the MSCI Index, had 

suffered tremendous losses during the crisis. Investors had also lost money, and many asset 

management firms were in survival mode while others had gone bankrupt (Fabozzi, 

Focardi & Jonas, 2010). The losses during the financial crisis highlighted the fact that risk 

parameters are unstable and unpredicted. To enhance the performance of investment 

portfolios, a more informative alternative should be developed to better estimate risk 

parameters from those event-measured observations, instead of time-measured 

observations, and construct optimal portfolios which can better represent a portfolio's likely 

performance during turbulent markets than the time-measured approach. 

This report is aimed to replicate the two innovations of procedure coding with 

MATLAB to the portfolio optimization introduced by those researchers (Chow et al., 

1999). The innovations are based on the landmark Markowitz mean-variance approach. 

Additionally, analyses of empirical results based on the ten-year return data including a 

wide range of asset classes, starting from the February 2007 to the end of 2016, will be 

provided to demonstrate both procedures. 
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2: Literature Review 

2.1 Markowitz Optimization Approach 

Harry Markowitz introduced one of the most important and influential theories for 

portfolio selection (Markowitz, 1952). He states that investors can construct optimal 

portfolios by using this theory so that the resulting portfolio would achieve an acceptable 

expected return with minimal volatility. He also introduced the efficient frontier which can 

be drawn as a curve on a graph of risk against expected return of a portfolio. The frontier 

is the set of optimal portfolios that can give the maximized expected return for a given 

level of risk or the lowest level of risk for a given level of expected return. 

However, the success of the mean-variance model has inevitably drawn many 

criticisms. One of its considerable limitations is that the estimation of the requisite risk 

parameters is inaccurate and unreliable since those parameters are estimated from small 

samples. Additionally, during the risk estimation procedure, a sample’s observation is 

equally weighted. Therefore, during turbulent periods, the estimates may misrepresent a 

portfolio’s risk attributes and there is arbitrariness to measuring returns simply as a function 

of units of time (Chow et al., 1999). Furthermore, one of the prerequisite to the use of 

Markowitz is that the utility is only a function of the first two moments and he did not work 

out the optimization process considering skewness and higher moments. Thus, the two-

moment approach cannot offer guidance for making effective trade-offs between mean, 

variance, and skewness demonstrated from the empirical summary demonstrated by 

(Harvey et al., 2010). 
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2.2 Outliers 

2.2.1 Outliers for a Single Asset 

An outlier is an observation that appears to deviate markedly from other and lies an 

abnormal distance from other values observations in the return series observed (Barnet and 

Lewis, 1994). It is straightforward to visually identify an outlier in a return series for a 

single asset. However, the boundary between normal values and outliers is difficult to 

determine by screening in some cases. It is critical to decide what values will be considered 

abnormal. For example, a return that falls within the 2.5% of the distribution on either tail 

can be defined as an outlier, given that the expected continuous return is µ and the standard 

deviation of the return series is σ. Therefore, a return that is greater than µ+1.025σ or less 

than µ-1.025σ is identified as outlier (Chow et al., 1999). 

2.2.2 Multivariate Outliers 

A multivariate outlier (MVO) is a combination of contemporaneous unusual returns 

on at least two types of asset classes. It is more difficult to identify MVO because simple 

visual detection of the outliers is virtually inapplicable (Majewska, 2015). When there are 

only two return series in the portfolio, the following procedure can be used to identify an 

outlier. 

For two independent return series Asset A and Asset B with equal variances, a 

scatterplot is presented below in Figure 1. Firstly, the inside circle was drawn around the 

mean of the data and its radius was chosen as tolerance for the outliers (Chow et al., 1999). 

Secondly, to identify the outliers, the equation of circle for each observation was calculated 

with its centre located at the mean of the data and its perimeter passing through the 

observations. Thus, if the radius of the circle is greater than the radius of tolerance circle, 
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the observation is identified as an outlier. The limitation of this method is that it can only 

be applied to the uncorrelated return series with equal variance.  

 

 

Figure 2-1: Scatter Plot for Two Independent Return Series with Equal Variances. 

The second type of return series is that two series are uncorrelated, but with unequal 

variance. In this scenario, an ellipse is a more appropriate shape used to define the outlier 

boundary. The method to identify outlier is similar to the circle case above. The outliers 

are found by comparing the boundaries of observation and tolerance ellipses with the same 

perimeter. 

 

Figure 2-2: Scatter Plot for Two Uncorrelated Return Series with Different Variances. 
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The scatter plot below indicates that when the return series is positively correlated 

with unequal variances, the tolerance ellipse generated is positively sloped. The basic 

method for identifying an outlier is unchanged, however, if the asset returns are correlated 

or the number of assets in the portfolio exceeds three, the Mahalanobis distance is a more 

appropriate criterion used to calculate the exact outliers. 

 

Figure 2-3: Scatter Plot for Two Correlated Return Series with Unequal Variances. 

2.2.3 Mahalanobis Distance 

The Mahalanobis distance is a well-known criterion for identification of 

multivariate outliers and it depends on robust estimated parameters of the multivariate 

distribution (Majewska, 2015). It is assumed that the return series 𝑦𝑡, from a p-dimensional 

dataset, is multivariate normally distributed. The sample mean vector is denoted by μ and 

the sample covariance matrix is denoted by 𝑉. The Mahalanobis distance (MD) for each 
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𝑀𝐷𝑖 = √∑(𝑦𝑖 − 𝜇)𝑉−1(𝑦𝑖 − 𝜇)′

𝑛

𝑖=1

 Eq.1 

Accordingly, the observations with a large MD value can be identified as outliers. 

For normally distributed data, the MD is approximately Chi-squared distributed with p 

degrees of freedom. Potential multivariate outliers will typically have large values 𝑀𝐷𝑖, 

and in this situation a comparison with the 𝜒𝑝
2 distribution can be made. For example, if a 

tolerance distance was identified as the 97.5%-quantile Q of the Chi-squared distribution 

with d degrees of freedom, all samples of 𝑀𝐷𝑖 which are larger than Q are declared as 

outliers. 

It is also assumed that the square of the Mahalanobis Distance 𝑀𝐷𝑖
2 given by the 

following equation equals the square of the distance from the mean point to each data point, 

and the use of  𝑀𝐷𝑖
2  in replace of 𝑀𝐷𝑖  can improve the performance of the detection 

procedures in presence of outliers (Chow et al., 1999). 

 𝑀𝐷𝑖
2 = ∑(𝑦𝑖 − 𝜇)𝑉−1(𝑦𝑖 − 𝜇)′

𝑛

𝑖=1

= (𝑦𝑡 − 𝜇) Eq.2 

2.2.4 Chi-squared Distribution 

In statistics, if m independent random variables 𝑍1, 𝑍2. 𝑍3, … , 𝑍𝑘 are normally distributed, 

then the sum of their squares is shown below: 

𝑄 =  ∑ 𝑍𝑖
2

𝑘

𝑖=1

 Eq.3 

Q follows a Chi-squared distribution with k degrees of freedom denoted as follows: 
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𝑄 ~ 𝜒2(𝑘) Eq.4 

The following two figures are the Cumulative Distribution Function and Probability 

Distribution Function graphs of the Chi-squared distribution with 1 to 9 degrees of freedom 

(‘Chi-squared distribution’, n.d.). 

 

Figure 2-4: Chi-squared Distribution (left: CDF; right: PDF)  

Chi-squared distribution is a critical part of detecting multivariate outliers. After the 

calculation of Mahalanobis Distance (MD), which is a set of Chi-squared score, a tolerance 

boundary can be identified by finding the Chi-squared score, which is defined as the critical 

value shown below in Table 2-1. If an outlier is defined as falling beyond the outer 10% of 

the distribution and the number of return series is four, the critical value can be found as 

7.78, which is the tolerance boundary of the data set. Finally, all the outliers can be detected 

by finding all the points with a larger MD value than 7.78 (Chow et al., 1999). 

Table 2-1: Percentage Points of Chi-squared Distribution 

 

Percentage Points (Critical Value) 

Degrees of Freedom  Probability 

0.25 0.1 0.05 0.01 

1 1.32 2.71 3.84 6.63 

2 2.77 4.61 5.99 9.21 

3 4.11 6.25 7.81 11.34 

4 5.39 7.78 9.49 13.28 
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2.3 Blended Covariance Matrices 

Chow G., Jacquier E., Kritzman M., and Lowry K. (1999) recommended that 

investors should take consideration of risks during quiet periods and turbulent periods so 

that they can achieve their long-term objective while the portfolios can withstand 

exceptional periods of market turbulence. An innovation in their framework built on the 

original Markowitz model introduced an approach for selecting portfolios based on a 

blended covariance matrix shown below including the inside covariance matrix ∑𝑖 and the 

outlying covariance matrix ∑𝑜 , where 𝑝  is the probability of falling within the inside 

sample and 1 − 𝑝  is the probability of falling within the outlier sample. The inside 

covariance matrix represents a quiet risk regime, and the other from outlier observations 

represents a turbulent risk regime. 

𝑝∑𝑖 + (1 − 𝑝)∑𝑜 Eq.5 

Then, the expected utility 𝐸𝑈 equation can be obtained by substituting these two 

covariance matrices, with a weight vector 𝑤 and a probability 𝑝 of occurrence to the quiet 

risk regime: 

𝐸𝑈 = 𝑤′𝜇 − 𝜆[𝜆𝑖
∗𝑝𝑤′∑𝑖𝑤 + 𝜆𝑜

∗ (1 − 𝑝)𝑤′∑𝑜𝑤 Eq.6 

The equation can be recast to the original Markowitz objective function as below: 

𝐸𝑈 =  𝑤′𝜇 − 𝜆(𝑤′∑∗𝑤) Eq.7 

The 𝜆 is defined as the aversion to full-sample risk, and the 𝜆𝑖
∗ for inside samples 

and 𝜆𝑜
∗  for outlier samples are used to differentiate investor’s views about the respective 

probabilities of two risk regimes. 
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𝜆𝑖
∗ =  

2𝜆𝑖

𝜆𝑖 + 𝜆𝑜
 Eq.8 

𝜆𝑜
∗ =  

2𝜆𝑜

𝜆𝑖 + 𝜆𝑜
 

Eq.9 
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3: Data Processing 

3.1 Data Source 

10-year monthly prices beginning in January 2007 and continuing through December 

2016 were selected since the global financial crisis period during 2007 and 2008 can be 

included for a better detection of outliers. These prices are for 4 different kinds of asset 

classes selected to create a diversified portfolio, which include equities, bonds, 

commodities, and cash, with a detailed illustration of indices chosen for each class. All the 

prices were obtained from the Bloomberg platform and have been converted to Canadian 

Dollars. MATLAB was used to process and analyse the price data as matrix operations will 

be mainly used to calculate the Mahalanobis distance and find the optimal portfolios based 

on the new blended covariance matrices. 

Table 3-1: Data Sources 

Domestic Equity SPTSX Index 

US Equity S&P 500 Index 

STOXX Euro Equity STOXX Europe Total Market Index 

Emerging Market Equities MXEF index 

Domestic Bonds XBB (replication of FTSE TMX) 

US Bonds Bloomberg Barclays US Aggregate Total Return Value 

Unhedged  

Global High Yield Bond  Bloomberg Barclays Global High Yield Total Return index 

Dow Jones Commodity  Dow Jones Commodity Index 

Cash Canadian Three-Month T-bill 

 

3.2 MATLAB Modelling 

MATLAB was applied to the calculation and modelling process. A MATLAB model 

was created to process the raw data, identify multivariate outliers, and create blended 

optimal portfolios. 
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3.2.1 Mahalanobis Distance (MD) 

The essential parameters to obtain the MD are mean and covariance matrix of the return 

series. These two were calculated by MATLAB functions mean() and cov() respectively. 

Then, the MD was determined by equation 1 and its scatter plot with the date on the x-axis 

is shown below in Figure 3-1. It indicates that some of the multipliers may be detected 

visually from the figure, for example, there are 4 points circled between 2008 and 2009 

located considerably far away from the mean value. However, it is hard to precisely identify 

all the outliers in the return series, and the application of Chi-squared distribution will be 

illustrated in the following paragraphs. 

 

Figure 3-1: Scatter Plot for the Square of Mahalanobis Distance 

 

3.2.2 Outlier Identification 

The most critical step to find all outliers is to calculate the critical value of the return 

sample. The value is vital for defining the tolerance boundary and all the points which fall 

beyond the boundary can be defined as outliers.  



 

 12 

For general n-return series, the square of Mahalanobis distance is also distributed 

as a Chi-squared distribution with n degrees of freedom (George et al., 2009). In this case, 

it is assumed that outliers are defined as falling beyond the outer 25 percent of the 

distribution with 9 degrees of freedom. It can be found from the distribution table in 

Appendix 1 that the critical value is 11.39. Therefore, as shown in the cumulative 

distribution function plot below, all the points with larger 𝑀𝐷2 than boundary value of 

11.39 are the outliers detected, and the corresponding months and return series are selected 

to create a new outlier portfolio for further calculation. 

 

Figure 3-2: PDF Plot for Chi-squared Distribution of 𝑀𝐷2 

 

3.2.3 Blended Optimal Portfolios 

In the previous part, multivariate outliers were identified, which are representative 

of turbulent markets during the global financial crisis with higher-than-normal volatility 

and correlations. There are four steps to finding the optimal portfolios with event-varying 
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covariance matrices. Firstly, the probabilities of occurrence of each risk regime 𝑝 and 1 −

𝑝 are set, which are the forecast parameters. Secondly, different degrees of risk aversion 

toward the two regimes 𝜆𝑖
∗ and 𝜆𝑜

∗  are specified, which can be interpreted as investors’ 

attitude toward risks. Then, a single covariance matrix can be calculated by Equation 5, 

which can reflect one’s view about the likelihood of each regime and one’s attitude toward 

each regime at the same time. Finally, the optimal allocations, risk parameters, and returns 

for the portfolio can be generated by a MATLAB function portfolio(), which implements 

the Markowitz mean-variance portfolio optimization. There are four types of tests 

conducted as illustrated below in Table 3-2 based on different expected likelihood of each 

regime and attitude towards each regime.  

Table 3-2 Type of Tests 

Types p 𝝀𝒊 𝝀𝒐 

Full Sample N/A N/A N/A 

Equal Probability, 

Higher Outlier Aversion 

50% 2 3 

Equal Probability, 

Equal Risk Aversion 

50% 2 2 

Empirical Probability, 

Higher Outlier Aversion 

80% 2 3 
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4: Result Analysis   

4.1 Identify Outliers 

As shown in Table 4-1, in the year 2008, 9 months are identified as outliers except 

for May, April and June, based on a 25 percent outlying area of the Chi-squared 

distribution. During 2007-2008, the global equity and bond market performance were quite 

volatile due to the global financial crisis starting from the collapse of the US housing 

market. Commodities also generated huge losses during the second half year of 2018. 14 

of the total 24 outliers of the 119 months in the full sample appeared during the period of 

December 2007 to December 2008.  

Table 4-1: Returns for Nine Asset Classes, January 2008 - December 2008 

(25 Percent Boundary; Annualized monthly return) 

Month 

of 

2008 

Domestic 

Equity 

US 

Equity 

Euro 

Equity 

Emerging 

Market 

Equities 

Domestic 

Bonds 

US 

Bonds 

High-

yield 

Bonds Commodities Cash 

1 -2.18% -2.21% -4.07% -5.32% -0.09% 1.25% 0.06% 2.44% 0.47% 

2 1.39% -2.53% -0.42% 2.05% 0.20% -0.93% -1.40% 4.05% 1.81% 

3 -0.75% 1.76% 2.00% -0.39% 0.52% 2.17% 1.97% -0.20% -1.23% 

4 1.87% 1.21% 0.86% 2.49% -0.10% -0.89% 0.70% 0.31% 0.07% 

5 2.36% -0.11% -0.73% 0.10% -0.25% -0.89% -0.32% 0.53% 0.18% 

6 -0.74% -2.92% -3.13% -3.67% -0.02% 0.95% -0.24% 4.51% 0.12% 

7 -2.71% -0.14% -1.04% -1.55% -0.39% 0.26% -0.21% 2.04% 0.00% 

8 0.57% 2.14% -0.39% -2.11% 0.32% 2.03% 1.44% -0.84% 1.03% 

9 -6.88% -4.30% -7.17% -8.63% 0.24% -0.75% -3.91% -5.66% -0.20% 

10 -8.06% -2.66% -5.20% -8.56% -1.34% 4.37% -3.55% -9.08% 0.29% 

11 -2.25% -1.95% -1.84% -2.02% -0.48% 2.82% -1.60% -2.38% 1.19% 

12 -1.35% -0.48% 1.54% 2.37% 1.05% 0.77% 2.40% -1.93% 0.03% 

           

Table 4-2 and Table 4-3 show the risk parameters estimated respectively from the 

full sample of 119 months and outlier sample of 24 months. The annualized average 

standard deviation of the full sample is 16.26%, compared to the outlier sample’s standard 

deviation of 25.44%, representing a 56% increase over that of the full sample.  
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However, the average correlation of full sample is 0.33, which is lower than the 

0.36 average correlation of outlier sample. The correlation between different asset classes 

in the global markets rose during turbulent time mainly because that investors were 

dumping risky assets indiscriminately during the financial crisis. 

From an asset class diversification perspective, Table 4-4 indicates a higher 

correlation in both the full sample and the outlier sample when commodities are excluded, 

and the average correlation increases 6 percent and 3 percent respectively for both samples. 

In addition, the average correlation of commodities with all other assets classes increasing 

from 0.23 for the full sample to 0.28 for the outlier sample indicates that the diversification 

function of commodities is weakened during financial crisis periods.  

Table 4-2: Risk Parameters of Full Sample 

  

Domestic 

Equity 

US 

Equity 

Euro 

Equity 

Emerging 

Market 

Equities 

Domestic 

Bonds 

US 

Bonds 

High-

yield 

Bonds Commodities Cash 

A. 

Standard 

deviation 19.25% 17.75% 22.68% 25.08% 5.68% 17.47% 13.89% 20.71% 3.79% 

B. Correlation                 

 1.00 0.45 0.55 0.70 0.20 -0.59 0.13 0.41 -0.03 

    1.00 0.76 0.49 0.10 0.04 0.54 0.11 -0.24 

      1.00 0.68 0.15 -0.14 0.54 0.25 -0.20 

        1.00 0.19 -0.32 0.38 0.33 -0.05 

          1.00 -0.11 0.24 0.07 -0.03 

            1.00 0.39 -0.21 0.05 

              1.00 0.19 -0.21 

                1.00 0.15 

                  1.00 
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Table 4-3: Risk Parameters of Outlier Sample 

  

Domestic 

Equity 

US 

Equity 

Euro 

Equity 

Emerging 

Market 

Equities 

Domestic 

Bonds 

US 

Bonds 

High-

yield 

Bonds Commodities Cash 

A. 

Standard 

deviation 29.54% 26.54% 32.32% 39.40% 9.35% 26.93% 24.98% 32.32% 7.59% 

B. Correlation                 

  1.00 0.45 0.57 0.71 0.24 -0.54 0.27 0.60 0.00 

    1.00 0.81 0.54 0.10 0.16 0.62 0.13 -0.28 

      1.00 0.75 0.08 0.03 0.65 0.23 -0.24 

        1.00 0.22 -0.15 0.54 0.48 0.03 

          1.00 -0.21 0.27 0.21 -0.09 

            1.00 0.26 -0.26 -0.03 

              1.00 0.20 -0.32 

                1.00 0.17 

                  1.00 

 

Table 4-4: Comparison Risk Parameters (Average) 

Sample  

Standard 

Deviation Correlation 

Correlation of All Assets 

Excluding Commodities 

Correlation of Commodities 

with All Other Assets Classes 

Full 16.26% 0.33 0.35 0.23 

Outlier 25.44% 0.36 0.37 0.28 

 

Additionally, by defining outliers as those falling beyond the outer 25 percent of 

the distribution, 20.2 percent months (24 months out of 119 months) are detected as 

outliers, which is less than the 25 percent assumed. This slightly platykurtic distribution 

indicates that there are more observed months concentrating near the mean return than the 

number of predicted observations theoretically. The 24 outliers are 2.7 times the number 

of asset classes, provided 24 observations for and nine-by-nine covariance matrix, 
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consistent with the validity criteria set forth by Chow G., Jacquier E., Kritzman M., and 

Lowry K. (1999). 

4.2 Optimal Portfolios   

In our case, the process of portfolio optimizations is conducted under the 

assumption that investor does not pay taxes, and there’s no transactions during the 

investment horizon.   

We use the annualized monthly mean return of the nine asset classes and different 

blended covariance when determining the optimal portfolio weights in different scenarios 

as shown in Table 4-5. Because the mean returns are set in a different scenario, the changes 

in the optimal weights results reflect only differences of risk parameters, which is the 

covariance matrix in this case. Besides, it is also assumed that the full-sample covariance 

matrix reflects the risk during the 10-year investment horizon. 

Table 4-5: Annualized Mean return and Standard Deviation for the nine asset 

classes 

 
Domestic 

Equity 

US 

Equity 

Euro 

Equity 

Emerging 

Market 

Equities 

Domestic 

Bonds 

US 

Bonds 

High-

yield 

Bonds 

Commodities Cash 

Mean 

Return 2.56% 3.99% 2.04% 3.36% 0.48% 3.72% 4.55% 3.78% 0.60% 

Standard 

Deviation 19.25% 17.75% 22.68% 25.08% 5.68% 17.47% 13.89% 20.71% 3.79% 

                  

Table 4-6 shows the results comparison of optimal portfolio weights for both the 

full-sample portfolio and the outlier-sample portfolio. In terms of the degree of risk 

aversion, it is assumed that investors are willing to sacrifice 2.5 units of expected return of 

portfolio to lower risk, which is the variance, by one unit. 
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Table 4-6: Comparison of Optimal Asset Allocation (Full Sample and Outlier 

Sample) 

  
Domestic 

Equity 

US 

Equity 

Euro 

Equity 

Emerging 

Market 

Equities 

Domestic 

Bonds 

US 

Bonds 

High-

yield 

Bonds 

Commodities Cash 

Full 

Sample  
20.59% 3.07% 0 0 0 34.32% 28.37% 13.64% 0 

Outlier 

Sample  8.78% 2.80% 0 0 16.73% 15.74% 8.48% 1.70% 45.78% 
 

As shown above in Table 4-7, the optimal portfolio weight for the outlier-sample 

portfolio is more conservative than that of the full-sample portfolio. The weights for 

different asset classes in the full-sample optimal portfolio would be primarily allocated to 

Domestic Equity, US Bonds, High-yield Bonds, and Commodities. However, the optimal 

portfolio based on the outlier covariance matrix would be concentrated in bonds and 3 

months Canadian T-bills, and the weight for equities is almost lowered by half to 11.58% 

of the portfolio, and weights for the commodities and High-yield Bonds are reduced to 

1.70% and 8.48% respectively.  

As shown in the table below, the expected return of the optimal portfolio 

constructed only using the outlier sample, mainly representing the global financial crisis 

period, offers an extremely low expected return of 1.73% and a comparatively low standard 

deviation of 3.92%. However, while the full-sample optimal portfolio provides a higher 

expected return, the standard deviation increased by 66.8% in the turbulent environment.          

Table 4-8: Comparison of Optimal Asset Allocation (Full Sample and Outlier 

Sample) 

  

 
Standard 

Deviation 

Expected 

Return 

Full 

Sample 

Normal 

Environment 
9.05% 3.73% 
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Optimal 

Port. 
Turbulent 

Environment 
15.1% 3.73% 

Outlier 

Sample 

Optimal 

Port. 

Normal 

Environment 
3.92% 1.73% 

Turbulent 

Environment 
6.36% 1.73% 

        

In this case, we assumed that the normal environment is associated with the risk 

parameters reflecting the whole investment horizon, whereas the turbulent environment is 

associated with the volatility of those 24 months which are identified as outliers. Table 4-

7 shows that optimal portfolio based on the outlier sample offers a lower volatility in a 

turbulent economic environment, reducing 58% of the standard deviation for the full-

sample optimal portfolio in the same period (15.1%) to 6.36%. However, the expected 

return of the optimal portfolio constructed based on the outlier-sample risk parameters 

offers an extremely low expected return of 1.73%, due to the change in asset allocation 

with a lower weighting of domestic and US equities in favour of bonds and cash.  

So, to avoid the extremely low return of the optimal portfolio that is significantly 

under investor expectations, we use a blended covariance matrix using inside-sample risk 

parameters with a lower risk aversion and outlier-sample risk parameters with a higher risk 

aversion, as introduced by Chow G., Jacquier E., Kritzman M., and Lowry K. (1999).   

Table 4-8 displays the results from the portfolio optimization process in different 

scenarios, as well as the expected performance in a normal environment representing the 

full-sample months and in a turbulent environment which represents only the outlier 

months.  



 

 20 

Table 4-9: Comparison of Optimal Asset Allocation (Full Sample and Outlier 

Sample) 

Asset Class 

Full Sample Optimal 

(Empirical Probability 

and Equal Outlier 

Aversion) 

Empirical 

Probability 

and Higher 

Outlier 

Aversion 

Equal 

Probability 

Equal 

Aversion 

Equal 

Probability 

Higher 

Outlier 

Aversion 

Domestic Equity 20.59% 19.54% 12.00% 11.71% 

US Equity 3.07% 0.26% 1.96% 2.17% 

Euro Equity 0 0 0 0 

Emerging Market 

Equities 
0 0 0 0 

Domestic Bonds 0 0 5.92% 6.59% 

US Bonds 34.32% 30.28% 19.65% 19.77% 

High-yield Bonds 28.37% 18.54% 12.64% 12.48% 

Commodities 13.64% 8.46% 4.10% 4.13% 

Cash 0 22.91% 43.74% 43.14% 

Normal Environment     

Expected Return 3.73% 2.938% 2.137% 2.136% 

Standard Deviation 9.05% 6.78% 4.76% 4.76% 

Turbulent Environment     

Expected Return 3.73% 2.938% 2.137% 2.136% 

Standard Deviation 15.1% 11.15% 7.78% 7.78% 

 

The first column presents the optimal portfolio determined by the full-sample risk 

parameters. The volatility and covariance matrix estimated from the full sample reflect the 

empirical probability and equal risk aversion to both inside and outlier months. The second 

column indicates that, with a higher risk aversion to outlier months, which assumes that 

investors are 1.5 times as averse to risk in turbulent times as they are during quiet months, 

the optimal portfolio shifts 22.91% of the portfolio to 3-month Canadian T-bills.  
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The next column provides the portfolio optimization under the risk parameters of 

equal frequency for outlier months and inside months, which means a higher volatility 

compared to the empirical frequency portfolio. It shows an even higher weighting of cash 

in the portfolio. Moreover, the last optimal portfolio is the most conservative one, under 

the assumption that turbulent months will occur 50% of the time rather than the actual 

frequency, which is 20% of the time, and the risk aversion to outlier months is the same as 

the second one. Compare to the full sample portfolio, this final portfolio reduces the 

domestic equity weighting from 20.59% to 11.71%, but higher than the pure outlier 

portfolio with an 8.78% domestic equity. Under the condition of emphasizing both the 

higher frequency of turbulent period and greater risk aversion, the last optimal portfolio 

most closely resembles the pure outlier-sample optimal portfolio. 
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5: Conclusion 

5.1 Conclusion 

In this paper, we adapted the Markowitz’s mean-variance portfolio optimization 

theory and blended covariance matrix portfolio optimization procedure introduced by 

Chow, G., Jacquier, E., Kritzman, M., and Lowry, K. (1999), by using the selected actual 

indices for 9 asset classes as portfolio benchmark with a time range from January 2007 to 

December 2016 in Canadian Currency.  

We identified total 24 months as outliers falling outside the tolerance boundary in 

the Chi-squared distribution of the Mahalanobis distance. The outliers are mainly falling 

during the global financial crisis period during 2007-2008. The risk parameters estimated 

from the outlier sample more precisely reflect the riskiness during the period of global 

financial crisis than the risk parameters estimated from the period in full sample. By using 

the blended covariance matrix representing various investors’ risk aversion during quiet 

and turbulent times, and weighted by various possibilities for the occurrence of quiet and 

turbulent times, our optimal portfolio results support the key findings concluded by Chow, 

Jacquier, Kritzman, and Lowry (1999). 

In our case, the volatility of full-sample optimal portfolio increased from 9.05% to 

15.1% when the portfolio is subjected to the riskiness of outlier sample. As expected, the 

optimal portfolios with different covariance matrices blended from turbulent and quiet 

periods have shown sensitivity of portfolio optimal weights to both various possibilities of 

occurrence for the turbulent and quiet period, as well as investors’ different degrees of 

willingness for taking on risk during turbulent and quiet periods. The outlier-sample 
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optimal portfolio is the most conservative one among all 5 optimal portfolios under 

different scenarios and provides the lowest expected return.  

The results concluded by Chow, G., Jacquier, E., Kritzman, M., and Lowry, K. 

(1999) are analysed from a US investor’s perspective. In our case, our innovation is that 

we conducted the research from a Canadian investor’s perspective, and the optimal 

portfolios are invested in the assets classes in Canadian dollars. Our investment horizon 

covers last ten years including the recent global financial crisis during 2007-2008. Our 

results have shown positive correlations between commodities and all other equity asset 

classes, while the data used by Chow G., Jacquier E., Kritzman M., and Lowry K. (1999) 

shows a negative correlation between commodities and other asset classes. 

The results also show a less volatile Canadian Treasury bill, compared to the US 

cash equivalents with a higher volatility used by Chow G., Jacquier E., Kritzman M., and 

Lowry K. (1999). 

Moreover, for the results of optimal portfolios generated from the different blended 

covariance matrices, the optimal weights of cash are much higher for our results, as the 

volatilities of US equity, emerging market equity, US bonds, high-yield bonds, and 

commodities are all higher than those in Chow G., Jacquier E., Kritzman M., and Lowry 

K. (1999). Besides, our results show a higher average correlation between asset classes 

than that in the precedent paper. It might indicate that the acceleration in the pace of 

globalization and financial product innovations in the last ten years might have deepened 

the global risky assets’ connections and fluctuations, or it’s only a matter of different 

benchmarks the two researches are using. Due to the lack of quantitative academic research 

on overall trend of global risky assets performance’s volatility and correlation over time, 
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we examined the Chicago Board Options Exchange (CBOE) Volatility Index (VIX), which 

is constructed using the implied volatilities of a wide range of S&P 500 index options, 

introduced in 1993. The VIX combines the price of multiple options and derives an 

aggregate value of volatility. We found out that the average weekly volatility level 

increased from 18.28 in the period from January 1993 to December 1999 to 20.59 during 

the period from December 2006 to December 2016. However, this index slumped to 9.14 

at the beginning of November 2017, its lowest since December 1993. 

For research limitations, we did not incorporate the effects of taxes such as capital 

gains and transactions costs in the process of portfolio optimization. There are two reasons. 

First, the focus of this research is on the sensitivity of portfolio optimal weights to both 

possibilities of occurrence for the turbulent and quiet periods, and risk aversions during 

turbulent and quiet periods, thus taxation would not be different during quiet and turbulent 

times. Second, liquidity during the financial crisis is highly restricted and transactions 

become near impossible during extremely turbulent times. Therefore, we made the 

assumption that there are no transactions during the investment horizon. These limitations 

do not have great impact on the key conclusions in our research and the ability to effectively 

achieve the research goal. However, it would be great explorations for further research on 

portfolio optimizations. 
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Appendix  

 

%% 1. Input data: full dataset 

ret = xlsread('monthly_data.xlsx','10-year ret'); 

 

%% 2. Define variables  

p = 0.5; % probablility of falling within the inside sample 

lambda_in = 2; % aversion to inside risk; 

lambda_out = 3; % aversion to outlier risk; 

 

%% 3. Get the average of return 

mu = mean(ret); 

figure; 

 

% Define x-axis: Date 

dateinput= xlsread('Date.xlsx'); 

year = dateinput(:,3); 

mon = dateinput(:,1); 

day = dateinput(:,2); 

dates = datenum(year,mon,day); 

 

% Plot the return 

plot(dates,ret); 

datetick; 

title('Returns of All Asset Classes'); 

xlabel('Year'); 

ylabel('Returns'); 

legend('Domestic Equity','US Equity','STOXX','Emerging Market Equity',... 

    'Domenstic Bonds','US Bonds','High-yield Bond','Commodity',... 

    'T-bill','Location','southeast'); 

 

%% 4. Get the full-sample covariance matrix 

covariance = cov(ret); 

 

%% 5. Calculate the multivariate outliers and find the Outlier Portfolio 

dt = (ret-mu) * covariance^(-1)*(ret-mu)'; 

 

% Find out the dialogue of the dt matrix: the distance we find 

real_dt = diag(dt); 

 

% Plot the distance in a scatter plot  

scatter(dates,real_dt,'filled','k'); 

datetick; 

title('Square of Mahalanobis Distance'); 

xlabel('Year'); 

ylabel('MD^2'); 

 

% Chi-squared Distribution pdf 

figure; 
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x=real_dt; 

y = chi2cdf(real_dt,9); 

plot(x,y,'*','k') 

title('Chi-squared Distribution of MD^2: CDF'); 

xlabel('MD^2'); 

ylabel('Probability'); 

 

% Suppose:  

% The outlier is defined as falling beyond the outer 25 percent 

% of the distribution 

% Tolerance score is a Chi-squared score of 11.39 with the degree of 

% freedom of 9 

 

% Find the positions of outliers: 

pos_outlier = find(x>11.39);  

 

% Creat outlier portfolio 

port_outlier =zeros(28,9); 

for i = 1:28 

  no_rows = pos_outlier(i); 

  for j = 1:9 

  port_outlier(i,j)= ret(no_rows,j); 

  end 

end 

 

% Create inside portfolio 

pos_inside = find(x<=11.39); 

port_inside = zeros(91,9); 

for k = 1:91 

    no_Rows = pos_inside(k); 

    for g = 1:9 

    port_inside(k,g) = ret(no_Rows,g); 

    end 

end 

 

%% 6. Blend  

cov_inside=cov(port_inside); 

cov_outlier = cov(port_outlier); 

% Create an equal-aversion Blended Covariance Matrix 

cov_blended_e=p*cov_inside+(1-p)*cov_outlier; 

 

% Define inside risk aversion and outlier risk aversion 

lambda_i=2*lambda_in/(lambda_in+lambda_out); 

lambda_o=2*lambda_out/(lambda_in+lambda_out); 

 

% Calculate blended covariance for different risk aversion 

cov_blended_d=lambda_i*p*cov_inside+lambda_o*(1-p)*cov_outlier; 

  

% Find the optimal portfolio weights for full sample portfolio 

port_full = Portfolio('assetmean', mu, 'assetcovar', covariance, ... 

'lowerbudget', 1, 'upperbudget', 1, 'lowerbound', 0); 
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plotFrontier(port_full); 

pwgt_port_full = estimateFrontier(port_full, 10); 

 

 


