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Abstract 

In this paper we evaluate the performance of the US mutual fund industry over the 

past 15 years, using a novel methodology developed by AQR Management’s Quality 

Minus Junk paper (2013). We augment the standard regression models of Fama-French 

used in the literatures with a new factor, the Quality Minus Junk factor, which is a 

quality-ranking factor developed by the AQR Management. (Quality Minus Junk) 2013 

Previously, conflicting evidence was recorded with regard to the merits of the mutual 

fund industry, and we believe this could be a result of the preceding researches were 

constructed based on the Fama–French three-factor model (FFM) and its various 

variations. Despite the FFM’s prominent position in the asset-pricing field, it is subject to 

one critical limitation when it comes to evaluating active returns; no meaningful factor to 

directly quantify and evaluate the effects of active returns, as all existing factors are 

systematic in nature while active returns are idiosyncratic in nature largely.  By 

incorporating the QMJ factor in the FFM framework, we hope to help investors better 

understanding their actively managed portfolios, as this unique factor is constructed 

based on four profoundly used fundamental metrics by the investment industry. We are 

still unable to use this factor to underpin the mutual industry as our results exhibit 

inconsistencies in the QMJ loadings despite QMJ’s strong statistic and theatrical 

supports. Adding the Market-Factor results in the QMJ factor insignificant 70% of the 

time, adding more of the standard-factors we see that only 50% of the time the QMJ 

loadings are significant, around 40% of the time the QMJ loadings are in the negative 

zone. Therefore, we believe this shows inconsistence in QMJ’s factor loadings. 

Furthermore, we identified consistent alphas (intercepts) in our regressions and we 

believe that combining Fama-French and QMJ factor still cannot explain all returns 

variations. 
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Executive Summary 

This thesis provides an analysis and evaluation of the US mutual fund 

performance, and the investment styles they typically use.   

 

Previous mutual performance studies suggest that there is mixed evidence to 

support mutual industry as some studies claimed that excessive returns above 

benchmarks is function of luck, while others found evidence that the very top performers 

tend to remain in their rankings. A through study of the leading factor models in the field 

of Asset Pricing Theory indicates that these models concentrate on systematic factors, but 

active returns should to be a function of non-systematic factors; specific investment 

managers’ skills and experience to select quality companies. Therefore, we should 

include an additional quality factor to the existing models if we want directly evaluating 

active returns.  

   

We follow the methodology of AQR Management who developed a new factor 

called Quality Minus Junk factor (QMJ). This paper demonstrates that using this special 

factor they were able to generate retrospect high excessive risk adjusted return, which is 

not directly explained by the systematic factors found in FFM and its existing variations.   

We apply this factor in the context of mutual fund performance evaluation analysis. We 

combine QMJ factor with the standard three and four factor Fama and French models. 

Our analysis employs monthly data, and our specifications are adjusted for fixed effect to 

control for firm and portfolio specific effects in our estimation. Risk premiums are 

calculated by subtracting risk free rates away, and risk free rates are historical monthly 

data on 90-day T-bill yield US Treasury bill rates. 

 

We performed six separated sets of regressions with fund returns as dependent 

variables; 1) fund returns with QMJ, 2) fund returns with QMJ and Market, 3) fund 
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returns with SMB, HML, and Market, 4) fund returns with SMB, HML, Market and 

QMJ, 5) fund returns with SMB, HML, Market and the UMD (Momentum factor), 6) 

fund returns with SMB, HML, Market, UMD, and QMJ.  

 

The regression results are presented in the appendices from Table 1 to 6, and 

Graph 1, 2, 3, and 4. The estimation results show that there is no meaningful 

improvement in regression R-squares by adding the QMJ factor to the standard factor 

model and there is not consistence in QMJ factor loadings as some showing positive 

while others showing negative values. Moreover, 50% of all the QMJ loadings appear to 

be insignificant at 5% significance level except in first set of regressions where QMJ is 

the only independent variable. Therefore, we conclude that is no clear evidence to 

support the hypothesis that mutual funds as active investors tend to focus on quality 

companies. One interesting finding suggests that the QMJ factor and Market factor and 

other systematic factors tend to behave differently.  

 

However, there is also strong evidence to support alphas across all regression as 

the intercepts of all regressions are almost significant except a few, and they are ranging 

from -0.05 to 0.06, following the same orders of the worst performing funds to the best 

performing funds. This could suggest that US mutual fund managers apply techniques 

other than quality selection or their metrics for quality selection are different from our 

QMJ factor. These alphas represent their uniqueness, as they cannot be explained by the 

factors we include in our regressions.  

 

Some of the limitations: the finding only pertaining to US mutual fund industry, 

only 15 years of data were included in the analysis but the US mutual industry has been 

around more than a few decades, combining FFM with QMJ might not be the best 

description of reality. As our data including 2008 -2009 crisis, during the crisis all 

investments were sold regardless their quality due to liquidity constrains, this period data 

could have screwed our analysis. We think future study could exclude this extreme 

period. Furthermore, we suggest that more research needed to conduct to refining the 

QMJ factor, to test against more countries’ mutual fund industries, to avoid sampling 
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problem by only including the truly active funds, and perhaps further exploring the 

empirical and theoretical reasons behind the negative relationship between QMJ and 

other systematic factors.  
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1:  Introduction 

The primary focus of this research is to modify the existing FFM with an intuitive 

quality factor that can help us better understanding the active mutual fund industry. 

Previous studies have provided us with a lot of evidences to repudiate the active mutual 

fund industry, as their performance appeared to be inconsistent and lacklustre. Evidence 

shows that there is no much performance persistent, i.e. this period’s winner are not more 

likely to be the next period winners, and also some previous studies demonstrate that 

excessive returns above benchmarks is a just a function of luck.  However, the fact that 

most of the previous studies were constructed by employing the FFM or its variations 

concerns us in two ways; first, the FFM congenitally lacks strong theoretical support 

despite high degree of goodness of fit, second, existing FFM variations also cannot 

directly measure active manager’s skills.  Most active managers claim that they apply the 

concept of “quality at a reasonable price” approach throughout their investment process 

as they intend to invest in quality companies in pursuit of active returns. Therefore, we 

believe that FFM’s second shortcoming is particularly acute amid previous studies, as 

there is no way directly measuring the relationship between returns and quality without a 

factor accounted for quality.  Without a clear picture of this imperative relationship it 

would be very difficult to evaluate and pinpoint mutual fund’s performance accurately.  

Our primary contribution is to the asset price theory as we have modified the FFM with 

an additional QMJ factor, which is intuitive as it is driven by reversing engineering the 

famous Gordon Growth Model, and it is also statistically consistent as AQR management 
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in their research paper demonstrated that superior risk adjusted returns can be registered 

in retrospect.  

The paper should also greatly benefit retail investors, mutual funds, hedge funds 

and pension funds. Small retail investors should only invest in an actively managed 

product if activism yields high benefits. If the performance of an actively managed 

product is indifferent from the underlying benchmark retail investors should be reverting 

to ETFs or other passive vehicles for cost saving. By incorporating this factor into their 

analysis, they should be in a better position to their investment judgements. Institutional 

buy side firms can also utilize this QMJ factor to guide through their management 

selection process. 

According to financial theory, quality of a business can be attributed to four broad 

categories; profitability, growth prospect, Safety, and stocks pay-out.  

 Profitability: Profitability can be decomposed into two dimensions; profitability based 

on accrual basis and cash flow basis. Profitability of a company indicates management’s 

ability to efficiently use capital to create value to stakeholders. 

Growth prospect: intuitively, good growth prospect should ultimately lead to high 

profitability, and thus high quality. 

Safety: High safety ultimately translates to the high stability and low volatility of a 

business.  

Stock Pay-out: Finally, higher and healthy stock pay-out should indicate manager’s 

confidence of a business, and also reduces agency-problem. Therefore, high payout 

should also lead to higher prices in the long term.      

Our methodology is analogues to Jagadeesh and Titman’s (1993)’s approach as 

we modified the FFM with an extra QMJ factor, and then applied factor model analysis to 
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evaluate mutual fund’s historical performance.  If we can successfully establish the 

relationship between returns and their exposure to the QMJ factor exposure, we can then 

conclude that mutual fund managers are capable of selecting quality companies or 

include quality in the investment process. In turn, this could establish some basis for 

supporting the active mutual fund industry. Alternatively, we should be reverting to other 

four explanations; 1) QMJ is too rudimentary and fails to capture other important quality 

determinates, 2) mutual funds focus on other areas other than actively selecting quality 

companies, 3) there could be other strategies that mutual fund employ to produce superior 

returns, 4) we concur with the previous studies that active managers are incapable of 

generating above benchmark returns.  

 

Research interpretations  

Since the AQR management clearly demonstrated (that’s one study, you need 

more research to determine how successful this factor is.) that QMJ factor portfolio could 

be used to generate high active returns in American stock market, and hence it should 

help us to verify whether active managers attempt to outperform their relative 

benchmarks by selecting quality stocks.  In addition, the recent published paper, 

“Digesting Anomalies” (2012), discovered a Q-Factor, similar to the QMJ factor but only 

focuses on investment patterns and profitability, and it was subsequently confirmed by F. 

Fama and Kenneth R. French in 2013 that applying this additional factor almost all the 

unexplained average returns for individual portfolios are almost zero.  

Despite our extensive statistical analysis, we could not find sufficient evidences to 

support active investment through the lens of the QMJ factor’s loadings. There appear to 

be a lot of inconsistences in terms of QMJ factor loadings across our analysis as some 
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results suggesting negative loading. Negative loadings imply that some funds actually 

long low quality stocks while negatively exposing themselves to high quality ones. 

Across the board, as we adding more systematic factors to our regressions, QMJ factor 

does not seem to be very significant as 50% of the loadings become insignificant at 5% 

level at. However, one interesting note is that the QMJ factor appears to correlate 

negatively with the market and other conventional systematic risk factors, and thus 

inclusion of it could potentially lower portfolio systematic risk.  Furthermore, we 

confirmed with previous studies that market factor is one of the most important sources to 

explain investment returns as we added Market factor into our model, initially it 

significant increased R-Squares by almost 30%-35% when we just added market to the 

standalone QMJ model.  Other factors; SMB, HML, and UMD appear to be significant 

while the supporting evidence is not as strong as the market factor; SMB and HML 

appear to be significant 60% to 70% of the time, and UMD appears to be significant 70% 

to 80% of the time. This suggests that not all mutual funds in the US have a value and 

small cap bias, and many funds appear to follow the Momentum approach by clinching 

on or following previous winners. Although, we could not find sufficient evidences to 

support active investment, we are still not in a position to repudiate the hypothesis that 

active mutual fund can provide a better risk and reward profile for investors as other 

techniques could be employed to generate better results. Furthermore, we could have 

omitted other important factors that should be accounted for quality, and this could 

jeopardize our analysis and interpretations.   Furthermore, whether the original FFM is a 

fair representation of the reality is still questionable, and thus the failure of not seeing 

consistent results could be as result of other FFM factors. 
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The remainder of this paper is organized as following; section 2 will our research 

methodology, in section 3 we will present all the descriptive statistics and data results, 

section 4 will include our conclusion remarks, and finally section 5 will list all the 

references we have in this paper.     

 

Furthermore, we found an additional piece of interesting evidence that all the 

regressions’ alphas appear to be statistically significant except a few. Alphas vary from -

0.04 to 0.055 monthly in the first QMJ only regression (Table 1), and when market factor 

is included they are reduced systematically but becoming more significant (Table 2). As 

we gradually include more systematic factors in our regressions, these alphas do not 

reduce much and still very significant at 5% significance level. More importantly, 

because we rank our portfolios according to their lagged performance, the better than 

ranking the better the average alpha, while the previously worst 50% performing funds 

tend to have a negative alpha. There are about 50% of the portfolios’ alphas in positive 

and the other 50% in negative. Moreover, the average alpha across these 10 portfolios of 

funds is almost zero in every set of regressions except the first set where our regressions 

only include the QMJ factor. This could possibly imply that while collectively there are 

indifferent from their benchmarks (not outperforming as a group), top groups of funds 

can generate positive alphas for the reasons yet to determine. It is important to note that 

some managers claim they can systematically time the market, and some managers can 

use other unconventional investment techniques to outperform the market. If quality 

selection process cannot fully explain these alphas, they could be a result of managers’ 

unique investment skills. Alternatively, perhaps our QMJ factor is too rudimentary to 
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capture all the quality metrics, for example industry competition, supplier concentration, 

buyer concentration are not included in our QMJ factor. 
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2: Previous Literature  

. 

2.1 Asset Pricing 

The essence of asset pricing is to explain how investors evaluate risks, and in turn 

how they determine what risk premium to demand collectively. Therefore, the risk 

premium or implied return determines the correct asset prices. Historically, US equity 

market has returned investors on average a whopping 9%, only 10% of that 9% is 

attributed to interest rates and the rest is a function of equity risk premium. Therefore, it 

is no surprise that modern financial economists and practitioners have spent a great deal 

of their time in studying what drive risk premium. The modern asset pricing began with 

the work of Markowitz (1959), he suggested that all investors allocate their capital 

rationally and mean variance efficiently. The notion of Mean-Variance portfolio was 

further developed in the 1960s by William Sharpe (1964), Jack Treynor (1962), and John 

Lintner and Jan Mossin (1965 -1966). As a result, CAPM famously emerged due to its 

strong theoretical structure. The simplicity of CAPM suggests that only one factor is 

required to explain all asset returns; that is the market factor. In other words, the market 

factor is the only source of uncertainty beside risk free rate. However, overwhelming 

evidences seemed to disprove CAPM despite it is widely applied as it has failed to 

explain asset returns and achieve statistical significance. (Black, Jensen and Scholes 

(1972) made one of the earliest empirical studies of CAPM, unfortunately, their 
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estimations of slope and intercept are vastly different from the CAPM predictions) 

Perhaps, it is the stringent economic assumptions underlying CAPM invalidate it largely. 

As a CAPM failed to fit the empirical data, other theories were also developed which 

include APT by Ross (1976), Fama French Model (1992) and Supply-side 

Macroeconomic model by Chen, Roll and Ross (1986). Apart from arguing whether the 

proxy of market portfolio is efficient, there are two additional branches of studies attempt 

to explain why reality is drastically different from theories would suggest; 1) behaviour 

finance argues that there are behaviour factors we failed to include in our models and 

some are indeed deemed to be irrational in the eyes of orthodox school of thoughts, and 

2) there are other systematic risk factors our CAPM misses. In the traditional view of 

economics and finance, irrational factors are not important in solving equilibrium models, 

assumed random and thus non-systematic. However, reality suggests otherwise, human 

behaviours exhibit irrational patterns, and thus the efficient market hypothesis partially 

depends on full rationality is indeed questionable.     

As famously summarized by the Former Federal Reserve Chairman, Alan 

Greenspan, in his book of The Age of Turbulence; “But after several years of closely 

studying the manifestations of animal spirits during times of severe crisis, I have come to 

believe that people, especially during periods of extreme economic stress, act in ways 

that are more predictable than economists have traditionally understood. More important, 

such behaviours are measurable and should be an integral part of economic forecasting 

and economic policymaking. Spirits, it turns out, display consistencies that can help 

economists identify emerging price bubbles in equities, commodities, and exchange rates 

-- and can even help them anticipate the economic consequences of those assets’ ultimate 

collapse and recovery.” Moreover, he continues; “From the perspective of a forecaster, 
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the issue is not whether behaviour is rational but whether it is sufficiently repetitive and 

systematic to be numerically measured and predicted.” 

Financial economists supporting the view of multi factors model think that CAPM 

has excluded other important systematic risk factors. Fama French (1993) discovered two 

additional factors that should be included to explain asset returns; value factor and size 

factor. Since then more factors have been introduced to make slight adjustments to the 

Fama and French three-factor model. In 1993, Jegadeesh and Titman have discovered 

that stocks performed well in the past outperformed stocks with past poor performance; 

Momentum effect. The momentum effect tends to imply that market is under reacting to 

information systematically. Despite the weak evidences for rational explanations, the 

Fama and French three factor model with high R square failed to explain the effect of 

momentum. On the other hand, Lakonishok, Shleifer and Vishny (1994) suggest that high 

returns are a consequence of investors’ overreactions. Furthermore, they indicate that 

investors tend to ignore stocks with high B/M, and thus under researched by analysts. In 

2009 Asbess, Moskowitz and Pedersen provide evidence that both Momentum and Value 

strategies are successful when applying in a range of asset classes; currencies, 

commodities, and bonds. In addition, a more recent study carried out by Kewei Hou, 

Chen Xue, and Lu Zhang, published in 2012, “Digesting Anomalies: An Investment 

Approach,” suggested a new factor model that attempts to explain many of the anomalies 

that none of the previous models can do a good job to explain. The additional factors are 

investment and profitability; it is called “The q-factor Model”. The major difference 

between this new approach and the previous ones is the introduction of two new beta 

dimensions: investment and profitability factors, which are widely accepted by the 

investment committee in terms of using it to judge stock performance. In the Fama & 
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French 2013 paper, five –Factor Asset pricing model, they used a set of empirical tests to 

verify if adding the profitability and investment patterns factor to their existing three 

factor model can yield a model that is superior to the old factor models, and they noted 

that “While the five- factor model does not improve the description of average returns of 

the four factor model that drops the HML, the five factor model may be a better choice in 

application. For example, through captured by exposures to other factors, there is a large 

value premium in average returns that is often targeted by money managers” 

Furthermore, they also state that “Unexplained average returns for individual portfolios 

are almost all close to zero.” Therefore, there are still more questions need to be 

answered before any conclusions can be made. Following the footsteps of these people, 

and using a new paper published by the AQR Capital Management as the foundation of 

our thesis, “Quality Minus Junk”, we attempt to provide an update of the paper published 

by its original authors by using data including 2015. In the “Quality Minus Junk” study, 

quality factor is further divided into four dimensions to further decompose the effects of 

the quality factor. Among the four quality factors, profitability is an important one 

although defined differently from the paper, “Digesting Anomalies: An Investment 

Approach,” we came up with evidences suggesting that this quality factor is important, 

and can earn significant higher risk adjusted returns with information ratio above one.  

 

In this paper we will illustrate the logic behind the QMJ factor, and use this factor 

to modify the Fama & French model as we try to evaluate the US mutual fund industry 

performance in relation to the QMJ factor over the past 15 years. 
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2.2 Mutual Funds’ Performance  

In theory, active investors should perform differently from their benchmarks in 

order to achieve alphas. Economic theory suggest that active investors through buying 

and selling securities and sending pricing signals should enhance business efficiency 

overall, and thus growing the economic pie and obtain excess returns. However, it is 

observed by the investment world that alphas are difficult to get. The overall academic 

consensus is mixed with regard to the merits of mutual fund industry, but slightly skewed 

towards the notion that it is better off buying indexed funds as mutual funds’ high 

management fees erode away any rare excess returns. Mark M. Carhart (1997), in their 

paper, on persistence in Mutual Fund Performance, suggest that common factors in stock 

returns and persistent differences in mutual fund expenses and transaction costs explain 

almost all the predictability in mutual fund returns. Classically, evidences from Jensen 

(1969) suggest that subsequent good performance does not follows previous superior 

performance, and more importantly, their evidences pointing towards the conclusion that 

those superior returns are mainly a function of luck. Several other subsequent research 

articles (e.g. Malkiel, 1995; Gruber, 1996; Carhart, 1997) also reconfirmed Jensen’s 

findings. In light of the recent financial crisis, more studies have came out to demonstrate 

worse performance relative to their benchmarks by active funds during market downturns 

(e.g. Souza and Lynch, 2012; Pfeiffer and Evensky, 2012) More recently, an article 

published by the investment practitioners side of the business (Vanguard, 2009) discovers 

very little evidence in support of superior active management performance during market 

turmoil and stat that “in fact, active managers have not consistently delivered superior 

performance relative to a benchmark during such periods.” Furthermore, Vanguard in 

2009 shown that active fund managers failed to outperform broader stock market 4 out of 
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7 bear markets. However, reality is not always so black and white, particularly in the field 

of finance and economics a subset of social science, there are as much supporting active 

investment evidences as non-supporting evidences. For instances, using a sample of 

quarterly portfolio data, Grinblatt and Titman (1989) present evidences to support mutual 

fund positive abnormal performance especially in two categories; growth and aggressive 

growth funds. Later studies (e.g. Grinblatt and Titman, 1993; Grinblatt, Titman, and 

Wermers, 1995; Wermers, 1997) also suggested superior performance by actively 

managed mutual funds. However, it is worthwhile to notice that most of their findings in 

support of alphas are a result of using gross returns rather than net returns since our focus 

is on whether as an average investor should use mutual funds as the core portfolio 

building block. In addition, Hendricks, Patel, and Zeckhauser (1993), Goetzmann and 

Ibbotson (1994), Brown and Goetzmann (1995) also find strong evidences of persistence 

in mutual fund performance over one to three year horizon, and ultimately attributed the 

persistence to “Hot Hand” or common investment effect. In the view of longer term 

persistence, Elton, Gruber, Das, Hlavka (1993), and Blake (1996) show that superior 

performance should be a result of stock picking skills and manager’s information value. 

In particular, with respect to Hendricks, Patel, and Zeckhauser’s (1993) hot hand effect, 

Mark M. Carhart (1997) present evidences to suggest that most can be attributed to 

Jagadeesh and Titman’s (1993) one year momentum in stock returns. Furthermore, they 

stat that “ funds that earn higher one year returns do so not because fund managers 

successfully follow momentum strategies, but because some mutual funds just happen by 

chance to hold relatively larger positions in last year’s winning stocks.” Explanations as 

why active mutual funds tend to underperform ranging from mean reverting evidences to 

over diversified effects from mutual fund industry. In Shawky and Smith (2005), they 
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suggest an optimal point of holdings and beyond which value would be destroyed as a 

consequence. This finding can be traced to several corporate finance studies that suggest 

business diversification result in value reductions on average. (E.g. Lang and Stulz, 1994) 

However, Sapp and Yan (2008) show that even focused funds tend to destroy values by 

underperforming. It is important to notice that not all evidences in the real worlds are 

repudiating active investment strategies.  

 

Furthermore, much of the previous works related to mutual fund performance 

were carried out from the perspective of FFM and its closely related variations. We need 

a fundamental factor to measure active returns as majority of professional money 

managers claim that they make their investment selections based on the fundamental 

approach. The essence of the approach is to identify quality investments, which are 

undervalued currently. Therefore, we think the additional QMJ factor based on the four 

major quality factors, will capture this fundamental relationship. 
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3: Data and Methodology 

In this thesis, portfolios of mutual funds (dependent variable) formed on lagged 1 

year return is regressed to systematic risk factors (independent variables) to see if mutual 

funds can provide persistent excess return. Thus, we used two sets of data in this thesis to 

perform statistic test: Mutual Funds Data and Factors’ Data.  

3.1  Factors’ data and Methodology 

The data for factors used in this thesis are from the AQR’S homepage. It includes 

the three Fama & French four factors, market risk premium, SMB, HML and UMD; 

quality minus junk factors, QMJ; as well as the risk free rate with the one month US 

Treasury bill as a proxy. Since we can only obtain mutual funds data from U.S. market, 

we only used U.S. factor data from AQR’s dataset. Please see table 7 in appendix for a 

summary of factors, as well as correlation between them. 

All factor portfolios construction follows Fama and French (1992, 1993, and 1996) 

and Asness and Frazzini (2013) and Asness, Frazzini and Pedersen (2013).  

3.1.1 Fama and French Four Factors 

The Market factor MKT is the value-weighted return on all available stocks 

minus the one-month Treasury bill rate.  

The size, value and momentum factors are constructed using six value-

weighted portfolios formed on size and book –to-market and 1-year return. At the end of 

each calendar month, stocks are assigned to two size-sorted portfolios based on their 
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market capitalization. The size breakpoint is the median NYSE market equity. AQR use 

conditional sorts, first sorting on size, then on the second variable and rebalance portfolio 

monthly to maintain value weights. They believe conditional sorts, which slightly 

different from Fama and French (1992, 1993, and 1996)’s independent sorts, ensure a 

balanced number of securities in each portfolio.  

The size factor SMB is the average return on the 3 small portfolios minus the 

average return on the 3 big portfolios: SMB = 1/3(small value + small neutral + small 

growth) – 1/3(Big value + Big Neutral + Big growth).  

The value factor HML follows Fama and French (1992, 1993, and 1996(. HML is 

the average return on the two value portfolios minus the average return on the two growth 

portfolios: HML = 1/2(small value + Big value) – 1/2(small growth + Big growth). To 

compute book to market ratios, AQR scale book equity (BE) by the total market value of 

equity (ME) at fiscal year-end.  

The momentum factor UMD is the average return on the two high return 

portfolios minus the average return on the two low return portfolios: UMD = ½(small 

High + Big High) – ½(small Low + Big Low).  

Each factor portfolios are value weighted; breakpoints are refreshed every month 

and rebalanced every month to maintain value weights. 

 

3.1.2 QMJ factors 

As the Quality Minus Junk Factor (QMJ) is the new factor in this thesis used to 

test mutual funds performance, we describe its data sources and the methodology for 

constructing quality measures in more details. 
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Pricing and accounting data are from the union of the CRSP tape and the 

Compustat/XpressFeed Global database. The U.S. data include all available common 

stocks in the merged CRSP/XpressFeed data. All portfolio returns are in USD and do not 

include any currency hedging. Excess returns are above the U.S. Treasury bill rate.  

Quality Score 

A variety of quality measures are used to identifying stocks of profitable, stable, 

safe and high payout companies. To avoid data mining, a broad set of measures are 

employed by AQR for each aspect of quality and average them to compute four 

composite proxies: Profitability, Growth, Safety and Payout. Then these four proxies of 

quality are averaged to arrive a single quality score.  

Profitability is measured by gross profits over assets (GPOA), return on equity 

(ROE), return on assets (ROA), cash flow over assets (CFOA), gross margin (GMAR), 

and the fraction of earnings composed of cash (i.e. low accruals, ACC). To combine each 

measure, they must be standardized, which is done by converting each variable into ranks 

and then to get it z-score.  

More formally, explained by AQR “let x be the variable of interest and r be the 

vector of ranks, Ri = Rank(Xi). Then the z-score of x is given by Z(x)=Zx=(r-Ur)/Dr, 

where Ur and Dr are the cross sectional mean and standard deviation of r. “ 

Thus, Profitability score is the average of the individual z-scores:  

Profitability = Z(Zola + Zroe + Zroa + Zcfoa + Zgmar +Zacc) 

In a same way, Growth is measured as the five-year prior growth in profitability, 

then averaged to get a Growth proxy. 

Growth = Z (ZΔgpoa + ZΔroe + ZΔroa + ZΔcfoa + ZΔgmar +ZΔacc) 
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Safty is defined by low beta(BAB), low volatility(IVOL), low leverage(LEV), low 

bankruptcy risk (O-score and Z-core) and low ROE volatility (EVOL): 

Safety = Z(Zbab +Zivol +Zlev + Zo + Zz +Zevol) 

Payout is defined by Equity and debt net issuance (EISS, DISS) and total net 

payout over profit (NPOP): 

Payout = Z (Zeiss +Zdiss +Znpop) 

Last, four quality proxies are combined into one quality score by averaging them: 

Quality = Z(Zprofitablility + Zgrowth + Zsafety + Zpayout) 

Once having the quality score, quality–minus-junk factors (QMJ factors) can be 

constructed by following Fama and French (1992, 1993, and 1996) and Asness and 

Frazzini (2013). By intersecting of six value-weighted portfolios formed on size and 

quality, stocks are assign to two size-sorted portfolios monthly based on their market 

capitalization. Size breakpoint is the median NYSE market equity. AQR use conditional 

sorts, first sorting on size, then on quality. Portfolios are value-weighted, refreshed and 

rebalanced monthly. The QMJ factor return is  

QMJ  = 1/2 (Small Quality + Big Quality) – ½(Small Junk + Big Junk) 

= 1/2 (Small Quality - Small Junk) + ½(Big Quality - Big Junk) 

 

3.2 Mutual Funds’ Data and Methodology  

The data for mutual funds returns used in this thesis is from Center for Research in 

Security Prices Data base (CRSP). The programs Access, Excel and Matlab are used to 

clean and analyze the data. We choose to keep only the observations that are relevant to 

our research. Since previous research has covered periods before 2000, in this paper, the 
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focus is for the period year 2000 to year 2014, thus observations before year 2000 are 

excluded and only data covering monthly value weighted returns are used. In addition, as 

result of availability, mutual funds data is from U.S. market only. 

3.2.1 Cleaning data 

To filter out outlier funds, only data for funds with net Asset value per share >0 

and total net Asset value >100k is downloaded from CRSP mutual funds database. Since 

only pure equity funds are relevant, all funds with any debt holding are eliminated from 

sample data; funds with less than 10 percent of other assets is allowed and included in 

sample data to obtain enough observations.  Next, we only keep funds with complete 

observations from 2000 to 2014 (180 observations) in the sample. Thus, funds closed or 

new commenced during the period are eliminated, as well as those with errors in return 

data. The result is 517 funds. Last, I further eliminated outliers that have monthly returns 

of top 2% or bottom 2% of all. The result is our sample covering 500 funds in U.S. 

Market, 180 month of observation for each.   

3.2.2 One year lagged return 

Our question is if Mutual funds’ performance is persistent, that is, if one is a 

winner this year, if it is still a winner a year later. Thus, for each month, the funds’ return 

data first subtract risk free rate for the month to get their risk premium and then sorted 

based on this risk premium from low to high. Next, based on this ranking, funds’ 1 year 

lagged return is associated. As result of lagged return, we now have one year less of 

observations, which come to 84,000 of funds monthly return observations.  

To make our sample data ready for fixed effects model, each fund’s monthly 

return subtracts its mean monthly return.  
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3.2.3 Assign funds to 10 portfolios 

Based on classic empirical testing approach, 10 portfolio of mutual funds are 

formed. Mutual funds are sorted every month from January 1, 2000 to Dec 31, 2013 into 

deciles portfolios based on their previous calendar year’s return. The portfolios are 

equally weighted monthly. Funds with the highest past one-year return comprise decile 1 

portfolio and funds with the lowest comprise decile 10 portfolio.  

Now, we have our mutual funds data ready for testing.  

3.3 Main Statistical Test 

Mutual Funds’ returns are strongly co-moved together. The fundamental source of 

the co-movement is hard to observe, not to mention to be measured. (Kritzman, 1993). 

Factor models are very useful in a situation where a few unobservable sources of 

systematic risk affect many random variables. The Fama and French four-factor model 

controls portfolios risk by managing its exposure to 4 common sources. In this thesis, we 

add one more common source of risk, quality. By discovering sources of risk, we might 

be able to control risk better. On the other hand, by examining funds’ risk exposure; we 

can see how well funds perform in term of risk exposure; if adding more risk factor could 

help to explain funds’ performance.  

The method used in this thesis to analysis panel data for mutual funds’ 

performance is by using fixed effect model. The method has been widely used to evaluate 

linear factor pricing models with panel data. We specify the sources of return co-

variation, and then try to confirm whether these sources do indeed correspond to 

difference in return.  

Fixed effect 
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In econometrics, a fixed effects model represents the observed quantities in terms 

of explanatory variables that are treated as if the quantities were non-random. Such 

models assist in controlling for unobserved heterogeneity when this heterogeneity is 

constant over time and correlated with independent variables. This constant can be 

removed from the data through differencing. Since it is reasonable to assume funds’ 

return (dependent variable) is not random correlated with systematic risk factors 

(independent variables), we employ fixed effects models here. In panel data analysis 

here, we impose time independent effects for each entity that are possibly correlated with 

the repressors.  
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4: Results 

Regression results for the 10 mutual fund portfolios can be seen in table 1, 2, 3, 4, 

5, and 6. Regression results are from the past 15-year’s monthly data from 2000 to 2014. 

We conduct our analysis by using monthly US Treasury bill rate as the model risk free 

rate. We perform our analysis without any currency exchange adjustment as we assume 

the perspective of an US-Dollar investor.  

Table 1 presents the regression results obtained by regressing each portfolio’s 

returns with only the QMJ factor alone.  Surprisingly, QMJ appears to be negatively 

correlated with portfolio’s returns and significant. While R-square is quite low hovering 

around 50%, this suggests that QMJ alone is not sufficient to explain portfolios’ return 

variations and there should be other factors to explain their return variations. Alphas are 

mostly significant but with no sign of any consistence as 40% are in the negative territory 

and the other 60% are in the positive zone.  

We combine the Market factor with QMJ in our regression analysis and present 

results in Table 2.  Lo and behold, R-squares are significant higher than table 1’s results 

by large margins almost by 40%, which could imply that the market-factor heavily 

influences these mutual funds on average. Average R-Square is around 92%. We plotted 

these two series of R-square in Graph 1, and as we can clearly observe that R-squares 

with just QMJ are dominated largely by the series that includes both the market and QMJ 

factor. In addition, all the market factor loadings are hovering around 1 plus and minus 

0.15 and significant. This suggests strong evidence to support the market factor as it 
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appears to be consistent, and all mutual funds have a positive exposure to market factor 

risk.   

It is worth to mention that the QMJ factor appears to correlate less negatively with 

mutual fund portfolio’s returns after including market factor in the regression analysis. 

Graph 2 shows that our QMJ coefficients with the Market factor are less negative than 

the QMJ coefficients without the market factor. This evidence suggests that there could 

be some degree of fixed effect as the market factor and the QMJ factor could be 

negatively related with each other. This finding is consistent with AQR Management 

results that QMJ factor tends to be negatively correlated with other systematic factors. 

However, assuming a significance level of 0.05, QMJ factor appears to be less significant 

as 7 out of the 10 portfolio’s P-value are above the critical level, and this led us to accept 

the Null hypothesis that QMJ’s coefficient is indifferent from zero.  

Table 3 shows that mutual funds in the US do not appear to be strongly tilted 

towards either Small Cap or large Cap, and either value or growth style. We run a 

standard FFM Three-Factor-Model for each of the 10 portfolios and present our results in 

Table 3. At 5% significance level, there are only 5 portfolios with positive exposure to 

SMB and also statistically significant.  At 5% significance level, there are 6 portfolios 

with positive exposure to HML factor and also statistically significant. While the 

consistence is slightly better for HML factor, we still do not have sufficient evidence to 

conclude that US mutual funds tend to be more value orientated. Furthermore, R-squares 

only have been marginally improved comparing with the results generated by the simple 

Market + QMJ regression model.   

Table 4 presents the regression results of FFM Three-Factor-Model plus the QMJ 

factor. R-Squares are somewhat indifferent from the simple Three-Factor-Model’s 
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results, while this regression has slightly changed our impression of SMB factor, as 70% 

of the coefficients are now significant. This implies that QMJ cannot explain fund returns 

as other variables should be used. Majority of QMJ coefficients have turned to positive as 

Table 4 shows. Again, this shows that QMJ factor is somehow different from the 

systematic factors as shown in the Quality-Minus-Junk paper from AQR Management.  

Table 5 shows the regression results after including the Momentum factor (UMD). We 

refer this as the Fama and French Four-Factor-Model. Including UMD in our analysis 

does not dramatically alter the regression results from Table 4. R-squares are quite alike 

the R-Squares generated from the Standard Three Factor Model. This implies that 

marginal explanatory power of the momentum factor is very low. However, 80% of 

UMD are significant and positive. This confirms with previous studies to suggest that 

mutual funds tend to in previous winners either passively or actively.   

Table 6 shows the results of FFM Four-Factor-Model plus QMJ factor. While R-

square stay relatively indifferent from the standard Four-Factor-Model alone, both UMD 

and SMB factor are significant as 70% of SMB and 80% of UMD factor loadings are 

significant at 5% significance level.  This find is consistently with our understanding of 

the SMB factor’s size effect; when comparing stocks of similar quality, small stock 

should outperform large stocks on average.  

Table 1, 2, 3, 4, 5, 6, second column shows their respective regression’s alphas. It 

is evident that they are almost all significant except one in the first table at 5% 

significance level. As we gradually increase more factors into the regression, their alphas 

systematically are reduced as shown in Graph 3. When including the Market Factor 

alphas are all reduced by a quite constant amount 0.075 approximately, this means that 

the ability of the market to explain return variations is significant and strong. As we 
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added systematic factors into regression analysis we see that the alphas start to level out 

(Graph 3), with 50% in positive and rest in negative.  These alphas are all significant and 

consistent with their performance rankings; the best performing funds tend to register 

higher positive alphas.  This suggests a strong positive correlation between alphas and 

their performance rankings. Furthermore, these alphas demonstrate we have some 

evidence to believe that some funds are capable of generating above market returns due 

to unique reasons cannot be explained by the systematic factors and QMJ factor. 

Collectively, their average alpha appears to be close to zero, this confirms with previous 

studies that mutual fund industry as a group cannot outperform the market, but the high-

ranking funds that can generate positive alphas perhaps at the expense of other active 

fund’s underperformance as this could be a zero sum game or other reasons require 

further study.  

 

Results conclusion 

There is no sufficient evidence to suggest that mutual funds focus on quality 

investment as a mean to achieve excessive returns suggested by our regression results, 

while QMJ factor tend to behave differently from most market systematic factors. As 

suggested by ARQ’S QMJ paper and our regression results, QMJ appears to correlate 

negatively with the market factor. There is weak evidence that some mutual fund focus 

on small cap and value stocks. Consistent with both FFM and CAPM, it appears that the 

Market Factor is one of the most important factors in explaining mutual fund returns. 

Other systematic factors while seem to be significant cannot materially improve R-

square.  Finally, we found quite strong evidence to suggest that mutual fund industry as a 

whole tends to follow previous winners, but it is unknown to us whether they do it 
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actively or passively. Moreover, evidence suggests that there is a strong positive 

correlation between fund’s alphas and their corresponding rankings. Therefore, we 

believe that some funds are capable of generating positive alphas for specific reasons we 

do not know as our factors cannot explain this situation, while these returns cannot be 

explained my our quality factor. (QMJ) 
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5: Implications and Conclusions  

In this paper we attempt to bridge Asset Pricing Theory that primarily focus on 

systematic factors with fundamental investment theory that focuses on actively scooping 

quality companies to achieve outperformance. Our goal is to use the integrated model to 

explain US active mutual fund performance.  

conventional wisdom in the finance industry tells us that outperformance can be 

achieved by selecting quality investments at a reasonable low price. However, to the 

extent of what quality encompasses is quite blurry as different investors define quality 

slightly different depending upon their unique set of beliefs.  It seems reasonable to 

assume that if a company grows at robust and sustainable rates, operates at high and 

steady profit margins, and disburses cash handsomely to its shareholders, the company is 

generally a quality company relatively to its peers.  More importantly, these metrics are 

quantifiable with a reasonably degree of assurance. Therefore, QMJ factor is selected to 

rank companies as it encompasses all four quality metrics; safety, profitability, growth 

prospect, and pay-out ratio.  If else equal, high quality firms should have higher scaled 

prices. AQR Management indicates that it is consistent with market efficiency theory; 

high quality firms do exhibit higher prices on average. However, the explanatory power 

of quality on prices is low, leaving the majority of cross sectional dispersion in scaled 

prices unexplained. Therefore, high quality firms exhibit high risk-adjusted returns. A 

quality-minus-junk (QMJ) factor that goes long high-quality stocks and shorts low-

quality stocks earns significant risk-adjusted returns with an information ratio above 1 in 
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the U.S. and globally across 24 countries. Therefore, we believe that the QMJ factor 

includes the necessary information for us to test mutual fund performance.   

Our results present a puzzle for asset pricing and mutual fund performance, as we 

believe that we are not the first one to find conflicting evidence with regard to mutual 

fund attributions. Despite our high confidence in the QMJ factor, there is no consistent 

evidence to conclude that active managers as a whole tilted towards quality companies, as 

some QMJ factor loadings in our regression models are positive while others are 

negative, through most of these loadings are insignificant.   

 

There are five major explanations to our findings.  

 

1) Quality is differently defined in reality or the QMJ factor does not include all-

important metrics pertaining to quality. Future studies should try to refine QMJ 

factor to include unique metrics pertaining to quality, and look for important 

factors that we have not yet quantified; industry competition, supplier and 

customer concentration, barrier of entry, and so called “Steve Job Effect”.  

2) Mutual fund industry uses a different set of techniques to capture excessive 

returns. It may be useful to re-categorize them according to their investment 

mandates, as each style is quite different from others. 

3) Sample selection problem as a result of including all US available mutual funds. 

Some mutual funds can be self-proclaimed active but in fact passive. Therefore, it 

is necessary to separate real-active funds from the self-proclaimed active funds if 

one would like to find out the truth behind active mutual funds.   
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4) Collectively as a whole, the industry cannot select quality companies consistently 

but individual funds could, but they are buried beneath the average numbers. As 

we have mentioned in our literature review that the best active funds tend to be 

more consistent in terms of generating superior performance, but collectively as a 

group the negative ones might have neutralized the superior results. Mutual fund 

industry collectively represents a significant portion of all market assets, and as 

they are competing with each other, they skills would have been neutralized as a 

whole and reverting back towards benchmark returns. 

5) QMJ and FFM may not fit well with each other, as the latter is a factor model 

includes mostly systematic factors.  Therefore, QMJ factor should be 

concatenated with a different model. 
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6: Appendix 

Table 1 

10 portfolios’ monthly returns against QMJ factor  

Table 1 ALPHA P-Value QMJ P-Value 
R-Square 
Adjusted 

P1 -0.034988 0.000000 -1.222320 0.000000 0.562598 

P2 -0.014433 0.000000 -1.113460 0.000000 0.599680 

P3 -0.006345 0.011002 -1.058786 0.000000 0.580683 

P4 -0.000244 0.920331 -1.022867 0.000000 0.625683 

P5 0.005243 0.030859 -0.993440 0.000000 0.599538 

P6 0.010332 0.000023 -0.980911 0.000000 0.588692 

P7 0.015885 0.000000 -0.977818 0.000000 0.570422 

P8 0.022416 0.000000 -0.994747 0.000000 0.585677 

P9 0.031844 0.000000 -1.047365 0.000000 0.592899 

P10 0.054883 0.000000 -1.125732 0.000000 0.561942 
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Table 2 

10 portfolios’ monthly returns against QMJ factor and Market Factor  

Table 2 ALPHA P-Value MKT P-Value 

P1 -0.043170 0.000000 1.048539 0.000000 

P2 -0.022404 0.000000 1.021452 0.000000 

P3 -0.014233 0.000000 1.010902 0.000000 

P4 -0.008143 0.000000 1.012239 0.000000 

P5 -0.002620 0.000007 1.007635 0.000000 

P6 0.002617 0.000023 0.988619 0.000000 

P7 0.008377 0.000000 0.962187 0.000000 

P8 0.015142 0.000000 0.932140 0.000000 

P9 0.024984 0.000000 0.879053 0.000000 

P10 0.048694 0.000000 0.793124 0.000000 

 

QMJ P-Value 
R-Square 
Adjusted 

-0.134022 0.066483 0.822439 

-0.053275 0.237204 0.914906 

-0.009552 0.774160 0.938525 

0.027755 0.302918 0.965023 

0.052404 0.033122 0.978742 

0.045196 0.083448 0.959460 

0.020855 0.511159 0.948347 

-0.027261 0.515677 0.949850 

-0.134979 0.025230 0.920007 

-0.302534 0.001191 0.855993 
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Table 3 

10 portfolios’ monthly returns against Fama-French-Three-Factor  

Table 3 ALPHA P-Value MKT P-Value 

P1 -0.043822 0.000000 1.122171 0.000000 

P2 -0.022914 0.000000 1.044742 0.000000 

P3 -0.014543 0.000000 1.012402 0.000000 

P4 -0.008303 0.000000 0.994042 0.000000 

P5 -0.002716 0.000001 0.976711 0.000000 

P6 0.002369 0.000034 0.955610 0.000000 

P7 0.007806 0.000000 0.932923 0.000000 

P8 0.014036 0.000000 0.915942 0.000000 

P9 0.022983 0.000000 0.895639 0.000000 

P10 0.045654 0.000000 0.864353 0.000000 

 

SMB P-Value HML P-Value 
R-Square 
Adjusted 

-0.013631 0.831000 -0.031881 0.581653 0.825431 

0.032992 0.400781 0.024395 0.492568 0.916552 

0.030416 0.290365 0.043412 0.096431 0.939070 

0.033617 0.142884 0.061289 0.003472 0.965582 

0.037100 0.070256 0.081181 0.000019 0.979108 

0.065722 0.002315 0.087827 0.000009 0.960450 

0.111161 0.000020 0.098950 0.000028 0.948284 

0.174136 0.000000 0.115080 0.000180 0.952610 

0.281529 0.000000 0.095815 0.029350 0.923030 

0.411341 0.000000 0.000867 0.989985 0.855473 
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Table 4 

10 portfolios’ monthly returns against Fama-French-Three-Factor plus QMJ 

Table 4 alpha P-Value MKT P-Value 

P1 -0.042347 0.000000 1.035248 0.000000 

P2 -0.022542 0.000000 1.022798 0.000000 

P3 -0.014593 0.000000 1.015351 0.000000 

P4 -0.008748 0.000000 1.020273 0.000000 

P5 -0.003420 0.000000 1.018265 0.000000 

P6 0.001555 0.007549 1.003626 0.000000 

P7 0.006956 0.000000 0.983087 0.000000 

P8 0.013288 0.000000 0.960030 0.000000 

P9 0.022624 0.000000 0.916825 0.000000 

P10 0.046070 0.000000 0.839878 0.000000 

 

SMB P-Value HML P-Value 

-0.107299 0.154881 -0.030707 0.591234 

0.009345 0.841645 0.024691 0.487523 

0.033595 0.328392 0.043373 0.097676 

0.061883 0.023187 0.060935 0.003418 

0.081879 0.000636 0.080620 0.000012 

0.117465 0.000003 0.087179 0.000005 

0.165218 0.000000 0.098273 0.000019 

0.221645 0.000000 0.114484 0.000165 

0.304359 0.000000 0.095529 0.030059 

0.384966 0.000038 0.001198 0.986198 

QMJ P-Value R-Square Adjusted 

-0.199069 0.023076 0.824947 

-0.050257 0.353306 0.916119 

0.006756 0.864850 0.939122 

0.060073 0.056109 0.965462 

0.095166 0.000597 0.979563 

0.109967 0.000136 0.960980 

0.114884 0.000890 0.949603 

0.100968 0.026905 0.953244 

0.048520 0.466324 0.922565 

-0.056053 0.594910 0.855769 
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Table 5 

10 portfolios’ monthly returns against Fama-French-Four-Factor  

Table 5 ALPHA P-Value MKT P-Value 

P1 -0.044309 0.000000 1.166663 0.000000 

P2 -0.023212 0.000000 1.071974 0.000000 

P3 -0.014815 0.000000 1.037277 0.000000 

P4 -0.008535 0.000000 1.015230 0.000000 

P5 -0.002918 0.000000 0.995144 0.000000 

P6 0.002202 0.000075 0.970856 0.000000 

P7 0.007629 0.000000 0.949085 0.000000 

P8 0.013845 0.000000 0.933334 0.000000 

P9 0.022769 0.000000 0.915167 0.000000 

P10 0.045419 0.000000 0.885828 0.000000 

SMB P-Value HML P-Value 

-0.003358 0.956919 -0.018788 0.738900 

0.039279 0.304389 0.032408 0.349889 

0.036159 0.188987 0.050732 0.042803 

0.038509 0.077373 0.067525 0.000738 

0.041356 0.034291 0.086605 0.000002 

0.069242 0.000981 0.092313 0.000002 

0.114893 0.000007 0.103706 0.000008 

0.178151 0.000000 0.120197 0.000078 

0.286038 0.000000 0.101562 0.020400 

0.416299 0.000000 0.007187 0.917202 

UMD P-Value 
R-Square 
Adjusted 

0.102521 0.000975 0.824431 

0.062749 0.001018 0.919640 

0.057318 0.000035 0.940629 

0.048823 0.000009 0.965981 

0.042474 0.000015 0.980414 

0.035130 0.000692 0.967487 

0.037241 0.002678 0.952777 

0.040074 0.013930 0.960893 

0.044998 0.057860 0.934696 

0.049483 0.188567 0.865533 
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Table 6 

10 portfolios’ monthly returns against Fama-French-Three-Factor plus 

Momentum factor & QMJ 

Table 6 ALPHA P-Value MKT P-Value SMB P-Value 

P1 -0.042626 0.000000 1.068804 0.000000 -0.112162 0.123839 

P2 -0.022705 0.000000 1.042484 0.000000 0.006491 0.886216 

P3 -0.014737 0.000000 1.032708 0.000000 0.031079 0.343674 

P4 -0.008865 0.000000 1.034411 0.000000 0.059834 0.021096 

P5 -0.003518 0.000000 1.030054 0.000000 0.080170 0.000474 

P6 0.001477 0.009305 1.013005 0.000000 0.116106 0.000002 

P7 0.006873 0.000000 0.993049 0.000000 0.163774 0.000000 

P8 0.013197 0.000000 0.971019 0.000000 0.220052 0.000000 

P9 0.022515 0.000000 0.929936 0.000000 0.302459 0.000000 

P10 0.045939 0.000000 0.855598 0.000000 0.382688 0.000040 

HML P-Value UMD P-Value 

-0.016249 0.769026 0.111639 0.000290 

0.033174 0.337663 0.065496 0.000645 

0.050851 0.042901 0.057743 0.000036 

0.067027 0.000773 0.047036 0.000019 

0.085699 0.000001 0.039221 0.000044 

0.091220 0.000001 0.031203 0.001895 

0.102565 0.000006 0.033145 0.006376 

0.119220 0.000078 0.036562 0.024313 

0.101179 0.021157 0.043622 0.068060 

0.007971 0.908356 0.052300 0.167937 

QMJ P-Value R-Square Adjusted 

-0.233179 0.006323 0.823869 

-0.070268 0.184028 0.920472 

-0.010887 0.775234 0.940272 

0.045702 0.128217 0.966233 

0.083183 0.001753 0.980386 

0.100433 0.000369 0.967342 

0.104757 0.002103 0.952668 

0.089797 0.047471 0.960713 

0.035192 0.596850 0.936995 

-0.072033 0.495988 0.871812 
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Table 7 

Factors’ Summary and Correlations 

Factor 
Portfolio 

Monthly 
Excess 
Return Stud Dev 

t-stat for 
Mean =0  MKT SMB HML UMD QMJ 

MKT 0.47% 4.62% 1.317 1 
   

  

SMB 0.42% 2.51% 2.157 0.3976 1 
  

  

HML 0.22% 2.56% 1.137 -0.0014 0.0288 1 
 

  

UMD 0.16% 5.46% 0.379 -0.4776 -0.4080 0.1370 1   

QMJ 0.30% 3.02% 1.284 -0.7926 -0.5307 -0.0977 0.6090 1 
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Graph 1  

Plotting two sets of regressions QMJ factor loading; 10 portfolios’ returns against 

QMJ, and 10 portfolios’ against QMJ and Market factor.  
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Graph 2  

Plotting each regression’s R-squares, two sets of regressions’ R-Squares are 

plotted; 10 portfolios’ returns against QMJ, and 10 portfolios’ against QMJ and 

Market factor. 
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Graph 3  

Plotting each regression’s R-squares, three sets of regressions’ R-Squares are 

plotted; 10 portfolios’ returns against QMJ, 10 portfolios’ against QMJ and Market 

factor, and 10 portfolios’ against Fama – French -Three Factor and QMJ 
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Graph 4  

Plotting all alphas generated from the six sets of regressions: Mom stands for 

Momentum factor, MRK stands for Market Factor, QMJ stands for Quality Minus 

Junk Factor, and Fama-French-Three Factor includes, Size Factor, Value Factor, 

Market Factor.  
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