
Fast Deep Gaussian Process Modeling and
Design for Large Complex Computer

Experiments
by

Faezeh Yazdi

M.Sc., Brock University, 2016
M.Sc. (Math), Isfahan University of Technology, 2010

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
Department of Statistics and Actuarial Science

Faculty of Science

© Faezeh Yazdi 2022
SIMON FRASER UNIVERSITY

Spring 2022

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Faezeh Yazdi

Degree: Doctor of Philosophy

Thesis title: Fast Deep Gaussian Process Modeling and Design
for Large Complex Computer Experiments

Committee: Chair: Liangliang Wang
Associate Professor, Statistics and Actuarial
Science

Derek Bingham
Supervisor
Professor, Statistics and Actuarial Science

David A. Campbell
Committee Member
Professor, Mathematics and Statistics
Carleton University

David Stenning
Committee Member
Assistant Professor, Statistics and Actuarial Science

Richard Lockhart
Examiner
Professor, Statistics and Actuarial Science

David M. Higdon
External Examiner
Professor, Statistics
Virginia Tech University

ii

Abstract

Computer models, or simulators, are widely used as a way to explore complex physical sys-
tems, but can be computationally expensive to evaluate or are not readily available to the
broad scientific community. In either case, an emulator is used as a surrogate. Stationary
Gaussian process emulators are often used to stand in for the computer models. In many
cases, the computer model response surface does not resemble a realization of a stationary
Gaussian process. Deep Gaussian processes have been shown to be capable of capturing
non-stationary behaviors and abrupt regime changes in the response surface. In this the-
sis, we explore some of the properties of two common deep Gaussian process models for
computer model emulation. We propose new methodology for one of the models so that it
can serve as a computer model emulator. We introduce a new parameter that controls the
amount of smoothness in the deep Gaussian process layers. We also adapt a stochastic vari-
ational approach to our deep Gaussian process model which allows for prior specification
and posterior exploration of the smoothness of the response surface, thereby giving good
predictive performance. Our approach can be applied to a large class of complex computer
models, and scales to arbitrarily large simulation designs. The proposed methodology was
motivated by the need to emulate an astrophysical model of the formation of binary black
holes. Lastly, we propose a sequential design approach by combining the non-stationary deep
Gaussian process model with an expected improvement based criterion. An adaptation in
the deep Gaussian process prediction method facilitates the proposed sequential design ap-
proach. Our methods are illustrated in a series of synthetic examples and the real-world
application.

Keywords: Computer Experiments; Surrogate Model; Deep Gaussian Processes; Uncer-
tainty Quantification; Stochastic Variational Inference; Sequential Design; Local Kriging;
Integrated Mean-squared Prediction Error

iii

Dedication

To the memory of my loving father, who inspired me to always believe in myself.

iv

Acknowledgements

Firstly, I would like to thank my supervisor, Prof. Derek Bingham, for his invaluable guid-
ance, endless support and patience during my studies. I feel very privileged to have worked
under his supervision. Besides my advisor, I would like to thank the rest of my disserta-
tion committee: Profs. David M. Higdon, Richard Lockhart, David A. Campbell, David
Stenning, and Liangliang Wang for their insightful comments and advice.

I wish to thank Prof. Daniel Williamson at the university of Exeter, for whose help in
my research, and the time he dedicated to regular productive Zoom meetings within the
last two years of my PhD. I would like to thank the Department of Statistics and Actuarial
Science that enabled me to pursue my studies in a unique and friendly environment.

Finally, on a personal note, many thanks to my family, for sending their love and support
from miles away, and for being proud of me, and to my amazing husband, whose support
and care drives me constantly.

v

Table of Contents

Declaration of Committee ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Overview . 1
1.2 Thesis Outline . 2

2 Background 4
2.1 Computer Model Emulation . 5

2.1.1 Stationary Gaussian Process (GP) Emulators 5
2.1.2 Non-stationary GP Models . 6

2.2 Design of Computer Experiments . 9
2.3 Variational Inference (VI) . 10

3 Deep Gaussian Processes Emulation 13
3.1 Introduction . 13
3.2 Deep Gaussian Processes (DGPs) . 15

3.2.1 DGP Formulations . 15
3.2.2 DGP as a Bayesian Hierarchical Model (BHM) 17

3.3 DGP as a Surrogate Model . 19
3.3.1 Non-stationary Covariance Functions 19
3.3.2 Controlling Smoothness of DGP Layers 21
3.3.3 Other Possible Innovations . 24

vi

3.4 Inference . 25
3.4.1 Related Work . 26
3.4.2 Fitting the DGP Emulator . 26
3.4.3 Prediction . 31

3.5 Illustration . 32
3.5.1 1-d Toy Models . 33
3.5.2 2-d Toy Model . 37
3.5.3 COMPAS Model . 39

3.6 Summary and Discussion . 42

4 Sequential Experiment Design using DGP Emulator 44
4.1 Introduction . 44
4.2 Sequential Design of Computer Experiments 45

4.2.1 Sequential Design Scheme . 45
4.2.2 Expected Improvement Criterion . 46

4.3 Sequential Design for Complex Computer Models 47
4.3.1 Localized Prediction using DGP . 47
4.3.2 Localized Design Criterion . 49

4.4 Illustration . 51
4.4.1 2-d Toy Model . 51
4.4.2 COMPAS Model . 56

4.5 Summary and Discussion . 58

5 Conclusion 60

Bibliography 62

Appendix A Supplementary Material for Chapter 3 70

vii

List of Tables

Table 3.1 Average of sums of | d2u6/dx2 | . 23
Table 3.2 Prediction accuracy of the DGP for three different methods and four

sample sizes . 35
Table 3.3 Prediction accuracy of the DGP for three different methods and sample

sizes . 36
Table 3.4 Prediction accuracy of the DGP for three different methods 38
Table 3.5 Input and output of COMPAS model 39
Table 3.6 COMPAS emulation results using two and three hidden layer DGP . 42

Table 4.1 Prediction performance of the DGP using four different designs . . . 56
Table 4.2 Prediction performance of the DGP using the initial design and two

different sequential designs . 58

viii

List of Figures

Figure 2.1 A simple, illustrative computer model with regions of discontinuities 7

Figure 3.1 Computer simulation of the black hole binary system GW150914.
Credits: SXS (Simulating eXtreme Spacetimes) project 14

Figure 3.2 Four independent realizations of a DGP constructed by the station-
ary and non-stationary Matern covariance function 23

Figure 3.3 1000 samples (red curve) from the posterior predictive distribution
of the DGP emulator with two hidden layers fitted over a training
set with 10 observed simulation data (brown dots) in case of (a) α

is estimated, (b) α is optimized , (c) α = 1. 34
Figure 3.4 95% credible intervals highlighted with light blue color are con-

structed with the resulting predictive posterior samples in case of
(a) α is estimated, (b) α is optimized, (c) α = 1. The predictive pos-
terior mean (blue line), the true function (red line) and the observed
simulation data (black dots) are also shown in each panel. 34

Figure 3.5 95% credible intervals highlighted with light blue color are con-
structed with the resulting predictive posterior samples in case of
(a) α is estimated, (b) α is optimized, (c) α = 1. The predictive pos-
terior mean (blue line), the true function (red line) and the observed
simulation data (black dots) are also shown in each panel. 36

Figure 3.6 (a) 2-d illustrative computer model with regions of discontinuities
(b) Heatmap of true function outputs at prediction points 37

Figure 3.7 Heatmap of the predictions in case of (a) α is estimated, (b) α is
optimized, (c) α = 1. Plots share the same color bar as given in the
left side of each, where brighter colors indicate greater predicted values 38

Figure 3.8 Heatmap of absolute prediction errors in case of (a) α is estimated,
(b) α is optimized, (c) α = 1. Plots share the same color bar as given
in the left side of each, where brighter colors indicate larger errors. 38

Figure 3.9 Emulated chirp mass against the true chirp mass for the DGP with
two hidden layers (upper) and the DGP with three hidden layers
(lower). 40

ix

Figure 3.10 Absolute emulation errors for the DGP with two hidden layers (up-
per) and the DGP with three hidden layers (lower). 41

Figure 4.1 Sequential design construction. (a) Initial design (b) 25 points added
(c) 50 points added (d) 50 points added after refitting the model.
Red dots represent the initial design, blue ∗’s labeled with numbers
represents new design points according to the order in which they
are added, blue ∗’s without ordered labels represent previously added
points. 52

Figure 4.2 Sequential design construction every 10 iterations. Top row: with-
out refitting the model, Bottom row: with refitting the model after
adding every 10 points (a) The second 10 points added (b) The third
10 points added (c) The fourth 10 points added. Red dots represent
the initial design, blue ∗’s labeled with numbers represents new de-
sign points according to the order in which they are added, blue ∗’s
without ordered labels represent previously added points. 54

Figure 4.3 Sequential design construction every 10 iterations. Final designs af-
ter adding the fifth 10 points (a) without refitting the model (b) with
refitting the model after adding every 10 points. Red dots represent
the initial design, blue ∗’s labeled with numbers represents new de-
sign points according to the order in which they are added, blue ∗’s
without ordered labels represent previously added points. 55

Figure 4.4 IMSPEs of three different sequential design constructions: (a) with-
out refitting the model (b) with refitting the model after adding
every 10 points (c) with refitting the model after adding 25 points.
In all three panels, IMSPES are the same for the first 10 points. . 56

Figure 4.5 IMSPEs of two different sequential design constructions with refit-
ting model after adding every 100 points (a) using 300 NNs and (b)
using 500 NNs . 57

x

Chapter 1

Introduction

1.1 Overview

Computer models, or simulators, are widely used as a way to explore complex physical
systems. Frequently, a simulator is computationally expensive and only a limited number of
model evaluations are available. In other settings, the computational model is relatively fast
to evaluate, but is not readily available to the broad scientific community (e.g. Kaufman
et al. [2011]). In either case, an emulator of the computer model is required.

Stationary Gaussian processes (GP) have become the conventional approach for deter-
ministic computer model emulation (Sacks et al. [1989b], Jones et al. [1998]). In many cases,
the simulator response surface does not resemble a realization of a stationary GP and inno-
vations to adapt to the non-stationary behaviour have been developed (e.g., Gramacy and
Apley [2015]). In recent years, deep Gaussian process (DGP) models have been proposed for
non-parametric regression (Damianou and Lawrence [2013], Dunlop et al. [2018]), and more
recently the approach of Damianou and Lawrence [2013] has been adapted to address com-
puter model emulation (Monterrubio-Gomez et al. [2020], Radaideh and Kozlowski [2020],
Rajaram et al. [2020], Sauer et al. [2020], Ming et al. [2021]).

In this thesis, our first aim is to lay out some of the properties of DGPs for computer
model emulation. In particular, we consider two common DGP models (Damianou and
Lawrence [2013], Dunlop et al. [2018]) and show how they can be written as Bayesian hier-
archical models. We adapt the approach of Dunlop et al. [2018] so that it can serve as an
emulator of complex computer models. The proposed approach allows for prior specification
and posterior exploration of the smoothness of the response surface. The proposed method-
ology is motivated by the application of emulation of a complicated astrophysical model,
namely the Compact Object Mergers: Population Astrophysics and Statistics (COMPAS)
that simulates the formation of binary black holes (BBHs) (Stevenson et al. [2017], Barrett
et al. [2018], Vigna-Gomez et al. [2018]).

A practical problem of interest for simulation experiments is that of experimental de-
sign. For DGPs improvement of the estimate of the response surface requires design points

1

where the surface changes rapidly. Sequential experimental design can help this goal by
spending relatively more effort sampling in regions where the response surface is more com-
plex. Choosing new runs sequentially has been formalized using expected improvement (EI)
criteria for various goals such as optimization (Jones et al. [1998]) and contour estimation
(Ranjan et al. [2008]). In this thesis, we focus on sequential design approaches where addi-
tional design points are chosen by optimizing a criterion based on the predictive variance
(e.g. Sacks et al. [1989a]). To improve performance of our DGP emulator and exploration of
the input space for the selection of future runs, a sequential design strategy is introduced.
We combine the non-stationary DGP model with an EI-based sequential design criterion
to deviate from usual space-filling designs. An adaptation in the DGP prediction method
facilitates our proposed sequential design approach. The proposed approach is illustrated
on a 2-d toy model as well as the COMPAS model.

1.2 Thesis Outline

The rest of the thesis is organized as follows: in Chapter 2, we provide background on
computer model emulation, design and variational inference (VI) as key ingredients for the
new developments in the next chapters. The chapter specifically is started by an overview
of stationary GP emulation and describes existing work in non-stationary GP modelling.
We finish off this chapter with a review of VI approaches that are relevant for our proposed
methodology.

The work in Chapter 3 is motivated by emulation of the COMPAS model with the type of
discontinuities that are not easily captured by conventional methods. This chapter is started
by discussing the challenges encountered emulating the COMPAS model. We generalize the
notation of two broad forms of the DGP in order to highlight their differences and properties.
We propose our DGP emulator by modifying one of the forms through introducing a new
parameter (or parameters) that allows us to control the smoothness of the DGP layers. We
theoretically illustrate and numerically visualise the impact of this proposed parameter on
the degree of smoothness of in the layers of the DGP. We develop a VI approach to fit
our DGP emulator. We demonstrate the importance of estimating this new parameter on
the performance of our DGP emulator by two 1-d toy models. We finish off this chapter
by demonstrating the proposed approach on a 2-d toy model, as well as emulation of the
COMPAS model.

In Chapter 4, we propose a sequential design approach that aims to reduce predictive
variance of our DGP emulator along with improving exploration of the input space for
guiding future simulations. To proceed with this method, we adapt our prediction method.
To speed up our sequential design algorithm, we propose to use nearest neighbor (NN)
predictions using our DGP. We utilize our localized prediction method with the sequential
design strategy. We investigate the impact of refitting model in batches of added design

2

points on the prediction performance of the DGP and the ability of our localized design
criterion in exploring the input space. A comparison of resulting sequential designs with
and without refitting model in the 2-d toy model is presented. The chapter is finished off
by demonstrating the proposed approach on the COMPAS data. Chapter 5 summarizes the
key contributions of the thesis and discusses potential areas for future work.

3

Chapter 2

Background

A computer model, or a simulator, is a mathematical model of a process that has been trans-
lated into computer code. Computer models have been used as a way to explore real systems
in many areas of scientific research such as oil reservoir modelling (Tavassoli et al. [2004]),
Galaxy formation (Vernon et al. [2010]), climate and environmental sciences (Challenor
[2004], Lynch [2008], Edwards et al. [2011]), industrial design and engineering (Ankenman
et al. [2010]), and medical applications such as HIV transmission modelling (Andrianakis
et al. [2015]). Usually physical experimentation is too costly, sometimes impossible, and
hence computer models may reduce the cost of exploring a system.

The inputs to a computer model can generally be placed into one of two groups: (i) con-
trol variables that are observable or adjustable in the physical system; and (ii) calibration
parameters that are needed to run the computer model, but whose values in the physical
system are unknown and must be estimated from observations. In settings where the cal-
ibration parameters have no physical meaning, they are sometimes instead called tuning
parameters (Higdon et al. [2004]). Ideally, for appropriate choice of the calibration param-
eters, a computer model simulates the mean of the physical system. Outputs of computer
models can be scalars, functional, time series, or spatial fields, for example. The output of a
simulator can be deterministic or stochastic, though this thesis considers only deterministic
computer models.

In the literature, there exist statistical techniques relevant to the analysis of computer
models such as emulation (Sacks et al. [1989b], Santner et al. [2003]), calibration (Kennedy
and O’Hagan [2001], Higdon et al. [2008], Chang and Guillas [2018]), experimental design
(Johnson et al. [1990], Tang and Wu [1997], Cheng et al. [1998], Bingham et al. [2014]),
and uncertainty and sensitivity analysis (Oakley and O’Hagan [2002, 2004], Saltelli et al.
[2008]). In this chapter, we briefly review some of the methods applied in this thesis.

4

2.1 Computer Model Emulation

Computer models are often computationally demanding to evaluate because each simulation
is the solution of complex mathematical equations. In other cases, they are fast to evaluate
but are not readily available to all scientists. As a result, a statistical surrogate or emulator is
used in place of the computer model to make predictions of the model output at unsampled
input values with estimates of uncertainty. An emulator can help provide insight into the
functional form of the computer model response and the importance of inputs (Oakley and
O’Hagan [2004]). The traditional approach to computer model emulation is to use a GP.
This section presents a brief description of GP emulators. Additionally, non-stationary GP
models are briefly discussed. This serves as background for Chapter 3, where we introduce
our version of the DGP for emulating computer models.

2.1.1 Stationary Gaussian Process (GP) Emulators

Gaussian processes have become standard tools for analysis of computer models. This in-
cludes uncertainty propagation (Oakley [2004], Lockwood and Anitescu [2012]), model cal-
ibration (Kennedy and O’Hagan [2001], Higdon et al. [2008]), design of experiments (Sacks
et al. [1989b], Pronzato and Muller [2012]), optimisation (Jones et al. [1998], Brochu et al.
[2010]) and sensitivity analysis (Oakley and O’Hagan [2004], Iooss and Lemaitre [2015]).
This section focuses on emulation of computer models using stationary GPs.

A stationary GP is the most common choice for an emulator of computer models (Sacks
et al. [1989b], O’Hagan et al. [1999], Santner et al. [2003]). The GP is a random process whose
evaluation at any finite collection of locations follows a multivariate Gaussian distribution
(Stein [1999]). The computer model response surface is viewed as a realization of a GP
(Sacks et al. [1989b]). For example, let yS = η(x) denote the scalar output of a deterministic
computer model, η(.), at input x ∈ X ⊆ Rd. The inputs are typically scaled so that X is the
d-dimensional unit cube. There are nS inputs given by the rows of the nS × d design matrix
X and corresponding outputs yS = (yS

1 , . . . , yS
nS

)T i.e., yS
i = η(xi) for i = 1, 2, . . . , nS .

In computer model settings, the GP is often specified with a constant mean and a
stationary covariance function. The computer model output is modeled as

yS(x) = µ + z(x),

where µ is a constant, z(x) is a stationary, mean zero GP and

Cov(yS(x), yS(x′)) = k(x, x′; σ2,ϕ) = k(∥x − x′∥2; σ2,ϕ), (2.1)

where k : X × X → R, σ2 is the marginal variance of the process and ϕ is a vector of
parameters governing the correlation. Using a GP with a constant mean can be viewed as
a way of forcing the covariance structure of the GP to model all the signal in the output.

5

Typically, the computer model output is centred and scaled so that a mean-zero GP can be
used.

Conditioning on the hyperparameters {σ2,ϕ}, the design, X, and outpus, yS , the pre-
dictive distribution at new input x∗ is conditionally Gaussian with mean and variance,
respectively,

k(X, x∗)T K−1yS ,

k(X, x∗)T K−1k(X, x∗),
(2.2)

where K = k(X, X) is the covariance matrix for the simulations, with Kij = k(xi, xj ; σ2,ϕ),
and k(X, x∗) is the nS × 1 vector of correlations between a response at x∗ and those at the
inputs in the design, X. In practice, the hyperparameters {σ2,ϕ} are unknown and must
be estimated (Currin et al. [1991], Higdon et al. [2008], Irvine et al. [2007], Kaufman and
Sain [2010]).

The main reasons for the use of a GP emulator lie in its success as a non-parametric
regression method, its ability to interpolate the known outputs, and also to provide a foun-
dation for uncertainty quantification in a deterministic setting (Sacks et al. [1989b], Jones
et al. [1998]). With that said, there are many situations where the simulator outputs are not
well represented by a stationary model. This can occur, for example, when there are rapid
changes in the behaviour of the response surface or discontinuities (e.g., the astronomy ap-
plication in Chapter 3). Figure 2.1 shows a simple, illustrative model given by the indicator
function η(x) = 1(0.3,0.7) for x ∈ (0, 1). This model has appeared in Dunlop et al. [2018] as
an example of a function where a stationary GP has difficulty modeling the behaviour in
the response. This sort of computer model is challenging for the stationary GP, because it
will favour different correlation lengths in different parts of the input space, i.e., near the
discontinuities small correlation lengths will be more desirable, while the flat regions will
favour relatively long correlation lengths. A more appropriate emulator of this model will
have to locally adapt the correlation lengths to the response surface. There are a number of
approaches that adapt GPs to model non-stationary responses. We discuss these methods
in the next section.

2.1.2 Non-stationary GP Models

Most approaches to non-stationary GP modeling can be broadly classified as space-warping
or covariance-modeling (sometimes called space-partitioning). These two classes inform the
types of DGPs that we are going to introduce in Chapter 3. In the former, the input
space is warped so that the observations can be modeled as a stationary GP. Examples of
space-warping include work by Sampson and Guttorp [1992], Schmidt and O’Hagan [2003],
Bornn et al. [2012] and Marmin et al. [2018]. For example, in Sampson and Guttorp [1992]
multidimensional scaling and thin-plate splines are employed to reach the smooth mapping

6

Figure 2.1: A simple, illustrative computer model with regions of discontinuities

from original input space to a warped space where a stationary GP can be used to model
the outputs. Schmidt and O’Hagan [2003] propose using a latent GP prior of the inputs to
provide a mapping from the original input space to a transformed space where the outputs
can be modeled as a stationary GP. In particular, a warping function d(.) is defined from
geographical space G to the warped space (latent space) D. The spatial covariance function
at two input points x, x′ ∈ G is defined as

Cov(Y (x, t), Y (x′, t) =
√

var(Y (x, t))var(Y (x′, t)) g(∥d(x) − d(x′)∥), (2.3)

where Y (x, t) is a spatiotemporal process defined for x ∈ G and arbitrary time t, and g(.)
is a monotone function. Schmidt and O’Hagan [2003] adopted a fully Bayesian approach
specifying a GP prior distribution for the mapping function d(.). In their work, they claim
that the GP prior on the deformation process d(.) tends to eliminate non-injective map-
pings that can be observed in the approach of Sampson and Guttorp [1992]. In Bornn et al.
[2012], the original field is embedded in a space of higher dimension where it can be more
straightforwardly described and modelled. More specifically, the dimensionality of the prob-
lem is shifted from 2 or 3 dimensions to 4, 5, or more in order to recover stationarity in the
process. Marmin et al. [2018] combine dimensional reduction with a multiple index model
and a non-linear mapping in the input space to achieve a non-stationary GP.

Alternatively, there are a number of approaches that vary the correlation function over
the input space to deal with non-stationarity. In spatial statistics, the weighted sum of
locally defined kernels is widely used to model non-stationarity in the spatial process (e.g.
Fuentes [2001], Fuentes and Smith [2003], Banerjee et al. [2004]). In Higdon [1998] and
Higdon et al. [1999], a non-stationary covariance function is obtained by convolving the
spatially varying kernel functions Kx(u) centred on x

k(x, x′) =
∫

X
Kx(u)Kx′(u) du,

7

where x, x′ and u are locations in X . Higdon et al. [1999] used the Gaussian kernel den-
sity estimator and derived a non-stationary version of the stationary squared exponential
covariance function,

k(x, x′) = σ2 |Σ(x)|1/4|Σ(x′)|1/4

|(Σ(x) + Σ(x′))/2|1/2 exp(−Q(x, x′)), (2.4)

with

Q(x, x′) = (x − x′)T

(
Σ(x) + Σ(x′)

2

)−1

(x − x′), (2.5)

where Σ(x) is a covariance matrix of a Gaussian kernel centred at x, and |.| denotes the
determinant of a matrix. If kernel matrices Σ(.) are constant, the special case of the squared
exponential correlation based on Mahalanobis distance is recovered. If they are not constant
with respect to x, the evolution of the kernel covariance matrices in space produces non-
stationary covariance. Paciorek and Schervish [2004] generalized the covariance function
(2.4) for any stationary correlation function R as following

k(x, x′) = σ2 |Σ(x)|1/4|Σ(x′)|1/4

|(Σ(x) + Σ(x′))/2|1/2 R(
√

Q(x, x′)), (2.6)

to produce a class of non-stationary covariance functions that provide more flexibility than
the special case (2.4). More directly, the approach of Paciorek and Schervish [2004] allows
the correlation between observations to vary smoothly as an unknown function of their
spatial location, and will be used in constructing the DGP in Chapter 3.

Other approaches in the computer experiments literature include local models such as
treed GPs (Gramacy and Lee [2008]) and local GPs (Gramacy and Apley [2015]), to name
just a few. These methods aim to provide non-stationary modeling features and reduce the
computational burden for large computer experiments at the same time.

In recent years, deep learning approaches (e.g. Damianou and Lawrence [2013], Dun-
lop et al. [2018]) have been developed to accommodate the non-stationary structures in
complex response surfaces for non-parametric regression problems. Recently, the first ap-
proach (Damianou and Lawrence [2013]) has been adapted in computer model emulation
(Monterrubio-Gomez et al. [2020], Radaideh and Kozlowski [2020], Rajaram et al. [2020],
Sauer et al. [2020], Ming et al. [2021]). In Chapter 3, we lay out forms of both models
defined in Damianou and Lawrence [2013] and Dunlop et al. [2018] as generalizations of
space-warping and covariance-modeling methods of Schmidt and O’Hagan [2003] and Pa-
ciorek and Schervish [2004], respectively, and a computer model emulation is proposed
through modifying version defined in Dunlop et al. [2018].

8

2.2 Design of Computer Experiments

If we wish to make predictions using an emulator, the selection of computer model trials is
important. The process of running a computer model at a variety of different input values
is described as a computer experiment. This section presents a literature review of work
which has been done in the design of computer experiments, and this serves background for
Chapter 4.

Experimental designs for computer models typically begin with space filling type designs
(McKay et al. [1979], Johnson et al. [1990]). These include Latin hypercube designs (McKay
et al. [1979]) and variations thereof (e.g. Morris and Mitchell [1995], Cheng et al. [1998],
Tang [1998]). An important feature of computer experiments is that they can frequently be
performed sequentially (e.g. Currin et al. [1988], Sacks et al. [1989b], Welch et al. [1992],
Santner et al. [2003]). A sequential design strategy involves adding design points to an
existing design in stages according to a specified criterion. Information obtained about
the response surface from previous stages is used to select the inputs at the next stage.
Each stage can consist of adding one or more observations. Depending on the goal of the
experiment, different criteria can be derived using the concept of expected improvement
(EI) to update designs sequentially. Analysts might be interested in obtaining additional
design points that could help reduce prediction uncertainty. In this case, additional design
points are chosen sequentially by optimizing a criterion based on prediction errors (Sacks
et al. [1989a]) or entropy (Mitchell and Scott [1987], Shewry and Wynn [1987], Currin et al.
[1991]).

EI algorithms are also developed to solve problems of constrained optimization (Schon-
lau et al. [1998], Gramacy et al. [2016]). Particularly, in Gramacy et al. [2016], they pro-
pose an algorithm for constrained optimization of complex computer models motivated by
the augmented Lagrangian numerical optimization framework of Notz [2015]. Improvement
strategies have been implemented for problems of contour estimation (Ranjan et al. [2008],
Bingham et al. [2014]) and percentile estimation (Roy and Notz [2014]). Specifically, in
Ranjan et al. [2008], a sequential design approach is presented for estimating a contour of
a complex computer model, where a contour identifies a boundary that distinguishes good
and bad performance. Their strategy is to sequentially choose design points that are on or
near the estimate of the contour.

In recent years, the DGP defined in Damianou and Lawrence [2013] has been used in
sequential design of computer experiments. In Dutordoir et al. [2017], this DGP is used to
fit to sequentially collected data, but acquisition criteria are not based on the DGP fits. In
Rajaram et al. [2020], a strategy based on maximum variance criterion of MacKay [1992] is
applied with this DGP. Hebbal et al. [2021] applied the DGP of Damianou and Lawrence
[2013] to Bayesian optimization via the EI of Jones et al. [1998]. In Sauer et al. [2020], they
construct a sequential design using the integrated mean-squared prediction error (IMSPE)

9

and an active learning strategy in Cohn [1994] with this DGP. In Chapter 4, we propose a
sequential design approach using IMSPE with the modified DGP of Dunlop et al. [2018].

2.3 Variational Inference (VI)

Variational Inference (VI) is a method for approximating probability densities. There are
several good reviews to VI available in the machine learning and statistics literature, for
instance Jordan et al. [1999], Wainwright and Jordan [2008] and Blei et al. [2017]. Estimating
parameters is typically done in a Bayesian context, via Markov chain Monte Carlo (MCMC)
or related methods (Metropolis et al. [1953], Hastings [1970], Geman and Geman [1984],
Gelfand and Smith [1990]). However, when datasets are large, doing inference for GPs
requires inversion of large covariance matrices and this is difficult to impossible. VI provides
an approach to parameter estimation for large datasets through approximating samples
from the posterior distribution of the parameter. This section presents basics of VI and
emphasizes other VI ideas in the literature that are most relevant for Chapter 3.

The goal of VI is to approximate a conditional density of latent variables given observed
variables by specifying a family Q of densities over the latent variables. The main idea is to
find the best candidate in Q, the one that minimizes the Kullback-Leibler (KL) divergence
to the exact conditional distribution. The KL divergence is a measure of proximity between
two densities and equals to zero when the two densities are the same (Kullback and Leibler
[1951]). The family Q is chosen to be flexible enough to capture a density close to the target
conditional density, but simple enough for efficient optimization.

Let y and u be a set of observed and latent variables, respectively. Inference in a Bayesian
model amounts to conditioning on data and computing the posterior distribution P(u|y).
VI seeks an approximate posterior distribution q(u) that is made as close as possible to the
true posterior distribution P(u|y), where the closeness is measured by the Kullback-Leibler
divergence,

KL
(
q(u)∥P(u|y)

)
= Eq

[
logq(u)

]
− Eq

[
logP(u|y)

]
= Eq

[
logq(u)

]
− Eq

[
logP(u, y)

]
+ logP(y)

= −Eq

[logP(u, y)
logq(u)

]
+ logP(y)

= −Lq + logP(y).

(2.7)

Eq indicates that the expectation is taken with respect to q(u). For many models, the
marginal density of the observations P(y), also called the evidence, is unavailable in closed
form or requires exponential time to compute. Therefore, the KL is not computable. On
the other hand, since the KL divergence is non-negative, it follows that Lq is a lower bound
on logP(y). Hence we can maximize the alternative objective Lq, called the evidence lower

10

bound (ELBO), that is equivalent to minimizing the KL. The lower bound Lq can also be
written as

Lq = Eq

[logP(u, y)
logq(u)

]
= Eq

[
logP(y|u)

]
+ Eq

[
logP(u)

]
− Eq

[
logq(u)

]
= Eq

[
logP(y|u)

]
− KL

(
q(u)∥P(u)

)
,

(2.8)

which is a sum of the expected log-likelihood of the data and the KL divergence between
the prior P(u) and q(u). The first term encourages densities q(.) ∈ Q that place their mass
on configurations of the latent variables that explain the observed data. The second term
pushes densities q(.) ∈ Q close to the prior. Thus, the usual balance between likelihood and
prior is reflected.

General VI algorithms have been developed for a variety of classes of models, includ-
ing shrinkage models (e.g. Armagan and Dunson [2011]), general time-series models (e.g.
Roberts et al. [2004], Barber and Chiappa [2006]), robust models (e.g. Tipping and Lawrence
[2005]), and GP models (e.g. Titsias [2009], Titsias and Lawrence [2010], Hensman et al.
[2013]).

Inference in GP models is intractable if the size of data is large. The variational approach
of Titsias [2009] using inducing points has been highly influential in the area of scalable GP
approximations. The inducing variables are latent function values evaluated at some inputs
which can be a subset of the training inputs or pseudo-points (Snelson and Ghahramani
[2006]). Inducing variables were first introduced in the context of sparse GPs by Snelson
and Ghahramani [2006] to overcome the inversion of the covariance matrix of the whole
dataset. This idea is used by Titsias [2009] in a variational approach, where the inducing
inputs are defined to be variational parameters which are selected by minimizing the KL
divergence between the variational distribution and the exact posterior distribution.

An important advance in the use of variational methods is their combination with
stochastic gradient descent (Hoffman et al. [2013]). The variational inducing point frame-
work has been combined with such methods in Hensman et al. [2013, 2015]. The approach
has also been successfully used to perform scalable inference in more complex models such
as the GP latent variable models (Titsias and Lawrence [2010], Damianou et al. [2016])
and the DGP models (Damianou and Lawrence [2013], Hensman and Lawrence [2014], Dai
et al. [2016], Salimbeni and Deisenroth [2017]). Specifically, Salimbeni and Deisenroth [2017]
introduce the doubly stochastic variational inference (DVSI) method for inference with a
DGP model of Damianou and Lawrence [2013], which allows scalability to large datasets
with an effective performance. The state-of-the-art DSVI has been recently implemented
in GPflux (Dutordoir et al. [2021]), an actively maintained open-source library dedicated

11

to the DGP. In Chapter 3, we derive an inference procedure based on DSVI method of
Salimbeni and Deisenroth [2017] for fitting the modified DGP of Dunlop et al. [2018].

12

Chapter 3

Deep Gaussian Processes
Emulation

3.1 Introduction

Complex phenomena are often explored by means of computer models that simulate their
behaviour. In some cases, the computer models are computationally demanding. In other
cases, they are fast to evaluate but run only on supercomputers or must be run by specialists,
thereby limiting their availability to all scientists. In either case, a statistical emulator may
be used in place of the computer model.

The common approach of emulating computer model responses is using a GP. In many
cases, the computer model response surface does not resemble a realization of a stationary
GP (e.g. Figure 2.1). Computer models whose response surface is not well represented by a
stationary model display different behaviour in terms of complexity in different regions of
the input space. This arises, for example, when the variability in the shape of the response
surface changes in the inputs, or the model response exhibits sharp localized features, e.g.
discontinuities or high peaks. Stationary GP emulators fail to capture unusual behaviours in
this class of complex computer model (Dunlop et al. [2018], Volodina and Williamson [2020]).
In this chapter, we introduce a non-stationary DGP emulator which could be applied to a
large class of complex computer models, and scales to arbitrarily large simulation designs.

The application that motivated the proposed methodology was emulation of an as-
trophysical model (i.e., the COMPAS model). COMPAS is a binary population synthesis
model that simulates the formation of BBHs through the evolution of pairs of massive stars
(Stevenson et al. [2017], Vigna-Gomez et al. [2018], Barrett et al. [2018], Neijssel et al.
[2019]). A BBH is a system consisting of two black holes in close orbit around each other
(Figure 3.1). A gravitational-wave signal is emitted during the merger of two black holes,
and can be measured by ground-based gravitational-wave detectors (Mandel and Farmer
[2018]). Also as two black holes merge, the chirp mass is expelled. In the COMPAS model,
inputs describe the initial conditions of a binary star system (e.g., the mass of the most

13

massive star) and parameters that govern physical processes in the system. The output
upon which we focus is the chirp mass of the formed BBH. Given the high dimensionality
of the input and complexity of binary stellar evolution, in practice many billions of binaries
need to be simulated to perform an experiment that is sufficiently large to make scientific
inferences. This can amount to computing times of years, and, as a consequence, a fast
statistical emulator for the COMPAS model is required.

Figure 3.1: Computer simulation of the black hole binary system GW150914. Credits: SXS
(Simulating eXtreme Spacetimes) project

The first challenge for computer model emulation in this setting is the presence of
regions of discontinuities in the response surface of the chirp mass. That is, BBHs only
form in some regions of the input space. If a BBH system does not form, then no chirp
mass is observed. Unfortunately, the portions of input space that result in non-zero outputs
are unknown, though it is assumed that a chirp mass is observed in a union of compact
regions in the input space. As a result, there are series of disconnected chirp mass response
surfaces. The second challenge in population synthesis emulation is that in a simulation suite
of two million of COMPAS trials, roughly 24% results in a BBH merger (e.g. Belczynski
et al. [2002], Kruckow et al. [2018], Taylor and Gerosa [2018], Broekgaarden et al. [2019]),
so the vast majority of computational time is spent on simulations that do not produce
an outcome. If millions of BBHs are wanted, a large number of simulations needs to be
performed. So, an emulator of the COMPAS model will have to be adapted to the type of
discontinuities that we have in this setting with a required large number of simulation runs.

In this chapter, we propose a new methodology for building a non-stationary emulator
which can be used in a wide range of applications - including the COMPAS model. We
build a DGP emulator that aims to capture non-standard features of the COMPAS model,
and scales to the large number of simulation runs. We introduce a new parameter (or
parameters) that allows us to control the smoothness of the DGP layers. We also adapt
a stochastic variational inference approach to our DGP model which allows us to specify
prior distribution and explore posterior distribution for the smoothness parameter(s) of the
response surface, thereby giving a good predictive performance.

This chapter has the following structure. In Section 3.2, the notation of two broad
forms of the DGP are generalized to emphasize their differences and properties. In Section

14

3.3, our DGP emulator is proposed by modifying one of the forms through introducing
a new parameter (or parameters) that controls smoothness of the DGP layers, followed
by illustration of this property both theoretically and numerically. Section 3.4 details the
adapted variational inference approach to our DGP emulator. In Section 3.5, our proposed
method is illustrated in a series of synthetic examples as well as emulation of the COMPAS
model. Section 3.6 concludes with discussion and future work.

3.2 Deep Gaussian Processes (DGPs)

As discussed in Section 2.1, most non-stationary GP modeling approaches can be broadly
classified as space-warping and covariance-modeling (or space-partitioning). Deep Gaussian
processes, as a way to accommodate the complex structures in some response surfaces, be-
long to one of these two classes too. In the literature, there are two broad forms of a DGP
introduced in Damianou and Lawrence [2013] and Dunlop et al. [2018], which are general-
izations of space-warping and covariance-modeling methods of Schmidt and O’Hagan [2003]
and Paciorek and Schervish [2004], respectively. In this section, we lay out the notation of
these two forms in such a way that allows us to highlight their differences and properties.

3.2.1 DGP Formulations

The first common form introduced in Damianou and Lawrence [2013] is a GP directly
composed with another GP recursively, leading to what is referred to as a DGP. A DGP
with N hidden layers in this form is defined by composition of functions u1 : X ⊆ Rd → Rd′

1

and un : Rd′
n−1 → Rd′

n that are conditionally Gaussian,

u1,l(x) ∼ GP(0, k1,l(x;ϕ1)) , l = 1, . . . , d′
1 (3.1)

un,l(x)|un−1(x) ∼ GP(0, kn,l(un−1(x);ϕn)) , l = 1, . . . , d′
n, (3.2)

for n = 2, . . . , N +1, d′
N+1 = 1 and x ∈ X ⊆ Rd, where un,l(x) represents the lth component

of un(x) ∈ Rd′
n . Here k1,l : X ×X → R and kn,l : Rd′

n−1 ×Rd′
n−1 → R are stationary covariance

functions. Vector parameters ϕ1 and ϕn are parameters such as the variance and correlation
lengths. Typically the covariance functions are chosen to be the same (e.g. squared exponen-
tial). Since the covariance function at layer n is a function of the outputs from the previous
layer, this approach amounts to warping the input space. Under this specification uN+1

is the observation vector yS , and the previous layers are unobserved latent variables that
warp the input space. Specifically, yS = uN+1 where uN+1 = uN+1(uN (...(u1(X)))) ∈ RnS ,
and uN+1 refers to a DGP with N hidden layers.

An alternative form of the DGP was introduced in Dunlop et al. [2018]. In their spec-
ification, the covariance parameters of each hidden layer are a function of the output of a
previous hidden layer. Specifically, a DGP with N hidden layers in this form is defined by

15

sequences of functions un : X ⊆ Rd → R that are conditionally Gaussian,

u1(x) ∼ GP(0, k1(x;ϕ1)), (3.3)

un(x)|un−1(x) ∼ GP(0, kn(x;ϕn(un−1(x)))), (3.4)

where n = 2, . . . , N + 1 and x ∈ X ⊆ Rd. Similar to the previous approach, a stationary
covariance function k1 : X × X → R, with vector parameter ϕ1, is used in the base layer. In
this form, kn : X × X → R is a non-stationary covariance function which operates on the
original input space X and ϕn(un−1(x)) denotes a vector of all covariance parameters that
are a function of the previous layer un−1. Explicitly, the covariance function for any layer
other than the base layer (n > 1) is kn(x, x′;ϕn(un−1(x), un−1(x′))) where the covariance
function kn(., .) is always expressed between the original input locations x and x′, but the
covariance parameters depend on the processes un−1(x) and un−1(x′) at those locations.
Hence, handling non-stationarity in this form of the DGP can be considered as a covariance-
modelling method. Under this specification uN+1 is the observation vector yS , i.e. yS =
uN+1 where uN+1 = uN+1(X) ∈ RnS . Here uN+1 refers to a DGP with N hidden layers and
the unobserved random vectors (u1, u2, . . . , uN), where un = un(X) ∈ RnS for n = 1, . . . , N

are considered as hidden layers which are used to discover the covariance among the given
simulation outputs.

Remark 1. As seen in equations (3.2) and (3.4), the two DGP formulations look similar,
however there are important differences. In equation (3.4) the input of each layer is always
x in a d-dimensional space and is mapped to a 1-dimensional output. The outputs of each
hidden layer are considered as parameters and are used to model covariance parameters
in the next layer. In equation (3.2) the input of layer un (n > 1) is the output of the
previous layer un−1 in d′

n−1-dimensional space and is mapped to a d′
n-dimensional output

where d′
n ≥ d and d′

n is not necessarily one (except d′
N+1 = 1). In this form, the outputs

in each layer are considered as an warped domain space for the covariance function of the
next layer.

The DGP formulations can deal more complex response surfaces than standard GPs. In
the first form by warping the input space through hidden Gaussian layers effectively move
some input points closer and others farther apart to achieve non-stationarity. In the second
form, adapting the covariance parameters (e.g length scales) across the input space through
hidden Gaussian layers achieves non-stationarity.

One might ask what the DGP would look like if the data were actually a realization of
a stationary GP. The following propositions aim to address exactly these circumstances.

Proposition 1. Under the DGP model in (3.2), un,l(x)|un−1(x) is a stationary GP for
l = 1, . . . , d′

n if and only if un−1(x) = c ⊙ x for any x ∈ X ⊆ Rd, where c ∈ Rd is a vector
of constants and ⊙ represents an element-wise product.

16

Proof. ⇒) Let un,l(x)|un−1(x) be a stationary GP. This implies that kn,l(un−1(x);ϕn) is a
stationary covariace function, where the input space is not warped through un−1(.). Hence
un−1(x) must be a linear transformation of x. i.e there exists a vector of constants c ∈ Rd

such that un−1(x) = c ⊙ x for any x ∈ X ⊆ Rd.
⇐) Let un−1(x) = c ⊙ x for a vector of constants c ∈ Rd. This implies kn,l(c ⊙ x;ϕn)

where c scales the length scale vector in ϕn. As a result the covariance function kn,l(., .)
operates on the input space. So, un,l(x)|un−1(x) is a stationary GP.

Proposition 2. Under the DGP model in (3.4), un(x)|un−1(x) is a stationary GP if and
only if un−1(x) is a constant for any x ∈ X ⊆ Rd.

Proof. ⇒) Let un(x)|un−1(x) be a stationary GP. This implies that kn(x;ϕn(un−1(x))) is a
stationary covariace function. Hence covariance parameter ϕn(un−1(x))) must be a constant
and would not change respect to any space location x ∈ X ⊆ Rd. To have this, un−1(x)
must be a constant for any x ∈ X ⊆ Rd.

⇐) Let un−1(x) be a constant. This implies that covariance parameter ϕn(un−1(x))) in
kn(x;ϕn(un−1(x))) is a constant too and would not change respect to the space location
x. As a result kn(., .) would be a stationary covariance function and un(x)|un−1(x) is a
stationary GP.

Remark 2. Proposition 2 has practical implications that are helpful when one wants to do
preliminary exploration on a dataset. Specifically, to diagnose if a stationary GP is a good
enough solution for the the given data, one can fit a one hidden layer DGP to the data. If
the first hidden layer is (almost) constant, a staionary GP will be an adequate solution. An
illustration for this will be presented in Section 3.5.

There are some advantages of the DGP of Dunlop et al. [2018] that lead us to consider it
in our framework. As mentioned before, in the DGP model (3.4) covariance functions operate
on the original input space rather than the warped input space. Retaining data locations in
this form of the DGP allows us to explore the model, where the correlation as a function of
the layer changes through the original input space. Specifically, this exploration can be done
by visualizing the layers versus the original input space even in many dimensions in this
form of the DGP. While getting these features in the compositional form (3.2) would be hard
and a bit tricky as the input space is warped so much. In the next section, we detail how
the DPG formulation in (3.4) can be considered as a Bayesian hierarchical model (BHM).

3.2.2 DGP as a Bayesian Hierarchical Model (BHM)

The notation used for the DGP models above is common in the computer science literature.
On the other hand, it is not the conventional way of writing out a model among statisticians

17

(i.e., first the likelihood is specified followed by prior distributions and hyper-prior distri-
butions). The DGP formulation defined in (3.4) is now written as a Bayesian hierarchical
model.

Let yS be an output of deterministic simulator η(.) at design location x ∈ X ⊆ Rd and
uN+1(x) is a DGP with N hidden layers. So we have

yS = uN+1(x), (3.5)

uN+1(x)|uN (x) ∼ GP(0, kN+1(x;ϕN+1(uN (x),ωN+1),ψN+1)), (3.6)

...

u1(x) ∼ GP(0, k1(x;ϕ1)), (3.7)

ϕ1 ∼ P(ϕ1) , ωn ∼ P(ωn) , ψn ∼ P(ψn), (3.8)

for n = 2, . . . , N + 1 and P(.) is used to generically specify the prior distributions. As seen
in (3.6), kernel parameters are separated into (i) parameters that are function of previous
layer uN and a vector of parameters ωN+1 through ϕN+1, and (ii) parameters ψN+1 in
the kernel such as variance and smoothness parameters which do not depend on previous
layer uN . When there is no hidden layer (N = 0), yS = u1(x) is a stationary GP in (3.7),
where ϕ1 is a vector of standard parameters in stationary covariance function k1(., .). In
(3.8) which is the last level of our hierarchical model, we introduce prior distributions for
hyperparameters ϕ1, {ωn}N+1

n=2 and {ψn}N+1
n=2 that need to be estimated. Hence the DGP

form (3.4) with a data level as in (3.5), process levels as in (3.6) and (3.7) and a prior level
as in (3.8) can be viewed as a BHM. For the observation vector yS , the likelihood is as

P(yS | uN ,ωN+1,ψN+1) ∝ |K|−
1
2 exp

{
− 1

2 (yST K−1yS)
}

, (3.9)

where K = kN+1(X, X;ϕN+1(uN ,ωN+1),ψN+1) is an nS × nS covariance matrix obtained
from the last hidden layer, uN = uN (X) ∈ RnS . The hyperparameters ϕ1, {ωn}N+1

n=2 ,
{ψn}N+1

n=2 and unobserved random vectors (u1, u2, . . . , uN) have to be estimated.
Inference can be done in several ways for BHMs - for example via Markov Chain Monte

Carlo (MCMC) (Metropolis et al. [1953], Hastings [1970]). However, accurate sampling
methods such as MCMC for large designs are computationally infeasible due to evaluation
of the likelihood which requires inverse of covariance matrix K at each step (Dunlop et al.
[2018]). Specifically, in implementation of Dunlop et al. [2018], it is required to construct
Cholesky decompositions of covariance matrices for each layer at every step through the
MCMC as well. As a result, the computational burden is compounded when simulators are
nested inside larger frameworks.

18

The next section describes how we build a DGP emulator by modifying the DGP form
of Dunlop et al. [2018], followed by adapting a variational inference approach in Section 3.4
to overcome the computational issue encountered in large designs.

3.3 DGP as a Surrogate Model

The DGP of Damianou and Lawrence [2013] has been adapted as a statistical surrogate
in computer model emulation (Monterrubio-Gomez et al. [2020], Radaideh and Kozlowski
[2020], Rajaram et al. [2020], Sauer et al. [2020], Ming et al. [2021]). Methodology as sur-
rogates using the DGP defined by Dunlop et al. [2018] for simulation experiments has not
been developed. Also as discussed in previous section, this DGP form has features that
makes it suitable in our application. These two reasons lead us to develop new methodology
using the DGP of Dunlop et al. [2018] for our application.

3.3.1 Non-stationary Covariance Functions

Covariance functions determine important properties of a realization of a GP such as its
variation and smoothness. So it is crucial to select covariance functions for the hierarchy of
conditional GPs in (3.3) and (3.4) such that the DGP emulator can appropriately represent
the simulator output.

Let ρ(.) be a stationary correlation function, where correlation between any two outputs
at locations x and x′ depends on the Euclidean distance ∥ x − x′ ∥2. Let the covariance
function k1(., .) in equation (3.3) be defined by k1(x, x′; σ2

1) = σ2
1ρ(∥ x−x′ ∥2). Dunlop et al.

[2018] apply the approach of Paciorek and Schervish [2004] discussed in 2.1.2 to construct
non-stationary covariance functions kn(., .) in equation (3.4) for n > 1 using

kn(x, x′; Σ(x), Σ(x′)) = σ2
n

|Σ(x)|1/4|Σ(x′)|1/4

|(Σ(x) + Σ(x′))/2|1/2 ρ(
√

Q(x, x′)), (3.10)

where Σ : Rd → Rd×d is a d × d matrix. The quadratic form

Q(x, x′) = (x − x′)T

(
Σ(x) + Σ(x′)

2

)−1

(x − x′), x, x′ ∈ X ⊆ Rd (3.11)

averages the kernel matrices for the two locations when computing the distance between x
and x′. Proposition 2 in Dunlop et al. [2018] shows that positive definiteness of covariance
function kn(., .) is satisfied if ρ is continuous with limr→∞ρ(r) = 0.

In this work, we follow Dunlop et al. [2018] and choose kernel matrix Σ(x) depending
on the process un−1(x) as

Σ(x) = F (un−1(x))Id, (3.12)

19

where F : R → R ≥ 0 is a non-negative function, called the length scale function, and Id

is an identity matrix of the order d. Using (3.12), the non-stationary covariance function
defined in (3.10) can be written as

kn(x, x′; F (un−1(x)), F (un−1(x′))) = σ2
n

2d/2[F (un−1(x))]d/4[F (un−1(x′))]d/4[
F (un−1(x)) + F (un−1(x′))

]d/2 ρ(
√

Q(x, x′)),

(3.13)
where √

Q(x, x′) = ∥ x − x′ ∥2√
F (un−1(x)) + F (un−1(x′))/2

. (3.14)

In (3.14), the distance between x and x′ is scaled by square root of average of length
scales at those locations. Hence, observations with the same distance in their inputs in the
input space can have different correlations and as a result non-stationarity is produced in
the process. Therefore, the hierarchy of conditional GPs in the DGP defined in (3.3) and
(3.4) are constructed using non-stationary covariance functions kn(., .) with kernel matrices
Σ(x) which are derived from the previous GP or layer, un−1(x). In other words, each layer,
through the length scale function, F (.), can be interpreted as the length-scale of the following
layer.

Remark 3. Proposition 2 holds for the DGP constructed using the non-stationary covari-
ance function defined in (3.13). Hence, if un−1(x) = c for a constant c at all x ∈ X ⊆ Rd,
then the covariance function kn(., .) in (3.13) is stationary. The reason is that in this case
the prefator will equal one and the kernel becomes

kn(x, x′; a) = σ2
n ρ
(∥ x − x′ ∥2√

F (c)
)
. (3.15)

Equation (3.15) implies that for fixed distance between x and x′, the bigger F (c) is, the
higher correlation between x and x′ should be. The reason is that the distance is scaled by√

F (c) and this makes points to get closer together.

In this work, the stationary correlation function ρ(.) is chosen from the stationary Matern
family,

ρ(x, x′; λ, ν) = 1
Γ(ν)2ν−1

(∥ x − x′ ∥2
λ

)ν

Kν

(∥ x − x′ ∥2
λ

)
, (3.16)

where Γ(.) is the gamma-function, ν > 0 is the smoothness parameter, λ > 0 is the length
scale, and Kν(.) denotes the modified Bessel function of the second kind of the order ν.
Hence, the stationary Matern covariance function is defined as

k1(x, x′; σ2
1, λ, ν) = σ2

1ρ(x, x′; λ, ν), (3.17)

20

where σ2
1 is a variance parameter. For n > 1, kn(x, x′; F (un−1(x)), F (un−1(x′))) is a non-

stationary version of the Matern covariance function as

σ2
n 2d/2[F (un−1(x))]d/4[F (un−1(x′))]d/4

Γ(ν)2ν−1[F (un−1(x)) + F (un−1(x′))
]d/2

(
2
√

νQ(x, x′)
)ν

Kν

(
2
√

νQ(x, x′)
)

, (3.18)

where σ2
n is the variance parameter, and

√
Q(x, x′) is defined as (3.14).

In the next section, a new parameter is introduced in the non-stationary covariance
function (3.13) that it controls the amount of smoothness in the DGP layers.

3.3.2 Controlling Smoothness of DGP Layers

The choice of length scale function F (.) : R → R ≥ 0 in the kernel matrix Σ(.) in (3.12)
allows us to propose a new parameter that can impact on the smoothness of the DGP layers.
In Dunlop et al. [2018], typical choices for F (u) are u2 and exp(u). In this work, we propose
F (u) = exp(αu), where α is a new parameter that controls the level of smoothness in the
DGP layers. We illustrate our observations analytically and numerically below.

Using the proposed length scale function F (.), the kernel matrix Σ(x) in (3.12) can be
written as

Σ(x) =


exp(αu(x)) 0 · · · 0

0 exp(αu(x)) · · · 0
...

...
0 0 · · · exp(αu(x))


d×d

. (3.19)

For x, x′ ∈ X ⊆ Rd the quadratic form Q(x, x′) and the prefactor of the non-stationary
covariance function in (3.13) are then written as

Q(x, x′) = (x1 − x′
1)2 + · · · + (xd − x′

d)2[
exp(αu(x))+exp(αu(x′))

2

] , (3.20)

and [
exp(αu(x))

] d
4
[
exp(αu(x′))

] d
4

[
exp(αu(x))+exp(αu(x′))

2

] d
2

, (3.21)

respectively. Equations (3.20) and (3.21) show where the parameter α exactly impacts
on the non-stationary covariance functions in the DGP. The following proposition aims to
explain exactly what is happening in the non-stationary covariance function as the proposed
parameter α changes from zero to infinity.

Proposition 3. Under the DGP model in (3.4), let the non-stationary covariance function
kn(., .) be defined in (3.13) with the length scale function F (un−1(x)) = exp(αun−1(x)) for

21

n > 1 and α ≥ 0. Then increasing α from zero to ∞ decreases degree of smoothness of each
layer.

Proof. Let α = 0. Then the length scale function F (un−1(x)) = exp(αun−1(x)) = 1 for all
x ∈ X ⊆ Rd, i.e. length scale function does not change through the input space X in each
layer. It follows that the prefactor in (3.21) equals 1 and the square root of the quadratic form
in (3.20) becomes

√
Q(x, x′) =∥ x−x′ ∥2. As a result, for n > 1 kn(x, x′) = σ2

n ρ(∥ x−x′ ∥2),
a stationary covariance function. This is where we reach stationarity in the DGP. As α

increases, the degree of the smoothness of the DGP layers get smaller. To show this, we
investigate correlation between any two outputs at x, x′ ∈ X ⊆ Rd in three situations.

Let α → ∞. (i) If un−1(x), un−1(x′) > 0, then F (un−1(x)) → ∞ and F (un−1(x′)) → ∞
and the quadratic form Q(x, x′) in (3.20) goes to zero. Since ρ(0) = 1, then ρ(

√
Q(x, x′)) →

1. Furthermore, the perfactor in (3.21) can be written as

2d/2
[

exp(αu(x)) exp(αu(x′))
(exp(αu(x)) + exp(αu(x′)))2

]d/4

. (3.22)

Since exp(.) is a non-negative function, the denominator in (3.22) goes to infinity faster
than the numerator and the prefactor goes to zero. This implies that kn(x, x′) → 0 at any
inputs x and x′, thereby having less smooth realizations. (ii) If un−1(x) > 0, un−1(x′) < 0,
similar to the case (i), kn(x, x′) → 0. (iii) If un−1(x), un−1(x′) < 0, then F (un−1(x)) → 0
and F (un−1(x′)) → 0 and as a result the quadratic form Q(x, x′) in (3.20) goes to ∞. Since
limr→∞ρ(r) = 0, then ρ(

√
Q(x, x′)) → 0. Hence kn(x, x′) → 0 at any inputs x and x′,

thereby having rougher realizations again.

Remark 4. Proposition 3 holds as α increases from zero to −∞. In our work, for identifi-
ability reasons for α and the u’s, we specify that α is a non-negative scalar parameter which
is the same in all the DGP layers having the non-stationary covariance function.

Remark 5. If un−1(x) = c for a constant c at any x ∈ X ⊆ Rd, then with the choice of
F (un−1) = exp(αun−1), equation (3.15) can be written as

kn(x, x′) = σ2
n ρ
(∥ x − x′ ∥2√

exp(αc)
)
.

If c is a positive constant, as α increases then exp(αc) increases. As a result, the correlation
kn(x, x′) becomes larger and un(.) gets smoother. If c is a negative constant, as α increases
then exp(αc) decreases. As a result correlation kn(x, x′) becomes smaller and un(.) becomes
rougher.

To numerically illustrate the impact of the parameter α on the level of smoothness in the
the DGP layers, we investigate realizations of the DGP generated using the non-stationary
covariance functions defined in (3.13). We choose the stationary Matern covariance function

22

in (3.17) with σ2
1 = 1, λ = 0.5 and ν = 2.5 for k1(., .), and the non-stationary Matern

covariance function in (3.18) with σ2
n = 1 for kn(., .), n = 2, . . . , 7 with the choice of

F (u) = exp(αu).
Panels (a), (b), (c) and (d) in Figure 3.2 show four independent realizations of the first

seven layers u1, . . . , u7 from the proposed DGP with α = 0.1, 1, 2, 3, respectively. It can be
seen that as α increases from 0.1 to 3, the layers become more wiggly from panel (a) to (d).
Also, in panels (c) and (d) where α = 2, 3, we can see more rougher samples through layer
u1 to layer u7. These panels clearly illustrate the features outlined in Proposition 3.

(a) F (u) = exp(0.1u) (b) F (u) = exp(u) (c) F (u) = exp(2u) (d) F (u) = exp(3u)

Figure 3.2: Four independent realizations of a DGP constructed by the stationary and non-
stationary Matern covariance function

To measure the smoothness in the final response surface, the average of sums of absolute
second derivatives of the last hidden layer for 500 samples is computed. As seen in each row
of the Table 3.1, the scores become larger by increasing α from 0.1 to 3. This is expected
since the less smooth the layer is, the bigger score is. Also the most significant increase
occurs when α increases from 2 to 3 where the layers are most rough.

Table 3.1: Average of sums of | d2u6/dx2 |

λ α = 0.1 α = 1 α = 2 α = 3
0.1 2, 327.4 3, 183.7 18, 616.8 226, 127.6
0.5 2, 342.7 3, 100.3 16, 246.2 217, 751.7
1 2, 323.2 2, 975.7 17, 352.1 209, 352.8
2 2, 332.6 3, 167.3 16, 189.5 220, 885.9

Remark 6. Under the DGP model in (3.4), let the non-stationary covariance function
kn(., .) be defined in (3.13) with the length scale function F (un−1(x)) = exp(αun−1(x)) for
n > 1 and α ≥ 0. Then ϕn(., .) in (3.6) plays the same role as the non-negative function
F (.) and as a result ωn = α and ψn = σ2

n for n = 2, . . . , N + 1.

It will be illustrated at the end of this chapter that estimating the proposed parameter
α impacts the performance of our DGP emulator. On the other hand, as discussed in
Subsection 3.2.2, doing inference on the DGP emulator using MCMC is computationally
infeasible in large designs. In the next section, we adapt a variational inference approach

23

that aims to not only estimate posterior distribution of smoothness parameter α but also
overcome this computational issue.

3.3.3 Other Possible Innovations

There are other possible innovations to the DGP model in (3.4) through (i) specifying
proposed parameter α in different ways and (ii) changing dimensionality layers, which we
only mention some of them here as future work.

(i) The smoothness parameter α can be specified in the non-stationary covariance func-
tion kn(., .) in different ways. One is that α can be different in all non-stationary layers. In
this case, for n = 2, . . . , N + 1, kn(., .) has its own smoothness parameter which has to be
estimated in each layer. Therefore, the smoothness level of the layers is controlled differ-
ently and separately. Another way is that at each coordinate dimension of the input space
X ⊆ Rd, the smoothness parameter α can be specified differently, i.e. α = (α1, α2, · · · , αd)
where d is dimension of the input space. Hence, for every input x ∈ X kernel matrix Σ(x)
in (3.12) is written as

Σ(x) =


exp(α1u(x)) 0 · · · 0

0 exp(α2u(x)) · · · 0
...

...
0 0 · · · exp(αdu(x))


d×d

. (3.23)

Then the quadratic form Q(x, x′) and the prefactor of the non-stationary covariance function
in (3.13) are written as

Q(x, x′) = (x1 − x′
1)2[

exp(α1u(x))+exp(α1u(x′))
2

] + · · · + (xd − x′
d)2[

exp(αdu(x))+exp(αdu(x′))
2

] , (3.24)

d∏
l=1

[
exp(αlu(x))

] 1
4
[
exp(αlu(x′))

] 1
4

[
exp(αlu(x))+exp(αlu(x′))

2

] 1
2

, (3.25)

respectively. In quadratic form (3.24) the distance at each coordinate dimension is scaled
differently by its corresponding smoothness parameter compared with (3.20). Also the pref-
actor in (3.25) is a product of prefactors in each dimension. Although specifying α in above
methods and their combination may have some advantages, more complexity is added to
an already complex statistical model and more parameters need to be estimated.

(ii) In the DGP model in (3.4), the output of each layer is in one dimensional. We propose
a variant of this DGP form with d-mensional layers, where d is dimension of the input
space. Specifically, a DGP with N hidden layers in this new form is defined by sequences of

24

functions un : X ⊆ Rd → Rd that are conditionally Gaussian,

u1,l(x) ∼ GP(0, k1,l(x;ϕ1)) , l = 1, . . . , d (3.26)

un,l(x)|un−1(x) ∼ GP(0, kn,l(x;ϕn(un−1(x)))) , l = 1, . . . , d (3.27)

where un,l(x) represents the lth component of un(x) ∈ Rd. Similar to the original form (3.4),
k1,l(., .) and kn,l(., .) are specified as a stationary and non-stationary covariance function,
respectively. The only difference in non-stationay covariance function kn,l(., .) for n > 1 is
that its kernel matrix, Σ(x), in (3.12) is proposed as

Σ(x) =


F (un−1,1(x)) 0 · · · 0

0 F (un−1,2(x)) · · · 0
...

...
0 0 · · · F (un−1,d(x))


d×d

, (3.28)

where non-negative function F : R → R ≥ 0 is the length scale function. If F (u) = exp(αu)
for a single smoothness parameter α, then the quadratic form Q(x, x′) and the prefactor of
the non-stationary covariance function in (3.13) are written as

Q(x, x′) = (x1 − x′
1)2[

exp(αun−1,1(x))+exp(αun−1,1(x′))
2

] + · · · + (xd − x′
d)2[exp(αun−1,d(x))+exp(αun−1,d(x′))

2

] , (3.29)

d∏
l=1

[
exp(αun−1,l(x))

] 1
4
[
exp(αun−1,l(x′))

] 1
4

[exp(αun−1,l(x))+exp(αun−1,l(x′))
2

] 1
2

, (3.30)

respectively. In comparison with (3.20), the quadratic form (3.29) scales the distance at
each coordinate dimension by its corresponding component of the layer output. Also the
prefactor in (3.30) is a product of prefactors in each dimension. Although, this new variant
of the DGP benefits from having multidimensional layers in the DGP form (3.2) and non-
stationary covariace functions in the DGP model (3.4), the model is more complex and has
many more parameters. We defer a more thorough investigation of these new variants to
future work.

3.4 Inference

In previous section, we proposed a DGP emulator that aims to capture non-standard fea-
tures of complex computer models, such as our motivating application, the COMPAS model
with large number of simulation runs. The additional computation required to fit both DGP
models in (3.2) and (3.4) poses a challenge for larger sample sizes (Dunlop et al. [2018],

25

Sauer et al. [2020]). Specifically implementation of Dunlop et al. [2018] using non-centerd
MCMC algorithm of Chen et al. [2018] is computationally expensive when data is abundant
due to the form of the likelihood in (3.9). Advances in variational inference provide solutions
to deal with the computational burden in this setting. This section is started by a review
of VI methods applied in the DGP form (3.2).

3.4.1 Related Work

Variational inference has been successfully used to perform inference for the DGP in (3.2)
(Damianou and Lawrence [2013], Hensman and Lawrence [2014], Dai et al. [2016], Salim-
beni and Deisenroth [2017]). In the approach of Damianou and Lawrence [2013], extending
the seminal work on variational sparse GPs by Titsias [2009], the number of variational
parameters increases linearly with the number of training data which hinders the use of
this method for large scale datasets. An extension of this work is proposed in Dai et al.
[2016]. A nested variational scheme is introduced by Hensman and Lawrence [2014] that
only requires a variational distribution over the inducing outputs, removing the parameter
scaling problem of Damianou and Lawrence [2013]. However, both approaches of Hensman
and Lawrence [2014] and Dai et al. [2016] have not been fully evaluated on medium to large
scale datasets.

Salimbeni and Deisenroth [2017] introduce the doubly stochastic variational inference
(DVSI) method for inference with the DGP model of Damianou and Lawrence [2013], which
allows scalability to large datasets with an effective performance. They employed a sparse
inducing point variational framework (Matthews et al. [2016], Matthews [2017]) and two
sources of stochasticity in the evaluation of the ELBO to achieve scalability to arbitrarily
large data. Also, their implementation has been integrated with GPflow (Matthews et al.
[2017]), an open-source GP framework built on top of Tensorflow (Abadi et al. [2015]).

In the next subsection, we adapt the DSVI (i) to be suitable for the DGP model of
Dunlop et al. [2018] modified by our proposed smoothness parameter α and (ii) to our
framework, emulation of deterministic computer models which has not been done yet in
this form of the DGP. Our adapted approach allows us to explore posterior distribution
of the smoothness of the model response surface and is demonstrated to preserve accuracy
with uncertainty measures for arbitrary large designs.

3.4.2 Fitting the DGP Emulator

Recall that yS = η(x), the scalar output of the deterministic computer model η(.) at
input x ∈ X ⊆ Rd. The inputs are typically scaled so that X is the d-dimensional unit
cube. Let X =

[
x1, . . . , xnS

]T be the nS × d design matrix and yS = (yS
1 , . . . , yS

nS
)T be

the corresponding outputs of the simulator. Now we build our DGP emulator described in
previous section, with N hidden layers (u1, u2, . . . , uN) for the computer model η(.), where

26

un = un(X) ∈ RnS , n = 1, . . . , N are unobserved random vectors which are used to discover
the covariance among the given simulation outputs.

Following Salimbeni and Deisenroth [2017], in each layer we define an additional set
of m inducing locations where m ≪ nS , i.e. Z1, Z2, . . . , ZN such that Zn ∈ Rm×d, n =
1, . . . , N . Inducing variables (ũ1, ũ2, . . . , ũN) are unobserved at their corresponding inducing
locations, i.e. ũn = η(Zn) such that ũn ∈ Rm has the same prior as the un. We choose a GP
prior with a zero mean function in each layer (our first adjustment in DSVI). Explicitly, in
the first layer the joint GP prior is factorised as

P(u1, ũ1; X, Z1) = P(u1|ũ1; X, Z1)P(ũ1; Z1), (3.31)

where P(u1|ũ1; X, Z1) = N (u1|µ1, Σ1) and P(ũ1; Z1) = N (ũ1|0, k1(Z1, Z1)), k1(., .) is a
stationary covariance function and for i, j = 1, . . . , nS

[µ1]i = Γ1(xi)T ũ1,

[Σ1]ij = k1(xi, xj) − Γ1(xi)T k1(Z1, Z1)Γ1(xj),

and Γ1(xi) = k1(Z1, Z1)−1k1(Z1, xi). Our next modifications in DSVI appear in the up-
coming layers, where non-stationanry covariance functions kn(., .) in (3.13) are used with
the proposed length scale function, i.e. F (u) = exp(αu). In this setting, for n = 2, . . . , N

the joint GP prior is factorized as

P(un, ũn; un−1, X, Zn, α) = P(un|ũn; un−1, X, Zn, α)P(ũn|Zn, α)P(α), (3.32)

where P(α) is the prior of the new parameter α, P(un|ũn; un−1, X, Zn, α) = N (un|µn, Σn)
and P(ũn|Zn, α) = N (ũn|0, kn(Zn, Zn; δZn , α)). For i, j = 1, . . . , nS

[µn]i = Γn(xi, ui
n−1)T ũn,

[Σn]ij = kn(xi, xj ; ui
n−1, uj

n−1, α) − Γn(xi, ui
n−1)T kn(Zn, Zn; δZn , α)Γn(xj , uj

n−1),

and Γn(xi, ui
n−1) = kn(Zn, Zn; δZn , α)−1kn(Zn, xi; δZn , ui

n−1, α) for ui
n := (un)i = un(xi).

The non-stationary covariance functions operate on X and inducing locations Zn. Also
outputs of the previous layers are used for modeling length scales at input locations X.
We specify δZn ∈ Rm as unknown vector parameters representing length scale values at
inducing locations. Therefore using (3.31) and (3.32) the joint density of the outputs and
parameters to be estimated is

P(yS , {un, ũn}N
n=1, α) = P(yS |uN)P(u1, ũ1; X, Z1)

N∏
n=2

P(un, ũn; un−1, X, Zn, α) (3.33)

27

= P(yS |uN)P(u1|ũ1; X, Z1)P(ũ1; Z1)
(N∏

n=2
P(un|ũn; un−1, X, Zn, α)P(ũn|Zn, α)

)
P(α).

We follow Salimbeni and Deisenroth [2017] and choose our DGP variational posterior as
follows

q({un, ũn}N
n=1, α) = P(u1|ũ1; X, Z1)q(ũ1)

(N∏
n=2

P(un|ũn; un−1, X, Zn, α)q(ũn)
)
q(α),

(3.34)
where q(ũn) is chosen to be N (mn, sn) such that mn ∈ Rm and sn ∈ Rm×m for n = 1, . . . , N .
Also we specify the variational posterior of α, q(α) = N (mα, sα) for scalar parameters mα

and sα. With this specification of q(ũn), the inducing variables can be marginalized from
each layer analytically as

q(u1|m1, s1, X, Z1) =
∫

P(u1|ũ1; X, Z1)q(ũ1) dũ1 = N (u1|µ̃1, Σ̃1),

q(un|mn, sn, un−1, X, Zn, α) =
∫

P(un|ũn; un−1, X, Zn, α)q(ũn)q(α) dũn

= N (un|µ̃n, Σ̃n)q(α),

(3.35)

where for i, j = 1, . . . , nS

[µ̃1]i := µm1,Z1(xi) = Γ1(xi)T m1,

[µ̃n]i := µmn,Zn,α(xi, ui
n−1) = Γn(xi, ui

n−1)T mn, (3.36)

[Σ̃1]ij := Σs1,Z1(xi, xj) = k1(xi, xj) − Γ1(xi)T
[
k1(Z1, Z1) − s1

]
Γ1(xj),

[Σ̃n]ij = kn(xi, xj ; ui
n−1, uj

n−1, α) − Γn(xi, ui
n−1)T

[
kn(Zn, Zn; δZn , α) − sn

]
Γn(xj , uj

n−1),

which is [Σ̃n]ij := Σsn,Zn,α(xi, xj ; ui
n−1, uj

n−1). The derivation for (3.35) is given in the
Appendix A. Therefore, using (3.35) we obtain

q({un}N
n=1, α) =

(N∏
n=1

N (un|µ̃n, Σ̃n)
)
q(α). (3.37)

Substituting (3.33), (3.34) and (3.37) into the general form for the ELBO (2.8), the evidence
lower bound of our DGP, LDGP , is obtained as following

LDGP = Eq({un,ũn}N
n=1,α)log

(
P(yS , {un, ũn}N

n=1, α)
q({un, ũn}N

n=1, α)

)

=
∫

· · ·
∫

q({un, ũn}N
n=1, α) log

(
P(yS |uN) × P(ũ1; Z1)

q(ũ1) ×
∏N

n=2 P(ũn|Zn, α)∏N
n=2 q(ũn)

× P(α)
q(α)

)

28

d{un, ũn}N
n=1dα

=
∫

· · ·
∫

q({un}N
n=1, α) log

(nS∏
i=1

P(yS
i |ui

N)
)

d{un}N
n=1dα +

∫
q(ũ1)log

(P(ũ1; Z1)
q(ũ1)

)
dũ1

+
∫

· · ·
∫

q({ũn}N
n=2, α) log

(∏N
n=2 P(ũn|Zn, α)∏N

n=2 q(ũn)

)
d{ũn}N

n=2 dα +
∫

q(α) log
(P(α)

q(α)
)
dα.

Therefore, the ELBO of the DGP can be formed as

LDGP =
nS∑
i=1

Eq({un}N
n=1,α)

(
log P(yS

i |ui
N)

)
− KL

(
q(ũ1) ∥ P(ũ1; Z1)

)

− Eq(α)
[N∑

n=2
KL
(
q(ũn) ∥ P(ũn; Zn, α)

)]
− KL

(
q(α) ∥ P(α)

)
. (3.38)

To evaluate the ELBO, it is required to compute the first expectation term at each
design point xi for i = 1, . . . , nS . That is,

Ei := Eq({un}N
n=1,α)

(
log P(yS

i |ui
N)

)
= Eq({un}N

n=1,α)

(
log P(yS

i |uN (xi))
)
.

The expectation term Ei is approximated with a Monte Carlo (MC) sample from the
variational posterior in (3.37) and is performed using univariate Gaussians through the
re-parameterization trick (Kingma et al. [2015], Rezende et al. [2014]). Specifically, we
first sample αt ∼ N (mα, sα) = q(α) and (ϵi

n)t ∼ N (0, 1), where t = 1, . . . , T and n =
1, . . . , N represent indices of MC sampling iterations and number of DGP layers, respec-
tively. Then, recursively the sampled variables (ûi

1)t ∼ q(ui
1|m1, s1, xi, Z1) and (ûi

n)t ∼
q(ui

n|mn, sn, (ûi
n−1)t, xi, Zn, αt), n = 2, . . . , N are drawn as

(ûi
1)t = µm1,Z1(xi) + (ϵi

1)t

√
Σs1,Z1(xi, xi), (3.39)

(ûi
n)t = µmn,Zn,αt(xi, (ûi

n−1)t) + (ϵi
n)t

√
Σsn,Zn,αt(xi, xi; (ûi

n−1)t), (3.40)

where ûi
n = ûn(xi) ∈ R. At each input xi, this procedure is repeated T times to obtain an

unbiased estimate by taking a Monte Carlo estimate, i.e.

Ei ≈ 1
T

T∑
t=1

log P
(
yS

i | (ûi
N)t

)
,

where (ûi
N)t = µmN ,ZN ,αt(xi, (ûi

N−1)t) + (ϵi
N)t

√
ΣsN ,ZN ,αt(xi, xi; (ûi

N−1)t). Also all the KL

terms in the ELBO can be computed analytically, and Eq(α)
[∑N

n=2 KL
(
q(ũn) ∥ P(ũn; Zn, α)

)]
is estimated by sampling α ∼ N (mα, sα). To achieve scalability as the data is large, the

29

sum over Ei can be estimated using data sub-sampling. That is,

LDGP ≈ nS

|B|
∑

i∈|B|
Ei − KL

(
q(ũ1) ∥ P(ũ1; Z1)

)
− Eq(α)

[N∑
n=2

KL
(
q(ũn) ∥ P(ũn; Zn, α)

)]
− KL

(
q(α) ∥ P(α)

)
,

(3.41)

where B represents a batch or sub-sample of data. The reason for using data sub-sampling
is that it decreases the time needed to evaluate the ELBO and thus perform optimization.
This is an important aspect of the DSVI that it is highly scalable and is preserved in our
modified version of the ELBO in (3.41).

With that said, to approximate the ELBO in our settings, three sources of stochasticity
are used: (i) in estimating Ei through Monte Carlo sampling, (ii) sub-sampling the data, and
(iii) approximating expectation of KL terms with sampling from q(α). Stochasticity sources
of (i) and (ii) exist in the DSVI approach (Salimbeni and Deisenroth [2017]), although in
our case we have an extra step in (i) which is a sampling from q(α). Since our inference
approach aims to explore the posterior distribution of the new parameter α, the extra source
of stochasticity (iii) is taken into account for evaluating the ELBO of our DGP.

The bound is maximized with respect to the variational parameters mn, sn, inducing
related parameters Zn, δZn and model parameters (e.g. covariance function parameters) in
each layer. Also mα and sα are found by maximizing the ELBO and as a result an estimate
of the variational posterior of α is obtained. We perform the optimization of the ELBO
using a loop procedure consisting of an optimization step with the natural gradient to
perform the optimization with respect to the variational parameters of the last layer, then
an optimization step using the momentum optimizer ADAM (Kingma and Ba [2014]) to
perform the optimization for the other parameters in all layers. This optimization procedure
has been adopted in DSVI and has shown better results than using only the Adam optimizer
for all the layers and parameters (Chapter 3, Salimbeni [2020]).

Remark 7. Estimating the proposed parameter α effectively impacts the performance of
the DGP emulator. This will be illustrated in Section 3.5 where we compare our emulation
approach in three cases: (i) α is estimated, (ii) α is optimized and (iii) α = 1. Case (i) is
the main purpose of our inference approach presented in this section. As mentioned before,
in Dunlop et al. [2018], typical choices for the length scale function are F (u) = u2 and
F (u) = exp(u). Hence case (iii) is equivalent to the DGP in Dunlop et al. [2018] with the
choice of F (u) = exp(u). In this case, the ELBO of the DGP is

LDGP =
nS∑
i=1

Eq({un}N
n=1)

(
log P(yS

i |ui
N)

)
−

N∑
n=1

KL
(
q(ũn) ∥ P(ũn; Zn)

)
, (3.42)

30

where

q({un}N
n=1) =

N∏
n=1

N (un|µ̃n, Σ̃n).

Also in case (ii), α is just optimized along with other covariance function parameters through
maximizing the ELBO in 3.42.

3.4.3 Prediction

After fitting the DGP emulator on the simulation runs yS , the next goal is that to make
a prediction at a new input x∗. The predictive distribution of yS(.) at the new input x∗ is
approximated through sampling from the variational posterior (3.37). To do this, first we
sample (ϵ∗

n)r ∼ N (0, 1) and α̂r ∼ N (m̂α, ŝα), where r = 1, . . . , R and n = 1, . . . , N represent
indices of sampling iterations and number of DGP layers, respectively. Then conditioned on
the sampled estimated parameter α̂r and estimated variational parameters Ẑn, m̂n, ŝn, δ̂Zn

obtained through optimizing the ELBO, the sampled variables (û∗
1)r ∼ q(u1|m̂1, ŝ1, x∗, Ẑ1)

and (û∗
n)r ∼ q(un|m̂n, ŝn, (û∗

n−1)r, x∗, Ẑn, α̂r) for n = 2, . . . , N are drawn at x∗ recursively
as

(û∗
1)r = µm̂1,Ẑ1

(x∗) + (ϵ∗
1)r

√
Σŝ1,Ẑ1

(x∗, x∗), (3.43)

(û∗
n)r = µm̂n,Ẑn,α̂r

(x∗, (û∗
n−1)r) + (ϵ∗

n)r

√
Σŝn,Ẑn,α̂r

(x∗, x∗; (û∗
n−1)r), (3.44)

where û∗
n = ûn(x∗) ∈ R and

µm̂1,Ẑ1
(x∗) = Γ1(x∗)T m̂1,

µm̂n,Ẑn,α̂r
(x∗, (û∗

n−1)r) = Γn(x∗, (û∗
n−1)r)T m̂n, (3.45)

Σŝ1,Ẑ1
(x∗, x∗) = k1(x∗, x∗) − Γ1(x∗)T

[
k1(Ẑ1, Ẑ1) − ŝ1

]
Γ1(x∗),

Σŝn,Ẑn,α̂r
(x∗, x∗; (û∗

n−1)r) = kn(x∗, x∗; (û∗
n−1)r, α̂r)−Γn(x∗, (û∗

n−1)r)T
[
kn(Ẑn, Ẑn; δ̂Zn , α̂r)−ŝn

]
Γn(x∗, (û∗

n−1)r),

such that
Γ1(x∗) = k1(Ẑ1, Ẑ1)−1k1(Ẑ1, x∗),

and
Γn(x∗, (û∗

n−1)r) = kn(Ẑn, Ẑn; δ̂Zn , α̂r)−1kn(Ẑn, x∗; δ̂Zn , (û∗
n−1)r, α̂r).

As seen in the posterior predictive means and variances defined in (3.45), the optimized
inducing locations Ẑn play an analogous role of the design X in usual kriging formula (2.2),
which scale up computations in prediction as well. This sampling procedure is repeated R

times to obtain the posterior sample of of yS(.) at x∗ along with incorporating all sources
of uncertainty from α and hidden layers in the predictive distribution. If we have X∗ =[
x∗

1, . . . , x∗
p

]T as a prediction set, this procedure can be also proceed with computing full

31

covariance matrices at all new inputs in this set, where each entry of the matrices is obtained
with Σŝ1,Ẑ1

(x∗
i , x∗

j) and Σŝn,Ẑn,α̂r
(x∗

i , x∗
j ; .) in (3.45), for i, j = 1, . . . , p.

3.5 Illustration

In this section, three synthetic examples are considered to illustrate the proposed approach.
To do this, we compare our emulation methodology in three cases: (i) α is estimated, (ii) α is
optimized and (iii) α = 1 and is fixed. In all examples, a DGP with two hidden layers is fitted,
where the DGP is constructed by the stationary and non-stationary Matern covariance
functions formulated as (3.17) and (3.18) with ν = 2.5, respectively. For estimating α in
case (i), which is the main goal of our inference approach in Subsection 3.4.2, specification
of the prior distribution for α is needed. It is also necessary to specify initial values for the
parameters of the variational distributions. Also, for doing inference in cases (ii) and (iii),
the ELBO specified in (3.42) is used, so there is no sampling step for α. To compare the
performance of the DGP in these three cases, the following criteria are calculated
(1) Nash–Sutcliffe Efficiency (NSE)

NSE = 1 − MSPE
Var , (3.46)

where Var is the variance of true values yS(.) at prediction inputs x∗
1, . . . , x∗

p and MSPE
represents the mean square prediction error formulated as

MSPE = 1
p

p∑
i=1

(
ŷS(x∗

i) − yS(x∗
i)
)2

,

where ŷS(x∗
i) is the posterior predictive mean at the new input x∗

i . Similar to the coefficient
of determination, the NSE (Nash and Sutcliffe [1970]) attempts to measure the proportion
of variation that can be explained by a predictive model. NSE values close to 1 indicate
that the emulator has performed well in terms of prediction accuracy.
(2) Average Relative Width of 95% Credible Intervals (ARW)

ARW = 1
p

p∑
i=1

(
Qi

0.975 − Qi
0.025

)
∣∣∣yS(x∗

i)
∣∣∣ , (3.47)

where Qi
c is the c-th quantile of the posterior predictive samples at x∗

i . ARW scales the
interval by the magnitude of the response value, allowing for direct comparison of the
interval length over different test functions and multiple test sets.

32

(3) 95% Coverage Probability (CP)

CP = 1
p

p∑
i=1

1{yS(x∗
i)∈(Qi

0.025,Qi
0.975)}, (3.48)

where 1(.) denotes an indicator function. The 95% CP is the proportion of the true values
yS(.) at prediction inputs that contain inside their 95% credible interval. This section is
finished off by demonstrating the performance of our proposed methodology in the real-
world application that motivated this work, which is the emulation of the COMPAS model
with millions of simulation runs.

3.5.1 1-d Toy Models

In this section, two 1-d examples are presented, where two data sets with size 200 are
generated from the following numerical models

f1(x) = sin(10x) , f2(x) =


1.35 cos(12πx) x ∈ [0, 0.33]

1.35 x ∈ [0.33, 0.66]

1.35 cos(6πx) x ∈ [0.66, 1]

, (3.49)

evaluated on equally spaced inputs in X = [0, 1]. Each data set is split into a training set
with size nS and a prediction set with size p = 200 − nS . We fit a two hidden layer DGP
with the training data using m = nS inducing points in each layer and emulate the value
of the response over the prediction set with 1000 replications. In fitting, inducing locations
are initialized at input locations and are optimized along with other variational parameters
and model parameters through maximizing the ELBO.

For the first 1-d example, the simple simulator f1(.) in (3.49) will be used to demonstrate
the practical property of the DGP form (3.4) proved in Proposition 2, as the smoothness
of the response surface of f1(.) is very well suited to a stationary GP emulator. Panels
(a), (b) and (c) in Figure 3.3 show 1000 samples (red curves) from the posterior predictive
distribution of the DGP emulator with two hidden layers fitted over a training set with 10
observed simulation data (brown dots) in three cases (i) α is estimated, (ii) α is optimized
and (iii) α = 1, respectively. For estimating α in case (i) the normal distribution N (2, 1) is
chosen for P(α) and q(α) is initialized with N (mαini, sαini) where mαini = 1 and sαini = 0.5.
Red plus dots show the optimized inducing locations and the true function (blue curve) is
shown in the last row plots. As it is expected, the samples of the first hidden layer shown in
the first row of the Figure 3.3 are almost constant in all cases (i), (ii) and (iii). Therefore, a
stationary GP is likely an adequate solution for the given data and a complex DGP emulator
with two hidden layers is not needed in this regime.

33

(a) (b) (c)

Figure 3.3: 1000 samples (red curve) from the posterior predictive distribution of the DGP
emulator with two hidden layers fitted over a training set with 10 observed simulation data
(brown dots) in case of (a) α is estimated, (b) α is optimized , (c) α = 1.

To assess the prediction and uncertainty performance of the DGP model, 95% credible
intervals are constructed with the resulting predictive posterior samples in cases (i), (ii)
and (iii) and are highlighted with light blue color in panels (a), (b) and (c) of Figure 3.4,
respectively. The predictive posterior mean (blue curve), the true function (red curve) and
observed simulation data (balck dots) are also shown in each panel.

(a) NSE = 99.97% (b) NSE = 99.99% (c) NSE = 99.98%

Figure 3.4: 95% credible intervals highlighted with light blue color are constructed with
the resulting predictive posterior samples in case of (a) α is estimated, (b) α is optimized,
(c) α = 1. The predictive posterior mean (blue line), the true function (red line) and the
observed simulation data (black dots) are also shown in each panel.

As seen in Figure 3.4, the uncertainty captured by the credible intervals in panel (a)
includes the posterior uncertainty of the parameter α, where α is sampled from q̂(α) =
N (m̂α, ŝα) for m̂α = 1.2297 and ŝα = 0.2968 obtained through maximizing the ELBO in
(3.38). In contrast, the 95% credible intervals in the two other panels are narrower and do
not incorporate this uncertainty, as α is optimized (αopt = 0.8838) in panel (b) and is fixed

34

(α = 1) in panel (c). In spite of that, in all three cases the predictive model explains nearly
the same proportion of variation. To further compare the methods, performance criteria
including CP and ARW are computed for the DGP emulator with two hidden layers fitted
on different number of observed simulation data in three cases (i), (ii) and (iii) and displayed
in Table 3.2. As expected, ARW of the 95% credible intervals in case of estimating parameter
α is more than in the other two cases, when nS = 10, 15, 20, 25, although the 95% CPs are
all the same.

Table 3.2: Prediction accuracy of the DGP for three different methods and four sample sizes

nS = 10 nS = 15
αest αopt α = 1 αest αopt α = 1

CP 100% 100% 100% 100% 100% 100%
ARW 0.6369 0.4845 0.4571 0.5331 0.2075 0.2836

nS = 20 nS = 25

CP 100% 100% 100% 100% 100% 100%
ARW 0.3114 0.1636 0.1872 0.3393 0.1321 0.1750

For the second 1-d example, we will use the example model f2(.) in (3.49), presented by
Sauer et al. [2020], to demonstrate the impact of estimating parameter α on the performance
of the DGP model. The reason that we choose f2(.) is that the model response varies
significantly across the input space and is not well represented by a stationary GP emulator.
Here, the DGP emulator with two hidden layers is fitted over a training set with size of 25
in three cases (i) α is estimated, (ii) α is optimized and (iii) α = 1. In case (i), the normal
distribution N (3, 1.2) is chosen for P(α) and q(α) is initialized with N (mαini, sαini) where
mαini = 2.5 and sαini = 1.

The 95% credible intervals are constructed with the resulting predictive posterior sam-
ples (1000 samples) in cases (i), (ii) and (iii) and are highlighted with light blue color
in panels (a), (b) and (c) of Figure 3.5, respectively. As seen in Figure 3.5, the predic-
tive posterior mean (blue curve) in panel (a) compared to the other ones in panels (b)
and (c) contains the true function (red curve), particularly in the area that f2(.) changes
rapidly. Also, the predictive model explains higher proportion of the variation of the ob-
served response (NSE=99.93%) in panel (a), where α is sampled from q̂(α) = N (m̂α, ŝα)
for m̂α = 3.1075 and ŝα = 0.2635 obtained through maximizing the ELBO in (3.38). This
illustrates that estimating parameter α has effectively impacted the prediction performance
in this example compared to the other two cases, where α is just optimized (αopt = 2.7535)
in panel (b) and is fixed (α = 1) in panel (c).

35

(a) NSE=99.93% (b) NSE=99.50% (c) NSE=99.51%

Figure 3.5: 95% credible intervals highlighted with light blue color are constructed with
the resulting predictive posterior samples in case of (a) α is estimated, (b) α is optimized,
(c) α = 1. The predictive posterior mean (blue line), the true function (red line) and the
observed simulation data (black dots) are also shown in each panel.

Table 3.3 displays performance criteria including CP, ARW and NSE computed for the
DGP emulator with two hidden layers fitted on different numbers of observed simulation
data in three cases (i), (ii) and (iii). As shown in the table, ARW of the 95% credible intervals
in case of estimating parameter α is larger than the two other cases, when nS = 25, 35, 45.
Also, the 95% CP and NSE tend to be high for each of the three inference procedures.

Table 3.3: Prediction accuracy of the DGP for three different methods and sample sizes

nS = 25 nS = 35
αest αopt α = 1 αest αopt α = 1

CP 100% 95.43% 91.43% 100% 95.15% 95.76%
ARW 0.3835 0.3407 0.3511 0.7467 0.5157 0.4494
NSE 99.93% 99.50% 99.51% 99.88% 99.84% 99.83%

nS = 45
αest αopt α = 1

CP 100% 94.84% 95.71%
ARW 0.4990 0.4764 0.3753
NSE 99.97% 99.92% 99.91%

36

3.5.2 2-d Toy Model

To further illustrate the performance of the proposed methodology, a 2-d example is con-
ducted in this section. we consider the following 2-d piece-wise computer model

g(x1, x2) =



1.3 x1 ∈ [0.66, 0.91] and x2 ∈ [0.4, 0.91]

2.2 x1 ∈ [0.1, 0.5] and x2 ∈ [0.6, 0.92]

3.5 x1 ∈ [0.15, 0.6] and x2 ∈ [0.1, 0.52]

0 o.w.

, x1, x2 ∈ [0, 1] (3.50)

shown in panel (a) of Figure 3.6, which illustrates the type of discontinuity we expect in
the COMPAS model. Similar to the 1-d examples, we fit a two hidden layer DGP with the
training data evaluated on a 25 by 25 grid in X = [0, 1]2, using m = 200 inducing points in
each layer in three cases (i) α is estimated, (ii) α is optimized and (iii) α = 1. In case (i), a
normal distribution N (3.5, 1) is chosen for P(α) and q(α) is initialized with N (mαini, sαini)
where mαini = 3 and sαini = 1. The response is emulated over the prediction set, a 70 by 70
grid in X = [0, 1]2, by sampling from the resulting predictive posterior (5000 samples) in all
cases (i), (ii) and (iii). The true response values at prediction points is shown in a heatmap
plot in panel (b) of Figure 3.6.

(a) (b)

Figure 3.6: (a) 2-d illustrative computer model with regions of discontinuities (b) Heatmap
of true function outputs at prediction points

The predictions and absolute prediction errors are compared in panels (a), (b) and (c)
of Figures 3.7 and 3.8 in cases (i), (ii) and (iii), respectively. In the heatmaps, brighter
color corresponds to larger predicted value and larger absolute prediction error. As seen in
Figures 3.8, in all three cases, larger errors are observed around the boundaries of the three
regions, where values of the model response change between zero and positive outputs. In
panels (a) and (b) where that parameter α is estimated and optimized, it is evident that
the performance of the DGP around the boundaries is greatly improved.

37

(a) NSE = 91.64% (b) NSE = 91.41% (c) NSE = 88.28%

Figure 3.7: Heatmap of the predictions in case of (a) α is estimated, (b) α is optimized, (c)
α = 1. Plots share the same color bar as given in the left side of each, where brighter colors
indicate greater predicted values

(a) (b) (c)

Figure 3.8: Heatmap of absolute prediction errors in case of (a) α is estimated, (b) α is
optimized, (c) α = 1. Plots share the same color bar as given in the left side of each, where
brighter colors indicate larger errors.

To numerically assess the prediction and uncertainty performance of the DGP model
in all cases, 95% CP and NSE are computed and displayed in Table 3.4. As shown in the
table the largest 95% CP in the predictive DGP model is reached in the case of estimating
parameter α. This is due to including the extra uncertainty from estimating α. Also, the
DGP model where the posterior distribution for α is estimated (q̂(α) = N (m̂α, ŝα) for
m̂α = 3.2452 and ŝα = 0.0308) explains the largest amount of the response variability,
although a similar result is achieved by optimizing α (αopt = 3.3005).

Table 3.4: Prediction accuracy of the DGP for three different methods

αest αopt α = 1

CP 93.82% 92.69% 90.27%
NSE 91.64% 91.41% 88.28%

38

3.5.3 COMPAS Model

Our proposed methodology is motivated by the need to emulate the COMPAS model. The
input and the output of the COMPAS model are displayed in Table 3.5. There are two groups
of input in the COMPAS model, (i) initial conditions of a binary star system, denoted by x,
which provide the state of the binary at formation; and (ii) the set of population parameters,
denoted by t, which is shared between all binaries in a population. The initial conditions of

Table 3.5: Input and output of COMPAS model

Input Range Distribution

Initial conditions: x

m1 : the mass of the initially more massive star [8,150]M⊙ Power law(-2.35)
m2 : the mass of the initially less massive star (0.1 M⊙, m1] Uniform
a: the initial orbital separation [0.01,1000]AU Power law(-1)
vi : supernova natal kick vector for supernova i

for i = 1, 2 including :
vi - magnitude of the supernova natal kick [0,∞) Maxwellian
(km s−1)
θi - polar angle defining the direction of the natal [0,π] Uniform

kick
ϕi - azimuthal angle defining the direction of the [0,2π] Uniform

natal kick
ωi - mean anomaly [0,2π] Uniform

Population parameters: t

Z: the metallicity [0.0001, 0.03]
α: the common envelope efficiency parameter [0,10]
σ: 1D root-mean-square value representing a typical [0,1000] km s−1

supernova kick
flbv: multiplication factor for the mass loss rate during [0,10]

the luminous blue variable (LBV) phase

Output

Mc: chirp mass of BBH (0,150)M⊙ or NA

a binary system follow constrained distributions specified in the third column of the table.
The true values of the parameters t are unknown and will be inferred (not in this thesis)
by comparing the BBH properties predicted by simulations with different choices of t with
field observations (Mandel and Farmer [2017]). The output of the COMPAS which we focus
is the chirp mass of the formed BBH, a combination of the masses that are typically best
measured from the gravitational-wave signal (Peters and Mathews [1963]). If no BBH is

39

observed, the output would be "NA", although in our work, the chirp mass is considered to
be zero in this case.

As discussed in Section 3.1, the challenges in emulation of COMPAS model are the
presence of regions of discontinuities in the response surface of the chirp mass and a large
number of simulation runs with very low success rate for BBH formation. We apply our
proposed emulation method to two million computer model runs where roughly 24% of the
simulations resulted in a chirp mass output. In the remaining simulations, no BBH was
formed and thus no chirp mass is computed. For these simulations, the parameters t were
held constant at Z = 0.001, α = 1, σ = 265 km/s, flbv = 1.5. Hence, in our example the
input dimension is the dimensionality of initial conditions x (i.e. 11), as t is fixed.

Figure 3.9: Emulated chirp mass against the true chirp mass for the DGP with two hidden
layers (upper) and the DGP with three hidden layers (lower).

40

We standardized input variables of the simulation data to the 11-dimensional unit hy-
percube [0, 1]11. A prediction set with size of 1000 including 450 successful simulations
(active points) was held out from the data to evaluate performance of our DGP emula-
tor. We fit the DGP with two and three layers with the training data using 100 inducing
points in each layer and emulate the response over the prediction set with 5000 samples
from the resulting predictive posterior distribution. The DGPs are constructed using the
stationary and non-stationary Matern covariance functions (3.17) and (3.18) with ν = 2.5,
respectively. For training, we approximated the ELBO (3.41) with a batch size of 10, 000 to
achieve scalability. mα and sα were found by maximizing the ELBO to obtain an estimate
of the variational posterior distribution of α, i.e. q̂(α) = N (m̂α, ŝα).

Figure 3.10: Absolute emulation errors for the DGP with two hidden layers (upper) and the
DGP with three hidden layers (lower).

41

Figure 3.9 shows the plot of the emulated chirp mass against the true chirp mass at
1000 prediction points using the DGP with two hidden layers on the top and three hidden
layers in the bottom. As seen in the figure, most of the active and non-active points lie at or
near the 45 degree line, meaning that the proposed method appears successful at emulating
the response. The largest errors appear where the true response was zero, but the emulator
predicts a non-zero value and vice versa. Comparing two and three hidden layer DGPs in
Figure 3.9, we see that points are more tightly centred around the 45 degree line for the
three hidden layer model (lower plot).

Absolute emulation errors are plotted in Figure 3.10. As seen in this figure, most of the
active and non-active points have small errors close to zero, although there are large errors
in a few points due to the similar reason explained for previous figure. Also clearly we can
see here that points are closer to the zero in the lower plot than the ones in the upper plot,
meaning that the three layer DGP efficiently reduces the emulation error compared with
the two layer DGP.

Table 3.6 displays the performance criteria including NSE and 95% CP computed for
the DGP emulator with two and three hidden layers. As it is expected, the predictive model
explains a larger proportion of the response variability (NSE=95.76%) in the three layer
DGP, although its 95% CP is less than the two layer DGP. The estimated parameters
m̂α and ŝα displayed in the table show that smoothness parameter α is estimated around
0.7. We attribute it to the size of the data and the higher dimensional input space of the
COMPAS model. The training time of this large data set shown in the table illustrate
how our emulation method can be computationally efficient. Also it shows that increasing
number of DGP layers from two to three increases the computational time.

Table 3.6: COMPAS emulation results using two and three hidden layer DGP

of Layer m̂α ŝα NSE CP Training Time (1 iter)
2 0.7484 0.0003 94.31% 91.7 0.31 s
3 0.7695 0.0002 95.76% 90.4 0.35 s

3.6 Summary and Discussion

In this chapter, the DGP of Dunlop et al. [2018] was investigated and modified. This work
was motivated by the application of emulation of COMPAS model, a binary population
synthesis model that simulates the formation of binary black holes (BBHs). We proposed
a non-stationary DGP emulator which can be adapted to the type of discontinuities of
COMPAS response surface, and scales to the large number of simulation runs. Our approach
can be applied to a large class of complex computer models, and scales to arbitrarily large
simulation designs as well.

42

We generalized the notation of two broad forms of DGP (Damianou and Lawrence
[2013], Dunlop et al. [2018]) to emphasize their differences and properties. Specifically, we
addressed exactly what the DGP forms would look like if the data were actually a realization
of a stationary GP in two propositions. Moreover, we showed how the DGP form of Dunlop
et al. [2018] can be written as Bayesian hierarchical models. Some advantages of the DGP of
Dunlop et al. [2018] such as operating covariance functions on the original input space rather
than the warped input space, led us to consider it in our framework. Our DGP emulator
was proposed by modifying DGP form of (Dunlop et al. [2018]) through introducing a new
parameter (or parameters) that controls smoothness of the DGP layers. The impact of the
proposed parameter(s) on the level of smoothness of layers were theoretically illustrated
and numerically visualised in DGP realizations. Particularly, in Proposition 3, we proved
how increasing new parameter α from zero to ∞ decreases degree of smoothness of DGP
layers.

Doing inference on the DGP emulator using sampling methods such as MCMC is compu-
tationally infeasible in large designs. Hence, we employed a variational inference approach to
overcome the computational issues and adapted it to be able to estimate posterior distribu-
tion of smoothness parameter α. Specifically, we adapted the doubly stochastic variational
inference (DVSI) method introduced by Salimbeni and Deisenroth [2017] (i) to be suitable
for the DGP model of Dunlop et al. [2018] modified by our proposed parameter α and
(ii) to our framework, emulation of deterministic computer models. Our modified approach
allowed us to explore posterior distribution of the smoothness of the model response surface
and was demonstrated to preserve accuracy with uncertainty measures for arbitrary large
designs.

Some potential avenues for future work were detailed in Subsection 3.3.3. Our possi-
ble innovations to the DGP model of Dunlop et al. [2018] could be through (i) specifying
proposed parameter α in different ways and (ii) changing dimensionality layers. By com-
bining methods (i) and (ii) new different variants of the DGP can be proposed. Although,
these new DGP variants get the benefit of having multidimensional layers in the DGP form
(3.2) and non-stationary covariace functions in the DGP model (3.4), more complexities
are introduced into the original model (3.2) by adding extra unobserved latent variables in
each dimension and adding extra parameters to be estimated. We defer a more thorough
investigation of these new variants to future work.

43

Chapter 4

Sequential Experiment Design
using DGP Emulator

4.1 Introduction

A practical problem of interest is the selection of computer model trials to improve the
emulator performance. In other words, if we wish to make good predictions about the
output of the computer model using the emulator, we need to consider what choice of
inputs will lead to the best predictions. In Chapter 3, we introduced our DGP emulator
to accommodate the non-stationary structures in complex computer models. Since we are
interested in exploring regions of the input space that are more complicated in the response,
such as a region of the input space with high variability in the response, stationary design
strategies such as uniform and space-filling designs are unsuitable (Gramacy and Lee [2009],
Volodina and Williamson [2020]). In this chapter, we propose to combine the non-stationary
DGP model with a variance-based criterion to deviate from usual space-filling designs and
guide the selection of future runs in more complex regions of the input space along with
improving predictive accuracy of our DGP emulator.

In recent years, the DGP defined in Damianou and Lawrence [2013] has been used as
a surrogate in sequential design of computer experiments (Dutordoir et al. [2017], Rajaram
et al. [2020], Sauer et al. [2020], Hebbal et al. [2021]). Particularly, in Hebbal et al. [2021],
expected improvement (EI) of Jones et al. [1998] has been implemented for the problem
of Bayesian optimization using this DGP. In Rajaram et al. [2020], a strategy based on
maximum variance criterion of MacKay [1992], known as active learning MacKay (ALM),
is applied using this form of DGP. In Sauer et al. [2020], a sequential design is constructed
using integrated mean-squared prediction error (IMSPE) and active learning strategy of
Cohn [1994](ALC) with this DGP form.

In this chapter, we propose a sequential design approach using IMSPE with our DGP
emulator, a modified version of the DGP in Dunlop et al. [2018]. In order to proceed with
our method, we adapt the prediction method described in Section 3.4.3 in a way that nearest

44

neighbor designs can be used. The variance-based criterion is able to effectively recognize
that more data is needed where there is high variability in the response than where it is
not. We also investigate the impact of refitting the model in batches of added design points
in improving the emulator.

This chapter is organized as follows: In Section 4.2, a general scheme for constructing
sequential designs is presented, followed by a brief review of the improvement function and
expected improvement (EI). In Section 4.3, we introduce a new sequential design strat-
egy for complex computer models using the DGP emulator. The performance of our pro-
posed approach is demonstrated on the 2D toy example and our motivating application, the
COMPAS model, in Section 4.4. We finish off with some discussion and avenues for further
research in Section 4.5.

4.2 Sequential Design of Computer Experiments

The process of running a computer model at a variety of different input values is described
as a computer experiment. A computer experiment may have objectives similar to those of
a physical experiment, while often it may be more time and cost effective than running a
physical experiment or collecting data directly. In this setting, sequential designs are useful
particularly when the objective is to estimate pre-specified process features such as global
minimum and maximum, local optima, change points, contours, percentiles, confidence in-
tervals, and overall surface fit. Depending on the goal of the experiment different algorithms
for obtaining optimal designs can be derived. In the next section, we briefly review a general
scheme of constructing sequential designs for computer experiments.

4.2.1 Sequential Design Scheme

Recall that yS = η(x) represents the scalar output of the deterministic computer model
η(.) at input x ∈ X ⊆ Rd, where X is the d-dimensional unit cube. Assume the computer
model is expensive to evaluate, and there is a fixed budget, W , of trials to be performed.
In general, the sequential design of computer experiments proceeds as follows:

1. Choose initial design Xt0 =
[
x1, . . . , xt0

]T where t0 < W .

2. Evaluate the computer model η(.) at Xt0 and obtain yS
t0 = (yS

1 , . . . , yS
t0)T .

3. Obtain data Dt0 = (Xt0 , yS
t0) and set t = t0 (indexing iterations of sequential design)

4. Fit a statistical surrogate model using Dt.

5. Choose a new trial location xnew from X .

6. Update Dt+1 = Dt ∪ (xnew, yS
new) where yS

new = η(xnew), and set t = t + 1.

7. Repeat this procedure from step 4 if t < W or a stopping criterion is achieved.

45

8. Return Dt if t = W along with surrogate fit.

In step 1 it is important to know how we choose the initial design Xt0 and what the
right choice of t0 is. For example if the objective is understanding the overall surface,
then the popular choices are space-filling designs (maximin, uniform, D-optimal designs,
etc.). Also the choice of initial design depends on the complexity of the computer model
and it should not be too small or too big. In step 4, the choice of surrogate model is
important. The sequential design scheme is not restricted to only stationary GP models (e.g.
Gramacy and Lee [2009], Rajaram et al. [2020], Sauer et al. [2020], Volodina and Williamson
[2020]). Particularly when the response of a computer model varies significantly across the
input space, appropriate choices for surrogate models are non-stationary processes that can
concentrate exploration in regions of the input space with more complicated response.

In step 5 of the sequential design scheme, the way of selecting new trial locations is
important. One can choose to select new design xnew from the input space X randomly,
which is not very efficient. Most sequential design strategies obtain new design points based
on a specific criterion. The expected Improvement (EI) is a popular criterion that has been
adopted in many sequential design strategies. Depending on the goal of the experiment (e.g.
overall surface fit, optimization, estimating contours, etc.), different criteria can be derived
using the concept of EI. In this stage, choosing design points sequentially can be done one
at a time (Ranjan et al. [2008]) or in a batch of a pre-specified number of trials. Often a
batch sequential design is preferred due to the associated cost constraints and experimental
settings (Loeppky et al. [2010]) and most of EI criteria can be modified to choose a batch
of a pre-specified number of trials in X . In the next section we briefly review definitions of
improvement functions and EI criterion in general.

4.2.2 Expected Improvement Criterion

Improvement functions, denoted by I(x), are defined for any x in the input space X and are
helpful to identify optimal computer trails. Depending on the scientific objective, different
forms of the improvement can be defined. In general, the improvement function is formulated
to efficiently estimate a pre-specified feature of the computer model output (e.g. global
minimum and maximum, contours, percentiles).

The expected improvement criterion, EI, is given by the expectation of a given im-
provement function I(x) over the predictive distribution yS(x) conditional on all runs
Dt = (Xt, yS

t) so far, as follows

E{I(x)} =
∫

I(x) P(yS(x) | Dt) dx. (4.1)

The EI based criteria are specifically very efficient, as the expectation over the prediction
distribution facilitates a balance between global (exploration) vs local (exploitation) search.
E{I(x)} is evaluated over the entire input space X using the information given by the fitted

46

surrogate model. The choice of new trial location xnew in step 5 of the sequential design
scheme is the maximizer (or minimizer) of the expected improvement criterion E{I(x)}
given by

xnew = arg max
x∈X

E{I(x)}. (4.2)

The new optimal design xnew is added to the current design of experiment in order to im-
prove the current estimate of the feature of interest. To solve the criterion (4.2), optimization
techniques can be employed. For example, E{I(x)} can be evaluated on a candidate set of
inputs in X in a discrete or randomized search. In Bingham et al. [2014], a review of EI
criteria has been provided.

4.3 Sequential Design for Complex Computer Models

In complex computer models, a practical problem of interest is making a design for the
experiment to learn about where the variability of the response is highest or where uncer-
tainty is largest, and spend relatively more effort sampling in these areas. In this work, we
are interested in improving predictions made using our DGP emulator for outputs of com-
plex computer models throughout the entire input space X . Our proposed design strategy
puts together the non-stationary DGP model and an integrated sequential design strategy,
resulting in a more efficient emulator and exploration of the input space. To proceed, an
adaptation is needed in our prediction method with the DGP emulator which is described
in the next section.

4.3.1 Localized Prediction using DGP

Recall that yS = (yS
1 , . . . , yS

nS
)T be the computer model runs observed at nS × d design

matrix X =
[
x1, . . . , xns

]T . Let D = (X, yS) represent the full simulation data. In Chapter
3, we described our DGP emulator with N hidden layers fitted on the data using a mod-
ified version of DSVI (Subsection 3.4.2). We approximated the predictive distribution of
yS(.) at the new input x∗ conditioned on the estimated parameter α̂r ∼ N (m̂α, ŝα) and
estimated variational parameters Ẑn, m̂n, ŝn, δ̂Zn by drawing sampled variables (û∗

1)r ∼
q(u1|m̂1, ŝ1, x∗, Ẑ1) and (û∗

n)r ∼ q(un|m̂n, ŝn, (û∗
n−1)r, x∗, Ẑn, α̂r) recursively as (3.43) and

(3.44), where û∗
n = ûn(x∗) for n = 1, . . . , N and r = 1, . . . , R represents index of sampling

iterations. Note that Ẑn in predictive equations (3.45) play an analogous role of the design
X in usual kriging formula (2.2). On the other hand, our goal is to improve prediction per-
formance of our DGP emulator through a variance based sequential design criterion. One
way to do this to treat ẐN (inducing locations at the last layer) as experimental design.
As ẐN is optimized for the existing training set without the presence of the new candidate
design point, this is required to refit the model each time. Although inducing locations
when m ≪ nS scale up the computations in predictive equations (3.45), searching for a

47

new candidate design by considering its impact on the predictive variance is computation-
ally intensive in this regime. As a result, we adapt our prediction approach to tackle the
sequential design problem for complex computer models using our DGP emulator with an
efficient computational cost.

Conditioning on the data, D, posterior mean estimate α̂, û∗
N = ûN (x∗) ∈ R, and ûN =

ûN (X) ∈ RnS , the posterior predictive distribution of yS(.) at x∗ is conditionally Gaussian
with mean and variance,

k(X, x∗; ûN , û∗
N , α̂)T K−1 yS ,

k(X, x∗; ûN , û∗
N , α̂)T K−1 k(X, x∗; ûN , û∗

N , α̂),
(4.3)

respectively, where k(., .) is a non-stationary covariance function defined in (3.13). K =
k(X, X, ûN , α̂) is the covariance matrix for the simulations, with Kij = k(xi, xj ; ûi

N , ûj
N , α̂),

where ûi
N := (ûN)i = uN (xi) for i, j = 1, . . . , nS . k(X, x∗, ûN , û∗

N , α̂) is the nS × 1 vector
of covariances between a response at x∗ and those at the inputs in the design, X. Both
ûN and û∗

N are estimated through the sampling procedure in (3.43) and (3.44) and used
to compute length scales at the design X and the new input x∗, respectively. Finding an
optimal design with this solution and our DGP emulator can be computationally intensive,
especially when the size of the data, nS , is large, because the sequential design algorithm
involves repeated inversion of the large covariance matrix K.

To address this, we propose to use local points in the neighborhood of the unsampled
input, x∗, to alleviate the computational burden. This idea comes from local kriging in the
spatial statistics literature (Cressie [1993], pp. 131–134) and local GPs in computer exper-
iments literature (Gramacy and Apley [2015]). Here, we propose to use nearest neighbors
(NN) to x∗ for making prediction using the proposed DGP emulator. First, we find the nb

NNs to the new input x∗ based on the Euclidean distance and create the sub-design Xb ⊆ X
with their inputs, and yb for their outputs. Then we apply the predictive mean and variance
equations (4.3) with local data set Db(x∗) = (Xb, yb) as follows

k(Xb, x∗; ûb
N , û∗

N , α̂)T (Kb)−1 yb,

k(Xb, x∗; ûb
N , û∗

N , α̂)T (Kb)−1 k(Xb, x∗; ûb
N , û∗

N , α̂),
(4.4)

respectively, where ûb
N = ûN (Xb) ∈ Rnb . Here, Kb is a nb × nb covariance matrix for nb

NNs. The number of NNs, nb, is chosen as large as computational restrictions allow. For
nb ≪ nS the computation for emulating yS(x∗) can be reduced from O(nS

3) to O(nb
3).

It is clear that as nb → nS , then predictive equations (4.4) converges to equations (4.3).
In other words, the larger NN design is, the more information is provided for emulating at
x∗. Hence, there exist trade-offs between computational efficiency and prediction accuracy
with an appropriate choice of nb. The next section details how this adjusted prediction

48

approach facilitates planning future computer simulations through an EI based criterion for
the sequential design.

4.3.2 Localized Design Criterion

In this work, we are interested in improving predictions made using our DGP emulator
for outputs of complex computer models throughout the entire input space X . Our aim
is to adopt an EI-based criterion guiding the selection of future runs to improve not only
predictive accuracy of our DGP emulator but also the exploration of the input space.

The predictive variance is a measure of uncertainty about the model behaviour and
is widely used as part of the design criterion. An intuitive sequential design procedure is
to minimize predictive variance by assigning new simulations where the variability is the
largest. From step 1 of the sequential design scheme, recall that Dt = (Xt, yS

t) denote an
initial data set of size t = t0. After fitting a DGP with N hidden layers to Dt, the posterior
predictive variance (or MSPE) at new location x∗ denoted by σ2

t (x∗) is calculated from
initial design Xt via equation (4.3). Let x̃ be a candidate design point added to the initial
design Xt. To determine whether or not x̃ should be selected for simulation next, its impact
on the posterior predictive variance of yS(.) is assessed via the Integrated Mean Squared
Prediction Error (IMSPE) criterion. The IMSPE is the predictive variance averaged over
the input space, and is given by

IMSPE(x̃) =
∫

x∈X
σ2

t+1(x) dx, (4.5)

where σ2
t+1(x) denote the deduced posterior predictive variance at location x ∈ X calculated

from Xt+1 = Xt ∪ {x̃} via equation (4.3). The integration in (4.5) is with respect to the
uniform distribution over the input space X , hence the IMSPE can be viewed as an EI
based criterion. At any candidate design point, x̃ ∈ X , the IMSPE(x̃) can be approximated
over a prediction set denoted by X∗ in the input space X with size H as follows

IMSPE(x̃) ≈ 1
H

H∑
i=1

σ2
t+1(x∗

i), (4.6)

where x∗
i ∈ X∗. The choice of new trial location xnew in step 5 of the sequential design

scheme is the minimizer of the IMSPE given by

xnew = arg min
x∈X

IMSPE(x). (4.7)

In this work, we solve this acquisition through a randomized search over a candidate set X̃
in X . When the data size is large, the procedure of finding even one new design point is
computationally expensive as it is required to calculate the posterior predictive variance at
all prediction points via equation (4.3) to obtain the IMSPE (4.6) at each candidate point.

49

Although solving equation (4.7) can be parallelized at each candidate point, we address
this issue using the proposed localized predictive variance equation in (4.4), which is our
emphasis in this work.

To utilize our localized prediction idea in the sequential design strategy, first we find nb

NNs to each prediction point x∗
i ∈ X∗ and construct sub-designs Xb

t,i ⊆ Xt for i = 1, . . . , H .
Then posterior predictive variance at each prediction point x∗

i is calculated from the initial
NN design Xb

t,i via equation (4.4) as

σ̌2
t (x∗

i) = k(Xb
t,i, x∗

i ; ûb
N,t,i, û∗

N , α̂)T (Kb
t,i)−1 k(Xb

t,i, x∗
i ; ûb

N,t,i, û∗
N , α̂), (4.8)

where ûb
N,t,i = ûN (Xb

t,i) ∈ Rnb and Kb
t,i is a nb × nb covariance matrix for NN design Xb

t,i.
Let vt = (σ̌2

t (x∗
1), . . . , σ̌2

t (x∗
H))T be a H × 1 vector of all calculated posterior predictive

variances from NN designs. With localized predictive variances, the IMSPE criterion at
candidate design point x̃ is defined and approximated as

ˇIMSPE(x̃) =
∫

x∈X
σ̌2

t+1(x) dx ≈ 1
H

H∑
i=1

σ̌2
t+1(x∗

i), (4.9)

where σ̌2
t+1(x∗

i) denote the deduced posterior predictive variance at location x∗
i ∈ X∗ cal-

culated from NN design Xb
t+1,i ⊆ Xt+1 = Xt ∪ {x̃} with size nb as

σ̌2
t+1(x∗

i) = k(Xb
t+1,i, x∗

i ; ûb
N,t+1,i, û∗

N , α̂)T (Kb
t+1,i)−1 k(Xb

t+1,i, x∗
i ; ûb

N,t+1,i, û∗
N , α̂), (4.10)

where ûb
N,t+1,i = ûN (Xb

t+1,i) ∈ Rnb and Kb
t+1,i is a nb × nb covariance matrix for NN design

Xb
t+1,i. Since the candidate design point x̃ can not be in all of the NN designs Xb

t+1,i for
i = 1, . . . , H , changes in the IMSPE through adding the candidate design point to the
initial design are due to changes in posterior predictive variances calculated from NN sub-
designs include the candidate design. This allows us to reduce unnecessary calculations such
that if x̃ ∈ Xb

t+1,i then σ̌2
t+1(x∗

i) is calculated, otherwise its value is replaced with already
calculated value of (vt)i = σ̌2

t (x∗
i). It is clear that a larger choice of nb makes more number

of calculations, as more NN designs include the candidate design x̃. The new design xnew

is obtained via solving acquisition

xnew = arg min
x∈X

ˇIMSPE(x), (4.11)

through a randomized search over the candidate set X̃ in X . After obtaining the first new
design, we update the data as Dt+1 = Dt ∪ (xnew, yS

new) where yS
new = η(xnew). It is a

computational choice that one can decide not to back to the step 4 of the sequential design
scheme to refit the model and instead backs to the step of solving the acquisition (4.11)
to find the next new design. This procedure is repeated if t < W where W is the final

50

size of the design. Refitting model in batches of added design points is another choice.
In particular, after sequentially adding a specified number of new design points, the DGP
model is refitted to the updated data. In this work, we also investigate how this choice can
impact the prediction performance of the DGP and the ability of our design criterion in
exploring the input space. A comparison of resulting sequential designs with and without
refitting model in the 2-d toy model is presented in the next section.

4.4 Illustration

In this section, the localized sequential design strategy proposed in the previous section is
validated on the 2-d toy model and the real-world application, the COMPAS model. These
two examples were used for illustrating the proposed methodology for the DGP emulation
in Subsections 3.5.2 and 3.5.3, respectively. A comparison of two design strategies with
refitting the model in batches of added new design points and without refitting the model
is conducted through evaluating Nash–Sutcliffe Efficiency (NSE) and IMSPE values in the
2-d example. In the COMPAS model, two sequential designs are constructed with refitting
model using two different number of NNs to illustrate our localized design strategy.

4.4.1 2-d Toy Model

We use the following model g(x1, x2) defined in

g(x1, x2) =



1.3 x1 ∈ [0.66, 0.91] and x2 ∈ [0.4, 0.91]

2.2 x1 ∈ [0.1, 0.5] and x2 ∈ [0.6, 0.92]

3.5 x1 ∈ [0.15, 0.6] and x2 ∈ [0.1, 0.52]

0 o.w.

, x1, x2 ∈ [0, 1] (4.12)

to illustrate how the proposed design criterion improves the DGP emulator by adding
additional trials to the design. We generate a Maximin Latin hypercube design (LHD) of
size 100 as an initial design for the computer model (panel (a) in Figure 4.1) to conduct
an initial set of simulations. Then a DGP with two hidden layers is fitted on this initial
design and corresponding outputs using m = 80 inducing points in each layer. The DGP
is constructed using the Matern covariance functions formulated as (3.17) and (3.18) with
ν = 2.5, respectively. For estimating α, the normal distribution N (3.5, 1) is chosen for P(α)
and q(α) is initialized with N (mαini, sαini) where mαini = 3 and sαini = 1.

Our goal is to add 50 new simulation runs sequentially to the initial design through
the localized design criterion in two cases (i) without refitting the model (ii) with refitting
model in batch of added new design points. In both cases, a 21 by 21 grid on X is used as
a candidate set. We evaluate the design criterion ˇIMSPE defined in (4.9) at each candidate
point x̃j for j = 1, . . . , 441 over a 10 by 10 grid on X as a prediction set using 80 NNs, and

51

find the best candidate by solving acquisition (4.11) to perform the next simulation. The
search for new design points continues in two cases (i) and (ii) until a total run size of 150
is obtained.

Panel (b) of Figure 4.1 shows the design updated by adding the first 25 new design
points (in blue ∗) labeled according to the order in which they are added. Panel (c) of
Figure 4.1 shows the updated design by adding the second 25 new design points without
refitting the model, where previously added points (in blue ∗) do not have ordered labels.
To see the impact of refitting model, the model is refitted using the updated design in panel
(b) and then the second 25 points are added sequentially by the same procedure (panel (d)
in figure 4.1).

(a) (b)

(c) (d)

Figure 4.1: Sequential design construction. (a) Initial design (b) 25 points added (c) 50
points added (d) 50 points added after refitting the model. Red dots represent the initial
design, blue ∗’s labeled with numbers represents new design points according to the order
in which they are added, blue ∗’s without ordered labels represent previously added points.

52

As seen in panels (b), (c) and (d), in both cases, (i) and (ii), our sequential design
criterion is able to effectively place design points near the boundary of the three regions
where there is high variability and uncertainty about the computer model output. The
criterion is also able to jump to sparsely sampled regions (e.g., points 3, 6 and 10 in panel
(b)) and within the regions (e.g. points 50, 40 and 37 in panel (d)) for choosing design
points. The combination of the design criterion with our non-stationary DGP emulator
enable our design strategy to distinguish these distinct regimes and favor acquisitions in an
explore-and-exploit manner. Comparing the updated designs in panels (c) and (d) shows
how refitting the model can improve the ability of the model and the design criterion to
place design points in the regions with highest variability.

Particularly, panel (d) shows that after refitting the model, the criterion is able to
effectively recognize that more design points are needed to be placed in the bottom of the
green region and the top of the yellow region (e.g. points 32, 47 and 49, 26 in panel (d)). The
updated design shown in panel (c) is constructed from the DGP model fitted on the initial
design shown in panel (a) with size 100, whereas the design shown in panel (d) is constructed
from the DGP model refitted on the design shown in panel (b) with size 125 after adding the
first 25 design points. We investigated the predictive variances at prediction points located
in the bottom of the green region, the top of the yellow region and the area of between
them after fitting designs in panel (a) and (b). We realized that the predictive variances at
these points became higher after refitting the model on design (b). That’s one reason why
the criterion places points 32, 47 and 49, 26 in these parts in panel (d). Another reason that
we realized is that refitting after adding 25 points changed the correlation structure of the
model. To reach this explanation, we compared the correlations between pairs of points,
where one is located in the the bottom of the green region and across of that, another one
is located in the top of the yellow region. We observed that the correlation between these
two points went down after refitting the model on design (b). In other words, after refitting
the model, the criterion was able to distinguish the yellow region from the green region.

We also explore the choice of the batch size for adding new design points in case of
refitting the model. It is clear that if the batch size is small, it is needed to refit the model
multiple times and as a result the computational time of constructing the sequential design
goes up. For this example, we choose to refit the model after adding every 10 points to see
how much it improves the ability of the design criterion in exploring the input space. After
adding the first 10 points shown in panel (b) of Figure 4.1, the model is refitted on the
updated design and then the second 10 points are added. This procedure is repeated until a
total run size of 150 is obtained. Bottom row panels from (a) to (c) in Figure 4.2 show the
updated design with refitting the model after adding every 10 points, with the final design
plotted in the panel (b) of Figure 4.3 . For comparison purposes, the final design constructed
without refitting the model plotted in panel (c) of Figure 4.1 is shown for every 10 iterations
in the top row panels from (a) to (c) in Figure 4.2, with the final design plotted in the panel

53

(a) of Figure 4.3. The first 10 added points in both final designs shown in panels (a) and (b)
of Figure 4.3 are the same. Comparing final designs in panel (a) and (b) of Figure 4.3 shows
refitting the model every 10 points makes a slight improvement in the ability of the design
criterion in exploring the input space. Similar to the updated designs without refitting the
model, new design points are effectively placed where the variability is higher, i.e. near the
boundary of the three regions and sparsely sampled regions in bottom row updated designs
in Figure 4.2 and the final design in panel (b) of Figure 4.3.

(a) (b) (c)

Figure 4.2: Sequential design construction every 10 iterations. Top row: without refitting the
model, Bottom row: with refitting the model after adding every 10 points (a) The second
10 points added (b) The third 10 points added (c) The fourth 10 points added. Red dots
represent the initial design, blue ∗’s labeled with numbers represents new design points
according to the order in which they are added, blue ∗’s without ordered labels represent
previously added points.

IMSPEs are plotted and compared in three different sequential design constructions:
(i) without refitting the model (ii) with refitting model after adding every 10 points and
(iii) with refitting model after adding every 25 points in panels (a), (b) and (c) of Figure
4.4, respectively. A significant effect on IMSPE reduction is demonstrated in three panels
by adding the first 10 new design points which are the same in all three designs. As it is
expected, IMSPE jumps up exactly after refitting the model in every 10 and 25 iterations
in panels (b) and (c), respectively, although IMSPE come down afterwards. In panel (b),
IMSPE reductions after adding the second to the fourth 10 points are not as significant as

54

(a) (b)

Figure 4.3: Sequential design construction every 10 iterations. Final designs after adding the
fifth 10 points (a) without refitting the model (b) with refitting the model after adding every
10 points. Red dots represent the initial design, blue ∗’s labeled with numbers represents
new design points according to the order in which they are added, blue ∗’s without ordered
labels represent previously added points.

IMSPE reductions gained by adding the last 25 points in panel (c). Hence, an appropriate
choice of the batch size should be examined carefully to gain more improvement in the
IMSPE with reducing computational costs.

Three different sets of simulation data from final sequential designs constructed through
our localized sequential design criterion are used to emulate the computer model g(., .) on
a 20 × 20 grid in X . To do this, first a DGP with two hidden layers is fit on these three
simulation data sets using 80 inducing points and the same initializations. For making
predictions, our localized prediction method is applied with 80 NNs. The DGP is also fit
on simulation data from a maximin LHD with the same size as sequential designs and then
is used to make predictions at the same prediction set (20 × 20 grid in X).

The prediction accuracy of the DGP model (NSE) in all the cases are computed and
displayed in Table 4.1. As seen in the table, all the sequential designs are able to signifi-
cantly improve prediction performance of the DGP emulator compared with the LHD. The
sequential designs constructed from refitting the model after every 10 and 25 points have
the larger NSE than the sequential designs constructed without refitting the model. De-
pending on the cost restrictions and availability of computational resources, refitting the
model may be worth the effort with an appropriate choice of the batch size for adding new
design points. Also using NN designs in making predictions and the localized sequential
design criterion is also a computational choice and as a result there are trade-offs between
the computational efficiency and prediction accuracy with an appropriate choice of size of
the NN designs.

55

(a) (b)

(c)

Figure 4.4: IMSPEs of three different sequential design constructions: (a) without refitting
the model (b) with refitting the model after adding every 10 points (c) with refitting the
model after adding 25 points. In all three panels, IMSPES are the same for the first 10
points.

Table 4.1: Prediction performance of the DGP using four different designs

LHD SeqD (without refit) SeqD (refit after 10) SeqD (refit after 25)
NSE 72.48% 80.03% 80.80% 82.07%

4.4.2 COMPAS Model

We now return to the COMPAS model and apply the proposed sequential design approach
to the simulations runs used in 3.5.3. Our aim is to demonstrate how additional trials may
be added to improve the model based on the design criterion introduced in 4.3.2. We use
the two million simulation runs with input variables standardized to the 11-dimensional
unit cube [0, 1]11. More specifically, we choose the same prediction set with size of 1000
(including 450 active points) which is held out from the data. To construct an initial set of
simulations, 100, 000 simulations are randomly selected from the rest of the data with 40%
success rate for BBH formation. The remaining data is considered as the candidate set.

A DGP with three hidden layers is fit using m = 100 inducing points in each layer. The
DGP is constructed using the stationary and non-stationary Matern covariance functions

56

formulated as (3.17) and (3.18) with ν = 2.5, respectively. For training, we approximated
the ELBO (3.41) with a batch size of 1000 to achieve scalability. Two sequential designs are
constructed through the localized design criterion: (i) 300 new simulation runs are added
sequentially to the initial design using 300 NNs and (ii) 200 new simulation runs are added
sequentially to the initial design using 500 NNs, with refitting model after adding every 100
new design points. In both cases, we evaluate the localized design criterion defined in (4.9)
at each candidate point over the prediction set, and identify the best design point from the
candidate set using a randomized search with size of 500 (including 200 active points) over
the candidate set to perform the next simulation.

(a) (b)

Figure 4.5: IMSPEs of two different sequential design constructions with refitting model
after adding every 100 points (a) using 300 NNs and (b) using 500 NNs

Panel (a) and (b) of Figure 4.5 shows a comparison of IMSPE of two sequential designs
constructed through (i) and (ii), respectively. In both panels, IMSPEs are improved (jump
down) efficiently by refitting the model after adding every 100 points. Also most of the new
design points were selected from the active points, illustrating that our localized sequential
design criterion successfully diagnosed more complex regions of the chirp mass input space.
Comparing the maximum and minimum of IMSPEs displayed in these two plots, shows
that using more NNs in evaluating the design criterion in case (ii) can greatly improve the
performance of the DGP emulator even with adding 200 new design points compared with
the other case which adding 300 new design points using 300 NNs.

The resulting sequential designs in cases (i) and (ii) were also compared with the initial
design in the prediction accuracy of the DGP model (NSE). After fitting a DGP with three
hidden layers on these three simulation data sets, we emulated the COMPAS model at 1000
points in the prediction set. The prediction accuracy of the DGP model (NSE) using the
initial design and the resulting sequential designs in cases (i) and (ii) were computed and
displayed in Table 4.2. As seen in the table, the sequential designs have a larger NSE than
the initial design, showing that adding new design points to the initial design sequentially
in both cases (i) and (ii) improved the prediction performance of the DGP emulator. Also,

57

NSE of the sequential design constructed using 500 NNs is larger than NSE of the other
sequential design using 300 NNs, as more information is provided in evaluating IMSPE
through larger sub-designs. Although, the computational time of adding one new design
using 500 NNs (293.6 s) is more than the computational time of adding one new design
using 300 NNs (169.5 s), more improvement in the prediction performance of the DGP
emulator is achieved by adding less number of design points (200 new design points added)
to the initial design compared with the other sequential design (300 new design points
added). This shows how an appropriate choice of size of the NN designs in our localized
design criterion can impact on the computational efficiency and prediction accuracy of the
DGP emulator.

Table 4.2: Prediction performance of the DGP using the initial design and two different
sequential designs

Initial Design SeqD (300 NNs) SeqD (500 NNs)
NSE 70.01% 78.61% 80.12%

4.5 Summary and Discussion

This chapter presents new methodology for selecting design points to improve the DGP
emulator. In this chapter, we proposed a sequential design approach to improve performance
of our DGP emulator and exploration of the input space for guiding future simulations. We
combined the non-stationary DGP model with an EI based sequential design criterion to
deviate from usual space-filling designs and guiding the selection of future runs in more
complex regions of the input space.

In order to proceed our method, we had to tackle a conflict between the DGP prediction
method introduced in Subsection 3.4.3 and our variance based design criterion. Particu-
larly, the issue was that the posterior predictive variances defined in (3.45) depend on the
optimized inducing locations instead of the design X. We addressed this problem by an
adaptation in the DGP prediction method, where we incorporate X in posterior predic-
tive equations as (4.3) conditioning on the estimated last layer used to find the correlation
among observations and the new run. We defined our design criterion, IMSPE, at each
candidate design point through the new posterior predictive variance formula in (4.3) and
approximated it over a prediction set in the input space as (4.6). To find the new design
point, we minimized the IMSPE through a randomized search over a candidate set.

When the size of the data is large or there are some restrictions in availability of com-
putational resources, finding an optimal design with this solution and our DGP emulator
could be computationally intensive, since the sequential design algorithm would involve re-
peated inversion of a large covariance matrix with the size of the data in evaluating the
predictive variances. Specifically, it would be required to calculate the posterior predictive

58

variance at all prediction points via equation (4.3) to obtain IMSPE (4.6) at each candidate
point. In this setting, we proposed to construct a smaller, local design using nb nearest
neighbors (NN) to the unsampled input to make a prediction using our DGP emulator via
predictive equations (4.4). We utilized our localized prediction method with the sequential
design strategy through defining the design criterion ˇIMSPE, the localized predictive vari-
ance averaged over the input space as (4.9). To find the new design point, we minimized

ˇIMSPE through solving acquisition (4.11) by a randomized search over a candidate set. To
evaluate ˇIMSPE at each candidate design point, we calculated localized posterior predictive
variances from only NN sub-designs include the candidate design point. This allowed us to
reduce unnecessary calculations for solving (4.11). We also investigated impact of refitting
model in batches of added new design points on the prediction performance of the DGP
and the ability of our design criterion in exploring the input space.

Using NN designs in making predictions and the localized sequential design criterion is
a computational choice. Also the larger NN design is, the more information is provided for
emulation at a new input. In fact, there are trade-offs between the computational efficiency
and prediction accuracy with an appropriate choice for the size of the NN designs. Hence,
to reach the desired accuracy and computational efficiency, it is recommended to perform a
preliminary analysis to find a suitable NN design size. Also depending on the computational
restrictions, refitting the model may be worth with an appropriate choice of the batch size
for adding new design points. This choice of the batch size should also be examined carefully
to gain more prediction accuracy along with reducing computational costs.

In future work, we aim to investigate how to make an optimal design using inducing
locations to improve our DGP emulator. In other words, we are curious to know if placing
new inducing locations where the variability of the response model is highest or where
uncertainty is largest could increase the prediction accuracy and what criterion should be
defined in this regime. We hope to proceed this idea by utilizing our DGP prediction method
introduced in Subsection 3.4.3 without any adaptation such as using NN designs, as inducing
locations play an analogous role of the design in posterior predictive equations in (3.45).

59

Chapter 5

Conclusion

In this thesis, methodologies were developed in computer model emulation and experimen-
tal design. In Chapter 3, new methodology for emulation of complex computer models was
proposed. A non-stationary DGP emulator was presented that could apply to a large class of
complex computer models, and scale to arbitrarily large simulation designs. We introduced
a new parameter that allows us to control smoothness of the DGP layers. The impact of
the proposed parameter on the level of smoothness of layers was theoretically illustrated
and numerically visualised in DGP realizations. We also adapted a stochastic variational
inference approach to be suitable for the DGP model in our framework. Our modified infer-
ence approach allowed for prior specification and posterior exploration of the smoothness of
the response surface and was demonstrated to preserve accuracy with uncertainty measures
for arbitrary large designs. The impact of estimating the proposed parameter on the per-
formance of the DGP emulator was illustrated in three synthetic examples. The proposed
methodology was applied to the emulation of a complicated astrophysical model efficiently
through the data sub-sampling with measuring uncertainties. Additionally, variants of the
DGP were proposed which specify our proposed new parameter in different ways. We defer
a more thorough investigation of these new variants to future work.

In Chapter 4, a sequential design strategy for complex computer models was proposed.
The proposed method aimed to improve performance of the resulting DGP emulator in-
troduced in the previous chapter and exploration of the input space for guiding future
simulations. The non-stationary DGP model and an EI based sequential design criterion
were combined to deviate from usual space-filling designs and guide the selection of future
runs in regions of the input space that are more complicated in the response along with
improving prediction accuracy of our DGP emulator. We chose the IMSPE, the predictive
variance averaged over the input space, as a sequential design criterion. In order to proceed
with our design strategy, it was required to adapt our prediction method. For large simula-
tion designs, we proposed to use nearest neighbour (NN) predictions using our DGP. The
design criterion becomes the localized predictive variance averaged over the input space.
Our localized sequential design strategy was illustrated in the 2-d toy model as well as

60

the COMPAS model. The combination of our localized sequential design criterion with the
non-stationary DGP emulator enabled our design strategy to effectively place design points
where there was high variability and uncertainty about the computer model output and
favored acquisitions in an explore-and-exploit manner. Also refitting model in batches of
added new design points improved the prediction performance of the DGP (NSE and IM-
SPE) and the ability of our design criterion to encourage exploration of the input space.
Using more NNs in evaluating the design criterion greatly improved prediction accuracy in
emulation of the COMPAS. In future work, we aim to investigate how to make an optimal
design using inducing locations to improve our DGP emulator without using NN designs.

61

Bibliography

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
L. Kaiser, M. Kudlur, J. Levenberg, D. Man, R. Monga, S. Moore, D. Murray, J. Shlens,
B. Steiner, I. Sutskever, P. Tucker, V. Vanhoucke, V. Vasudevan, O. Vinyals, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. Tensorflow: Large-scale machine learning on heteroge-
neous distributed systems. 2015. doi: 1603.04467.

I. Andrianakis, I.R. Vernon, N. McCreesh, T.J. McKinley, J.E. Oakley, R.N. Nsubuga,
M. Goldstein, and R.G. White. Bayesian history matching of complex infectious disease
models using emulation: A tutorial and a case study on hiv in uganda. PLoS Computa-
tional Biology, 11(1):e1003968, 2015.

B. Ankenman, B.L. Nelson, and J. Staum. Stochastic kriging for simulation meta modeling.
Operations Research, 58(2):371–382, 2010.

A. Armagan and D. Dunson. Sparse variational analysis of linear mixed models for large
data sets. Statistics and Probability Letters, 81:1056–1062, 2011.

S. Banerjee, A.E. Gelfand, J.R. Knight, and C.F. Sirmans. Spatial modeling of house prices
using normalized distance-weighted sums of stationary processes. Journal of Business
and Economic Statistics, 22(2):206–213, 2004.

D. Barber and S. Chiappa. Unified inference for variational bayesian linear gaussian state-
space models. in Neural Information Processing Systems, page 81–88, 2006.

J.W. Barrett, S.M. Gaebel, C.J. Neijssel, A. VignaGomez, S. Stevenson, C.P.L. Berry, W.M.
Farr, and I. Mandel. Accuracy of inference on the physics of binary evolution from
gravitational-wave observations. MNRAS, 477(4):4685–4695, 2018.

K. Belczynski, V. Kalogera, and T. Bulik. A comprehensive study of binary compact objects
as gravitational wave sources: Evolutionary channels, rates, and physical properties. The
Astrophysical Journal, 572:407–431, 2002.

D. Bingham, P. Ranjan, and W.J. Welch. Design of computer experiments for optimization,
estimation of function contours, and related objectives. Statistics in Action: A Canadian
Outlook 109, 109, 2014.

D.M. Blei, A. Kucukelbir, and J.D. McAuliffe. Variational inference: A review for statisti-
cians. Journal of the American Statistical Association, 112:859–877, 2017.

L. Bornn, G. Shaddick, and J. Zidek. Modelling non-stationary processes through dimension
expansion. Journal of the American Statistical Association, 497(107):281–289, 2012.

62

E. Brochu, V.M. Cora, and N. Freitas. A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement
learning. Computer Science, Mathematics, 2010. doi: 1012.2599.

F.S. Broekgaarden, S. Justham, S.E. DeMinK, J. Gair, I. Mandel, S. Stevenson, J.W. Bar-
rett, A. VignaGomez, and C.J. Neijssel. Stroop-wafel: Simulating rare outcomes from
astrophysical populations, with application to gravitational-wave sources. Monthly No-
tices of the Royal Astronomical Society, 490:5228–5248, 2019.

P. Challenor. The probability of rapid climate change. Significance, 1(4):155–158, 2004.

K.L. Chang and S. Guillas. Computer model calibration with large nonstationary spatial
outputs: Application to the calibration of a climate model. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 68(1):51–78, 2018.

V. Chen, M.M. Dunlop, O. Papaspiliopoulos, and A.M. Stuart. Robust mcmc sampling
with non-gaussian and hierarchical priors in high dimensions. Mathematics, 2018. doi:
1803.03344.

C.S. Cheng, R.J. Martin, and B. Tang. Two-level factorial designs with extreme numbers
of level changes. Annals of Statistics, 26(4):1522–1539, 1998.

D. Cohn. Neural network exploration using optimal experiment design. In Advances in
Neural Information Processing Systems, page 679–686, 1994.

N.A. Cressie. Statistics for spatial data. Revised edition. John Wiley & Sons, 1993. doi:
10.1002/9781119115151.

C. Currin, T. Mitchell, M. Morris, and D. Ylvisaker. A bayesian approach to the design
and analysis of computer experiments. (Technical Report 6498). Oak Ridge National
Laboratory, 1988.

C. Currin, T. Mitchell, M. Morris, and D. Ylvisaker. Bayesian prediction of deterministic
functions, with applications to the design and analysis of computer experiments. Journal
of the American Statistical Association, 86:953–963, 1991.

Z. Dai, A. Damianou, J. González, and N.D. Lawrence. Variational auto-encoded deep
gaussian processes. International Conference on Learning Representations, 3, 2016.

A. Damianou and N. Lawrence. Deep gaussian processes. In Artificial Intelligence and
Statistics, PMLR, 31:207–215, 2013.

A.C. Damianou, M.K. Titsias, and N.D. Lawrence. Variational inference for latent vari-
ables and uncertain inputs in gaussian processes. Journal of Machine Learning Research,
17(42):1-62, 17(42):1–62, 2016.

M.M. Dunlop, M.A. Girolami, A.M. Stuart, and A.L. Teckentrup. How deep are deep
gaussian processes? Journal of Machine Learning Research, 19:1–46, 2018.

V. Dutordoir, N. Knudde, J. Vander Herten, I. Couckuyt, and T Dhaene. Deep gaussian
process metamodeling of sequentially sampled non-stationary response surfaces. In 2017
Winter Simulation Conference (WSC), page 1728–1739, 2017.

63

V. Dutordoir, H. Salimbeni, E. Hambro, J. McLeod, F. Leibfried, A. Artemev, M. Van-
der Wilk, M.P. Deisenroth, J. Hensman, and S. John. Gpflux: A library for deep gaussian
processes. 2021. doi: 2104.05674.

N.R. Edwards, D. Cameron, and J. Rougier. Precalibrating an intermediate complexity
climate model. Climate Dynamics, 37(7-8):1469–1482, 2011.

M. Fuentes. A high frequency kriging approach for nonstationary environmental processes.
Environmetrics, 12(5):469–483, 2001.

M. Fuentes and R. Smith. A new class of nonstationary spatial models. Journal of the
American Statistical, 2003.

A. Gelfand and A. Smith. Sampling based approaches to calculating marginal densities.
Journal of the American Statistical Association, 85:398–409, 1990.

S. Geman and D. Geman. Stochastic relaxation, gibbs distributions and the bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
6:721–741, 1984.

R.B. Gramacy and D.W. Apley. Local gaussian process approximation for large computer
experiments. Journal of Computational and Graphical Statistics, 24(2):561–578, 2015.

R.B. Gramacy and H.K.H. Lee. Bayesian treed gaussian process models with an application
to computer modeling. Journal of the American Statistical Association, 103(483):1119–
1130, 2008.

R.B. Gramacy and H.K.H. Lee. Adaptive design and analysis of supercomputer experiments.
Technometrics, 51(2):130–145, 2009.

R.B. Gramacy, G.A. Gray, S. Le Digabel, H.K.H. Lee, P. Ranjan, G. Wells, and S.M.
Wild. Modeling an augmented lagrangian for blackbox constrained optimization (with
discussion). Technometrics, 58(1):1–29, 2016.

W. Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57:97–109, 1970.

A. Hebbal, L. Brevault, M. Balesdent, E. Talbi, and N. Melab. Bayesian optimization using
deep gaussian processes with applications to aerospace system design. Optimization and
Engineering, 22:321–361, 2021.

J. Hensman and N.D. Lawrence. Nested variational compression in deep gaussian processes.
2014. doi: 1412.1370.

J. Hensman, N. Fusi, and N. Lawrence. Gaussian processes for big data. Uncertainty in
Artificial Intelligence, page 282–290, 2013.

J. Hensman, A.G. Matthews, and Z. Ghahramani. Scalable variational gaussian process
classification. In 18th International Conference on Artificial Intelligence and Statistics,
page 351–360, 2015.

D. Higdon. A process-convolution approach to modeling temperatures in the north atlantic
ocean. Journal of Environmental and Ecological Statistics, 5:173–190, 1998.

64

D. Higdon, J. Swall, and J. Kern. Non-stationary spatial modeling. Bayesian Statistics, 6
(1):761–768, 1999.

D. Higdon, M. Kennedy, J. Cavendish, J. Cafeo, and R. Ryne. Combining field data and
computer simulations for calibration and prediction. SIAM Journal on Scientific Com-
puting, 26(2):448–466, 2004.

D. Higdon, J. Gattiker, B. Williams, and M. Rightley. Computer model calibration using
high-dimensional output. Journal of the American Statistical Association, 103:570–583,
2008.

M.D. Hoffman, D.M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. Journal
of Machine Learning Research, 14:1303–1347, 2013.

B. Iooss and P. Lemaitre. A review on global sensitivity analysis methods. in uncertainty
management in simulation-optimization of complex systems: Algorithms and applications.
Springer, 2015.

K.M. Irvine, A.I. Gitelman, and J.A. Hoeting. Spatial designs and properties of spatial
correlation: Effects on covariance estimation. J. Agric. Biol. Environ. Stat. MR2405534,
12:450–469, 2007.

M. Johnson, L. Moore, and D. Ylvisaker. Minimax and maximin distance designs. Journal
of Statistical Planning and Inference, 26:131–148, 1990.

D.R. Jones, M. Schonlau, and W.J. Welch. Efficient global optimization of expensive black-
box functions. Journal of Global Optimization, 13(4):455–492, 1998.

M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul. An introduction to variational
methods for graphical models. Mach. Learn., 37(2):183–233, 1999.

C.G. Kaufman and S.R. Sain. Bayesian functional ANOVA modeling using gaussian process
prior distributions. Bayesian Analysis, 5:123–149, 2010.

C.G. Kaufman, D. Bingham, S. Habib, K. Heitmann, and J.A. Frieman. Efficient emula-
tors of computer experiments using compactly supported correlation functions, with an
application to cosmology. The Annals of Applied Statistics, 4(5):2470–2492, 2011.

M.C. Kennedy and A. O’Hagan. Bayesian calibration of computer models. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 63(3):425–464, 2001.

D.P. Kingma and J.L. Ba. Adam: A method for stochastic optimization. 2014. doi: 1412.
6980.

D.P. Kingma, T. Salimans, and M. Welling. Variational dropout and the local reparam-
eterization trick. Advances in Neural Information Processing Systems, 28, 2015. doi:
1506.02557.

M.U. Kruckow, T.M. Tauris, N. Langer, M. Kramer, and R.G. Izzard. Progenitors of
gravitational wave mergers: Binary evolution with the stellar grid-based code combine.
Monthly Notices of the Royal Astronomical Society, 481:1908–1949, 2018.

65

S. Kullback and R. Leibler. On information and sufficiency. Annals of Mathematical Statis-
tics, 22:79–86, 1951.

B.A. Lockwood and M. Anitescu. Gradient-enhanced universal kriging for uncertainty
propagation. Nuclear Science and Engineering, 170(2):168–195, 2012.

J.L. Loeppky, L.M. Moore, and B.J. Williams. Batch sequential designs for computer
experiments. Journal of Statistical Planning and Inference, 140(6):1452–1464, 2010.

P. Lynch. The origins of computer weather prediction and climate modeling. Journal of
Computational Physics, 227(7):3431–3444, 2008.

D. MacKay. Information-based objective functions for active data selection. Neural Com-
putation, 4(4):590–604, 1992.

I. Mandel and A. Farmer. Gravitational waves: Stellar palaeontology. Nature, 547:284–285,
2017.

I. Mandel and A. Farmer. Merging stellar-mass binary black holes. 2018. doi: 1806.05820.

S. Marmin, D. Ginsbourger, J. Baccou, and J. Liandrat. Warped gaussian processes
and derivative-based sequential design for functions with heterogeneous variations.
SIAM/ASA Journal on Uncertainty Quantification, 2018. doi: 10.1137/17M1129179.

A.G. Matthews. Scalable gaussian process inference using variational methods. PhD thesis,
University of Cambridge, 2017.

A.G. Matthews, J. Hensman, R.E. Turner, and Z. Ghahramani. On sparse variational
methods and the kullback-leibler divergence between stochastic processes. Artificial In-
telligence and Statistics, 2016.

A.G. Matthews, M. Van Der Wilk, T. Nickson, K. Fujii, A. Boukouvalas, P. León-Villagrá,
Z. Ghahramani, and J. Hensman. Gpflow: A gaussian process library using tensorflow.
Journal of Machine Learning Research, 2017.

M.D. McKay, W.J. Conover, and R.J. Beckman. Comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics,
(21):239–245, 1979.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, and A.H. Teller. Equations of state
calculations by fast computing machines. Journal of Chemical Physics, 21:1087–1092,
1953.

D. Ming, D. Williamson, and S. Guillas. Deep gaussian process emulation using stochastic
imputation. 2021. doi: 2107.01590.

T.J. Mitchell and D.S. Scott. A computer program for the design of group testing experi-
ments. Commun Stat Theory Methods, 16:2943–2955, 1987.

K. Monterrubio-Gomez, L. Roninen, S. Wade, T. Damoulas, and M. Girolami. Posterior
inference for sparse hierarchical non-stationary models. Computational Statistics & Data
Analysis, Elsevier, ISSN: 106954, (148):0167–9473, 2020.

66

M.D. Morris and T.J. Mitchell. Exploratory designs for computational experiments. Journal
of Statistical Planning and Inference, 43:381–402, 1995.

J.E. Nash and J.V. Sutcliffe. River flow forecasting through conceptual models part i - a
discussion of principles. Journal of Hydrology, 10:282–290, 1970.

C.J. Neijssel, A. Vigna-Gomez, S. Stevenson, J.W. Barrett, S.M. Gaebel, F. Broekgaarden,
De Mink S.E., D. Szecsi, S. Vinciguerra, and I. Mandel. The effect of the metallicity-
specific star formation history on double compact object mergers. MNRAS, 490:3740–
3759, 2019.

W.I. Notz. Expected improvement designs. In: Bingham D, Dean AM, Morris M, Stufken J
(eds) Handbook of design and analysis of experiments. Chapman and Hall, page 675–716,
2015.

J. Oakley and A. O’Hagan. Bayesian inference for the uncertainty distribution of computer
model outputs. Biometrika, 89(4):769–784, 2002.

J.E. Oakley. Estimating percentiles of uncertain computer code outputs. Journal of the
Royal Statistical Society: Series C (Applied Statistics), 53(1):83–93, 2004.

J.E. Oakley and A. O’Hagan. Probabilistic sensitivity analysis of complex models: a bayesian
approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66
(3):751–769, 2004.

A. O’Hagan, M.C. Kennedy, and J.E. Oakley. Uncertainty analysis and other inference tools
for complex computer codes. Oxford University Press, In Bayesian Statistics 6, eds. J.
M. Bernardo, J. O. Berger, A. Dawid, and A. Smith, page 503–524, 1999.

C. Paciorek and M. Schervish. Non-stationary covariance functions for gaussian process
regression. Advances in Neural Information Processing Systems, 16:273–280, 2004.

P. C. Peters and J. Mathews. Gravitational radiation from point masses in a keplerian
orbit. Physical Review, 131:435–440, 1963.

L. Pronzato and W.G. Muller. Design of computer experiments: Space filling and beyond.
Statistics and Computing, 22(3):681–701, 2012.

M.I. Radaideh and T. Kozlowski. Surrogate modeling of advanced computer simulations
using deep gaussian processes. Reliability Engineering and System Safety, 195:106731,
2020.

D. Rajaram, T.G. Puranik, S. Ashwin Renganathan, W. Sung, O.P. Fischer, D.N. Mavris,
and A. Ramamurthy. Empirical assessment of deep gaussian process surrogate models
for engineering problems. Journal of Aircraft, page 1–15, 2020.

P. Ranjan, D. Bingham, and G. Michailidis. Sequential experiment design for contour
estimation from complex computer codes. Technometrics, 50(4):527–541, 2008.

D.J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. International Conference on Machine Learning,
2014.

67

S. Roberts, T. Guilford, I. Rezek, and D. Biro. Positional entropy during pigeon homing i:
Application of bayesian latent state modelling. Journal of Theoretical Biology, 227:39–50,
2004.

S. Roy and W.I. Notz. Estimating percentiles in computer experiments: a comparison of
sequential-adaptive designs and fixed designs. Stat Theory Practice, 8:12–29, 2014.

J. Sacks, S.B. Schiller, and W.J. Welch. Designs for computer experiments. Technometrics,
31(1):41–47, 1989a.

J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn. Design and analysis of computer
experiments. Statist. Sci.MR1041765, 4:409–435, 1989b.

H. Salimbeni. Deep gaussian processes: Advances in models and inference. PhD thesis,
Imperial College London, 2020.

H. Salimbeni and M. Deisenroth. Doubly stochastic variational inference for deep gaussian
processes. In Advances in Neural Information Processing Systems, page 44588–4599,
2017.

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and
S. Tarantola. Global sensitivity analysis. John Wiley and Sons Ltd, ISBN 978-0-470-
05997-5, 2008.

P.D. Sampson and P. Guttorp. Nonparametric estimation of nonstationary spatial covari-
ance structure. Journal of the American Statistical Association, 87(417):108–119, 1992.

T.J. Santner, B.J. Williams, and W.I. Notz. The design and analysis of computer experi-
ments. New York, NY: Springer-Verlag, 2003.

A. Sauer, R.B. Gramacy, and D. Higdon. Active learning for deep gaussian process surro-
gates. 2020. doi: 2012.08015.

A.M. Schmidt and A. O’Hagan. Bayesian inference for nonstationary spatial covariance
structure via spatial deformations. Journal of the Royal Statistical Society, Series B, 65:
745–758, 2003.

M. Schonlau, W.J. Welch, and D.R. Jones. Global versus local search in constrained opti-
mization of computer models. In New Developments and Applications in Experimental
Design, Institute of Mathematical Statistics, 34:11–25, 1998.

M.C. Shewry and H.P. Wynn. Maximum entropy sampling. Journal of applied statistics,
14(2):165–170, 14(2):165–170, 1987.

E. Snelson and Z. Ghahramani. Sparse gaussian processes using pseudo-inputs. In Advances
in neural information processing systems, page 1257–1264, 2006.

M.L. Stein. Interpolation of spatial data. New York, NY: Springer, 1999.

S. Stevenson, A. VignaGomez, I. Mandel, J.W. Barrett, C.J. Neijssel, D. Perkins, and S.E.
DeMink. Formation of the first three gravitational-wave observations through isolated
binary evolution. 2017. doi: 1704.01352.

68

B. Tang. Selecting latin hypercubes using correlation criteria. Statistica Sinica, 8:965–977,
1998.

B. Tang and C.F.J. Wu. A method for constructing supersaturated designs and its es2
optimality. Canadian Journal of Statistics, pages 191–201, 1997.

Z. Tavassoli, J.N. Carter, and P.R. King. Errors in history matching. SPE Journal, 9(3):
352–361, 2004.

S.R. Taylor and D. Gerosa. Mining gravitational-wave catalogs to understand binary stellar
evolution: A new hierarchical bayesian framework. Physical Review Journal, 98, 2018.
doi: 1806.08365.

M. Tipping and N. Lawrence. Variational inference for student-t models: Robust bayesian
interpolation and generalised component analysis. Neurocomputing, 69:123–141, 2005.

M. Titsias. Variational learning of inducing variables in sparse gaussian processes. In
Artificial Intelligence and Statistics, page 567–574, 2009.

M. Titsias and N. Lawrence. Bayesian gaussian process latent variable model. in Artificial
Intelligence and Statistics, page 844–851, 2010.

I. Vernon, M. Goldstein, and R.G. Bower. Galaxy formation: a bayesian uncertainty analysis.
Bayesian Analysis, 5(4):619–669, 2010.

A. Vigna-Gomez, C.J. Neijssel, S. Stevenson, J.W. Barrett, K. Belczynski, S. Justham,
S.E. DeMink, B. Muller, P. Podsiadlowski, M. Renzo, D. Szecsil, and I. Mandel. On the
formation history of galactic double neutron stars. 2018. doi: 1805.07974.

V. Volodina and D.B. Williamson. Diagnostic-driven non-stationary emulators using kernel
mixtures. 2020. doi: 1803.04906.

M.J. Wainwright and M.I. Jordan. Graphical models, exponential families, and variational
inference. Foundations and Trends in Machine Learning, 2008.

W.J. Welch, R.J. Buck, J. Sacks, H.P. Wynn, T. Mitchell, and M.D. Morris. Screening,
predicting, and computer experiment. Technometrics, 34:15–25, 1992.

69

Appendix A

Supplementary Material for
Chapter 3

A derivation for marginalizing inducing variables in (3.35) as∫
P(un|ũn; un−1, X, Zn)q(ũn) dũn = N (un|µ̃n, Σ̃n),

for n = 2, . . . , N where
[µ̃n]i = Γn(xi, ui

n−1)T mn,

[Σ̃n]ij = kn(xi, xj ; ui
n−1, uj

n−1) − Γn(xi, ui
n−1)T

[
kn(Zn, Zn; δZn) − sn

]
Γn(xj , uj

n−1),

Γn(xi, ui
n−1) = kn(Zn, Zn; δZn)−1kn(Zn, xi; δZn , ui

n−1).

Proof. We have P(un|ũn; un−1, X, Zn) = N (un|µn, Σn), where

[µn]i = Γn(xi, ui
n−1)T ũn,

[Σn]ij = kn(xi, xj ; ui
n−1, uj

n−1) − Γn(xi, ui
n−1)T kn(Zn, Zn; δZn)Γn(xj , uj

n−1).

For simplifying the notations we assume that

µn = ΣT
unũn

Σ−1
ũn

ũn,

Σn = Σun − ΣT
unũn

Σ−1
ũn

Σunũn .

Hence, Σ̃n and µ̃n can be simplified as

µ̃n = ΣT
unũn

Σ−1
ũn

mn,

Σ̃n = Σn + ΣT
unũn

Σ−1
ũn

snΣ−1
ũn

Σunũn .

70

It is clear that the conditional covariance matrix Σn does not involve ũn, whereas µn is a
linear function of ũn. Since q(ũn) = N (mn, sn), so we can write q(un) as

q(un) =
∫

P(un|ũn; un−1, X, Zn)q(ũn)dũn

=
∫ 1

2π(m+mind)/2|Σn|1/2|sn|1/2 exp(−1
2Q)dũn

= 1
2π(m+mind)/2|Σn|1/2|sn|1/2

∫
exp(−1

2Q)dũn,

where

Q = [(un − µn)T Σ−1
n (un − µn)] + [(ũn − mn)T s−1

n (ũn − mn)]
= [(un − ΣT

unũn
Σ−1

ũn
ũn)T Σ−1

n (un − ΣT
unũn

Σ−1
ũn

ũn)] + [(ũn − mn)T s−1
n (ũn − mn)]

= A + B,

and
A = uT

n Σ−1
n un − 2uT

n Σ−1
n ΣT

unũn
Σ−1

ũn
ũn + ũT

n Σ−1
ũn

ΣunũnΣ−1
n ΣT

unũn
Σ−1

ũn
ũn,

B = ũT
n s−1

n ũn − 2ũT
n s−1

n mn + mT
n s−1

n mn.

Since the first term of A and the last term of B do not depend on ũn, so q(un) can reach
to this form

q(un) = 1
2π(m+mind)/2|Σn|1/2|sn|1/2 exp(−1

2[uT
n Σ−1

n un + mT
n s−1

n mn])
∫

exp(−1
2Q′)dũ,

where

Q′ = −2uT
n Σ−1

n ΣT
unũn

Σ−1
ũn

ũn + ũT
n Σ−1

ũn
ΣunũnΣ−1

n ΣT
unũn

Σ−1
ũn

ũn + ũT
n s−1

n ũn − 2ũT
n s−1

n mn

= −2[uT
n Σ−1

n ΣT
unũn

Σ−1
ũn

+ mT
n s−1

n]ũn + ũT
n [Σ−1

ũn
ΣunũnΣ−1

n ΣT
unũn

Σ−1
ũn

+ s−1
n]ũn.

It follows that

1
2Q′ = −[uT

n Σ−1
n ΣT

unũn
Σ−1

ũn
+ mT

n s−1
n]ũn + 1

2 ũT
n [Σ−1

ũn
ΣunũnΣ−1

n ΣT
unũn

Σ−1
ũn

+ s−1
n]ũn.

The multivariate generalization of a mathematical trick known as "completion of squares"
says that for a symmetric, non-singular matrix A, the quadratic function can be written as

1
2ZT AZ − bT Z + C = 1

2(Z − A−1b)T A(Z − A−1b) − 1
2bT A−1b + C.

Now, we can apply this trick in our situation by these assumptions

Z := ũn , C := 0,

b := [uT
n Σ−1

n ΣT
unũn

Σ−1
ũn

+ mT
n s−1

n]T ,

A := Σ−1
ũn

ΣunũnΣ−1
n ΣT

unũn
Σ−1

ũn
+ s−1

n .

71

By application of Aitken’s integral and this fact that b in our setting does not involve ũn,
q(un) can be simplified as

q(un) = 2πmind/2|A−1|1/2

2π(m+mind)/2|Σn|1/2|sn|1/2 exp(−1
2[uT

n Σ−1
n un + mT

n s−1
n mn − bT A−1b])

= |A−1|1/2

2πm/2|Σn|1/2|sn|1/2 exp(−1
2[uT

n Σ−1
n un + mT

n s−1
n mn − bT A−1b]).

Now by showing

[(un − µ̃n)T Σ̃−1
n (un − µ̃n)] = [uT

n Σ−1
n un + mT

n s−1
n mn − bT A−1b],

and
|Σ̃n|−1/2 = |A−1|1/2

|Σn|1/2|sn|1/2 ,

the proof will be completed. To proof the first equation, we start from the left hand side
(LHS) to reach the the right hand side (RHS). Using the Woodbury identity, Σ̃−1

n can be
writen as

Σ̃−1
n = Σ−1

n − Σ−1
n ΣT

unũn
Σ−1

ũn

(
Σ−1

ũn
ΣunũnΣ−1

n ΣT
unũn

Σ−1
ũn

+ s−1
n

)−1Σ−1
ũn

ΣunũnΣ−1
n

= Σ−1
n − Σ−1

n ΣT
unũn

Σ−1
ũn

A−1Σ−1
ũn

ΣunũnΣ−1
n .

By plugging µ̃n and Σ̃−1
n into the LHS and using equations

Σ−1
ũn

ΣunũnΣ−1
n un = b − s−1

n mn,

and
Σ−1

ũn
ΣunũnΣ−1

n ΣT
unũn

Σ−1
ũn

= A − s−1
n ,

we reach

LHS = uT
n Σ−1

n un − (b − s−1
n mn)T mn − (b − s−1

n mn)T A−1(b − s−1
n mn)

+ 2mT
n (A − s−1

n)A−1(b − s−1
n mn) − mT

n (b − s−1
n mn) + mT

n (A − s−1
n)mn

− mT
n (A − s−1

n)A−1(A − s−1
n)mn

= uT
n Σ−1

n un + mT
n s−1

n mn − bT A−1b
= RHS.

The next equation can be written as

|Σ̃−1
n |1/2 = |A−1|1/2|Σ−1

n |1/2|s−1
n |1/2,

using this fact that

Σ̃−1
n = Σ−1

n − Σ−1
n ΣT

unũn
Σ−1

ũn
A−1Σ−1

ũn
ΣunũnΣ−1

n .

72

	Declaration of Committee
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Overview
	Thesis Outline

	Background
	Computer Model Emulation
	Stationary Gaussian Process (GP) Emulators
	Non-stationary GP Models

	Design of Computer Experiments
	Variational Inference (VI)

	Deep Gaussian Processes Emulation
	Introduction
	Deep Gaussian Processes (DGPs)
	DGP Formulations
	DGP as a Bayesian Hierarchical Model (BHM)

	DGP as a Surrogate Model
	Non-stationary Covariance Functions
	Controlling Smoothness of DGP Layers
	Other Possible Innovations

	Inference
	Related Work
	Fitting the DGP Emulator
	Prediction

	Illustration
	1-d Toy Models
	2-d Toy Model
	COMPAS Model

	Summary and Discussion

	Sequential Experiment Design using DGP Emulator
	Introduction
	Sequential Design of Computer Experiments
	Sequential Design Scheme
	Expected Improvement Criterion

	Sequential Design for Complex Computer Models
	Localized Prediction using DGP
	Localized Design Criterion

	Illustration
	2-d Toy Model
	COMPAS Model

	Summary and Discussion

	Conclusion
	Bibliography
	Appendix Supplementary Material for Chapter 3

