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Abstract

Urgent and primary care centres (UPCCs) provide both walk-in services for urgent health-
care needs and booked appointments for longitudinal care. UPCCs utilize multi-disciplinary
teams of healthcare professionals who collaborate to provide client care. This thesis develops
a new approach to optimize team-based staffing at a UPCC in Vancouver, British Columbia.
The core of the approach is a discrete event simulation that estimates client access indicators
based on the UPCC operational profile and client visit data. The analysis compares two al-
gorithms that minimize staffing levels subject to access targets given by the time-dependent
expected proportion of simulated clients who leave due to a prolonged wait. One approach
combines an extension of an iterative, simulation-based algorithm for small-interval staffing
with an integer programming formulation for shift-based staffing. Another approach opti-
mizes shift-based staffing through simulation optimization. Both approaches make staffing
recommendations to improve care access.

Keywords: Urgent and primary care; Team-based care; Staffing optimization; Discrete
event simulation; Simulation optimization
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Chapter 1

Introduction

1.1 Urgent and Primary Care Centres and Team-based Care

Within healthcare, the term primary care refers to the provision of clinical services to
address integrated, non-specialized care needs in a community context [166]. Community-
based primary care has been highlighted widely as one approach to increase health equity
in British Columbia (BC), Canada [144, 153]. However, many individuals in BC either do
not have a family physician or are often unable to book appointments in a timely man-
ner for unexpected health needs. Many individuals resort to emergency department (ED)
visits for urgent, but non-emergent, level care, which can entail long wait times and dimin-
ished continuity of care compared to family doctor settings [151]. Furthermore, the chal-
lenges associated with accessing healthcare can be intensified for individuals experiencing
marginalization [62, 90, 97, 115, 148].

A provincial initiative in BC aims to increase primary care access through additional
urgent and primary care centres (UPCCs) that combine two healthcare modalities: urgent
care and longitudinal primary care [134, 78]. Urgent care refers to healthcare for conditions
requiring medical attention within 12 to 24 hours that do not need ED services. Table 1.1
lists for examples of urgent versus emergent care needs. UPCCs provide urgent care on a
walk-in basis over extended hours to offer an alternative to non-emergent ED visits [78].
Longitudinal care services consist of primary care provision through booked follow-up ap-
pointments for registered clients. In the context of primary care, a panel is the group of
clients who are registered or attached with a healthcare provider or team [19], and empan-
elment refers to the process of registering clients to a panel. UPCC empanelment is focused
on individuals with complex biopsychosocial needs who have marked difficulties accessing
fee-for-service family doctors [154], and the aim of the longitudinal care stream is to increase
primary care access and health equity. While the two streams of urgent and longitudinal
care are both aimed at boosting healthcare access, they are also distinct service paradigms.
Urgent care is episodic, short term, and available for the general population, whereas lon-
gitudinal care is long term and restricted to clients with specific needs. The incorporation
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of both urgent and longitudinal care models into a single clinic setting is not operationally
straightforward.

Medical Condition(s) Urgent Care Emergency Care
Sprains and strains �

High fever �
Suspected stroke or heart attack �

Asthma attack �
Poisoning or overdose �

Major trauma �
Cuts, wounds, or skin conditions �

Dehydration/constipation �
Infections (chest, ear, or urinary tract) �

Table 1.1: Examples of urgent and emergent care [51].

Furthermore, as a part of BC’s strategy for primary healthcare, a strong emphasis is
put on the expanded implementation of team-based care delivery [78]. Team-based care is
recognized internationally as an important factor in effective primary care [19], and had
a successful pilot implementation in the context of an urban community health centre
in BC [153]. Under the team-based care model, a group of multi-disciplinary healthcare
providers and staff collaborate to provide client-centred care. This increases the capacity
and efficiency of care provision through workload sharing [60], as well as improves the
ability to meet holistic client needs through the inclusion of allied health professionals,
including social workers, dietitians, and physiotherapists [153]. While the potential value of
team-based care is high, realization of these benefits depends on a successful and context-
specific implementation. In the UPCC context, several operational questions are raised by
the integration of team-based care within the combination of urgent and longitudinal care
services.

1.2 Thesis Overview

The research topic in this thesis was defined in collaboration with the management team at
an urgent and primary care centre (UPCC) in Vancouver, BC. One of the key operational
questions that the UPCC management raised was how to determine team-based staffing.
Current staffing is based on average demand projections made prior to the establishment of
the UPCC. The main goal of this thesis project is to develop a new approach to optimize
UPCC staffing based on client access indicators and current UPCC data. The analysis deter-
mines the staffing levels that are required for several staff disciplines to ensure that modeled
client access is maintained in the urgent care stream. The core of my approach is a queue-
ing model and an associated simulation that estimates time-dependent client-centred key
performance indicators (KPIs) and incorporates the interaction between different provider
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disciplines at the UPCC. Optimization over simulation results informs staffing on both a
small-interval and shift-based level, to determine the number of each staff discipline needed
in each 15-minute interval and on each shift. My analysis does not incorporate the rostering
of individual staff to specific shifts.

The analysis in this thesis makes staffing recommendations based on modeled client-
centred access indicators and UPCC data. It provides a new approach to optimize urgent
care staffing and further quantify team-based urgent care [153]. To do this, I introduce
extensions of current stabilization techniques [44] to incorporate multiple staff types and
observation based performance measures. My work contributes more broadly to staffing
optimization techniques beyond healthcare applications.

This thesis is structured as follows. Chapter 2 gives background on operations research
in primary care, queueing models, staffing models, KPI estimation, and simulation opti-
mization. Chapter 3 describes the operational profile of the UPCC for both urgent and
longitudinal care. Chapter 4 introduces the staffing models that I use to optimize team-
based staffing in the urgent care stream at the UPCC, including: the underlying queueing
model and simulation implementation; KPI definitions; and optimization procedures for
both small-interval and shift-based staffing. Chapter 5 describes data analysis and param-
eter estimation. Chapter 6 presents the simulation validation and staffing optimization re-
sults, which are both discussed in Chapter 7 along with recommendations for UPCC staffing
and broader conclusions.
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Chapter 2

Background

2.1 Operations Research in Primary Care

Operations research to improve access and efficient resource utilization in service delivery
settings includes two distinct paradigms: capacity planning and demand regulation. Capac-
ity planning approaches optimize the supply of staff or other resources to meet demand, by
changing overall staffing levels and the distribution of capacity over time. An alternative
approach is to regulate demand to match a given supply, in general by determining how
many clients or tasks can be accepted and when they should be scheduled. The suitability
and specific mechanisms used in each approach are highly context dependent. In emer-
gency department settings, where patient arrivals are typically unregulated and uncertain,
optimization of medical personnel schedules has been extensively studied [25, 34, 81]. In
comparison, operations research studies in primary care and other outpatient settings have
predominantly focused on optimizing panel design or appointment scheduling procedures
[3, 30, 74, 86, 92].

In primary care, one mechanism to match demand with supply is through panel opti-
mization [70, 129, 136]. Effective panel design can adjust the volume of client demand to
match available capacity [129], and can also address modeled stochastic outcomes including
client no-shows, physician over-time, and client access targets [71, 70, 175]. Panel optimiza-
tion can incorporate heterogeneity in client needs through analysis of case-mix [136]. Some
studies address the joint optimization of panel design and appointment scheduling [108, 174].

Another important factor of primary care performance is appointment scheduling, which
can influence the timing of client arrivals so that they align with capacity and improve ac-
cess [74, 92]. Appointment systems have multiple aspects that can be optimized to improve
efficiency and quality of care, for example: the number of appointments scheduled in a day
[108, 174]; the duration of each appointment slot [17, 31, 33, 98]; the number of clients
scheduled in each time slot [167]; and the relative ordering of different appointment cat-
egories [17, 31, 32]. The complexity of optimizing appointment schedules increases when
stochasticity is considered in factors including client no-shows [98, 167], cancelations, punc-
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tuality, service times [17, 31] and appointment preferences [52]. Many studies suggest that
optimum rules for appointment scheduling can be highly context specific [32, 33, 29].

One paradigm to improve primary care access for urgent clients is to offer a combination
of both pre-booked appointments as well as either same-day appointments [130] or walk-in
services. In these settings, efficiency and quality of care can be increased by optimizing the
allocation of appointment slots between pre-booked and same day and/or walk-in visits
[105, 152], as well as which slots should be reserved for urgent care or overbooked [29, 28,
99, 142, 167]. Optimal allocation between booked and urgent care is further complicated
by the interrelatedness of these care streams, since clients can strategically choose between
services [164].

Capacity planning through staffing optimization represents an alternate, “underexposed”
[80] approach to improve outpatient healthcare services, especially given the diverse range
in operational profiles. Studies that analyze staffing in primary care settings focus on set-
tings such as urgent care centres [160], community health centres [176], private practices
[106, 107], family planning clinics [7, 18, 55, 79], and rural health centres [104]. Other
scheduling studies for outpatient services include pharmacies [128], telemedical appoint-
ments [101], and mobile examination centres [135]. Tan et al. [160] and Zimmerman et
al. [176] consider systems with multiple staffing disciplines but only optimize staffing for
a single care provider type. Franz et al. [55] schedule multiple types of providers across
a network of family planning clinics; however, their integer linear program requires pre-
determined staffing ratios and requirements that are not known in advance in the UPCC
context. Hudgins et al. [79] derive personnel requirements for multiple staffing disciplines
in a family planning clinic based on multiplication of average staff time needed for each
task, and Boaz [18] optimizes staff-mix using a modified exponential function to estimate
the marginal patient costs for each discipline; however, neither approach optimizes staffing
based on stochastic client access. Liu and D’Aunno (2012) [106] and Liu et al. (2014) [107]
analyze the long-run cost effectiveness of a small number of team-based care configura-
tions. To my knowledge, there are no existing studies that optimize primary care staffing
for multiple care provider types using time-dependent client access metrics. Furthermore,
the quantification of team-based care is an acknowledged need within primary care [153].

2.2 Queueing Models

This section provides a brief introduction to queueing models, which are used widely in
both healthcare modeling [80] and staffing models [46]. Queueing models (or systems) are
stochastic processes used to represent clients requesting, waiting for and receiving some
type of service [122]. Model clients can represent customers, patients, or any individual
requesting service. In this thesis, the terms model client(s) or modeled client(s) will be used
to refer to queueing model representations of clients, which should be distinguished from
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ServiceQueue
Arrivals Departures

Figure 2.1: Diagram of a single service queueing model. Model clients arrive to request
service and wait in a queue if no model servers are available. Once a model server is available
they receive service and depart the system after service completion.

real-world clients or customers. Similarly, the phrase modeled service refers to queueing
model representations of services.

The exact nature of the service represented can vary between model applications, ranging
from the provision of healthcare treatment by a physician [73], to talking with a call centre
associate [20], to using a telephone line [49]. The main aspect of service modeled in a
queueing system is the duration of time until service completion, which is referred to as
service time and represented as a non-negative continuous random variable [122]. Service
providers are represented as model servers, which can be used to represent staffing personnel
or other resources and infrastructure [122]. Model servers in the process of providing service
are referred to as busy. Requests for service are modeled as �arrivals, and represented using
a stochastic process referred to as the arrival process for the number of cumulative arrivals
at any point in time [122]. Model client arrivals that find all model servers busy will form or
join a queue to wait until a model server becomes available. Once a model server is available,
a model client will begin service for a random duration of service time. After a model client’s
request for service is completed, they will depart from the system. Figure 2.1 depicts a basic
queueing system that incorporates arrivals, queueing, service, and departures.

There are three core parameters for a queueing model, namely the arrival process, service
time distribution, and number of model servers. If the arrival rate, service rate and number
of servers are all constant, the system is considered homogeneous. If a queueing model
has exponentially distributed service time distributions and arrivals defined by a Poisson
process, then it has the �Markovian property, which means that future events depend only on
the current system state, and not past events [123]. Service times or arrival processes that
are not assumed to follow an exponential distribution or Poisson process, respectively, are
referred to as �general, or generally distributed [122]. Phase-type distributions refer to a class
of distributions that can be constructed by combining multiple exponential distributions in
convolution (series) or mixture (parallel) [77].
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Given any queueing model parameterization, there are time-dependent probability dis-
tributions for each system performance aspect, including the number of modeled clients
in the system, the number of these clients in the queue, and client waiting times. Under
certain conditions, queueing systems will approach a state of stochastic equilibrium, where
distributions for performance measures become constant in time [122]. Equilibrium dis-
tributions are known as steady-state or stationary distributions, whereas non-equilibrium
performance is referred to as transient or time-dependent system behavior [122]. For some
queueing systems there are exact analytical formulae for steady-state distributions, whereas
more complex systems require approximation of steady-state values.

Some queueing models can incorporate the event of client abandonment, where model
clients may leave the queue before receiving service due to an extended wait [119]. In some
models, clients may return later to the queue in a retrial, whereas in other models they leave
the system altogether [119]. Abandonment can be modeled by utilizing a random variable
for the amount of time that clients are willing to wait, referred to as patience or willingness
to wait, which has some assumed distribution [119]. Outcomes for model clients, including
abandonment and extended waiting, are stochastic performance indicators that can be used
to represent or approximate real-world service quality and client access indicators [120].

Another important queueing model parameter is the number of modeled servers. In infi-
nite server queueing models, there are no capacity limits and all model clients receive service
immediately upon their arrival [48]. Finite server queueing models are able to address ca-
pacity dependent outcomes for model clients, including extended waiting and abandonment.
Queueing models can also incorporate a time-dependent number of modeled servers, where
capacity changes represent fluctuations in staff scheduling or other changes in infrastruc-
ture availability. During a staffing level reduction, model servers that are scheduled to cease
operation may remain longer to complete the service time of model clients already being
seen, under what is referred to as an exhaustive service policy [44, 45, 82]. Alternatively,
under a non-exhaustive or preemptive service policy, interrupted model clients may rejoin
the queue and complete their remaining service time with the next available model server
[83].

Another queueing model aspect is the queueing discipline, which determines the order
in which modeled clients are seen. Under a first come first served (FCFS) queue discipline,
modeled clients are seen in the order of their arrival. Alternatively, some queueing models
use a random order of service, or a last come first served queue discipline [122]. Some
queueing models consider different priority classes of customers and see clients in order of
priority, with a FCFS discipline used within each priority class. Under a priority based
model, metrics for modeled client outcomes can be different within each priority class [157].
In accumulating priority queues, the priority value of modeled clients increases over time
[36, 157].
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2.3 Staffing Models

There are several different factors that can be used to inform staffing decisions, includ-
ing staffing costs, labor regulations, staff scheduling preferences, staff workload [54], and
client access indicators. A common staffing model approach is to represent services with a
queueing model and optimize the number of model servers, subject to different constraints
and objective functions. In particular, the queueing model approach can be used to address
stochastic performance measures including client-centred access indicators and system uti-
lization targets. In general, there are four distinct decisions that queue-based staffing models
can optimize [22, 46], namely to determine:

1. Steady-state staffing: The optimum number of constant model servers required to
address steady-state performance measures.

2. Small-interval staffing: The optimum number of model servers required in each time
interval to address time-dependent performance measures, without consideration for
shift options. This problem is sometimes referred to as “stabilization”.

3. Shift-based staffing: The optimum number of staff required on each shift in each day
in the planning horizon, without consideration for the assignment of individual shifts
to staff.

4. Roster-based staffing: The optimum workforce size needed based on the rostering or
assignment of individual staff to specific shifts.

Further discussion for each of these staffing optimization problems is included in Sub-
sections 2.3.1, 2.3.2, 2.3.3, and 2.3.4, respectively.

2.3.1 Steady-state Staffing

One approach to staffing, or capacity planning, is to identify the number of servers required
so that constraints are met on steady-state performance metrics. For systems with exact
solutions, required staffing levels can be identified by optimizing over steady-state formulae;
however, this approach is less efficient under heavy demand, and complex systems may
not have exact formulae. One approximation is the square-root staffing rule, as part of the
quality and efficiency driven (QED) staffing regime developed by Halfin and Whit [75]. This
approach is based on meeting targets for the steady-state probability of delay as the arrival
rate and number of servers grow arbitrarily large. In this asymptotic regime, the optimum
number of staff can be approximately calculated from the arrival rate using a linear and
square-root term, with the root term coefficient coming from a root solve involving other
system parameters [75]. Garnet et al. [57] and Mandelbaum and Zeltyn [120] extend this
regime to consider additional constraints on the probability of abandonment in queues
with generally distributed abandonment times. Because of the underlying asymptotic limit,
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the QED approximations is less accurate in small-scale systems [44] and more accurate in
systems with large numbers of servers and high arrival rates, for example call centres [57,
120]. The QED regime has been extended to consider staffing for multiple classes of servers
in the specific case where all server types can be used interchangeably by homogeneous
model customers [8].

Ahmed and Alkhamis [4] determine ED staffing that maximizes the simulated through-
put given constraints on the budget and wait time. They identify constant staffing levels
for multiple providers by comparing all possible staffing combinations.

2.3.2 Small-interval Staffing

One approach to small-interval staffing requirements for time-dependent queueing models
is the stationary independent period by period (SIPP) staffing approach and its extensions
[63, 66, 67, 73]. In the SIPP framework, staffing requirements are set to the number of
model servers required in stationary queue approximations for each time period [63]. Each
proxy steady-state model is based on the arrival rate in its corresponding time interval and
is independent of system performance in other periods. The SIPP approach is known to
perform poorly in systems with rapidly changing arrival rates, multiple demand peaks, long
service times, and limited opening hours [66, 67, 83]. In the extended lag-SIPP approach,
arrival rate consideration intervals are lagged by the mean service time to incorporate the
carry-over of demand between intervals [66, 67]. Both SIPP and lag-SIPP optimize staffing
independently each time interval and do not incorporate the impact staffing decisions in
other intervals, which can lead to less accurate results [83]. Furthermore, in systems with
finite opening hours and client abandonment, steady-state equations are not able to capture
the clients who are not seen because of the end of the day.

Two other approaches to time-dependent small-interval staffing are the infinite server
(IS) and modified offered load (MOL) approximations [52, 91]. In both IS and MOL, staffing
decisions are informed by a corresponding time-dependent queueing model with an infinite
number of servers. The IS approach chooses staffing levels based on stabilizing the time-
dependent probability that a model client needs to wait for service, by directly using the
probability that staffing levels are exceeded in the infinite server queue [48, 52, 91]. The
MOL approach extends this concept to other performance measures by using proxy steady-
state queueing models based on the expected number of model customers in the infinite
server system at each point in time [52, 91]. The MOL approach incorporates the interplay
between service time for past arrivals under a time-dependent arrival rate, but does not
consider the effects of staffing choices in other time intervals. Sinreich and Jabali [155]
determine small-interval staffing for multiple medical resources in a ED care network based
on the maximum expected number of busy model servers in each interval of an infinite
server simulation.
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Kim and Ha [95] propose the consecutive staffing using simulation (CSS) algorithm,
which determines the staffing in each interval separately and sequentially using a linear
search in each interval. Corominas and Lusa [39] use a similar technique, which is modified
to start with steady-state results as initial conditions.

Feldman et al. [52] propose the iterative staffing algorithm (ISA) to stabilize the prob-
ability of delay by using simulation estimates for the time-dependent distribution of the
number of customers in the system at each point in time. The ISA approach begins with an
arbitrarily large number of servers, so that first step of the procedure is equivalent to the
IS approach. ISA extends this by re-running the simulation after each staffing update, to
incorporate the impact of time-dependent staffing from previous iterations. Defraeye and
Van Nieuwenhuyse [44] extend the ISA approach to determine the small-interval staffing
levels required to meet a target on the time-dependent probability that a modeled client
has a prolonged wait.

2.3.3 Shift-based Staffing

One approach to shift-based staffing is through integer linear programming (ILP)1, where
small-interval staffing requirements are used as model constraints or targets. The first ILP
staffing model formulation is Dantzig’s set covering formulation [42], which continues to
be applied in healthcare contexts [21, 45]. Dantzig’s staffing model uses explicit variables
for each shift and break option, and identifies the lowest cost shift combination that satis-
fies all small-interval staffing requirements [42]. To improve performance and flexibility for
large numbers of shift options, Dantzig’s ILP can be extended to represent shifts implicitly
by introducing variables for the start and end time of shifts, as well as break placement
[11, 14, 127, 146, 161]. An alternate ILP staffing objective is to minimize the difference be-
tween shift-based staffing levels and small-interval staffing targets [22]. The ILP staffing ap-
proach addresses performance targets indirectly through the choice of small-interval staffing
requirements, and does not incorporate the impact of under or over staffing in each interval
on performance measures [45, 84, 83].

An alternate approach to shift-based staffing optimization draws on performance mea-
sure estimation for each combination of shifts. Further details about performance measure
estimation techniques are discussed in Section 2.4. The stochasticity and non-linearity of
performance measure constraints or objectives can be addressed by coupling KPI estima-
tion with either meta-heuristic optimization [84, 173] or ILP-based heuristics [9, 10, 83]. In
optimization, a solution is referred to as a local optimizer if it has the best objective function
value compared to nearby solutions, but is not necessarily a global optimizer over the entire

1Integer linear programming is an optimization problem with integer decision variables and a linear
objective function and constraint set; solutions must satisfy all constraints and either minimize or maximize
the objective function value.
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set of feasible solutions. Meta-heuristic frameworks coordinate strategic interaction between
local optimization searches 2 and mechanisms to explore other neighborhoods in the search
space and try to find global optima [58]. Meta-heuristics do not make assumptions about
the structure of the problem, and are typically used when the structure of the objective
function or constraint set is not well known and could have several local optima. Meta-
heuristics balance the trade off between efficiency and accuracy and are not guaranteed find
global optima. An example of a meta-heuristic is the genetic algorithm, which maintains
a population of candidate solutions and combines subsets of these solutions to create new
ones based on some measure of fitness [169]. Ingolfsson et al. [84] apply a genetic algorithm
to optimize the staffing of police patrol shifts to minimize both cost and extended waiting
probabilities. Yeh and Lin [173] use a genetic algorithm to schedule ED nurse shifts that
minimize wait times within budget constraints.

Several heuristic algorithms have been developed for shift-based staffing that exploit the
specific objective function and constraint structure of the problem to increase the accuracy
and efficiency of optimization. One approach is to iteratively combine ILP solutions with
performance measure estimates by sequentially adding cutting plane constraints that remove
unsatisfactory solutions while maintaining the feasibility of potentially optimum solutions
[9, 10, 83]. For example, Atlason et al. [9] iteratively add boundary cutting-plane constraints
in staffing intervals with unsatisfactory performance by using estimated sub-gradients3 of
the concave and increasing KPI surface. Atlason et al. [10] extend this approach to KPI func-
tions that are pseudo-concave increasing by using an interior point cutting-plane approach.
Ingolfsson et al. [83] base cutting plane constraints for shift-based staffing optimization on
an exponential approximation for performance measure improvement.

Defraeye and Van Nieuwenhuyse [45] use an ILP solution for shift-based staffing as an
initial conditions in a branch and bound4 search procedure over simulation results. Castillo
et al. [27] present a framework to optimize shift-based staffing for a general combination of
competing performance measures, where simulated KPIs for a number of generated plausible
schedules are used to estimate an efficient frontier.

2Local optimization procedures search close to existing solutions in order to find new solutions that
improve the objective function value.

3In this context a sub-gradient (or more literally a super-gradient) is a hyper-plane which lies above the
surface for the KPI value in each interval [9].

4The branch and bound approach divides a discrete feasible region using a rooted decision tree with a
node for each solution. The optimization search procedure begins with the root and sequentially branches
to explore child nodes, while choosing to bound the search by not exploring further sub-nodes whose main
node has poor performance [45].
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2.3.4 Roster-based Staffing

The translation of shift-based staffing to shift assignment and workforce size is not straight-
forward because of the need to consider numerous constraints on staff rostering [50]. Labor
regulations can include, for example: rules around the maximum and minimum number of
shifts per period; the maximum and minimum consecutive number of days working or days
of; and the minimum number of hours between two assigned shifts for each worker [34].
Scheduling objectives can include minimizing staffing costs [12, 21, 24, 41, 89], appropri-
ate demand coverage [89, 126, 162] and maximizing the satisfaction of nurse preferences
[6, 15, 89, 126, 162] including fairness [12]. Staffing costs can include full and part-time
salaries as well as the cost of overtime and call-in staffing. Demand coverage can be incor-
porated through shift or small-interval based staffing requirements [126, 125, 162] or KPI
estimation for each schedule [173, 109]. Nurse preferences and satisfaction can incorporate
requests for days on or off. The trade offs between these cost, coverage, and satisfaction can
be incorporated using weighted objective functions [89, 126, 138, 162] or multi-objective
approaches [15, 47].

A fundamental approach is to formulate rostering as a mathematical program [34] with
binary variables representing the assignment of shifts to staff. However, the numerous con-
straints needed for realistic staff rostering can pose challenges for efficient staffing opti-
mization [25, 50]. One approach to address this is to relax a subset of the constraints and
incorporate them into the objective using penalty functions [34] that encourage satisfactory
solutions. Meta-heuristic optimization can be used to address non-linear objective func-
tions [173, 109], or improve solution efficiency and tractability as the scale of the rostering
application increases. The diverse range of meta-heuristic algorithms applied to rostering
including the genetic algorithm [5, 6, 173], tabu search5 [15, 23, 47], and variable neighbor-
hood search 6 [41, 145, 109] and OptQuest optimization 7 [93, 140, 139]. Hybrid approaches
can combine meta-heuristics with mathematical programming to boost the efficiency and
accuracy of optimization [41, 145].

The rostering of nurses in hospital settings has been extensively studied, to the extent
that the nurse rostering problem (NRP) is quintessential operations research problem [25,
34, 50]. However, advances in the literature to the NRP tend to focus on developing new
optimization techniques for simplified problems, as opposed to considering the different
operational profiles or the complexities needed for implementation [143]. The nurse re-
rostering problem (NRRP) optimizes schedule adjustments in response to changing staff

5Tabu search modifies a local search procedure by uses a short term memory to restrict repeated changes
[59].

6Variable neighborhood search iteratively identifies the best solution in a particular search region, which
is systematically changed to avoid local optima [76].

7See Subsection 2.5 for more background on the OptQuest optimization algorithm.
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availability in order to minimize disruption [171], navigate fairness [172], and minimize the
use of call-in workers [13].

2.4 Performance Measure Estimation in Queueing Models

In queueing models, system performance can be measured by a number of different aspects,
including [46]: model client wait times and the time clients spend in the system; whether or
not model clients receive service or leave without being seen; the number of clients in the
system; system utilization; and model server idle time. All of these aspects are stochastic in
nature and have time-dependent distributions. Key performance indicators (KPIs) are used
to summarize these distributions, for example using means, outcome probabilities, propor-
tions, and rates [46]. Queueing model KPIs based on client outcomes including abandonment
or prolonged waiting can be used to represent or service access and quality. The remainder
of this section describes several different methods for the estimation or approximation of
time-dependent performance measures in queueing models.

One group of approaches to obtain proximate time-dependent properties is by applying
steady-state formulae independently in each considered time interval [52, 63, 64, 65, 69, 87,
91, 121]. The pointwise stationary approximation substitutes time-dependent arrival rates
directly into steady-state formulae [63, 64, 65, 69] and the modified offered load approxima-
tion applies these formulae instead using the expected number of busy servers in in infinite
server model[52, 69, 87, 91, 121]. Steady-state based approaches are known to be less accu-
rate for rapidly changing arrival rates [68, 63, 67, 69, 82, 177] and rely on established exact
or approximate steady-state formulae [75, 120].

Another group of approaches represent time-dependent queue model properties using a
system of differential equations [37, 40, 43, 72, 84, 82, 83, 131, 150, 159]. For Markovian
queue models, the Chapman-Kolmogorov equations provide an exact system of ordinary dif-
ferential equations (ODEs) that govern the transitions between each queueing system state
[43, 72, 84, 82]. However, numerical solutions to this ODE system of can be computation-
ally inefficient as the system size grows [82, 85]. Approaches that approximate the ODE
solution include randomization, which truncates the state space [40, 82, 83], and closure
approximation, which uses a small ODE system to represent only the initial moments for
the number of clients in the system [37, 131, 150, 159].

An alternate approach is to apply continuous representations of queueing models. Fluid
approximations represent queue model properties with a deterministic continuous process
that capture the time-dependent difference between queue arrivals (inflow) and departures
(outflow) [116], and is suitable when changes in arrival rate dominate the stochastic variation
in the queue [112]. Diffusion approximations use reflected Brownian motion to approximate
the stochastic fluctuation in both the arrival and departure process [116], which can be spec-
ified using partial differential equations [132]. Fluid and diffusion models have the flexibility
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to capture systems with general arrival processes [110, 111, 112, 113, 114], general service dis-
tributions [112, 113, 170], general abandonment distributions [110, 111, 112, 113, 114, 170],
client retrials [2, 117, 118], networks of services [111, 117], and multiple customer classes
[147]. The accuracy of these approaches is reliant on assumptions about whether the queue-
ing system is over, under, or critically loaded [35, 100, 111, 112, 114, 118].

Time-dependent queue model performance can also be estimated by simulation, where
the stochastic processes for different events (including arrivals, service initialization, and
departures) are sampled using pseudorandom number generation [149]. Discrete event simu-
lation (DES) records the simulated system state after each of these generated events, which
produces a potential sequence of outcomes [149]. Alternatively, discrete time simulation
(DTS) updates the simulated system state at regular time intervals [26]. Under both DES
and DTS, repeated samples from numerous simulation runs can be combined to produce
KPI estimates. DES estimates for performance measures are typically more accurate the
DTS estimates [26]; however, the time-step parameter in DTS can be strategically chosen
to increase simulation efficiency [26]. Both DES and DTS have the flexibility to accurately
capture complex queueing systems.

For example, if the arrival process in a queueing model is a homogeneous Poisson process,
then DES will use pseudorandom number generation to repeatedly sample an exponential
distribution with a constant rate. These samples are then used as inter-arrival times, which
determine the exact times that model customers arrive in a generated event sequence. One
approach to simulate a non-homogeneous Poisson process is to generate a homogeneous
Poisson process with an inflated rate, then to accept or reject each potential arrival according
to the output of a generated Bernoulli experiment with a time-dependent probability of
success based on the ratio of the non-homogeneous rate and the inflated homogeneous rate
[149]. This approach is referred to as Poisson thinning, and relies on the decomposition
property of Poisson processes, under which a randomly selected subset of a Poisson process
is another Poisson process [123].

2.5 The OptQuest Meta-heuristic

The OptQuest optimization engine is a commercially available tool to optimize stochastic
performance measures by integrating simulation and optimization. Published OptQuest ap-
plications include financial risk management [14, 16] and scheduling to address wait times
[53, 93, 140]. The OptQuest algorithm primarily uses the scatter search meta-heuristic
framework [102] that builds and updates a small reference set of solutions, chosen for both
quality and diversity [61, 103]; subsets of reference set solutions are then combined and im-
proved to produce new solution candidates [61, 103]. Within this framework, the OptQuest
engine utilizes a range of methods for combining and generating solutions, including gra-
dient approximations and genetic algorithm procedures [102]. The OptQuest engine draws
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on machine learning models, for example multiple linear regression8, to predict simulation
outcomes and avoid running simulations on variables that have poor predicted performance
[102]. Stochastic constraints are incorporated as penalty functions [102].

8Multiple linear regression fits a linear function of input data variables an output data variable by
determining the coefficients that minimize the squared error in the predicted output [88].
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Chapter 3

UPCC Operational Profile

This chapter describes the operational profile of the UPCC for both urgent and longitudinal
care services, in Sections 3.1 and 3.2 respectively. The client flow diagrams represent a sim-
plification of clinic operations, and were developed and affirmed through direct collaboration
with UPCC management. To further understand clinic operations, I spent time shadowing
different staff at the UPCC. Currently only the urgent care stream is operating at the
UPCC, with longitudinal care services scheduled to begin operation in 2022. The descrip-
tion of longitudinal care in Section 3.2 represents the current operational plan for this care
stream. Section 3.3 describes the interaction between the two streams of care. Table 3.1 lists
types of care providers and staff at the UPCC and their corresponding acronyms, which are
used throughout this thesis. At the UPCC, general and nurse practitioners have the same
work scope and are collectively referred to as most responsible practitioners (MRPs).

Staff Discipline Acronym
Medical office assistant MOA

Registered nurse RN
Nurse practitioner NP

General practitioner GP
Most responsible practitioner (Either a GP or NP) MRP

Social worker SW
Registered Dietitian RD

Registered Clinical Counselor RCC

Table 3.1: Clinical and non-clinical service disciplines at the UPCC and their corresponding
acronyms.

3.1 Urgent Care

Urgent care at the UPCC is open seven days of the week, from 8am to 10pm on Mondays
through Saturdays, and 9am to 5pm on Sundays and holidays. Registration closes at least an
hour before closing time. Figure 3.1 provides a visual representation of client flow through
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Figure 3.1: Client flow diagram for the urgent care stream. See Table 3.1 for the acronyms
of clinical and non-clinical staff.

the urgent care stream. Upon arrival at the UPCC, clients take a number and wait to be
registered with an MOA at the front desk. After registration, clients receive triage from an
RN, where they are assigned a priority score using the Canadian triage and acuity scale
(CTAS) [133]. Clients then wait until an exam room becomes available, are assessed by
an RN in an exam room, and receive medical care or treatment. Depending on their care
needs, clients receive treatment from either an MRP or RN with the consultation of an
MRP. There may be a non-negligible wait time between each of these steps due to staff
availability. Clients are seen in order of decreasing acuity, with earlier arrivals being seen
first within each acuity group. After the client receives treatment, most clients leave the
UPCC and their exam room is cleaned by a housekeeper. During treatment or assessment, an
RN or MRP may refer clients to the on-site SW. Clients may receive care from a SW during
their visit or book an appointment for another day. Clients arriving for a pre-booked SW
appointment will bypass registration and triage. Each client visit may generate paperwork
that needs to be completed by an MOA, including referrals or prescriptions.

Within urgent care staff team, there are four clinical staff disciplines (RNs, GPs, NPs
and SW) and one non-clinical staff discipline (MOAs). The UPCC typically has at least two
MOAs on duty at most times, one MOA at the front desk to perform registrations and one
MOA to complete client paperwork. The scope of practice for RNs is provincially regulated
and determines the extent of medical care that they are licensed to provide [1].

Some of the team-based care interactions in the urgent care stream include:
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Figure 3.2: Current staff schedule for urgent care at the UPCC.

• The RNs, GPs, NPs and one MOA sit in a single pod of desks and the clinical staff will
give and receive feedback on care provision, occasionally working together to provide
treatment.

• NPs are able to provide the same scope of practice as GPs.

• RNs work within their full scope of practice, and are able to provide treatment for
some client needs and initiate medical orders, working in consultation with an MRP.

• MRPs and RNs can both refer clients to an on-site SW.

Since the UPCC offers urgent care over extended hours, staff are assigned to one of
multiple shifts that are combined to provide coverage throughout the day. Table 3.2 lists
the currently used shift options for urgent care. Each shift includes one half hour lunch break
and two 15 minute coffee breaks. The current UPCC staff schedule is shown on Figure 3.2.

Shift Name Start Time End Time
Morning (RNs & MOAs) 7:45 am 3:45 pm
Morning (MRPs) 8 am 4 pm
Day 9:00 am 5:00 pm
Afternoon 11:00 am 7:00 pm
Evening (RNs & MOAs) 2:30 pm 10:30 pm
Evening (MRPs) 2 pm 10 pm

Table 3.2: Shift options for urgent care.
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Figure 3.3: Diagram of the empanelment process for UPCC longitudinal care. PCN = pri-
mary care network, CHC = community health centre, LHA = local health authority.

3.2 Longitudinal Care

Longitudinal care services at the UPCC will be open seven days of the week, from 9:00 am
to 5:00 pm. Unlike the urgent care stream in which client flow is episodic and begins upon
arrival at the clinic, longitudinal care client interaction involves the processes of empan-
elment, appointment booking, and then the client visit. These processes are described in
Subsections 3.2.1, 3.2.2 and 3.2.3, respectively.

3.2.1 Empanelment and Complexity

Before clients receive care through the UPCC longitudinal care stream, they must be regis-
tered as part of one of the UPCC panels. The process of empanelment is illustrated in Figure
3.3. Empanelment is initiated when a potential client is referred to the UPCC through one
of four sources: the urgent care stream at the UPCC, the primary care network (PCN), a
local emergency department (ED), or another community organization. Referred potential
clients have an intake appointment where an RN determines whether or not they meet the
criteria for UPCC empanelment. The empanelment criteria are described in Table 3.3, and
are based on both the complexity of care needed and the geographic catchment area of
the UPCC. If a potential client meets both sets of criteria, they are assigned to the panel
of an appropriate UPCC clinician or put on a wait list if capacity is not available. If the
potential client does not meet the empanelment criteria, they will be referred for primary
care attachment through an appropriate channel, that could be a community health centre
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Category Criteria
Geographic Home address in the same local health authority as the UPCC

or
No fixed address, and uses social support in the same local
health area

Biopyschosocial
Complexity

Meets several of the following criteria:

1. Unattached or poorly attached to a family physician despite
a need for primary care.
2. Experiencing a period of functional instability that is
challenging to manage within a fee-for-service practice.
3. Multiple social barriers, such as housing instability, poverty,
etc. that impact connection to care.
4. Marked difficulties in accessing the fee-for-service health care
system due to significant cognitive, behavioral, and/or
functional impairment.
5. Inability to maintain lasting personal or professional
relationships.
6. Marked difficulties with activities of daily living without
access to appropriate supports.
7. Medically complex conditions presenting with chronic
disease, concurrent disorders or communicable diseases (for
example diabetes, hepatitis, HIV, mental health issues,
substance misuse) that are untreated or uncontrolled.
8. High emergency department use for issues that could be
addressed in the primary care setting and/or frequent acute
care admission/readmission rates.
9. Risk of causing harm to self or others.

Table 3.3: Potential empanelment criteria for longitudinal care at the UPCC. Markers of
biopsychosocial complexity are quoted from [154].

(CHC), another UPCC closer to the clients home address, or a local PCN that facilitates
attachment to a fee-for-service family physician.

Longitudinal care at the UPCC is targeted for individuals who live in the same area as
the clinic, have marked difficulties accessing fee-for-service primary care and have complex
biopsychosocial needs given described in Table 3.3 and [154]. Shukor et al. [154] developed
a quantitative approach to combine these measures into a single complexity score.

The UPCC intake nurse must evaluate primary care attachment based on the relative
complexity and priority of potential clients, and also determine whether a physician has
capacity available for a given client. Target panel sizes that do not consider client complexity
may underestimate the available capacity, and overwork clinical staff.
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Figure 3.4: Diagram of the potential appointment booking process for most empanelled
clients in longitudinal care.

3.2.2 Appointment Frequency

Figure 3.4 illustrates the big picture appointment booking process for future longitudinal
care. The booking process in only for clients who become part of the longitudinal care panel,
and starts with client intake. After an initial intake appointment, clients are assigned to an
individual care provider in the longitudinal care team based on their overall care needs. This
could be an MRP or an allied health worker including a SW, RCC, or RD. Each provider
has their own panel of clients. Newly registered clients will book their next appointment
with their assigned provider at the end of their intake appointment. Clients will return to
the centre for their next appointment, although subject to possibly canceling, being late, or
not showing up. At the end of each appointment, they will either book another appointment
with some target inter-appointment time (for example, one week, two weeks, one month,
three months) or leave without booking an appointment, to call and book one later. This
process will repeat for over the long-term, until clients no longer meet empanelment criteria
and are referred to another primary care service. The day and time of each scheduled
appointment can be impacted by several factors, including: provider staffing and schedules;
the set of possible appointment slots offered; the proportion and timing of appointment
slots reserved for new clients or same-day appointments; client preferences for appointment
selection; and the number of empaneled clients. The time between when an appointment is
made and the date that it is booked for is referred to as an indirect wait, and can be used
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Figure 3.5: Diagram of the longitudinal care visit process for booked appointments. MOA
= medical office assistant.

as a longitudinal care KPI. Indirect waiting can be measured for intake appointments in
particular.

3.2.3 Care Visits

Figure 3.5 illustrates the workflow for each longitudinal care visit, which is a sub-component
of Figure 3.4. Clients arrive at the clinic in accordance with their scheduled appointment,
although they can be early, late, or not show. Clients check-in with the longitudinal care
MOA at the front desk, and then wait until the provider that they booked an appointment
with, typically their attached provider, is available. After receiving care from this provider,
the client leave immediately, or may be referred to see a provider from another discipline
for sequential care within the same visit, or to make a follow-up appointment with another
provider at the clinic. For example, a client on the panel of an NP may be advised to book
an appointment with the RD. Or during a counseling session, a client of an RCC may
exhibit the need for medical care and be seen by an RN afterwards as soon as they are
available. Both the initial appointment session and possible sequential care will generate
paperwork for the MOA, and exam rooms will be cleaned between clients. The duration of
time between a scheduled appointment start and when a clients are seen by a provider can
be referred to as a direct wait, and can be used as a KPI measure for longitudinal care.
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3.3 Interaction between Urgent and Longitudinal Care

There is no planned overlap of clinical staff between urgent and longitudinal care teams
at the centre. However, some empaneled clients may choose to walk into the urgent care
stream. These clients may still be seen by their regular provider if an appointment slot is
available, but otherwise will receive treatment from the urgent care team. The volume of
registered client crossover may be significant, as an existing CHC that offers longitudinal
care to a similar client population reported around 30% walk-in visits [153]. Additionally,
client crossover may increase as longitudinal booking lead times increase due to the strategic
behavior of clients [164]. The walk-in visits of longitudinal clients could considered into
capacity planning by strategically leaving longitudinal appointment slots empty [29] and
incorporating the additional urgent care demand into staffing optimization.
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Chapter 4

Urgent Care Staffing Optimization

The analysis in this thesis compares multiple staffing models to identify the minimum
number of staff in each discipline needed to meet targets on client access indicators in the
urgent care stream. To model stochastic client-centred access, I used a queueing network
model, described in Section 4.1, which builds on the client flow diagrams in Section 3.1 for
urgent care services. The main KPI used in my analysis is the expected proportion of clients
who receive care as opposed to leaving without being seen due to an extended wait. This
focus is motivated by the care provision goals for the urgent care stream, where services are
offered as an alternative to low acuity ED visits and clients who leave without receiving care
may either go to the emergency department or have their condition deteriorate. Section 4.3
discuses this choice of access indicator further and defines the notation used.

To evaluate time-dependent client access indicators, I built a DES implementation of
the urgent care queueing model. Simulation provides an accurate method to estimate per-
formance measures for the complex network of team-based care interaction [45]. Section 4.2
describes the DES implementation and how it estimates client access indicators for any
given staffing level.

To identify team-based staffing requirements, I embedded the DES model into multiple
staffing optimization procedures. My analysis focuses on two levels of staffing optimization,
namely: (1) small-interval staffing requirements and (2) shift-based staffing requirements.
Small-interval staffing optimization for (1) determines the minimum number of staff of each
discipline needed on an interval by interval basis throughout the day and week. These
requirements are based solely on meeting client access targets and do not consider whether
or not staffing can be achieved with standard shift options. Shift-based staffing optimization
(2) determines minimum number of staff of each discipline required on each shift to meet
simulated client access targets. Sections 4.4 and 4.5 describe different approaches to small-
interval and shift-based staffing optimization, respectively. The rostering of individual staff
to shifts is not incorporated in this analysis.

My analysis focuses on identifying weekly schedules for urgent care staffing of MRPs,
RNs, and MOAs at the front desk. Future work will further incorporate staffing optimization
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for social workers (SWs), as well as longitudinal care and the cross-over of longitudinal
demand into the urgent care stream at the UPCC.

4.1 Urgent Care Queueing Model

Building on the operational profile of the urgent care stream at the UPCC, and making sim-
plifying assumptions, I modeled care access at the UPCC using a queueing network model,
which is depicted in Figure 4.1. Each care component (registration, triage, assessment, RN
treatment, MRP consult, MRP treatment and social worker visits) is represented as a model
service node. At each node, modeled clients join the queue, wait until a staff member of the
corresponding discipline is available, and then receive that service. Some staffing disciplines
provide for multiple service nodes: MRPs provide both MRP treatment and MRP consult,
and RNs provide triage, assessment and RN treatment. Registration is performed by an
MOA at the front desk. Modeled client arrivals at the clinic begin when they join the queue
for the registration node. This is the only external arrival to the system, as pre-booked SW
visits are not incorporated in the current analysis. The model assumes that clients arrive at
the registration node according to a non-homogeneous Poisson process, which captures daily
and weekly changes in arrival rates. Once registration is completed, model clients join the
queue for triage, and after receiving triage they join the queue for assessment from an RN.
A constant proportion of clients are routed between receiving care at an MRP treatment
node or an RN treatment node, which is preceded by an MRP consult node. After modeled
client treatment is completed, a constant proportion of clients either leave the clinic or are
referred to visit a SW.

At each node, the service time for the corresponding care component has a general
distribution that is independent and identical for each modeled client and staff member.
After model clients complete registration, triage or treatment, a cleaning task is initiated
for the modeled housekeeper. Room cleaning time is generally distributed and must be
completed before another client can be seen in that space. There is a modeled finite number
of exam rooms, which can be set arbitrarily large or reflect the current UPCC exam room
capacity, for example.

In the model, each visit has an individual stochastic limit for how long the client will
wait before leaving without receiving care. This modeled distribution for willingness to wait
is assumed to be independently and identically distributed for each visit, from some general
distribution. Wait times from each node are accumulated until this limit is reached and the
model client may leave the system from any node. Modeled clients will also abandon if they
are still in system when the UPCC closes at the end of each modeled day. Staffing levels
can fluctuate throughout the day and the service policy is non-exhaustive, which means
that when staffing is reduced, a client in service will rejoin the queue to complete their care
with the next available staff member of the appropriate discipline. In the current model,
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Figure 4.1: Diagram of the queueing model used to represent urgent care at the UPCC.
Blue lines indicate modeled client flow through urgent care services and associated queues.
Care completion triggers room cleaning tasks indicated here by red dashed arrows.

clients are seen in the order that they join the combined queue for each staffing discipline,
and priority differences between clients or components of care are not captured.

4.2 Simulation of the Urgent Care Queueing Model

To estimate performance indicators in the queueing model, I built a DES implementation
of the model that can accurately capture the modeled dynamics of team-based urgent care.
The DES model is implemented with the AnyLogic1 modeling software, and a screenshot
of the model is shown in Figure 4.2. The simulation has a visual interface with a block or
node for each element in modeled client flow. The simulation was presented to management
at the UPCC for their feedback in model development.

On the far left of Figure 4.2, the DES model uses a source node to generate simulated
agents according to a homogeneous Poisson process. The subsequent choice node is used
to implement Poisson thinning, where the client stream is filtered based on a Bernoulli
decision with time-dependent probability of acceptance [149]. The source and thinning nodes
collectively implement a non-homogeneous Poisson process for model arrivals.

1https://www.anylogic.com/
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Figure 4.2: Screenshot of the DES implimentation in the Anylogic software.

The DES model simulates client flow at the UPCC by using using seven service blocks
that represent the seven care components (registration, triage, assessment, MRP and RN
treatment, and SW visits). Each service block captures simulated clients waiting in a queue
until a simulated staff member of the corresponding discipline is available; then both are
delayed in the block for a pseudo-randomly generated service time. All simulated clients
have a pseudo-randomly generated wait limit, after which they will time-out and leave
the model through the exit node. Staff are modeled using a separate resource pool for
each discipline, with staffing levels that can fluctuate up and down throughout the day.
Exam rooms are implemented as a constant size resource pool that simulated clients draw
using a seize block before starting assessment. Simulated clients continue to occupy an
exam room for the duration of assessment, consult, and treatment, as well as the waiting
times in between. Once simulated treatment times are completed, or if a client waiting for
treatment/consult reaches their waiting limit, a release block allows the exam room resource
to become available for other simulated clients after a room cleaning task.

The DES implementation generates events using the linear congruential method, which
produces subsequent pseudorandom numbers with a linear formula adjusted modulo a set
interval [96]. The initial number in the sequence, referred to as a seed, is chosen pseudo-
randomly so that each simulation run has a pseudo-unique event sequence. Combining out-
comes from a large number of simulation runs can provide accurate performance measures
estimates.

27



4.3 Client-centred Access Indicator: Expected Percentage Ac-
cess

To model urgent care client access, my analysis focuses on quantifying whether or not clients
receive care in the queueing model representation of urgent care. This focus is motivated
by the care provision goals for the urgent care stream, where services are offered as an
alternative to low acuity ED visits and clients who leave without receiving care may either
go to the emergency department or have their condition deteriorate.

In the queueing model for urgent care, there are two reasons that a client will leave
the UPCC without receiving care. Model clients will leave the clinic if they experience an
extended wait time that reaches their individual, stochastic wait limit or if they are still in
the system when the clinic closes at the end of the day. For both reasons, the probability
of whether or not a model client receives care is time-dependent. This KPI depends on
when a model client arrives at the clinic, since the UPCC starts empty each morning and
client arrival rates and staffing levels fluctuate throughout the day; furthermore, clients
arriving near the end of the day may not be seen before the clinic closes overnight. In
queueing models, there are several approaches to quantify time-dependent client outcomes,
including: (1) the probability of different outcomes, conditional on model client arrival at
instantaneous moments in time [44, 45, 52], and (2) the expected number or proportion
of these outcomes, measured over model client arrivals during specific time intervals[9, 27,
73, 168]. The probability based quantification (1) is more common in queueing studies [46],
since it can be estimated using steady-state formulae [120] or simulation [44, 45]. However,
steady-state results do not capture clients who leave without being seen due to the end
of the day. Furthermore, simulation probability estimates require using virtual simulated
agents to measure outcomes without affecting staffing resources [44, 45], which is not able
to capture outcomes due to non-exhaustive service. To my knowledge, the probability of
different client outcomes cannot be measured or estimated from historic or simulation client
data. On the other hand, the expected number of clients outcomes can be estimated directly
from observation of client or simulated client experiences.

My analysis focuses on the quotient of the expected number of modeled clients receiving
care divided by the expected number of modeled arriving clients, which I refer to gener-
ally as expected proportion access (EPA) in an extension of the notation used by Wang
et al. [168]. Table 4.1 introduces the notation that I use for EPA in this thesis. The nota-
tion uses multiple subscripts to distinguishes EPA specific to multiple services and different
time-intervals, based on when modeled clients begin queueing. The indexes k = 0, ..., 5 are
used to denote the six services or care components in the urgent queueing model, namely
registration, triage, medical assessment, MRP consult, and RN or MRP provided treatment,
respectively. The random variable for the number of modeled clients who begin queueing
for care component k1 in time interval [t1, t2) is denoted Nk1([t1, t2)); similarly, the random
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Notation Definition
K The set of urgent care service components.
E

[
Nk1([t1, t2))

]
The expected number of model clients who begin
queueing for service k1 in time interval [t1, t2) for all
t1 < t2 and services k1 ∈ K.

E
[
Ak1,k2([t1, t2))

]
The expected number of model clients who begin
queueing for service k1 in time interval [t1, t2) and
receive service k2 in any interval, for all t1 < t2 and
services k1, k2 ∈ K.

EPAk1,k2([t1, t2)) ⎧⎪⎨
⎪⎩

E
[
Ak1,k2 ([t1,t2))

]
E

[
Nk1 ([t1,t2))

] , if E
[
Nk1([t1, t2))

] �= 0

1, if E
[
Nk1([t1, t2))

]
= 0

̂EPAk1,k2([t1, t2)) The quotient of the mean number of clients in the
simulation who receive service for care component k2
(that begin queueing for service k1 in time interval
[t1, t2)) divided by the mean number of simulated
clients who queueing for service k1 in time interval
[t1, t2).

(1 − αk1,k2) A target access proportion for service k2 that it is
desirable for EPAk1,k2([t1, t2)) to be above.

Table 4.1: Definition and notation for expected percentage access (EPA).

variable Ak1,k2([t1, t2)) denotes the number of those clients who complete component k2 in
any interval2. Note that the time interval that a client is counted in for Nk1 and Ak1,k2 de-
pends on the time that they begin to queue for service k1 and not on the interval that they
receive service in. Both Ak1,k2([t1, t2)) and Nk1([t1, t2)) are discrete random variables result-
ing from a stochastic process representing urgent care at the UPCC, and their expectation
is computed over the stochastic processes for model client arrivals, service completions, and
abandonment. Furthermore, both expected values are a function of time dependent staffing
levels for each care discipline. Expected percentage access EPAk1,k2([t1, t2)) is defined as
the quotient of the expectations of Ak1,k2([t1, t2)) and Nk1([t1, t2)), for each k2 ≥ k1 and
t2 > t1 with simulation estimate ̂EPAk1,k2([t1, t2)). Note that the quotient of the expecta-
tions A and N is not the same as the expectation of the quotient of these variables, since
they are not independent.

The value or estimate for EPAk1,k2([t1, t2)) does not assume that the probability of
model client access or abandonment is constant throughout the interval considered. Instead,
EPA is a quotient of expected values of an aggregation of observable client outcomes in a

2In the model, service or care component completion involves finishing the full service time of registration,
triage, assessment, or consult, and completing at least 30 minutes of care for MRP or RN provided treatment
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time-dependent stochastic process. The time interval [t1, t2) in the introduced notation
could be chosen to capture small time intervals, such as a 1-hour or 15-minute interval,
which results in what is referred to as a local performance measurement; alternatively, the
time interval [t1, t2) can be chosen capture EPA over an entire planning horizon in what is
referred to as a global performance measurement [46, 120]. Local EPA measurements can
be related to global EPA by using the linearity of expectation for EPA in non-overlapping
time intervals, that is

EPAk1,k2([t1, t2)) ≥ (1 − αk1,k2)

EPAk1,k2([t3, t4)) ≥ (1 − αk1,k2)

⎫⎬
⎭ =⇒ EPAk1,k2([t1, t2) ∪ [t3, t4)) ≥ (1 − αk1,k2), (4.1)

for all k1, k1 ∈ K and non-overlapping time intervals [t1, t2) and [t1, t2). However, the
converse does not necessarily hold, as poor access in one interval may be outweighed in
EPA by a higher access proportion in another interval. Adding multiple constraints to
EPA over a series of smaller, local intervals (sometimes referred to as stabilization) is a
harder performance target to achieve than a global EPA constraint. My staffing optimization
approach uses local constraints on EPA in each 15-minute interval to ensure that access is
maintained throughout the day.

For an instantaneous moment in time, namely t1 = t2, the EPA definition above is not
defined. Assuming a Poisson arrival process to service k1, as t2 → t+

1 then EPAk1,k2([t1, t2))
will limit towards the probability of a model client receiving care from service k2, conditional
on their arrival to the queue for service k1 at time t1. However, given arbitrarily distributed
service times for different care components, the arrival processes for each component of the
urgent care queueing model are not necessarily Poisson.

To consider client access to multiple urgent care services, the EPA definition has two
subscripts, k1 and k2, each corresponding to an urgent care service, (including registration,
triage, assessment, MRP provided care, MRP consult and RN provided care, referred to
with indices 0,1,2,3,4, and 5, respectively). The second subscript k2 specifies the service
that access is being measured for and the first service subscript specifies which clients are
being considered for measurement, based on their queue entry time. There are multiple
options for measuring service access using this notation. For example, one possibility for
measuring medical treatment access is EPA0,5([t1, t2)), which considers all clients that arrive
at the clinic in interval [t1, t2) and whether they receive medical treatment. An alternative
measure is EPA5,5([t1, t2)), which will only consider only clients who begin waiting for
medical treatment (after assessment) in interval [t1, t2). The considered pool of clients will
be different for each approach, since EPA5,5([t1, t2)) will not include clients who leave the
clinic prior to assessment. My staffing optimization focuses on EPAk,k([t1, t2)), ∀k ∈ K, to
ensure that efficiency is maintained over each service, and that staffing levels are appropriate
for each staffing discipline. Service specific targets EPAk,k can be used to address UPCC
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arrival based EPA metrics (EPA0,k) by incorporating the sequence of care component
interdependence. Since clients who access one service all join the queue for the next, it holds
that Ak,k(d) = Nk+1(d), for k = 0, 1, 2, where d denotes the time interval corresponding to
an entire day of urgent care services. Thus,

EPA0,5(d)
γ

=
∏

j=0,1,2,5
EPAj,j(d) (4.2)

where γ is the proportion of clients requiring MRP care. Similarly,

EPA0,4(d)
(1 − γ) =

∏
j=0,1,2,3,4

EPAj,j(d) (4.3)

where (1 − γ) is the proportion of clients requiring nurse care.
Equations (4.2) and (4.3) must be considered when forming EPA constraints. Setting a

95% constraint on each EPAk,k value means that the overall access to MRP care could be as
low as 0.954 ≈ 0.81, and RN care access could be even lower at 0.955 ≈ 0.77. One approach
to achieve a lower bound of 95% access to nurse and physician care is by placing a (1−αk,k) =
0.951/5 = 0.9897938 EPA constraint on each service. Note that equation (4.2) and (4.3) do
not necessarily hold for general time intervals, since Ak,k([t1, t2)) is not necessarily the same
as Nk([t1, t2)) whenever there is possibility of a client being in the midst of receiving service
k at precise time-point t2. Nonetheless, combining these equations with equation (4.1) means
that overall access targets can be met by interval and service specific ones.

In general, system optimization outputs are affected by the choice of performance indi-
cator constraints or objectives [120]. Mandelbaum and Zeltyn [120] illustrate that focusing
solely on client abandonment will often require fewer staff than if constraints are included
on wait time metrics as well. For a scheduling based illustration, if there is a scenario where
all customers will wait at least an hour for service before they leave without being seen, then
there would be no need to schedule staff in the first hour of operation under an abandonment
only constraint.

4.4 Small-interval Staffing Requirements

This section describes an approach to approximately identify the minimum number of staff
of each discipline required in each 15-minute interval so that meet client access constraints
are met in each interval. These small-interval staffing requirements are chosen independently
of the set of possible staff shifts, and can change throughout the day to stabilize performance
under fluctuating demand. The results can be used as a constraint for shift-based staffing
procedures [22, 45], or motivate the introduction of new shift options.

Equation (4.4) gives defines the formulation that I use to optimize small-interval staffing
requirements for the urgent care stream. The decision variable is a staffing matrix S ∈
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Weekday(s) Staffing Intervals Constraint Intervals
Monday
through
Saturday

◦ Every 15 minutes
from 8:00 to 20:45

◦ Every 15 minutes
from 8:00 to 20:45

◦ 20:45 to 22:00 ◦ 20:45 to 21:30

Sunday ◦ Every 15 minutes
from 8:00 to 15:45

◦ Every 15 minutes
from 8:00 to 15:45

◦ 15:45 to 17:00 ◦ 15:45 to 16:30

Table 4.2: Staffing and constraint intervals used for small-interval staffing optimization.
Intervals are changed on Sundays to reflect different opening hours. Access constraints are
not used for the last half hour that the clinic is open, since it is model clients who begin to
queue for treatment during this time may not receive full care regardless of staffing at this
time. Since registration closes an hour before the clinic does, access indicators for the last
45 minutes of constrained time are merged. The last 75 minutes of each day is staffed as a
single interval.

Z+|M |×|I|, where each component Sm,i is the number of modeled staff of discipline m on
duty in time interval i, for each staffing disciplines m in the set of considered disciplines M

and each interval i in the set of staffing intervals Is. My analysis focuses on three staffing
disciplines: MRPs, RNs, and MOAs at the front desk. The objective function is to minimize
the total staffing hours across each staff discipline and time interval, using parameter wi to
incorporate the duration of each time interval. The formulation uses a set of constraints to
ensure that simulation client access targets are maintained in each time interval from Ic. In
this optimization problem, ̂EPAS

k,k(i) is the simulation estimate for the expected proportion
of clients who begin queueing for service k in interval i that receive service k, conditional
on staffing matrix S, and (1 − αk,k) is the access target for modeled service k. Table 4.2
describes the sets of staffing and constraint intervals, which are adjusted to account for the
opening hours and registration cut off at the centre.

minimize
∑

m∈M

∑
i∈Is

wism,i

subject to ̂EPAS
k,k(i) ≥ 1 − αk,k, ∀ k ∈ K, i ∈ Ic

S ∈ Z+|M |×|Is|

(4.4)

4.4.1 Extended Iterative Staffing Algorithm

To approximately solve the small-interval staffing formulation in (4.4), I applied the itera-
tive staffing algorithm (ISA) from Defraeye and Van Nieuwenhuyse [44], which I extended
to address team-based care and EPA constraints. The ISA framework makes iterative ap-
proximations of small-interval staffing requirements, which draw on simulation output to
update staffing levels in each iteration [44, 52]. Feldman et al. [52] introduced the ISA ap-
proach to find the number of staff in each interval required to stabilize the instantaneous
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probability of delay, under which required staffing can be inferred directly from iterative
simulation estimates of time-dependent distributions for the number of customers in the
system. Defraeye and Van Nieuwenhuyse [44] use an extended ISA(τ) algorithm to stabilize
the instantaneous probability of an extended wait beyond duration τ by using a more gener-
alized staffing update procedure that is split into two algorithm phases. The ISA framework
offers a valuable approach to optimizing small-interval staffing based on the iterative use
of simulation output; however, previous ISA studies only consider instantaneous, waiting
based performance measures for a single staff type [44, 52]. I propose an extension of the
ISA approach to consider EPA-based staffing, which I refer to as the EPA-ISA approach.
I further extend this to address multiple staffing disciplines using a sequential-EPA-ISA
approach.

Phase I of the two-phase ISA(τ) algorithm uses a generalized stochastic binary search
procedure to iteratively scale staffing levels up or down in each interval based on the dif-
ference in KPI between simulation and target values and identify staffing levels close to
optimum. Since phase I results may not satisfy all the performance targets, phase II uses
a unidirectional stochastic linear search that incrementally increases staffing levels until
performance targets are met. In both phases, staffing level updates are conducted simul-
taneously across each time intervals. For each staffing interval i, staffing is modified based
only on simulation KPIs in a corresponding measurement interval ĩ, which is chosen based
on the time period that performance is directly impacted by staffing in i. This assignment
of intervals can depend on the choice of KPI constraint used, and is an important factor in
the robust convergence of the algorithm; if there is no arbitrarily large level of staffing in
interval i that will satisfy the performance constraint in interval ĩ, then the algorithm may
not converge.

In the context of a performance target on extended waiting, Defraeye and Van Nieuwen-
huyse [44] use a shifted measurement interval of ĩ = [ts − τ, tf − τ) for each staffing interval
i = [ts, tf ), where the magnitude of the shift corresponds to the KPI waiting threshold τ . If
there is an arbitrarily large surge in staff during [ts, tf ), then client arrivals from [ts − τ, tf )
will not wait more than τ time for service in their model, regardless of previous staffing lev-
els. Similarly, if there is an arbitrarily large surge in staff immediately after t̃, then arrivals
after tf −τ in their model will all start being seen in at least time τ , even if there are no staff
at all in t̃. This choice of measurement interval assignment is specific to both the waiting
threshold τ and an exhaustive service policy. Under an abandonment based performance
measure with generally distributed time until abandonment, some portion of model clients
may abandon during time [ts − τ, ts), regardless of staffing in [ts, tf ). Furthermore, under a
non-exhaustive service policy, model clients who begin service in [ts, tf ) may abandon later
if they do not complete sufficient service due to a reduction in staff at tf .

To extend the ISA framework to use EPA and non-exhaustive service, I introduce a
new strategy for measure interval assignment. Unlike ISA(τ ), which uses only a single, non-
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overlapping measure interval for each staffing interval, I assign multiple measure intervals to
each staffing interval. Each staffing interval, say ih, is updated using KPI measures from ih

itself along with the preceding intervals {ih−ηk
, ih−ηk+1, .., ij−1}, up to a lag factor ηk that

depends on the service k. To account for non-exhaustive service, I determine ηk based on
the minimum amount of time σk that a client needs to spend in service k to be considered
seen, divided by the constant interval duration Δ in

ηk = �σk

Δ � > 0 (4.5)

The incorporation of a positive lag factor means that each measurement interval will affect
staffing decisions in multiple subsequent staffing intervals. For example, in a scenario with
base intervals that are 15-minutes long and a service where clients who receive at least
30 minutes of care are counted as being seen, then the EPA-ISA approach will respond
to simulation EPA estimates are below target in interval ih by increasing the staffing in
the three intervals ih, ih+1, and ih+2 to ensure that enough staffing is added to complete
the service times of the modeled clients in ij . Furthermore, this approach still meets client
demand in its own interval, without a built in delay.

The ISA(τ) algorithm modifies staffing based on the maximum instantaneous probability
of extended wait within each measure interval. I extend this approach in the EPA-ISA
approach to combine EPA estimates for multiple intervals and multiple services by using
the minimum EPA estimate across these measures. For a staff discipline m that provides
care for the service components in set Km, EPA-ISA assesses whether or not targets are
not by comparing whether or not

max
k∈Km

{
max

g∈
{

{max(h−η,0),...,max(h,|Ic|)}

{
1 − EPAk,k(ig)

} − αk,k

}}
(4.6)

is greater than zero or not, for all h = 1, ..., |I|. In equation (4.6), the number of measure
intervals used is adjusted to account for the beginning and end of the day.

To incorporate optimization for multiple staff disciplines, I present the sequential-EPA-
ISA approach, which performs EPA-ISA separately for each staff discipline in a set sequence.
This approach is similar to that of Sinreich and Jabali [155], who consider sequential staffing
of medical resources in order of an estimated bottleneck factor. In my sequential-EPA-ISA
implementation, I optimize staffing for multiple disciplines using the order of interaction
with clients as they move through the components of urgent care. My analysis first optimizes
staffing for front desk MOAs, then RNs, and finally MRPs. Staffing decisions made for
disciplines later in the sequence build on the impact of earlier staffing discipline choices,
but not vice versa. Some EPA target values may not be achievable when only considering
staffing levels for one staffing discipline at a time or incorporating restricted exam room
capacity. To mitigate this, I applied ISA to a scenario with an arbitrarily large number of
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exam rooms and added a maximum number of iterations to both phase I and phase II of the
EPA-ISA approach. Appendix A describes the details of the sequential-EPA-ISA approach
to solve problem (4.4).

4.5 Shift-based Staffing Requirements

This section describes two methods to approximately identify the minimum number of staff
needed on each shift such that client access targets are met in each 15 minute interval. I
formulated the optimization of shift-based staffing using equation (4.7), which has a sim-
ilar objective function and constraint set to equation (4.4), but a different set of decision
variables. This optimization problem uses a shift-based staffing matrix X ∈ Z |M |×|J |, where
each component Xm,j is the number of staff of discipline m assigned to shift option j, for
all m in the set of considered staffing disciplines M , and for each j in the set of considered
shifts J . In this optimization problem, ̂EPAX

k,k(i) is the simulation estimate for the expected
proportion of client access to service k in interval i, conditional on staffing matrix X. The
formulation minimizes total staff hours by using weight parameters w′

j to account for the
active staff hours in each shift j.

minimize
∑

m∈M

∑
j∈J

w′
jXm,j

subject to ̂EPAX
k,k(i) ≥ 1 − αk,k ∀ k ∈ K, i ∈ Ic

X ∈ Z+|M |×|J |

(4.7)

My analysis considers shift-based optimization over two different sets of shift options,
one set that does not incorporate staff breaks and one set that does. Optimization without
breaks uses the set of base shift options in Table 3.2. The timing of staff breaks at the
UPCC is not pre-determined and can change depending on several factors including staff
preferences and clinic congestion. To identify optimum shift-based staffing that incorporates
the reduction in staff availability due to breaks, I introduced four break timing patterns for
each standardized shift at the UPCC, recorded in Table 4.3. However, I still used shift
options without breaks for MOAs, since the breaks for MOAs at the front desk are covered
by the MOAs who work in the clinical pod. Recommendations on break timing are outside
of the scope of my analysis.

My analysis uses two methods to approximately solve the shift-based staffing optimiza-
tion in equation (4.7). One approach is to use integer linear programming (ILP) to determine
the shift combinations that meet the small-interval staffing requirements from EPA-ISA. Al-
ternately, shift-based staffing can be optimized by combining simulation EPA estimates for
each staff schedule with a simulation optimization procedure. My analysis compares the
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Shift Break
Pattern

Early Coffee
Break

Lunch Break Late Coffee
Break

Morning Shift
(RN)
(7:45–15:45)

1 9:30–9:45 11:00–11:30 13:00–13:15
2 9:45–10:00 11:30–12:00 13:15–13:30
3 10:00–10:15 12:00–12:30 13:30–13:45
4 10:15–10:30 12:30–13:00 13:45–14:00

Morning Shift
(MRP)
(8:00–14:00)

1 9:45–10:00 11:15–11:45 13:15–13:30
2 10:00–10:15 11:45–12:15 13:30–13:45
3 10:15–10:30 12:15–12:45 13:45–14:00
4 10:30–10:45 12:45–13:15 14:00–14:15

Day Shift
(9:00–17:00)

1 10:45–11:00 12:00–12:30 14:00–14:15
2 11:00–11:15 12:30–13:00 14:15–14:30
3 11:15–11:30 13:00–13:30 14:30–14:45
4 11:30-11:45 13:30–14:00 14:45–15:00

Afternoon
Shift
(11:00–19:00)

1 12:45–13:00 14:00–14:30 16:00–16:15
2 13:00–13:15 14:30–15:00 16:15–16:30
3 13:15–13:30 15:00–15:30 16:30–16:45
4 13:30–13:45 15:30–16:00 16:45–17:00

Evening Shift
(RN)
(14:45–22:15)

1 16:00–16:15 17:00–17:30 19:30–19:45
2 16:15–16:30 17:30–18:00 19:45–20:00
3 16:30–16:45 18:00–18:30 20:00–20:15
4 16:45–17:00 18:30–19:00 20:15–20:30

Evening Shift
(MRP)
(14:00–22:00)

1 15:45–16:00 17:15–17:45 19:15–19:30
2 16:00-16:15 17:45–18:15 19:30–19:45
3 16:15–16:30 18:15–18:45 19:45–20:00
4 16:30–16:45 18:45–19:15 20:00–20:15

Table 4.3: Simplified break options for the UPCC used in shift-based staffing optimization.
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ILP approach with simulation optimization performed using the OptQuest meta-heuristic.
Subsections 4.5.1 and 4.5.2, describe each approach, respectively.

4.5.1 Integer Linear Programming

One approach to address the shift-based staffing optimization in equation (4.7) is to solve a
proxy problem where the stochastic EPA constraints in (4.7) are replaced with deterministic
constraints given by small-interval staffing requirements. The ILP formulation used in my
analysis is shown in equation (4.8) and is based on Dantzig’s [42] formulation of shift-based
staffing optimization. This formulation constructs shifts explicitly by using the parameter
ci,j , which is set to 1 if a staff member assigned to shift j would be on-duty during time
interval i and zero otherwise.

In the staffing constraints in equation (4.8) sum over ci,j and Xm,j values to determine
the number of staff who are on-duty in each interval, which must be greater than or equal to
the small-interval staffing requirements S∗

m,i. In my application, I set S∗
m,i to the results of

the sequential-EPA-ISA approach to ensure that the client access targets in (4.7) are met by
any feasible schedule in the ILP. The resulting minimization problem is deterministic and
can be optimized using a linear programming solver independently for each staff discipline
and day of the week. Since the ILP does not consider the KPI impact of the additional
staffing needed for standardized shifts, this approach is known to sometimes overestimate
staffing requirements [45, 83].

minimize
∑

m∈M

∑
j∈J

ljXm,j

subject to
∑
j∈J

ci,jXm,j ≥ S∗
m,i ∀ m ∈ M, i ∈ I

X ∈ Z+|M |×|J |

(4.8)

4.5.2 Simulation Optimization

Another approach to shift-based staffing is to use simulation optimization, that combines
meta-heuristic search procedures with simulation EPA estimates for each staffing decision.
I applied the OptQuest meta-heuristic to optimize shift-based staffing using the urgent care
simulation from Section 4.2. The OptQuest engine uses the scatter search framework [102],
which considers new candidate solutions by combining and improving previous solutions
from a maintained reference set [61, 103]. In order to balance local and global optimization,
the reference set solutions are chosen for both diversity and objective function quality [61,
103]. To address equation (4.7), the OptQuest approach reformulates the set of stochastic
access constraints as penalties in the objective function.

To incorporate multiple staffing disciplines in an urgent care context, my analysis con-
siders two different approaches to performing simulation optimization, namely:
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1. Sequential simulation optimization: Optimizing the schedule separately for each staff
discipline, sequentially considering each discipline in order of dependency.

2. Joint simulation optimization: Optimizing the schedule for multiple staff disciplines
at the same time.

Joint simulation optimization for multiple staff disciplines at the same time can address the
interactive nature of team-based care and the inter-discipline impact of staffing decisions.
However, the larger number of variables used in joint optimization can pose challenges
for efficient and accurate simulation optimization. My analysis compares joint simulation
optimization with a simplified sequential simulation optimization.

Under both the joint and sequential approach, I applied the OptQuest engine to solve
equation (4.7) independently for each day of the week. My OptQuest implementation uses
explicit non-negative integer variables for the number of staff of each discipline on each shift
in either Table 3.2 or Table 4.3, depending on whether or not breaks are considered. I set
the initial value for these decision variables to the current UPCC staff schedule, and used an
upper bound of 5 staff per discipline for shifts without breaks and 2 staff per discipline for
shifts with breaks. To improve performance, I added a requirement that at least one staff
member of each type is scheduled on each day. Each run of the OptQuest procedure stops
after there are no more significant improvements to the objective function3 or a maximum
number of iterations is reached.

3The definition of significant change used in this stopping criteria is determined by an OptQuest heuristic.
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Chapter 5

Urgent Care Data Analysis and
Model Parameter Estimation

To inform parameter choices for my urgent care queueing model and simulation, I analyzed
data on UPCC client visits. For model parameters without relevant data available, choices
were made using expert opinion from clinic staff and simulation calibration. UPCC client
visits are primarily recorded using the Cerner EMR database system 1. Recorded timestamps
for each client visit include the time of registration time, triage time, the time that the client
begins being seen by a provider, and an estimated time of client departure. The data extract
used in my analysis includes records of client visits made within the 35 weeks after the date
that the clinic opened. My analysis does not include data on client visits with social workers.

5.1 Client Arrival Rates

The number of recorded client visits per week in the data extract are shown in Figure 5.1.
Weekly client counts start low when the UPCC opens, then increase steadily until plateauing
19 weeks after opening. I analyzed weeks 19 through 35 of the data extract to construct a
representative arrival rate profile for the queueing model. For this time period, the mean
number of urgent care registrations for each hour of the week is shown in Figure 5.2. I used
the mean number of registrations per hour as an hourly arrival rate in the queueing model
that defines of a piece-wise constant non-homogeneous Poisson process for model client
arrivals. This approach may underestimate the true number and pattern of UPCC client
arrival, since clients may arrive then wait and/or leave the UPCC prior to registration.

In Figure 5.2, hourly registration rates are typically highest in the hour immediately
after daily opening, with some fluctuation throughout the day before declining shortly before
closing. Table 5.1 records daily summaries, and shows that Sunday has the second highest
average daily registration rate, despite having the shortest opening hours. Furthermore,

1https://www.cerner.com/
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Figure 5.1: Urgent care visits per week in the data extract, with weeks numbered starting
from the date the UPCC opened.

the highest average number of registrations per hour occurs during 9 to 10am on Sunday
mornings.

5.2 Service Duration

5.2.1 Medical Care or Treatment Time

In the UPCC data, timestamps are included for both the time that any client’s visit file
is initially opened by an MRP (referred to as seen time) and the approximate time that
each client leave the clinic (referred to as departure time). The interval between seen and
departure time can be reflective of the time that taken to provide medical care or treatment,
although there are several data quality concerns that need to be considered to estimate
treatment times.

One concern raised by the UPCC management team is that recorded client departure
times may not be accurate, especially for records were departure is recorded a very long
time after the initial file was opened. For example, the longest recorded duration between
seen and departure time in the data extract is over 16 hours, which is longer than the
clinic is open in a day. Another concern is that there can be a large overlap in the recorded
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Figure 5.2: Mean number of urgent care registrations by hour of day and day of week for
weeks 19 to 35 of UPCC operation. Clients who register before clinic opening or after stan-
dard registration closing are included in the mean visit calculations for the hour immediately
after opening or immediately before standard registration closing, respectively.

Weekday Mean Visits per Day Mean Daily Visits per Hour
Monday 57.5 4.43
Tuesday 55.8 4.29

Wednesday 54.1 4.16
Thursday 53.2 4.09

Friday 51.5 3.96
Saturday 50.8 3.90
Sunday 30.4 4.34

Table 5.1: Mean number of registrations per day and daily mean visits per hour for each
day of the week. Each calculation uses data from weeks 19 to 35 of UPCC operation. Daily
mean visits per hour is calculated as the mean number of visits divided by the total opening
hours in that day.
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Figure 5.3: Histogram of estimated treatment times with three fitted distributions. Esti-
mated treatment times include 9930 data points from week 0 to 35 of UPCC operation,
after filtering out entries with over 200 minutes between seen and departure times and then
adjusting for overlapping care provision.

treatment times for clients receiving care from the same provider. In the data extract, 47%
of client visits are recorded as having overlapping treatment time with at least one other
client receiving care from the same provider.

To account for these data quality concerns and estimate treatment times in the data,
I removed outliers with extremely long duration between seen and departure, and then
adjusted each entry to account for overlapping care provision. Appendix B gives more details
on my adjustment approach, which reduces treatment times evenly during any overlap
period. A histogram of the resulting care time estimates is shown in Figure 5.3. To identify
a representative service time distribution, I fit three different continuous distributions to the
estimated treatment time data using maximum likelihood estimation (MLE) in R. The fitted
distributions are included in Figure 5.3, and Table 5.2 records their summary statistics and
parameters. Compared to the fitted log-normal and Weibull distributions, the fitted gamma
distribution matches the mean and standard deviation of estimated data the best. The
queueing model represents the treatment or care provision time for both MRP and RNs
using a gamma distribution with a shape of 2.25 and a scale of 11.67 minutes.
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Estimated
Treatment
Data

Gamma Fit Log-normal Fit Weibull Fit

Mean (mins) 26.37 26.37 27.09 26.52
SD (mins) 18.71 17.54 22.61 17.74
Parameters Shape = 2.25 Meanlog = 3.03 Shape = 1.52

Scale = 11.67 SDlog = 0.73 Scale = 29.43

Table 5.2: Mean and standard deviation (SD) for the estimated care provision time data,
compared to fitted gamma, log-normal and Weibull statistics. The given parameters for
each distribution are fit to the estimated care provision time data using MLE. Estimated
treatment times include 9930 data points from week 0 to 35 of UPCC operation, after
filtering out entries with over 200 minutes between seen and departure times and then
adjusting for overlapping care provision.

5.2.2 Registration, Triage, Assessment, and Consult Time

While the start time of registration is recorded for each client, the corresponding end time
is not captured. An expert opinion provided by an MOA at the UPCC estimates that
registration it takes on average 2 minutes to complete registration, and that the standard
set of questions involved can limit the duration of registration. Based on this input, the
queueing model represents the distribution of time needed for registration with a continuous
uniform distribution between 1 and 3 minutes.

Similarly to registration, only the start time of triage is recorded for client visits. An
expert opinion provided by a UPCC manager estimates that triage typically takes 5 to 7
minutes. Accordingly, the queueing model represents the distribution of time needed for
triage with a continuous uniform distribution between 5 and 7 minutes. This time scale is
consistent with an estimated average triage time of 4 minutes in an emergency department
study [163].

Neither start nor end time are recorded for the medical assessment of clients by nurses.
The management team at the UPCC suggested that client assessment takes on average 5
minutes, and mentioned that there could be substantial variability in assessment times. The
distribution of assessment time in the model is represented using a gamma distribution with
a mean of 5 minutes, and the same shape as the treatment time distribution. I also used
expert opinion to represent the distribution of time needed to consult an MRP prior to
RN provision of care, for which the queueing model uses a continuous uniform distribution
between 4 and 7 minutes.

5.2.3 Room Cleaning Time

Table 5.3 lists the continuous distributions that the queueing model uses to represent the
time needed for each room or desk cleaning task, which were chosen based on consultation
with a manager and housekeeper at the UPCC.
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Cleaning Task Representative Time
Distribution (minutes)

Registration desk Uniform(0.25,0.75)
Triage room Uniform(1,3)
Exam room Uniform(1,3)

Table 5.3: Modeled time distribution for cleaning tasks.

5.3 Client Willingness to Wait

The interval between registration and seen time in the UPCC can be reflective of the client
wait times, although this interval does not capture the time spent by clients waiting for
registration, and also includes triage and assessment times. Some client visit records do not
include a seen time or provider care information and indicate that a client left the UPCC
without receiving care. Data records for clients who leave without being seen still include
an estimated time of client departure; the interval between registration and departure can
be reflective of the willingness to wait of these clients. However, estimated wait times for
clients who do receive care provide additional information that these clients were willing
to wait at least those amounts of time. To combine these two sets of data and estimate
the distribution of clients’ willingness to wait, I applied the Kaplan-Meier (K-M) method,
which is frequently used in lifetime analysis data [94, 156] including customer patience
distributions [20]. The K-M estimator for the survival distribution of willingness to wait is
approximated by the fraction of visits still waiting for each length of time.

Figure 5.4 displays the K-M estimate of the cumulative distribution function (CDF) for
willingness to wait based on the records in the UPCC data extract. To model willingness
to wait, I used a truncated gamma distribution with parameters fit to the K-M CDF using
minimization of squared error 2 and the maximum observed wait as a the truncation value.
The fitted parameter values are recorded in Table 5.4 and the resulting CDF is plotted
alongside the K-M CDF in Figure 5.4. The queueing model represents abandonment by
using this truncated gamma distribution to independently generate willingness to wait for
each modeled client visit, which is a simplification of the complex human behavior associated
with waiting.

2This parameter optimization was performed using the it optim function in R, which implements a
quasi-Newton method for constrained continuous optimization
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Figure 5.4: Kaplan-Meier estimates for the CDF of the UPCC clients willingness to wait for
urgent care. The K-M method was applied to 35 weeks of UPCC data for the time between
registration and departure for clients who abandon, and the time between registration and
seen time for clients who receive care.

Parameter Value (units)
Shape 1.7
Scale 21.9 (hours)

Maximum 7.4 (hours)
Mean 4.5 (hours)

Table 5.4: Fitted parameters for a truncated gamma distribution used to represent client
willingness to wait.
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Chapter 6

Results

6.1 DES Calibration and Validation

To calibrate and validate the simulation model, my analysis compares EPA estimates from
the current schedule DES to the EPA estimates from the UPCC data. This comparison
focuses on hourly EPA values for the expected proportion of clients receiving care from
either an RN or MRP, for each opening hour throughout the week based on simulated
arrival time or recorded registration time. The current urgent care staff schedule in the
DES is from Figure 3.2 combined with the break options defined Table 4.3, specifically:
break options 1 and 2 for each pair of MRP shifts; break option 1 for each afternoon RN
shift; break options 2,3, and 4 for each triple of RN morning or evening shifts; break options
1,2, and 4 for the triple of RN day shift on Sundays; and shifts without breaks for MOAs
at the front desk, since their breaks are covered by the other MOA on duty.

To calibrate the proportion of clients requiring RN care, I ran the simulation for the cur-
rent schedule using different values for this proportion from the set
{0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45}. Figure 6.1 shows the simulation EPA estimates for each
of these parameter choices alongside EPA estimates from UPCC data. Compared to the
other values tested, the simulation EPA estimates are closest1 to the data when the propor-
tion of clients requiring RN care is 0.4. I used the value of 0.4 for this parameter throughout
the rest of the analysis in this thesis.

Figure 6.2 and Table 6.1 compare the resulting EPA estimates from DES and the UPCC
data using this parameter choice. Over the entire week, the EPA values are similar for both
DES and the data, although the simulation EPA estimates tend to overestimate the data.
Figure 6.2 shows that 57% of the data points are within the DES interquartile range (IQR);
the data EPA estimates show more intra-day and intra-week variability than the simulation,
since they are the result of intricate human behavior compounded by data quality factors.
For example, UPCC management commented that some clients who arrive around lunchtime

1Using the mean squared difference in EPA estimates.
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Figure 6.1: Comparison of EPA estimates from UPCC data and DES results, using seven
different parameter values for the proportion of visits that are within RN nurse scope.
Data estimates are based on the last 17 weeks of UPCC operation, with EPA calculated
as the mean number receiving care divided by the mean number registering, in each hour
of the day and week. The DES estimates were calculated similarly based on arrivals for
85,000 simulated weeks. The current schedule in the DES uses break options from Table 4.3.
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Figure 6.2: Validation plot comparing expected percentage access (EPA) estimates from the
UPCC data and DES. Data estimates are based on the last 17 weeks of UPCC operation,
with EPA calculated as the mean number receiving care divided by the mean number
registering, in each hour of the day and week. The DES estimates were calculated similarly
based on arrivals for 85000 simulated weeks. The IQR for the simulation was calculated
from individual EPA estimates from each group of 17 simulated weeks.

who will leave promptly if they cannot receive care before they need to return to work. This
can been seen in the data as a substantial drop in data EPA estimates around 12 or 1pm.
The simulation model does not incorporate time-dependent fluctuations in the distributions
of treatment times and patience times, and is able to capture general daily trends in EPA,
without over-fitting to these specific weeks of data and detailed human behavior that they
are comprised of. The parameters and assumptions of the DES model are sufficient to
provide a test case for the analysis of staffing algorithms. Future application of the model
can investigate the sensitivity of the simulation and staffing models to different parameter
choices.

6.2 Small-interval Staffing Requirements

I applied the sequential-EPA-ISA algorithm (described in Subsection 4.4.1 and Appendix A)
to determine staffing requirements for each 15-minute interval that meet EPA targets (prob-
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Source Weekly EPA Estimate
UPCC Data 0.955

DES 0.964

Table 6.1: Weekly EPA estimates from the UPCC data and DES. The UPCC data estimate
is from the last 17 weeks of UPCC data, with weekly EPA calculated as the mean num-
ber receiving care per week divided by the mean number registering per week. The DES
estimates were calculated similarly based on arrivals for 85,000 simulated weeks.

Figure 6.3: Required staffing levels, determined using the sequential-EPA-ISA approach,
for 3 staffing disciplines over each 15-minute interval of the week. Each iteration of the
sequential-EPA-ISA approach evaluated EPA using 50,000 simulation days. The total staff
hours used are 92 MOA hours, 235.25 RN hours and 232 MRP hours.

lem (4.4)). Figure 6.3 shows the identified results, found independently for each day of the
week. The simulation EPA estimates under these staffing levels are shown in Figure 6.4.

The small-interval staffing requirements in Figure 6.3 consistently recommend having a
single MOA at the front desk. In these results, the number of recommended RNs and MRPs
on duty varies from 1 to 4 staff, with a recommendation of 3 RNs and MRPs on duty for
most time-intervals of the day and week. The total ISA recommended staff hours are highest
on Mondays (Table 6.2), which is the day of the week with the highest number of average
arrivals (Table 5.1). Both RN and MRP staffing results show intra-day fluctuation to meet
patterns in client demand, with several staffing peaks aligned during or after peaks in client
arrivals. For example, on Saturdays, the staffing peaks at 10:30am, 2:15pm, and 5:30pm
align after the hourly arrival rate peaks at 10am, 1pm and 4pm. ISA staffing requirements
are also strongly influenced by the opening and closing of the clinic; high arrival rates in
the first hour after opening each day are mitigated by preceding opening of the UPCC,
and staffing requirements are still low in these hours. On several days of the week, the
ISA staffing requirements have an additional peak at the end of the day to maintain access
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Weekday Total ISA Staff Hours
MOA RN MRP

(font desk)
Monday 14 40.8 38.0
Tuesday 14 40.5 33.2

Wednesday 14 38.5 35.5
Thursday 14 40.5 34.0

Friday 14 35.2 35.5
Saturday 14 34.0 34.2
Sunday 14 23.8 21.5

Table 6.2: Total ISA recommended staff hours for each day of the week.

Figure 6.4: Simulation EPA estimates given the ISA staffing levels shown in Figure 6.3,
for each component of urgent care and 15-minute interval. Each EPA estimate is evaluated
using 50,000 simulated days, with an arbitrary large number of exam rooms (100). The red
dashed lines represent EPA targets for each care component, which are chosen to yield an
overall 95% access rate—see Section 4.3 for more detail on this choice.
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Day Discipline Number Phase I
Simulation Calls

Number Phase II
Simulation Calls

Monday
MOA 1 0
RN 5 1

MRP 3 2

Tuesday
MOA 1 0
RN 3 1

MRP 3 3

Wednesday
MOA 1 0
RN 3 1

MRP 3 1

Thursday
MOA 1 0
RN 3 2

MRP 3 2

Friday
MOA 1 0
RN 10 2

MRP 3 1

Saturday
MOA 1 0
RN 3 1

MRP 5 3

Sunday
MOA 1 0
RN 3 0

MRP 4 3

Table 6.3: Number of simulation calls per phase when applying the sequential-EPA-ISA
approach across 7 weekdays and 3 staffing disciplines. Each used simulation call estimated
EPA by using 50,000 simulated days.

targets before closing time. Under the ISA staffing levels, simulation EPA estimates are
displayed in Figure 6.4 and demonstrate that the ISA approach is able to consistently meet
EPA targets across each service and time interval.

Table 6.3 records the numbers of simulation calls used in my application of sequential-
EPA-ISA, specified by each phase in the two phase algorithm (see Subsection 4.4.1 and
Appendix A for a detailed description of these phases). Each simulation call estimated
EPA using 50,000 simulated days and all evaluates took around 6.5 minutes to run2, and
these simulation runs were performed without parallelization. For each day, ISA staffing
requirements were found in under 20 total simulation calls across three staff types.

6.3 Shift-based Staffing

I applied both integer linear programming and simulation optimization to determine shift-
based staffing requirements for two different scenarios, one where staff breaks are not con-

2Computation times were evaluated on a 2.3 GHz quad-core Intel core i7 processor.
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sidered in the solution, and one where they are. The results for these two scenarios are
presented in Subsections 6.3.1 and 6.3.2, respectively.

6.3.1 Shifts without Breaks Considered

I first optimized shift-based staffing for the set of shift options in Table 3.2, without the
incorporation of breaks. I applied the integer linear programming (ILP) formulation in
equation (4.8) to find the minimum number of staff on each of these shifts needed to
cover the small-interval staffing requirements yielded from ISA (shown in Figure 6.3). I
also applied simulation optimization to directly solve Problem (4.7) by using the OptQuest
meta-heuristic to identify the minimum shift-based staffing required to meet targets on sim-
ulated EPA in each 15-minute interval. Figure 6.5 compares the original schedule with both
the ILP and OptQuest results. Two results are included for simulation optimization, one
in which staffing for RNs and MRPs are optimized in sequence, and one in which staffing
for RNs and MRPs are jointly optimized. Each application of simulation optimization used
the original staff schedule as a starting point, and had a timeout limit of 500 simulation
calls. Each simulation call uses 50,000 simulated days to estimate EPA values in each time
interval, assuming an arbitrary large number of exam rooms (100 rooms). I did not consider
OptQuest optimization of the number of MOAs at the front desk, since the small-interval
staffing requirements in Figure 6.3 are at the lowest possible value for this group. The ILP
and simulation optimization approaches were all solved independently for each day of the
week, with Sunday shifts restricted to day shifts because of the reduced opening hours. Fig-
ure 6.5 displays the three resulting optimized schedules along with the original schedule. For
each schedule, the total staffing levels and simulation performance measures are compared
in Table 6.4, with time-dependent EPA estimates for each schedule shown in Figure 6.6.

In Figure 6.5, the original schedule typically staffs 3 RNs and 2 MRPs on each morning
and evening shift on Mondays through Saturdays, with an additional RN on an afternoon
shift to provide break coverage. The optimized schedule from ILP has similar RN staffing
levels; however, it substantially increases MRP staffing by adding 1-2 MRPs to each morn-
ing and evening shift, with highest new MRP staffing on Wednesday, Thursday, and Friday.
The optimized schedule obtained by sequentially applying OptQuest sightly decreases RN
staffing levels from the original schedule by removing 1-2 RN shifts from six days of the
week, with lowest new RN staffing on Thursday, Friday, and Saturday. The sequential Op-
tQuest results have 6 RN shifts on Monday through Wednesday, and 5 on Thursday through
Saturday, as well as 6 MRP shifts on Monday, Tuesday, Thursday, Friday and Saturday and
5 on Wednesday. The optimized schedule obtained from applying OptQuest jointly (to both
RNs and MRPs) is similar to the sequential results, but sometimes substitutes MRP for
RN staffing on Thursdays through Saturdays, and adds a further additional RN shift on
Wednesdays, Thursdays, and Saturdays.
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Figure 6.5: Original and optimized shift-based staffing for a scenario that does not consider
staff breaks.
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Metric Original
Schedule

Optimized Schedules
ILP Sequential

OptQuest
Joint

OptQuest

Number of Shifts MOAs 13 13 13 13
RNs 45 45 34 43

MRPs 26 47 38 33
Total Active Staff
Hours

MOAs 99.5 99.5 99.5 99.5
RNs 346.0 345.0 262.0 331.75

MRPs 208.0 360.0 304.0 264.0

Overall Weekly
EPA

100 Rooms 0.994 0.998 0.992 0.995

8 Rooms 0.986 0.996 0.986 0.990

Average number
of simulated
clients seen per
week

100 Rooms 351.3 352.5 351.3 351.6

8 Rooms 348.1 351.9 348.0 349.8

Average number of
simulated clients
seen within an hour
of arrival, per week

100 Rooms 329.1 344.9 319 333.3

8 Rooms 323.1 343.1 314.9 330.0

Average number
of simulated
clients leaving
unseen, per week

100 Rooms 1.99 0.6 2.8 1.6

8 Rooms 5.1 1.3 5.1 3.3

Table 6.4: Staffing levels and simulated performance measures for the original and three
optimized schedules, without incorporating staff breaks. For each schedule, the total weekly
staffing levels are shown for MOAs at the front desk, RNs, and MRPs. However, the joint
and sequential simulation optimization applications only optimized the staffing for RNs and
MRPs. Each optimization application was run independently for each day, and was based
on simulation EPA estimates from 5,000 simulated days with access to an arbitrary large
number of exam rooms (100 rooms). The performance measures shown for each schedule
were estimated from 85,000 simulated weeks under two numbers of simulated exam rooms:
an arbitrary large capacity (100 exam rooms) and the current capacity (8 exam rooms).
Client-centred performance metrics include the average number of simulated clients per
week who receive MRP or RN care, who receive MRP or RN care within an hour of arrival,
or who leave without receiving care.
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Figure 6.6: Comparison of simulation EPA estimates for the original and optimized sched-
ules, without consideration for breaks. EPA estimates are shown for each 15-minute of the
day, calculated based on client outcomes in 50,000 simulated days. Two sets of EPA esti-
mates are shown, one with an arbitrary large number of exam rooms (100 rooms), and one
with the current number of exam rooms at the UPCC (8 rooms).
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Overall, the ILP optimized schedule has the best estimated client-centred performance
measures compared to the original and other optimized schedules, with consistently high
simulation EPA values throughout the week (See Figure 6.6), almost no simulated clients
who leave without being seen, and the highest number of clients who are seen within an
hour of arrival (see Table 6.4). However, the ILP optimized schedule also has the highest
total staffing of these options, with a net total staffing increase of 151 staff hours per week
compared to the original schedule. On the other hand, both OptQuest optimized schedules
use less staff than the ILP schedule, but do not consistently meet EPA targets (Figure 6.6.
The joint OptQuest schedule has only 7 more MRP shifts per week than the original schedule
and 2 less RN shifts, and reduces the number of simulation clients who leave without being
seen by 34% (1.8 clients per week), and increase the number of clients seen within an hour
by 2.1% (6.9 simulation clients per week)—under the current number of exam rooms.

Table 6.5 compares the number of simulation runs used in the three approaches to
shift-based staffing without breaks. Solving the deterministic ILP formulation required no
further simulation runs beyond the simulation required for ISA, all under 10 simulation
runs. Each daily ILP optimization was solved independently with Python3 using the Gurobi
solver4, and all computation times were less than a tenth of a second5. In comparison,
simulation optimization with the OptQuest meta-heuristic required at least 300 simulation
calls for Monday through Saturday, with sequential optimization requiring a total of at least
450 simulation calls per weekday. Each simulation call involves 5,000 simulated days and
can run in around one minute6. OptQuest runs were performed in parallel over at least
8 cores.

3https://www.python.org/

4https://www.gurobi.com/

5Computation times were evaluated on a 2.3 GHz quad-core Intel core i7 processor.

6Computation times were evaluated on a 2.3 GHz quad-core Intel core i7 processor
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Weekday Optimization Approach
ILP + ISA Sequential

OptQuest
Joint

OptQuest
(RNs & MRPs) RNs MRPs (RNs & MRPs)

Monday 11 221 242 312
Tuesday 10 244 220 329

Wednesday 8 232 230 354
Thursday 10 221 237 311

Friday 16 227 231 357
Saturday 12 238 233 323
Sunday 10 5 5 25

Table 6.5: Number of simulation calls used for each shift-based optimization approach ap-
plied to a set of shifts without breaks considered. ILP schedule optimization does not use any
simulation runs beyond those used in the ISA, which was run using 500,000 simulated days
per simulation call. For both the joint and sequential simulation optimization approaches,
performance measures were estimated using 5,000 simulated days per simulation call. Op-
tQuest simulation optimization runs until the meta-heuristic determines that no significant
improvements are made, or a maximum of 500 simulation calls has been reached.

6.3.2 Shifts with Breaks Considered

To address an important operational factor in staff scheduling, I also performed optimization
of shift-based staffing using a set of shift options that incorporate staff breaks. I used the
same three approaches from Subsection 6.3.1—namely ISA and ILP, sequential OptQuest,
and joint OptQuest—to optimize weekly shift-based staffing that incorporates breaks. I
used the ILP formulation in equation (4.8) to find the minimum number of RNs and MRPs
on each of the shifts and break combinations in Table 4.3 needed to cover the small-interval
staffing requirements yielded from ISA (shown in Figure 6.3). I used shift options without
breaks for ILP optimization of front desk MOA shifts, since the breaks for MOAs at the
front desk are covered by the MOAs who work in the clinical pod. I also applied the Op-
tQuest meta-heuristic to perform simulation optimization of RN and MRP staffing, both
sequentially and jointly. Each application of simulation optimization used the original staff
schedule as a starting point, and had a timeout limit of 500 simulation calls. Each simula-
tion call uses 5,000 simulated days to estimate EPA values in each 15-minute time interval
and assumes an arbitrary large number of exam rooms (100 rooms). The ILP and sim-
ulation optimization approaches were all solved independently for each day of the week,
with Sunday shifts restricted to day shifts to reflect the UPCC opening hours. Figure 6.7
displays the three resulting optimized schedules along with the original schedule. For each
schedule, the total staffing levels and overall simulation performance measures are compared
in Table 6.6, with time-dependent EPA estimates for each schedule shown in Figure 6.8.
Table 6.7 compares the number of simulation runs used in each optimization approach.
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Figure 6.7: Original and optimized shift-based staffing for a scenario that considers staff
breaks.
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Metric Original
Schedule

Optimized Schedules
ILP Sequential

OptQuest
Joint

OptQuest

Number of Shifts MOAs 13 13 13 13
RNs 45 52 40 59

MRPs 26 50 41 46
Total Active Staff
Hours

MOAs 99.50 99.50 99.50 99.50
RNs 301.50 353.50 267.00 399.75

MRPs 182.00 342.75 287.00 322.00

Overall Weekly
EPA

100 Rooms 0.984 0.998 0.991 0.996

8 Rooms 0.965 0.996 0.985 0.994

Average number
of simulated
clients seen per
week

100 Rooms 347.8 352.6 350.0 352.0

8 Rooms 340.9 351.8 347.9 351.0

Average number of
simulated clients
seen within an hour
of arrival, per week

100 Rooms 283.5 344.9 311.8 340.3

8 Rooms 272.3 343.6 307.6 338.5

Average number
of simulated
clients leaving
unseen, per week

100 Rooms 5.5 0.7 3.1 1.2

8 Rooms 12.4 1.3 5.23 2.1

Table 6.6: Staffing levels and simulated performance measures for the original and three
optimized schedules, which all incorporate staff breaks for RNs and MRPs. For each sched-
ule, the total weekly staffing levels are shown for MOAs at the front desk, RNs, and MRPs.
Active staff hours exclude breaks and shift time outside opening hours. Simulation opti-
mization (both joint and sequential) only optimized for the shift-based staffing of RNs and
MRPs. The performance measures shown were estimated from 50,000 simulated weeks un-
der two numbers of simulated exam rooms: an arbitrary large number (100 exam rooms)
and the current capacity (8 exam rooms). Client-centred performance metrics include the
average number of simulated clients per week who receive MRP or RN care, who receive
MRP or RN care within an hour of arrival, or who leave without receiving care.
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Figure 6.8: Comparison of simulation EPA estimates for the original and optimized sched-
ules, with consideration for breaks. The red dashed line represents the target EPA value.
EPA estimates are calculated as the mean number of simulated clients receiving RN or
MRP treatment divided by the mean number of simulated client arrivals, broken up into
15-minute intervals based on the arrival time at the UPCC. The shown estimates are made
using 50,000 simulated days, and under either an arbitrarily large number of exam rooms
(100 rooms) or the current number of exam rooms at the UPCC (8 rooms).
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In Figure 6.5, the original schedule typically staffs 3 RNs and 2 MRPs on each morning
and evening shift on Mondays through Saturdays, with an additional RN on an afternoon
shift to provide break coverage. The optimized schedule from ILP increases staffing levels
by having 4 RNs and 3-4 MRPs on each morning and evening shift on Mondays through
Saturdays, with an additional day or afternoon shift for MRPs on Monday, Thursday, and
Saturday, and 4 RNs and MRPs on the Sundays. The optimized schedule obtained by se-
quentially applying OptQuest sightly decreases RN staffing levels from the original schedule
by removing the afternoon RN shift from six days of the week, although keeping a day shift
on Mondays. The sequential OptQuest results typically have 6-7 MRP shifts scheduled per
day on Monday through Saturday. The optimized schedule obtained from applying Op-
tQuest jointly (to both RNs and MRPs) has substantially higher staffing levels than the
other schedules, with 8-11 RN shifts and 7-8 MRP shifts on Mondays through Saturdays.

Overall, the ILP optimized schedule has the best estimated client-centred performance
measures compared to the original and other optimized schedules, with consistently high
simulation EPA values throughout the week (See Figure 6.8), almost no simulated clients
who leave without being seen, and the highest number of clients who are seen within an hour
of arrival (see Table 6.6). However, the ILP optimized schedule also has the highest total
staffing levels, with a net staffing increase of 212.75 active staff hours per week compared
to the original schedule. On the other hand, sequential simulation optimization identified
a schedule that meets the client access targets and uses 142.25 less active staff hours than
the ILP schedule. Compared to the original schedule, the sequential OptQuest schedule
reduces RN staffing by around 35 hours and increases MRP staffing by 105 hours; in the
simulation, these changes reduces the number of clients who leave without being seen by 58%
(7 more clients seen per week), and increase the number of clients seen within an hour by
13% (35 more clients per week), under the current number of exam rooms. However, under
the optimization scenario of 100 exam rooms, the original staff schedule meets the access
targets on Thursday, Friday, and Saturday; indicating that the additional staffing used in
the sequential OptQuest solution—which was found using a smaller number of simulation
runs per call than the post-optimization evaluation—may not be necessary. Furthermore,
the schedule found by joint simulation optimization uses substantially more staff hours per
week than the sequential simulation optimization results, with 133 more RN hours and
35 more MRP hours.

Table 6.7 compares the number of simulation runs used in the three approaches to
shift-based staffing without breaks. Solving the deterministic ILP formulation required no
further simulation runs beyond the simulation required for ISA, all under 20 simulation
runs. Each daily ILP optimization was solved independently with Python7 using the Gurobi

7https://www.python.org/
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Weekday Optimization Approach
ILP + ISA Sequential

OptQuest
Joint

OptQuest
(RNs & MRPs) RNs MRPs (RNs & MRPs)

Monday 11 360 339 318
Tuesday 10 355 376 318

Wednesday 8 328 289 311
Thursday 10 375 284 304

Friday 16 351 297 334
Saturday 12 366 281 330
Sunday 10 78 80 272

Table 6.7: Number of simulation calls used for each shift-based optimization approach ap-
plied to a set of shifts that consider breaks. ILP schedule optimization does not use any
simulation runs beyond those used in the ISA, which was run using 500,000 simulated days
per simulation call. For both the joint and sequential simulation optimization approaches,
performance measures were estimated using 5,000 simulated days per simulation call. Op-
tQuest simulation optimization runs until the meta-heuristic determines that no significant
improvements are made, or a maximum of 500 simulation calls has been reached.

solver8, and all computation times were less than a tenth of a second9. In comparison,
simulation optimization with the OptQuest meta-heuristic required at least 300 simulation
calls for Monday through Saturday, with sequential optimization requiring a total of at least
600 simulation calls per weekday. Each simulation call involves 5,000 simulated days and
can run in around one minute minutes10. Simulation runs for OptQuest optimization were
performed in parallel over at least 8 cores.

8https://www.gurobi.com/

9Computation times were evaluated on a 2.3 GHz quad-core Intel core i7 processor

10Computation times were evaluated on a 2.3 GHz quad-core Intel core i7 processor
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Chapter 7

Discussion and Conclusions

7.1 Discussion of Results

I developed a new approach to optimizing team-based staffing for an urgent and primary
care centre in Vancouver, Canada. My approach determines minimum staffing levels for each
healthcare discipline, based on meeting client-centred access targets in a queueing model
representation of the urgent care stream. I used a network queueing model and simulation
implementation to represent the stochastic flow of clients through different components of
urgent care at the centre, based on the operational profile of the UPCC and client visit data.
I built a discrete event simulation (DES) that estimates client-centred access indicators for
urgent care and incorporates the sequential and interactive nature of team-based care. I
then embedded the simulation into staffing optimization procedures to identify both small-
interval staffing requirements and shift-based staffing levels needed to meet access targets.
My optimization analysis focuses on the expected proportion of model clients who receive
care, as opposed to leaving the clinic without being seen due to an extended wait.

I identified small-interval staffing requirements by extending the iterative staffing al-
gorithm (ISA) [44, 52] to consider multiple staff types and expected access proportions. I
applied the ISA framework to determine the staffing levels needed to meet access targets
in each 15-minute interval by iterating over simulation output and sequentially considering
each staffing discipline. The resulting small-interval staffing requirements fluctuate during
the day and week in order to meet modeled client demand, without needing to incorporate
shift options. In my results, ISA staffing levels follow some of the trends in client arrival
rates; higher daily staffing is typically reflective of higher daily arrivals and some intra-
day staffing peaks occur during or after arrival rate peaks. However, the ISA results also
demonstrate that UPCC opening and closing can have a bigger effect than arrival rates on
expected percentage access, and highlight a consequence of optimizing solely on whether or
not clients leave without being seen.

My analysis compares two different approaches to determine shift-based staffing re-
quirements for the urgent care stream at the UPCC. Firstly, I applied an integer linear pro-
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gramming (ILP) formulation to minimize the staffing level on each shift such that the ISA
small-interval requirements are satisfied [42, 45]. Secondly, I used simulation optimization
to select shift-based staffing that satisfy simulation client access targets in each 15-minute
interval—measured directly for each combination of shifts—by using the OptQuest meta-
heuristic. The resulting schedules for both approaches recommend that physician staffing
could be increased from the original schedule in order to better meet targets on client access.
In particular, The OptQuest results show that by adding 15 physician shifts per week, sim-
ulation client access increased by around 7 clients seen per week, which reduced the number
of simulation clients leaving without being seen by 58%, and also increased the number of
clients seen within an hour by 13% (35 clients). Increased client access to care can improve
client outcomes, reduce emergency department visits, boost health equity, and balance staff
workloads. Because the simulation slightly overestimates the number of clients seen com-
pared to historic data, and because additional work—including administrative duties and
calling clients regarding test results—is not captured, these staffing results underestimate
the true staffing requirements at the UPCC. The original UPCC staffing levels were chosen
based on average demand projections made before the clinic began operating. In compar-
ison, my approach makes staffing recommendations based on UPCC data and modeled
client-centred outcomes that directly correspond to client access to care. To my knowledge,
no other studies optimize team-based primary or urgent care using time-dependent client
access measures.

All three staffing optimization procedures in my analysis (ISA/ILP, sequential OptQuest,
and joint OptQuest) were performed using simulations with an arbitrarily large number
of exam rooms, and the resulting schedules do not always meet access targets under the
current exam room capacity. This highlights the impact of limited rooms on client access,
and suggests that strategies are needed to maximize the utilization of physical space.

In this application, ILP was the most computationally efficient approach to shift-based
staffing, since it did not require any further simulation calls beyond those needed to iden-
tify the ISA small-interval requirements, which was under 20 simulation calls for each day.
The ILP formulation was solved independently for each staffing discipline and day of the
week, and it quickly determined staffing for a range of shift options that incorporated timing
options for staff breaks. In comparison, simulation optimization was substantially more com-
putationally intensive, often exceeding hundreds of simulation calls for each day. However,
the ILP approach has been known to lead to over staffing [45, 83], and in my application,
simulation optimization was more accurate, since it identified a schedule that addresses
simulation access targets and uses less staff than the ILP solution. However, this accuracy
decreased when simulation optimization was performed to jointly optimize for both nurse
and physician staffing, under which a local optima was returned. While sequential simula-
tion optimization for each staff type produced the smallest estimated staffing requirements,
it also used the most simulation calls, and on some days the results do not meet access tar-

64



gets since the number of runs per simulation call was lower in the optimization procedure
than comparison.

The trade-off between accuracy and efficiency of these optimization approaches highlight
the challenge of finding useful simulation optimization results under the increased number
of variables needed to consider team-based care and multiple shift options that incorporate
the impact of breaks. To my knowledge, no other studies optimize small-interval or shift-
based staffing for multiple types of staff by using time-dependent expected proportions of
client-centred outcomes.

7.2 Limitations and Future Work

Ongoing collaboration with the UPCC will support further extension and implementation
of the analysis in this thesis. Future work will extend the analysis to optimize staffing for so-
cial workers and longitudinal care services at the UPCC, which will open later this year. For
these services, the stochastic modeling of booked appointments can extend to consider KPIs
for the indirect wait time between appointment booking and the next available appointment
slot. The simulation for both urgent and longitudinal care can be used to explore differ-
ent workflow procedures at the UPCC, including strategies to optimize the use of limited
physical space.

The analysis in this thesis focuses on a sole performance measure, but the approach
generalizes to include other client-centred access indicators. Future analysis could incorpo-
rate modeled client wait times, which are an important part of primary care access [19].
Further work could incorporate the impact of client acuity levels on client access and could
use acuity specific access targets, including models where priority accumulates over time
[36, 157].

The staffing optimization results in this thesis motivate further investigation into more
accurate and efficient hybrid simulation optimization techniques, which could incorporate
the impact of limited exam room capacity. The optimization objective in my analysis mini-
mized total staffing hours and some simulation optimization results demonstrated a substi-
tution between staff types. Future work could incorporate objectives that weigh the relative
staffing costs for each healthcare discipline. Additional analysis could explore the sensitiv-
ity of the staffing results to different model parameter choices and inform robust staffing
optimization. The model can be combined with parameter projections to provide long-term
capacity planning.

7.3 Conclusions

The analysis in this thesis provide a new approach to optimize staffing based on client-
centred access indicators in a team-based urgent care context. By combining embedded
simulation with optimization searches, my analysis quantifies the interplay between staffing
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levels, team-based care interaction, and client access to care, which is an acknowledged need
in primary care [153]. The results make staffing recommendations that can improve care
access by maintaining targets throughout the day and week. The approach in this thesis
can be applied to other urgent care centres [137] or walk-in clinics [29].

To address team-based staffing, my analysis extends stabilization techniques [44] to in-
corporate multiple staff types and observation-based performance measures. The work in
this thesis contributes to the larger body of work on staffing optimization and capacity
planning. This approach is more broadly applicable in settings outside of urgent care that
provide interdisciplinary services, for example in emergency departments [44, 155], collabo-
rative emergency centres [38, 165], intensive case management [141], and the organizational
structure of corporate work teams [158].

In the BC context, additional urgent and primary care centres are being established
as part of a provincial initiative to increase healthcare and reduce low-acuity emergency
department admissions [134, 78]. My approach can inform the successful implementation of
team-based urgent and primary care care and contribute to improving access to community-
based healthcare. Ongoing collaboration will incorporate this analysis into a learning health
system that supports continuous operational improvement [56, 124].
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Appendix A

Extended Iterative Staffing
Algorithm

This appendix section describes the details of the sequential-EPA-ISA approach, which I
introduce to solve equation (4.4) and find the minimum small-interval staffing for multi-
ple staff disciplines so that small-interval EPA targets are met. The sequential-EPA-ISA
approach extends the ISA framework of Defraeye and Van Niuewenhuyse [44] to address
multiple staff disciplines in a care network and access targets on a performance measure
for the expected proportion of clients receiving service, which is referred to in this thesis as
EPA and defined in Section 4.3.

The pseudo-code in algorithms 1 and 2 describe phase I and phase II of the presented
EPA-ISA approach, which extend the two phase ISA framework of Defraeye and Van Ni-
uewenhuyse [44] to address staffing requirements for a single staff type in a service network
using EPA constraints. Both phases of the EPA-ISA algorithm are then applied sequentially
to each staff discipline in the sequential-EPA-ISA approach 3. See Subsection 4.4.1 for a
higher level discussion of the ISA framework and the extensions made in the EPA-ISA and
sequential-EPA-ISA algorithms.

The presented EPA-ISA phase I and II algorithms optimize staffing levels for a single staffing
discipline m that provides set of associated services Km in a queue network. In the phase I
algorithm 1, an initial staffing requirement guess for staff m is made using the product
of the daily average arrival rate λ̄k multiplied by the average service time 1/μk, which
is added together for each relevant service k. The algorithm then iteratively updates the
staffing requirements for discipline m in each staffing interval according to simulation EPA
estimates. For each staffing interval ih with number h, staffing levels are updated according
to estimated EPA values in an associated set of measurement intervals with indices in Gh,k

for each service. The set Gh,k is defined based on a specified number of extra time intervals
ηk for each service chosen according to equation (4.5). For each staffing interval and service,
an amplification factor Am,ih,k is used, which is greater than 1 if the minimum EPA in the
associated measure intervals is below the targets, and less than one if the EPA targets are
satisfied. Staffing in each interval is scaled up or down according to the maximum associated
amplification factor across each relevant service. If the associated EPA targets are satisfied,
then staffing can be scaled down; whereas staffing is increased if the EPA targets are not
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satisfied in any associated interval for some relevant service. In each phase I iteration, if the
simulated solution meets all targets, then the current optimal required staffing S∗

m and cost
c∗

m are updated to the current solution and current cost cj
m; otherwise, the current iteration

index j is added to a set of infeasible indices Bm. Here the variable wm,i is used to reflect
the staffing cost of discipline m in interval i. Lastly, phase I checks three stopping criteria,
namely whether a staffing solution has been repeated, whether the squared coefficient of
variation of EPA values SCV j

k are small and alternate between iterations, or whether a
maximum number of iterations MaxIter1 has been reached.

Phase II of the EPA-ISA algorithm 2 draws on most of the variables used in the phase I
algorithm. Since the solution(s) found in phase I do not necessarily satisfy all the EPA
constraints, phase II incrementally increases the staffing levels for each solution to address
unsatisfactory EPA estimates—under the same set Gh,k of measurement indices for each
interval. For each infeasible staffing iterate indexed in set Bm, phase II draws on the EPA
estimates from phase I to increase the staffing requirement by one in each unsatisfactory
interval. If the updated staffing cost cl

m is less than the current optimal, then phase II will
reassess the simulation EPA estimates for the new staffing level and continue to increment
as needed until either the EPA targets are satisfies, the staffing cost cl

m is not longer ad-
vantageous, or a maximum number of iteration MaxIter2 is reached. To increase efficiency,
phase II considers each infeasible solutions in order of increasing maximum deviation from
the staffing targets in variable ol

m; when this metric is the same for multiple staffing solu-
tions, the algorithm uses the lowest cost schedule to break ties. Here the pre-calculated cost
cl

m already incorporates the first staffing increment in phase II.

The sequential-EPA-ISA approach in Algorithm 3 loops over each staffing discipline in order
of client interaction at the centre, and sequentially applies EPA-ISA phases I and II. After
each iteration, the resulting optimal staffing vector S∗

m for staff discipline m is incorporated
into an overall staffing matrix, that is used as input for subsequent iterations.

81



Algorithm 1 EPA-ISA Phase I (m, S̃(−m))

1: Initialize staffing S0
m,i ← �

∑
k∈Km

λ̄k

μk
� ∀ i ∈ I and S0

m′,i ← S̃m′,i ∀ m′ ∈ M \ m, i ∈ I

2: Initialize iteration counter j ← 0
3: Initialize optimal cost c∗

m ← ∞ and infeasible set Bm ← ∅
4: Initialize flag STOP ← FALSE
5: Choose lag factor ηk ← �σk

Δ �, ∀k ∈ Km

6: Set interval assignment Gh,k ←
{

max
(
0, h − ηk

)
, ..., min

(
h, |Ic|

)}
∀ih ∈ Is, k ∈ Km

7: while STOP == FALSE do
8: Simulate the queueing network to estimate ̂EPASj

k,k(i), ∀ k ∈ Km, i ∈ I
9: Update the staffing requirements:

10:

Am,ih,k ← 1 +
maxg∈Gh,k

{
1 − ̂EPASj

k,k(ig)
} − αk,k

2(j + 2)αk,k
, ∀ih ∈ Is, k ∈ Km

11:
Am,i = max

k∈Km

{
Am,i,k

}
, ∀i ∈ Is

12:

Sj+i
m,i ←

{
�Sj

m,iA
j
m,i� Aj

m,i ≥ 1
max(�Sj

m,iA
j
m,i�, 1) Aj

m,i < 1
∀i ∈ Is

13: Sj+i
m′,i = Sj

m′,i ∀ m′ ∈ M \ m, i ∈ I
14: Update staffing costs and feasibility:
15: cj

m =←
∑

ih∈Is

{
wm,ih

sj
m,ih

+ wm,ih
�

(
∃k ∈ Km, g ∈ Gh,k : (1 − ̂EPASl

k,k(i)) > αk,k)
)}

16: if (1 − ̂EPASj

k,k(i)) < αk,k) ∀k ∈ Km, i ∈ Ic then
17: if cj

m < c∗
m then

18: c∗
m ← cj

m and S∗
m ← Sj

m

19: end if
20: else
21: Add j to Bm

22: ol
m ← maxi∈Is,k∈Km

{ (1− ̂

EP ASj

k,k
(i))−αk,k

αk,k

}
23: end if
24: Evaluate stopping criteria:
25: SCV j

k ← squared coefficient of variation of maxg∈Gh,k

{
1 − ̂EPASj

k,k(ig)
}

over ih ∈
Is, ∀k ∈ Km

26: if ∃ l < j + 1 : Sl
m,i = Sj+1

m,i ∀i ∈ Is then
27: STOP ← TRUE
28: else if j >= 2 and SCV j

k < 1∀k ∈ Km and SCV j
k alternates ∀k ∈ Km then

29: STOP ← TRUE
30: else if j>= MaxIter1 then
31: STOP ← TRUE
32: end if
33: j ← j + 1
34: end while
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Algorithm 2 EPA-ISA Phase II (m)
Input: All stored variables from phase I

1: for l ∈ Bm, in order of increasing ol
m and using cl

m to break ties do
2:

Sl
m,i ←

⎧⎨
⎩Sl

m,i + 1 if (1 − ̂EPASl

k,k(ig)) > αk,k) ∃g ∈ Gh,k, ∃k ∈ Km

Sl
m,i otherwise

∀i ∈ Is

3: q ← 0
4: while cl

m < c∗
m and q < MaxIter2 do

5: Simulate the queueing network to estimate EPA for the new staffing matrix Sl

6: if ∃k ∈ Km, i ∈ Ic : (1 − ̂EPASl

k (i)) > αk) then
7:

Sl
m,i ←

⎧⎨
⎩Sl

m,i + 1 if ∃k ∈ Km ∃g ∈ Gh,k (1 − ̂EPASl

k,k(ig)) > αk,k)
Sl

m,i otherwise
∀i ∈ Is

8: cl
m ←

∑
i∈I

wm,is
l
m,i

9: else if cl
m < c∗

m then
10: c∗

m ← cl
m

11: S∗
m ← Sl

m

12: end if
13: q ← q + 1
14: end while
15: end for
16:
Output: S∗

m ← Sl
m

Algorithm 3 Sequential-EPA-ISA

1: Initialize staffing matrix Sm,i ← �
∑

k∈Km

λ̄k

μk
� ∀ i ∈ I and ∀ m ∈ M

2: for m ∈ M , by order of client interaction do
3: Run EPA-ISA phase I (m, S(−m))
4: Run EPA-ISA phase II (m) to get S∗

m

5: Sm,i ← S∗
m

6: end for
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Appendix B

Adjustment for Overlapping
Service Times

This appendix section describes an approach to adjust service time estimates to accounting
for overlapping records for the same physician. The basic steps of this approach are described
in Algorithm 4. The core adjustment in Line 5 reduces service times during each interval of
overlap, where the magnitude of reduction is equal to the interval duration split evenly by
the number of clients recorded as receiving treatment during that time. In other words, for
every interval that a physician is recorded as multi-tasking to providing care for multiple
clients the algorithm assumes that they divide their time equally between those clients.
By adjusting service times, this approach approximates the time spent in the provision of
treatment for each individual and is a simplification of both human behavior and ambiguous
data logging.

Algorithm 4 Modifying service time estimates for overlapping care.
1: Create an initial service time estimate for each client visit, calculated as the length of

the interval between each seen and departure time
2: for Each individual provider p and date d do
3: Construct a time series for the number of clients b recorded as being seen by provider p

at time t on day d.
4: for Each time interval t̃ where there is a constant non-zero number of clients b being

seen by provider p. do
5: Reduce the estimated service time by T/b for each of these clients, where T is the

length of time interval t̃.
6: end for
7: end for

84


