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Abstract

Chapter 1 develops a continuous-time, heterogeneous agents version of the Barro-Rietz
rare disasters model. Following Gabaix (2012), the disaster probability is assumed to be
time-varying. The economy consists of two types of agents: (1) a “rational” agent, who
updates his beliefs using Bayes Rule, and (2) a “robust” agent, who updates his beliefs
using a pessimistically distorted prior. Following Hansen and Sargent (2008), pessimism is
disciplined using detection error probabilities. Disaster risk is assumed to be nontradeable.

The model is calibrated to US data, and focuses on three disaster episodes: (1) The Great
Depression of 1929-33, (2) The Financial Crisis of 2008-09, and (3) The Covid Pandemic
of 2020. The key contribution of the paper is to show that the model can replicate the
observed spike in trading volume that occurs during disasters. Trading produces endogenous
low frequency dynamics in the distribution of wealth. The relative wealth of robust agents
gradually declines during normal times, but rises sharply during disasters. These results
sound a note of caution when interpreting short-run movements in the distribution of wealth.

Chapter 2 examines the market selection hypothesis in a continuous time asset pricing model
with jumps. It is shown that the hypothesis is valid when agents have log preferences. The
result is robust as it does not depend on whether markets are incomplete. Jumps affect
long-run wealth dynamics through a redistribution channel: Disasters lead to large wealth
redistribution as agents with heterogeneous beliefs about disasters have different exposures
to risky assets. Using tools from ergodic theory, I prove a novel result that generalizes the
rationality concept in the existing literature: an agent endowed with the optimal filter will
outperform other agents in complete financial markets asymptotically.

Chapter 3, a joint paper with Xiaowen Lei, develops a continuous-time overlapping gener-
ations model with rare disasters and agents who learn from their own experiences. Using
microdata about household finance in China, we establish that economic disasters such as
the Great Leap Forward make investors distrustful of the market. Generations that experi-
ence disasters invest a lower fraction of their wealth in risky assets, even if similar disasters
are not likely to occur again during their lifetimes. “Fearing to attempt” therefore inhibits
wealth accumulation by these “depression babies” relative to other generations.
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Chapter 1

Fear and Trading

1.1 Introduction

On September 29, 2008, the S&P 500 dropped more than 8%. By itself, this was not sur-
prising. On that same day, Congress failed to pass a bank bailout bill, which raised doubts
about the stability of the US financial system. In response, risk premia increased and future
earnings prospects deteriorated. The canonical Lucas (1978) model can easily explain why
such adverse news could trigger a market crash. However, more puzzling is the fact that
trading volume spiked on that day as well. It more than doubled. The Lucas model predicts
zero trading in response to news.

A simple way to account for trading in a Lucas-style model is to introduce heterogeneous
prior beliefs. Agents “agree to disagree”. Observed trading in response to public signals,
such as Congressional deliberations, provides strong evidence in support of heterogeneous
priors (Kandel and Pearson (1995)). Unfortunately, existing heterogeneous beliefs models
suffer from two drawbacks. First, since they concern priors, almost by definition they lack
discipline, and are therefore difficult to test. Where do these prior differences come from?
Second, why doesn’t learning cause these prior differences to “merge” (Blackwell and Dubins
(1962), Morris (1996))? Shouldn’t trading gradually dissipate in the presence of learning?

This paper responds to both these criticisms. It responds to the first by engaging in
a disciplined retreat from Bayesian Decision Theory. In particular, I assume some agents
adhere to the “robust” decision theory of Hansen and Sargent (2008).1 A robust agent’s
prior is endogenous. It is the solution of a dynamic zero sum game, and will change in
response to changes in the environment. I respond to the second criticism by making the
learning environment challenging. Specifically, I place agents into the rare disasters setting
of Rietz (1988), Barro (2006), Gabaix (2012), and Wachter (2013), in which agents must
learn about the ever changing arrival rate of infrequent disasters. True, if agents had data

1Gilboa and Schmeidler (1989), Klibanonoff, Marinacci, and Mukerji (2005), Maccheroni, Marinacci, and
Rustichini (2006), and Strzalecki (2011) provide axiomatic foundations for robust decision theory.
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going back to Roman times, then perhaps their priors would merge, but using the detection
error probabilities of Hansen and Sargent (2008), I show that even with 100 years of data
the robust agent has little reason to doubt his prior.2

If all we cared about were prices and aggregate quantities, then one might argue that
trading volume is irrelevant. Versions of the complete markets models of Lucas (1978)
and Barro (2006) are all you need. Even with homogeneous beliefs, one could generate
at least some portfolio rebalancing trade by introducing forms of preference heterogeneity
(see, e.g., Dumas (1989)). However, with complete markets, trading volume is necessarily
indeterminant, as it depends on which of an arbitrarily large number of financial market
structures are used to complete the market. The more complex and state-contingent the
asset, the less it needs to be traded to support the Pareto Optimal allocation (Arrow
(1964)).3

However, in keeping with much of the recent literature in macroeconomics, this paper
is not just interested in prices and aggregate quantities. It is also interested in how belief
heterogeneity influences the distribution of wealth (Coury and Sciubba (2012), Kasa and Lei
(2018), Lei (2020)). Asset trade is the key conduit by which belief heterogeneity influences
the distribution of wealth. Intuitively, one might suspect that agents with distorted beliefs
would eventually be driven from the market. Blume and Easley (2006) show that with
complete markets this is generally the case. However, with incomplete markets, this need
no longer be true (Beker and Chattopadhyay (2010), Cogley, Sargent, and Tsyrennikov
(2014)). In fact, wealth dynamics can be reversed. This is important for the results in this
paper, since I assume markets are incomplete. There are two independent shocks, a discrete
jump process and a continuous Brownian motion. So even with continuous trading, one
would need at least three independent assets to complete the market. However, here agents
can only trade a (zero net supply) bond and an equity claim. No options or other disaster-
contingent assets are allowed. Moreover, for analytic simplicity, I adopt time-additive log
preferences, so that income and substitution effects exactly offset each other. I show that
the resulting wealth distribution dynamics feature recurrent long-run cycles, in which the
relative wealth of the robust agent gradually declines during normal times, but then spikes
up following disasters.4

2In a forward-looking control context, Hansen and Sargent (2008) show that doubts can persist, even with
an infinite sample, if agents discount future increments to relative entropy in the same way they discount
future utility. In a backward-looking robust filtering context, presumably the same result could be obtained
if agents discounted old data.

3Interestingly, trading volume has grown in recent decades, despite (or perhaps because of) rapid growth
of derivatives and other state-contingent assets. This suggests that preference induced portfolio rebalancing
is not the only factor at work behind trading volume.

4More generally, Borovicka (2020) shows that long-run survival depends on the ability to separate in-
tertemporal substitution, which determines savings behavior, from risk aversion, which determines portfolio
allocation.
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Although heterogeneous priors are perhaps the most natural way to generate asset trade,
the recent behavioral finance literature typically argues that overconfidence is what moti-
vates trade (see, e.g., Statman, Thorley, and Vorkink (2006)). Of course, if everyone is
overconfident in exactly the same way, there would be no trade. So this literature also ar-
gues that confidence varies across individuals, e.g., men are supposedly more overconfident
(Barber and Odean (2001)). Interestingly, this paper instead argues that trade is based on
fear, not confidence. When some agents fear model misspecification, and in response for-
mulate robust savings and portfolio policies, they will trade with those who are less fearful.
Trade only requires a difference of opinion. The sign of this difference is immaterial.

1.1.1 Related Literature

The famous “No Trade Theorem” (Milgrom and Stokey (1982), Tirole (1982)) states that
rational investors with common priors will not trade if they start from a Pareto efficient
allocation, even in the presence of asymmetric information. One strand of the literature that
circumvents the “No Trade Theorem” is the heterogeneous beliefs (differences of opinion)
literature. These models rely on the assumption that investors have heterogeneous priors
and differ in their interpretations of information. Harrison and Kreps (1978), Scheinkman
and Xiong (2003), Basak (2005) and Dumas et al. (2009) focus on the implications of het-
erogeneous expectations, and how disagreement among investors influences prices. Harris
and Raviv (1993), Kandel and Pearson (1995), Cao and Ou-Yang (2008) and Banerjee and
Kremer (2010) emphasize the importance of trading volume in differences of opinion mod-
els. There is ample empirical evidence in support of the heterogeneous priors assumption.
For example, Hong and Stein (2007) report that trading volume spikes right after earnings
are announced, and remains high up to a week. This contradicts the prediction of a com-
mon priors model: public information should reduce disagreement, not increase it. Another
approach that can generate trading is asymmetric information and liquidity shocks. Liquid-
ity shocks ensure that these models are not subject to the “No Trade Theorem” because
investors trade for non-informational reasons. A shortcoming of this approach is that the
volume of liquidity trades is exogenous.

Many papers study market crashes under the assumption of complete markets. Bates
(2008) investigates the importance of heterogeneous attitudes toward crash risk and con-
cludes that the less crash averse agents sell insurance in options markets. Benzoni et al.
(2011) explain market crashes without corresponding jumps in fundamentals (Black Mon-
day in 1987) using a continuous time version of the long run risk model. The focus in these
papers is on option valuation and price changes. In contrast, this paper focuses on trading
volume in an incomplete markets/rare event context. Market completeness supported by
disaster insurance tends to pacify stock market fluctuations, as agents “place their bets”
in the insurance market. This contradicts the empirical patterns that we observe during
disasters.
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This paper is most closely related to the rare disasters literature. This literature focuses
on resolving traditional asset pricing puzzles. Based on calibrated disaster probabilities and
jump distributions from the 20th century, Barro (2006) explains the equity premium puz-
zle, the risk-free rate puzzle and the excess volatility puzzle by incorporating rare disasters
into the Lucas model. Barro and Ursua (2008) provide an exhaustive summary of macroeco-
nomic crises since 1870. One interesting feature is that the distributions of consumption and
GDP are very similar during the disaster episodes included in the paper. Dieckman (2011)
discusses the interaction between heterogeneous beliefs and rare event risk with incomplete
markets. Dieckman (2011) is probably the closest to the present paper, but it centers on
asset price changes and the effects of market completion through a disaster insurance. The
main difference is that the evolution of beliefs is not a mere input to derive asset allocations
in the present paper. The central message in the present paper is the effects of belief revision
on market crashes and trading volume. Gabaix (2012) recognizes that time-varying disaster
probabilities can provide an explanation for a large set of asset pricing puzzles concerning
stocks, bonds, and options. Gourio (2012) emphasizes the importance of time-varying risk
premia, and demonstrates that a real business cycle model with disaster risk can match the
relations between macroeconomic aggregates and asset prices.

This paper also draws from the literature at the intersection of robust control and asset
pricing. Cagetti et al. (2002) build a stochastic growth model with Brownian motion and
infrequent jumps in the drift term. Robustness dictates that the decision maker chooses to
accumulate a larger stock of capital as a form of precautionary saving. Maenhout (2004) in-
troduces concern for model uncertainty into the Merton model and obtains results that lead
to a reduction in the demand for risky assets and an observational equivalence to recursive
preferences. Liu et al. (2005) investigate the effects of a concern for model uncertainty in a
jump diffusion model and demonstrate the implications for index option smirks. Hansen and
Sargent (2010) note that a pessimist thinks that good news will be short-lived, while bad
news will be persistent. They show that fear of model misspecification can explain counter-
cyclical risk premia. A novel direction in the robust control literature is time-varying fear.
Sbuelz and Trojani (2008) introduce time-varying fear as a time-varying local bound on
the size of ambiguity in a recursive multiple-priors utility context and demonstrate that it
is useful in reconciling the equity premium puzzle and the risk-free rate puzzle. Drechsler
(2013) shows that a model with time-varying fear can match the variance premium and the
volatility skew associated with index options.

The remainder of the paper is organized as follows. The next section provides motivation
by presenting some stylized facts on market crashes, trading volume, and belief heterogene-
ity. Section 3 presents the model. It shows how the martingale method can be extended to
an incomplete markets setting. Explicit analytical expressions are derived for market prices,
portfolios, and the distribution of wealth. Section 4 computes detection error probabilities
using Monte Carlo simulation methods. For the model’s benchmark parameter values, the
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robust agent’s detection error probability is in excess of 15%, even with 100 years of data.
Section 5 calibrates the model to US data, and provides plots of prices, trading, and wealth
dynamics. It shows that the model is able to replicate observed trading volume during his-
torical disaster episodes. Section 6 contains a variety of robustness checks, while Section 7
contains a brief conclusion. A technical Appendix provides proofs and derivations.

1.2 Empirical Facts About Trading Volume and Market Crashes

Two general patterns documented in the trading volume literature are relevant to under-
standing market crashes: (1) The correlation between absolute price changes and trading
volume is positive in equity markets, and (2) On average, weekly turnover on the NYSE is
about 2%, but spikes sharply during crashes (Lo and Wang (2010)).
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Figure 1.1: Log Return of The S&P 500 and Its Monthly Trading Volume (1950M1-2020M5
Detrended Natural Logs). Shaded areas are NBER recessions.

Figure 1 shows that crashes in the S&P 500 coincide with large trading volume.5 During
both the Financial Crisis of 2008 and the Covid Crisis of 2020, the market crashed by about
20%. At the same time, trading volume spiked by about 60-80%.6 Cross section data on
the S&P 500 index constituents allows us to have a better picture of the crash episodes in
2008. On September 29, the S&P 500 index dropped by 8.79%. The prices of 499 out of
the 500 constituents decreased on that day. The single day price decrease was as high as

5The log of trading volume appears to have a linear trend. A linear trend is therefore removed from the
series.

6The Covid spike is harder to see in the Figure, as it followed a period of declining trading volume, and
occurs at the boundary of the plot.
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80% (see Figure A.1 in the Appendix). The constituents’ daily turnover rates were mostly
higher than 2% (see Figure A.2 in the Appendix).

Since S&P 500 stocks are obviously large cap stocks, using raw trading volume to capture
market activity is perhaps misleading because the total number of shares outstanding has
increased over time. Turnover rates address this concern. I obtain data on trading volume
and total number of shares outstanding for the S&P 500 index constituents from the Center
for Research in Security Prices (CRSP). I calculate the turnover rate as

Turnover = total trading volume of all the constituents
total number of shares outstanding of all the constituents

Figure 2 presents monthly turnover for S&P 500 stocks from 1950 to 2020. Before 2000,
monthly turnover is mostly below 10%. After 2000, monthly turnover starts to increase at an
increasing rate until it reaches 50% during the Great Recession.7 I also fit a quadratic trend
to the monthly turnover series. The detrended monthly turnover during the Great Recession
can be as high as 30%. Although turnover decreased after the Great Recession, the COVID-
19 market crash of March 2020 was accompanied by heightened trading. Since the turnover
of S&P 500 stocks also spikes during the Great Recession, the same pattern emerges whether
I choose to measure market activity in terms of trading volume or turnover.8

7Chordia, Roll, and Subrahmanyam (2011) document that monthly turnover for S&P 500 stocks start
from below 6% per month in 1993 and reach 40% per month in 2008. They calculate the value-weighted
monthly turnover for S&P 500 stocks. The lower numbers they obtain seem to reflect the effects of market
capitalization.

8In the model, the stock is an asset with unit supply. Hence, turnover and trading volume are the same.
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Figure 1.2: Monthly Turnover of the S&P 500 Index (1950M1-2020M5) Source: CRSP. The
dashed line is a quadratic trend.

Table 1 reports correlations between monthly log price changes and trading. The full
sample correlations between trading and absolute price changes are indeed positive. The
correlations between trading and absolute price changes are much higher during the Great
Recession. This confirms that trading is very active when the S&P 500 index decreases. As
emphasized by Scheinkman and Xiong (2003), a common feature of bubble episodes is that
they also tend to coincide with frenzied trading. Hence, I also report the correlations from
April 1991 to February 2000, since the dot-com era is often described as a stock market
bubble. The correlations between absolute log price changes and trading volume during this
boom period are above 0.3.

Absolute Log Price Changes Log Price Changes
Detrended Log Volume (full sample) 0.1953 0.0487

Detrended Turnover (full sample) 0.3170 -0.1309
Log Volume (2007.12-2009.06) 0.6354 -0.3418

Turnover (2007.12-2009.06) 0.6583 -0.3459
Log Volume (1991.04-2000.02) 0.3813 0.1319

Turnover (1991.04-2000.02) 0.3407 0.1486

Table 1.1: Correlations Between Log Price Changes and Trading (1950M1-2020M5)

The key mechanism driving trading in the model is heterogeneous beliefs. Unfortunately,
beliefs are not directly observable. However, survey data is at least suggestive. Forecast
disagreement inferred from the Survey of Professional Forecasters and the Livingston Survey
exhibit some interesting patterns. Figure 3 reports the interquartile range of next quarter

7



GDP forecasts in the Survey of Professional Forecasters.9 Despite the fact that disagreement
was higher in the 1970s and 1980s, a general pattern is that disagreement tends to increase
dramatically during recessions. The disagreement spike during the second quarter of 2020 is
spectacular: the interquartile range of forecasts is 19.33% in annualized terms. The fact that
this disagreement spike dwarfs all the previous disagreement spikes is a testament to the
elevated uncertainty caused by the COVID-19 pandemic. The Livingston Survey provides
valuable information regarding economists’ forecasts about the growth rate of the S&P 500
index (see Figure 4). The interquartile range of the forecasts reach 20.9% (in annualized
terms) during the COVID-19 pandemic. This is evidence that both professional forecasters
and economists hold wide-ranging views about the prospects of the economy and the stock
market during recessions, even though they have access to the same data and models for
forecasting purposes.
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Cross-Sectional Forecast Dispersion: Next Quarter Real GDP Growth

Figure 1.3: Interquartile Range of Next Quarter GDP Forecasts in the Survey of Professional
Forecasters (1968Q4-2020Q2). Source: Survey of Professional Forecasters, Federal Reserve
Bank of Philadelphia.

9Some authors use the standard deviation to measure forecast dispersion. An advantage of the interquar-
tile range is that it limits the effects of outliers. This is important as reporting errors are inevitable in
surveys.
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Figure 1.4: Interquartile Range of the Forecasts for Growth of the S&P 500 Index (1990-
2020). Source: Livingston Survey, Federal Reserve Bank of Philadelphia. Shaded areas are
NBER recessions.

The empirical patterns suggest that economic disasters, heightened trading volume, and
disagreement spikes tend to occur simultaneously.

1.3 The Model

There are four main ingredients in the model: (1) Aggregate consumption and dividends
are exogenous, and follow jump diffusion processes; (2) The jump intensity of the common
jump component is governed by a continuous time Markov chain; (3) Robust filtering and
control determine how some investors’ beliefs about the jump intensity change; (4) Markets
are incomplete, yet log utility produces closed-form solutions to the agents’ portfolio choice
problems. Equilibrium trading dynamics can be inferred from these portfolio policies.

Consider a filtered probability space (Ω,F ,F = {F(t)}t≥0, P ). Let FW (t) be the σ-
algebra generated by a Brownian motion W (s); s ≤ t and let FN (t) be the σ-algebra
generated by a Poisson jump process N(s); s ≤ t. W (t) and N(t) are assumed to be
independent. More precisely, the σ-algebra F(t) is defined as F(t) = FW (t) × FN (t). I
consider a pure-exchange economy with a finite horizon [0, T ]. There are two types of agents.
Agent 1 (Bayesian) has no doubts. Agent 2 (robust) has an endogenous time-varying fear
of model misspecification.

The dynamics of consumption and dividend follow jump diffusion processes.

dC(t)
C(t−) = µdt+ σdW (t) + jCdN(t) (1.1)
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D(t) = C(t)ϕ (1.2)

Using Ito’s lemma, we obtain

dD(t)
D(t−) = µDdt+ σDdW (t) + jDdN(t) (1.3)

The jump sizes are denoted by jC = exp(Zt) − 1 and jD = exp(ϕZt) − 1, where Zt is a
random variable that determines the jump sizes. µD = ϕµ + 1

2ϕ(ϕ − 1)σ2 and σD = ϕσ.
The jump sizes are restricted to be in the interval (−1, 0) to ensure that the consumption
and dividend processes remain positive. The agents have equivalent probability measures
and commonly observe the aggregate dividend.10 They only have incomplete information
about the potential jump intensities of the Poisson process. To simplify the analysis, I
assume the agents know the true values of µ, σ, jC , ϕ and jD. The jump sizes jC and jD are
assumed to be constant. The parameter ϕ determines the relationship between consumption
and dividends in the economy. The separation of consumption and dividends is empirically
motivated. Longstaff and Piazzesi (2004) report that dividends are 10 times more volatile
than consumption during the post war period. More strikingly, aggregate consumption
dropped by 10% while aggregate earnings fell by 103% during the early stages of the Great
Depression.

In order to highlight the importance of business cycles, the jump intensity, λ(t), is
assumed to be governed by a n-state Markov chain in continuous time, with generator
matrix Q. Without loss of generality, assume the n states are Λ1 < Λ2 < ... < Λn. Let
Pij(t) = Pr(λ(t + s) = Λj |λ(s) = Λi).11 P(t) is the transition probability matrix with
Pij(t) as its (i, j)-th entry and the time t derivative of the transition probability matrix
is P′(t) = P(t)Q. The jumps are rare events by definition. Agents in the economy do not
have access to enough data to obtain good estimates of the statistical properties of the
rare events. The robust agent has 2 types of concerns about model misspecification: (1)
Misspecification about the potential states (jump intensities). (2) Misspecification about
the transition rates between different states (the entries in the generator matrix Q).

PROPOSITION 1.3.1. The filtering equation is

λ̂(t) = E[λ(t)|F(t)] =
n∑

k=1
Λkp̂k(t) (1.4)

10The assumption of finite horizon is important if we want to stop merging of opinions. Blackwell and
Dubins (1962) prove that beliefs converge almost surely when two Bayesians have equivalent probability
measures.

11I assume that the Markov chain is time homogeneous: the probability P r(λ(t + s) = Λj |λ(s) = Λi) does
not depend on s.
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dp̂k(t) =
∑

j

qjkp̂j(t)dt+ p̂k(t)
(Λk − λ̂(t)

λ̂(t)

)
dη̂(t) (1.5)

η̂(t) = N(t) −
∫ t

0
λ̂(s)ds (1.6)

where p̂k(t) denotes the conditional probability that λ(t) = Λk.

The filtering equation in Proposition 1.3.1 is intuitive. Consider a potential state Λk

that is higher than the current estimate of jump intensity λ̂(t). If no jumps are observed,
then the second term in (5) becomes negative and the growth of the conditional probability
of being in Λk decreases as well. If a jump is observed, then the conditional probability of
Λk increases. The filtering equation implies that investors’ beliefs will decrease smoothly as
long as they do not observe jumps.

The following two definitions allow us to measure the set of possible model misspecifi-
cations in a jump diffusion context.

DEFINITION 1.3.1. For two probability measures Q and P in a given measure space
such that Q ∈ Q (Q is absolutely continuous with respect to P), the relative entropy of Q
with respect to P is defined as

H =
∫
log(dQ/dP )dQ (1.7)

where dQ/dP is the Radon-Nikodym derivative of Q with respect to P. To simplify
notation, let L=dQ/dP. The change in the relative entropy from t to t+ ∆t is

H(t, t+ ∆t) = EL
t [logL(t+ ∆t)] − logL(t) (1.8)

The instantaneous growth rate of the relative entropy 12 is

R(L(t)) = lim
∆t→0

H(t, t+ ∆t)
∆t (1.9)

DEFINITION 1.3.2. Let θ(t) be an adapted process and ξ(t) a predictable process. tn is
a sequence of jump times. In a jump-diffusion context, the change of measure is

LW (t) = exp

(
−
∫ t

0
θ(s)dW (s) − 1

2

∫ t

0
θ(s)2ds

)
(1.10)

LN (t) = exp

(
−
∫ t

0
λ(s)ξ(s)ds

) ∏
n,tn≤t

(1 + ξ(tn)) (1.11)

L(t) = LW (t)LN (t) (1.12)

12Anderson et al. (2003) define the time derivative of relative entropy as a statistical measure of discrepancy
between models.
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The filtering problem for the robust agent is 13

min
λ̃(t)

max
Q∈Q

EQ[(λ̃(t) − λ(t))2|F(t)] (1.13)

subject to the time-varying fear constraint

R(L(t)) = lim
∆t→0

H(t, t+ ∆t)
∆t ≤ ηt (1.14)

where ηt is a time-varying bound on the instantaneous growth rate of the relative entropy.
The robust filtering problem dictates that the robust agent finds the best estimate in mean
square of the jump intensity under a worst case probability measure induced by the time-
varying fear constraint.

If the alternative models are Markov chains as well, the robust agent will be concerned
about misspecifications of the bad states and their transition rates.14 He will consider dif-
ferent values of the states (Λ̃k ̸= Λk) or different transition rates (q̃jk ̸= qjk). Time-varying
fear puts a constraint on the relative entropy between the reference model and the set of al-
ternative models. The entropy constraint will limit the agent’s choices in terms of potential
values of Λ̃k and q̃jk under consideration.

PROPOSITION 1.3.2. The robust agent’s beliefs evolve according to the robust filter

λ̃(t) = EQ[λ(t)|F(t)] =
n∑

k=1
Λ̃kp̃k(t) (1.15)

dp̃k(t) =
∑

j

q̃jkp̃j(t)dt+ p̃k(t)
( Λ̃k − λ̃(t)

λ̃(t)

)
dη̃(t) (1.16)

η̃(t) = N(t) −
∫ t

0
λ̃(s)ds (1.17)

where p̃k(t) denotes the conditional probability that λ(t) = Λ̃k.

Robust filtering amplifies belief heterogeneity about rare events after a jump is observed.
The robust agent experiences a larger revision of his expected jump intensity than the
Bayesian agent due to concern for model uncertainty.

13Hansen and Sargent (2001) refer to this as ‘constraint preferences’, as opposed to ‘penalty preferences’.

14This is an example of what Hansen and Sargent (2019) call ‘structured uncertainty’.
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COROLLARY 1.3.1. When n = 2, the condition under which the revision is larger for
the robust agent is

∑
j

q̃j2p̃j(t)dt− p̃2(t)(Λ̃2 − λ̃(t))dt+ p̃2(t)
( Λ̃2 − λ̃(t)

λ̃(t)

)
>

∑
j

qj2p̂j(t)dt− p̂2(t)(Λ2 − λ̂(t))dt+ p̂2(t)
(Λ2 − λ̂(t)

λ̂(t)

)
(1.18)

When a jump happens, if the worst case jump intensity is well above the current estimate

of the jump intensity, the terms p̃2(t)
(

Λ̃2−λ̃(t)
λ̃(t)

)
and p̂2(t)

(
Λ2−λ̂(t)

λ̂(t)

)
will dominate the other

terms.
Since multiple equivalent martingale measures exist in incomplete markets and the

agents have heterogeneous beliefs, we need to derive their agent specific stochastic discount
factors. Let r(t) be the equilibrium interest rate. The agent specific stochastic discount
factor is (i = 1, 2)

M i(t) = Li(t)
exp(

∫ t
0 r(s)ds)

(1.19)

where Li(t) is agent i’s change of measure from Definition 1.3.2. The stochastic discount
factor has the following differential form:

dM i(t) = −M i(t−)
[
r(t)dt+θi(t)dW i(t)−(λi(t)−λi

RN (t))dt−
(
λi

RN (t)
λi(t) −1

)
dN i(t)

]
(1.20)

where λi(t) is agent i’s best estimate of the jump intensity from his filter. θi(t) is agent i’s
market price of risk and λi

RN (t) = λi(t)(1 + ξi(t)) is the market price of rare event risk (the
risk-neutral jump intensity).

In our incomplete markets economy, agents have access to 2 types of assets: a bond B(t)
with 0 net supply and a risky stock S(t) with net supply of 1. Their price dynamics are as
follows

dB(t) = B(t)r(t)dt (1.21)

dS(t)+D(t)dt = S(t−)[µS(t)dt+σSdW (t)+jSdN(t)] = S(t−)[µi
S(t)dt+σSdW

i(t)+ji
SdN

i(t)]
(1.22)

where jS is the jump size of the stock price process.
Each investor’s problem is15

15Most papers in the martingale approach literature abstract from time preference. Time preference will
influence the equilibrium interest rate. If we assume the two agents have the same time preference, then
time preference will have symmetric effects on the two agents. Time preference seems unlikely to be a major
factor that drives trading volume.
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max
ci

Ei
[ ∫ T

0
u(ci(t))dt

]
(1.23)

subject to

Ei
[ ∫ T

0
M i(t)ci(t)dt

]
≤ wi(0) (1.24)

where wi(0) is agent i’s initial endowment.
The essence of the martingale approach is that it allows us to transform a dynamic

problem into a static one. It delivers the following optimality condition:

u′(ci(t)) = yiM
i(t) (1.25)

where yi is the Lagrange multiplier associated with agent i’s lifetime budget constraint.
An equivalent condition is

ci(t) = (u′)−1(yiM
i(t)) (1.26)

Given the assumption of time-additive log utility:

ci(t) = (u′)−1(yiM
i(t)) = 1

yiM i(t) (1.27)

yi = T

M i(0)wi(0) (1.28)

wi(t) = Ei[
∫ T

t M i(s)ci(s)ds]
M i(t) (1.29)

ci(t) = wi(t)
T − t

(1.30)

By Ito’s lemma for jump diffusion

dwi(t) = [...]dt+ wi(t−)θi(t)dW i(t) + wi(t−)
(
λi(t)
λi

RN (t)
− 1

)
dN i(t) (1.31)

The wealth process wi(t) is

dwi(t) = (1 − πi(t))wi(t−)dB(t)
B(t) + πi(t)wi(t−)dS(t) +D(t)dt

S(t) − ci(t)dt (1.32)

where πi(t) is the share of wealth allocated to the stock market by agent i at time t.

dwi(t) = (1 − πi(t))wi(t−)r(t)dt+ πi(t)wi(t−)[µi
S(t)dt+ σSdW

i(t) + ji
SdN

i(t)] − ci(t)dt
(1.33)
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DEFINITION 1.3.3. An equilibrium is a collection of asset prices {B, S} and a set of
consumption and portfolio choices {ci, πi} such that

1. Each agent’s consumption is optimal: the consumption plan ci maximizes lifetime
utility subject to the budget constraint and is financed by the portfolio choice πi.

2. Goods market and financial markets clear at all times. The market clearing conditions
are

c1(t) + c2(t) = D(t) (1.34)

w1(t) + w2(t) = S(t) (1.35)

π1(t)w1(t) + π2(t)w2(t) = S(t) (1.36)

The bond and stock prices are endogenous, and Proposition 1.3.3 characterizes each
investor’s perceived stock price process.

PROPOSITION 1.3.3. The stock price process is given by

S(t) = D(t)(T − t) (1.37)

µi
S(t) = µD (1.38)

σS = ϕσ (1.39)

jS = jD (1.40)

The stock price process has the same drift term, volatility term, and jump size as the
dividend process.

With incomplete markets there exists multiple equivalent martingale measures, so it
can be difficult to pin down a suitable stochastic discount factor for each agent. Using
the martingale approach, we can characterize the equilibrium with incomplete markets by
searching for the “least favorable fictitious completion”.16 When demands for non-marketed
assets are zero, the solutions under complete markets and incomplete markets coincide
(see He and Pearson (1991), Cvitanic and Karatzas (1992), Basak and Croitoru (2000), and
Dieckmann (2011)). The incomplete market setup is equivalent to a portfolio constraint that
limits the demand (and the supply) for the non-marketed assets to be zero. In the absence
of the portfolio constraint, the investors could have achieved higher utility through access
to more assets. There are two sources of uncertainty, a Brownian motion and a Poisson
jump process. An ideal setup with complete markets should allow the agents to hedge the
risks in any way they want. More precisely, the introduction of a “disaster insurance” will

16In Karatzas et al. (1991), the fictitious completion is implemented by introducing additional stocks so
that the number of random sources and the number of risky assets match. Then the incomplete market
equilibrium is obtained by searching for a complete market equilibrium in which the investors choose not to
invest in the fictitious stocks.

15



allow the agents to fully hedge the risks. Incomplete markets dictate that the market for the
disaster insurance is nonexistent and take away the agents’ ability to hedge risks. Therefore
incomplete markets decrease the maximum attainable utility. As not buying or selling the
disaster insurance is always an option, any equilibrium allocations that involve trading
of the disaster insurance should lead to higher utility. Therefore the incomplete markets
equilibrium indeed corresponds to the minimum of all equilibrium allocations in terms of
maximum attainable utility.

I follow Dieckmann (2011) and solve a minimax problem that arises from the “least
favorable fictitious completion”:

min
θi,λi

RN

[
max

ci
Ei
[ ∫ T

0
u(ci(t))dt

]
subject to Ei

[ ∫ T

0
M i(t)ci(t)dt

]
≤ wi(0)

]
(1.41)

The search for the “least favorable fictitious completion” requires finding a stochastic
discount factor that minimizes the maximum attainable utility across all potential stochastic
discount factors (the outer minimization), given that the agents maximize utility through
consumption choices (the inner maximization). The solution to this minimax problem de-
termines the agents’ portfolio holdings.

PROPOSITION 1.3.4. The portfolio holdings are 17

πi(t) = θi(t)
σS

= 1
ji

S

(
λi(t)
λi

RN (t)
− 1

)
(1.42)

θi(t) = − 1
2ji

SσS

(
ji

S(r(t) − µi
S(t)) + σS

2 −
√

4ji
S

2
λi(t)σS

2 + (−ji
S(r(t) − µi

S(t)) + σS
2)2

)
(1.43)

λi
RN (t) = 1

2ji
S

2

(
ji

S(r(t) − µi
S(t)) − σS

2 +
√

4ji
S

2
λi(t)σS

2 + (−ji
S(r(t) − µi

S(t)) + σS
2)2

)
(1.44)

In order to derive the market equilibrium, we use the martingale approach by forming
a representative agent with stochastic weights:

U(c, k) = max
c1+c2=c

u(c1) + ku(c2) (1.45)

17If we let λi(t) = 0, then the solution becomes θi(t) = µi
S(t)−r(t)

σS
and πi(t) = µi

S(t)−r(t)
σ2

S

. We obtain the
Merton solution if we disable the jump component completely.
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where k(t) is the wealth ratio between agent 2 and agent 1. From the first order condition
of the Pareto problem, we have

k(t) = u′(c1(t))
u′(c2(t)) = y1M

1(t)
y2M2(t) = w2(t)

w1(t) (1.46)

PROPOSITION 1.3.5. The optimal consumption is given by

c1(t) = D(t)
1 + k(t) (1.47)

c2(t) = D(t)k(t)
1 + k(t) (1.48)

The wealth ratio is governed by

dk(t)
k(t−) = [θ2(t)2 −θ1(t)θ2(t)+(λ1(t)−λ1

RN (t))− (λ2(t)−λ2
RN (t))]dt+[θ2(t)−θ1(t)]dW (t)

+
(
λ1

RN (t)λ2(t)
λ1(t)λ2

RN (t)
− 1

)
dN i(t) (1.49)

The equilibrium interest rate is

r(t) = µi
S(t) − σSθ

i(t) + ji
Sλ

i
RN (t) (1.50)

σS − 1
1 + k(t)θ

1(t) = k(t)
1 + k(t)θ

2(t) (1.51)

λ1(t)
λ1

RN (t)
1

1 + k(t) + λ2(t)
λ2

RN (t)
k(t)

1 + k(t) = jS + 1 (1.52)

In principle, three nonredundant securities will complete the market as there are two
random sources. For example, introducing an index option in addition to the bond and the
stock will complete the market. But an index option may not be a good choice in terms
of tractability. We consider a security that delivers tractability and fulfills the function of
disaster insurance at the same time. This security is a disaster insurance in the sense that
its payoff only depends on the jump component. Its price I(t) is:

dI(t) = I(t−)[µI(t)dt+ ji
IdN

i(t)] (1.53)

where ji
I is the jump size of the disaster insurance. The wealth process wi(t) is

dwi(t) = (1−πi(t)−πI
i (t))wi(t−)dB(t)

B(t) +πi(t)wi(t−)dS(t) +D(t)dt
S(t) +πI

i (t)wi(t−)dI(t)
I(t) −ci(t)dt

(1.54)
where πI

i (t) is the wealth share allocated to the disaster insurance by agent i.

PROPOSITION 1.3.6. Under complete markets, the portfolio holdings are
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θi(t) = σS (1.55)

πi(t) = θi(t)
σS

= 1 (1.56)

πI
i (t) = 1

jI

(
λi(t)
λi

RN (t)
− 1

)
− jSθ

i(t)
jIσS

(1.57)

λRN (t) = 1
1 + k(t)

λ1(t)
1 + jS

+ k(t)
1 + k(t)

λ2(t)
1 + jS

(1.58)

r(t) = µS(t) − σS
2 + jSλRN (t) (1.59)

The wealth ratio is governed by

dk(t)
k(t−) = [λ1(t) − λ2(t)]dt+

(
λ2(t)
λ1(t) − 1

)
dN i(t) (1.60)

COROLLARY 1.3.2. Under complete markets, the wealth ratio at time t is

k(t) = k(0)exp
(∫ t

0
(λ1(s) − λ2(s))ds+

∫ t

0
log

(
λ2(s)
λ1(s)

)
dN i(s)

)
(1.61)

Under incomplete markets, the wealth ratio at time t is

k(t) = k(0)exp
(∫ t

0
(θ2(s)2−θ1(s)θ2(s)+(λ1(s)−λ1

RN (s))−(λ2(s)−λ2
RN (s))−1

2(θ2(s)−θ1(s))2)ds

+
∫ t

0
(θ2(s) − θ1(s))dW (s) +

∫ t

0
log

(
λ1

RN (s)λ2(s)
λ1(s)λ2

RN (s)

)
dN i(s)

)
(1.62)

and the expectation of the wealth ratio is

Ei[k(t)] = k(0)exp
(∫ t

0
(θ2(s)2 − θ1(s)θ2(s) + (λ1(s) − λ1

RN (s)) − (λ2(s) − λ2
RN (s)))ds

+
∫ t

0
λi(s)

(
λ1

RN (s)λ2(s)
λ1(s)λ2

RN (s)
− 1

)
ds

)
(1.63)

In complete markets, the wealth share allocated to the stock is always one. Heterogeneous
beliefs are completely inactive in the determination of stock market trading volume. Bond
holdings and disaster insurance holdings are mirror images of each other. When we compare
the two wealth ratio equations, we notice that the main difference is that the wealth ratios
are not affected by the Brownian motion under the assumption of complete markets. But
the drift term dictates that as long as no jumps happen the wealth ratio is decreasing in
complete markets. The robust agent’s consumption share has a tendency to decrease because
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the disaster insurance will not pay off as frequently as expected. The Bayesian agent receives
higher returns and accumulates wealth at a higher rate in the absence of jumps.

1.4 Detection Error Probabilities

Suppose we have two models, A and B, with equal prior probabilities. Model A is the
reference model and model B is the worst case model. Detection error probabilities enable
us to constrain the robust agent’s concern for model misspecification in such a way that
he only considers empirically plausible alternative models. This prevents him from being
unduly pessimistic.

Specifically, we suppose the robust agent behaves as a trained econometrician. Compet-
ing models are compared using likelihood ratio tests. Defining LA as the likelihood under
the reference model and LB as the likelihood under the worst-case model, the log-likelihood
ratio is

ℓ = logLA − logLB

We are interested in the following error probabilities:

PA = Prob(ℓ < 0|A)

PB = Prob(ℓ > 0|B)

The detection error probability (DEP) is

DEP = 1
2(PA + PB)

In practice, PA and PB can be approximated using Monte Carlo simulations.

1.4.1 Detection Error Probabilities: Jump Intensities

The change of measure is

LA
W (t) = exp

(
−
∫ t

0
θ(s)dWA(s) − 1

2

∫ t

0
θ(s)2ds

)
(1.64)

LA
N (t) = exp

(∫ t

0
(λA(s) − λB(s))ds

)N(t)∏ (
λB(s)
λA(s)

)
(1.65)

LA(t) = LA
W (t)LA

N (t) (1.66)

Since we are interested in the misspecifications of the worst state in the continuous
time Markov chain, we can focus on the case where θ(s) and λB(s)

λA(s) are constants. The error
probabilities PA and PB can be expressed as
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PA = Pr(−θWA(t) − 1
2θ

2t− (λA − λB)t+N(t)log(λ
B

λA
) > 1) (1.67)

PB = Pr(θWA(t) + 1
2θ

2t+ (λA − λB)t−N(t)log(λ
B

λA
) > 1) (1.68)

If agents are not concerned about the misspecifications of the drift term in the con-
sumption process, they agree about the drift term, then θ = 0 in the above change of
measure.

The error probabilities simplify to

PA = Pr(N(t)log(λ
B

λA
)−(λA−λB)t > 1) =

∞∑
n=0

(λAt)n

n! e−λAtPr(nlog(λ
B

λA
)−(λA−λB)t > 1)

(1.69)

PB = Pr((λA−λB)t−N(t)log(λ
B

λA
) > 1) =

∞∑
n=0

(λBt)n

n! e−λBtPr((λA−λB)t−nlog(λ
B

λA
) > 1)

(1.70)

Figure 5 depicts the results when we vary the potential jump intensity associated with
the worst case model for different sample lengths. We can see that the DEP is still around
0.15 for a potential jump intensity of 0.2 with 100 years of data.
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Figure 1.5: This figure plots detection error probabilities for different potential jump inten-
sities in the bad state. The reference model has a jump intensity of 0.12 in the bad state.
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1.4.2 Detection Error Probabilities: Transition Probabilities

The probability of observing a particular sample of data gt = {gs}t
s=1 is proportional to the

product of binomial densities

Pr(gt|P11, P12) ∝ Pn11
11 (1 − P11)n12(1 − P21)n21Pn22

22 (1.71)

where nij denotes the number of transitions from state i to state j in the sample for i, j = 1, 2.
In the benchmark case, the annual transition probability matrix is

P(1) =
[

0.9 0.1
0.45 0.55

]

Now consider an alternative transition probability matrix

P∗(1) =
[

0.9 0.1
0.25 0.75

]

The DEP for these two transition probability matrices is 0.1667 based on 50000 samples.

1.5 Calibration

For annual US data from 1889 to 2009, the growth rate of real per capita consumption has
a mean of 0.0208 and a standard deviation of 0.0357.18 The sample skewness is -0.1979 and
the sample excess kurtosis is 0.9245. These numbers are consistent with occasional disasters
and fat tails.

In the model, the jump intensities are governed by a Markov chain that is consistent
with a Markov-regime switching model. Cogley and Sargent (2008) note that the estimate
for the transition probability that a recession will continue in Cecchetti et al. (2000) is
0.515 with a standard error of 0.264. This leads to a rather wide 90% confidence interval
of [0.079, 0.951]. The expected duration of the recession state ranges from 1 year to 20
years. This example demonstrates that considerable model uncertainty persists even with
100 years of US data (1890-1994). Using a large data set containing consumption data
from 24 countries, Nakamura et al. (2013) estimate a probability of remaining in a disaster
state to be 0.835 with a standard error of 0.027. The two standard deviation confidence
interval is therefore [0.781, 0.889] and the expected length of disasters ranges from 4.5 to 9
years. The uncertainty surrounding the growth rates associated with consumption disasters
is also large. The short-run and long-run shocks to consumption are normally distributed
in Nakamura et al. (2013). The mean of the short-run shock and the mean of the long-run

18The data are from Robert Shiller’s website. This is an annual series called long term stock, bond, interest
rate and consumption data.
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shock are estimated to be -0.111 and -0.025 respectively. But the corresponding standard
deviations are 0.083 and 0.121.

The benchmark model calibration is based on the following parameters.

Parameter Value (Annual Terms)
Drift term for consumption µ 0.02
Volatility for consumption σ 0.02

Jump size for consumption jC -3.45%
Jump size for dividends jD -10%

Jump size for disaster insurance jI -10%
Leverage ϕ 3

Jump intensity in the good state Λ1 0.01
Jump intensity in the bad state Λ2 0.12
Jump intensity in the bad state Λ̃2 0.15 (without jumps) or 0.20 (with jumps)

Transition probability P11 0.9
Transition probability P22 0.55

Prior probabilities [5
6 ,

1
6 ]

Time horizon T 200 years

Table 1.2: Calibration: Model Parameters

The time unit is t=1 for a year. To transform this into a daily frequency, the time step is
1/365 in the calibration results. The drift term and the volatility term in the consumption
process are consistent with historical US data, and are adopted from the rare disasters liter-
ature. The jump sizes are chosen so that the magnitude of the drop in consumption matches
the data from 2008.19 The parameter ϕ determines the relationship between consumption
and dividends. In the existing literature, this parameter is usually in the range of 3 to 5.
Here we choose the lower bound to ensure a conservative choice. The investors start with
the same prior probabilities about the 2 potential states. Their disagreement comes from
different specifications of the bad state (Λ2 for the Bayesian and Λ̃2 for the robust agent).
The choices of different jump intensities are based on the detection error probabilities in
the previous section. Time-varying fear constraint is in its most simple form: If the robust
agent observes a jump, the set of potential missspecifications under consideration will ex-
pand and his worst case scenario choice of Λ̃2 will increase from 0.15 to 0.2. The concern for
model uncertainty will slowly dissipate: the worst case scenario returns to 0.15 in 3 years.
At time 0, each agent is endowed with 0.5 shares of stock so that the initial wealth ratio is

19De Nardi et al. (2012) report that consumption dropped 3.4% from peak to trough during the Great
Recession. One potential problem is that we use the peak-to-trough consumption drop during the Great
Recession to determine the jump sizes. Usually, economic disasters unfold over several years. This issue has
been raised in Constantinides (2008). As dividend jump size affects the wealth share allocated to the stock
in the model, it will also influence the magnitude of trading volume spikes. But the results in this paper will
not change significantly if we use different jump sizes.
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1. The transition probabilities mean that an expansion will last 10 years on average and the
average length of recessions is 2.2 years. The true jump intensity that governs the dividend
process is 0.12 in the bad state. In the calibration, we choose a sample path that features
three jumps in dividends on day 853, day 30033, and day 34109 in 100 years. This sample
path is chosen so that the occurrences of disasters resemble the three disasters episodes in
the US.

A sample path with 3 jumps in 100 years is a representative sample given the true
model used in calibration. We are interested in the steady state probability distribution
(P̄ = [P̄1, P̄2]) of the Markov chain. The steady state distribution must satisfy P̄Q = 0.
Solving the set of equations and we get P̄1 = 9

11 , P̄2 = 2
11 . These probabilities characterize

the long-run behavior of the Markov chain. The probability P̄i is the long-run proportion of
time that the chain spends in state i, i = 1, 2. These probabilities also allow us to calculate
the expectation of the jump process E[N(t)] = P̄1Λ1t+P̄2Λ2t = 0.03t. The expected number
of jumps in 100 years is indeed 3.
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Figure 1.6: Robust Agent: Evolution of Conditional Probabilities and Expected Jump In-
tensity (Λ1 = 0.01, Λ̃2 = 0.15 (0.2 after a jump) , Priors = [5/6, 1/6], Dashed Line: State 1,
Solid Line: State 2.)
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Figure 1.7: Pure Bayesian: Evolution of Conditional Probabilities and Expected Jump In-
tensity (Λ1 = 0.01,Λ2 = 0.12,Priors = [5/6, 1/6], Dashed Line: State 1, Solid Line: State
2.)

Figures 6 and 7 document the changes in the conditional probabilities of the 2 states and
the corresponding expected jump intensity for the two agents. When they do not observe
any jumps, they both revise their beliefs such that their expected jump intensity keeps
falling. But once a jump is observed, the disagreement between the two agents will dra-
matically increase due to model uncertainty. The difference in belief revision has important
implications since it affects how the disagreement evolves. The disagreement shrinks at a
lower rate before a jump. But the rate increases by a lot after a jump as the speed of belief
revision is much higher for the robust agent. The elevated disagreement will lead to different
portfolio holdings and changes in the equilibrium interest rate and wealth ratio. But more
importantly, the higher disagreement will result in abnormal trading volume.
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Figure 1.8: Evolution of Trading Volume: Incomplete Markets
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Figure 1.9: Model Implied vs Actual Monthly Turnover of The S&P 500 Index (1950M1-
2020M5) (Dashed Line: Actual Detrended Turnover, Solid Line: Model Implied Turnover.)

The robust agent decreases his exposure to the stock market while the Bayesian agent
increases his wealth share allocated to the stock market right after a jump. These portfolio
holdings reflect the magnitude of their disagreement, but trading volume is directly related
to how fast the disagreement changes. There are 3 large spikes in trading volume due
to jumps in dividends and belief revisions. The monthly trading volume is 0.3 during the
month when a jump happens. This spike in trading is consistent with the detrended monthly
turnover data in which the monthly turnover spikes can be as high as 30%. Trading volume
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is generally very small without jumps in the dividends. But the monthly trading volume
after a jump is higher than the pre-jump monthly trading volume. The key mechanism that
determines how trading volume changes is the speed of belief revision. Figure 9 plots the
model implied monthly turnover and the actual detrended monthly turnover of the S&P 500
index from 1950 to 2020.20 The model can generate reasonable trading volume spikes when
there are jumps in the dividends. For example, the detrended monthly turnover in October
2008 is 33%. The model implied monthly turnover for October 2008 is 30%. Heterogeneous
beliefs based on robustness can account for 90% of the trading volume spike.
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Figure 1.10: Evolution of Wealth Share Allocated to Stock and Wealth Ratio: Incomplete
Markets (Dashed Line: Pure Bayesian, Solid Line: Robust Agent.)

The wealth ratio is governed by a jump diffusion under incomplete markets (see Propo-
sition 1.3.5). Consequently, the wealth ratio fluctuates even when there are no jumps. The
changes in dividends caused by the movements of the Brownian motion produces relative
wealth changes because the agents have different exposures to the stock market. A jump
in the dividends induces a larger loss to the Bayesian agent. The wealth ratio therefore
increases in favor of the robust agent. When a jump in dividends happens, the wealth
transfer is large because of the stock price drop. The negative jump in the wealth ratio
is mainly caused by the stock price decrease. These results are in line with the literature
that focus on the long-run survival of agents in incomplete markets.21 The market selec-

20The first model implied spike is matched to the October 2008 spike in the data.

21Due to the finite horizon assumption, we cannot rigorously examine the asymptotic properties of the
wealth ratio. However, the relevant channels that determine long-run survival are nonetheless present in this
paper.
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tion hypothesis dictates that financial markets select agents with correct beliefs in the long
run. Blume and Easley (2006) demonstrate that the market selection hypothesis may fail if
market completeness is violated. For example, an agent with pessimistic beliefs will gener-
ally allocate his financial assets in a suboptimal way. However, the pessimistic agent might
choose to save enough to compensate for his poor asset allocation. More generally, incom-
plete markets sever the close link between correct beliefs and long-run survival. Beker and
Chattopadhyay (2010) show that either some agent vanishes or the consumption of both
agents is arbitrarily close to zero infinitely often in a two agent incomplete market frame-
work. Coury and Sciubba (2012) prove that survival does not even require agents’ beliefs
to merge with the truth in incomplete markets. Both Beker and Chattopadhyay (2010) and
Coury and Sciubba (2012) provide examples in which agents with corrrect beliefs vanish
or agents with incorrect beliefs survive. We can therefore conclude that correct beliefs are
neither necessary nor sufficient for long-run survival in incomplete markets. In a similar
vein, Cogley, Sargent and Tsyrennikov (2014) study the effects of market incompleteness on
the distribution of wealth when agents have heterogeneous beliefs. In their model, one agent
knows the true endowment process while another agent learns about it through Bayesian
updating. With complete markets, the learning agent loses wealth as the asset purchased
for the recession state pays off less often than he expects. When markets are incomplete,
precautionary savings become more important as the learning agent accumulates risk-free
bonds. Eventually, both the well-informed agent and the learning agent survive but the
more knowledgeable agent is pushed to his debt limit. Market incompleteness thus acts as
a mechanism that stops the agent with incorrect beliefs from placing bets through disas-
ter insurance type securities. It is important to note that the mechanism in this paper is
slightly different from the precautionary saving channel in Cogley, Sargent and Tsyrennikov
(2014). In their setup, incomplete markets are implemented through a single bond, agents’
saving choice and portfolio choice coincide: all their savings are invested in the bond. In our
incomplete markets, agents’ saving decisions are not different. Their heterogeneous beliefs
lead to different portfolio choices: the robust agent invest more heavily in the bond while
the Bayesian focuses on the stock market.
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Figure 1.11: Evolution of Log Returns and Interest Rate
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Figure 1.12: Evolution of Risk Premium and Disagreement

The stock price reflects changes in the dividend process closely, as its expression is
S(t) = D(t)(T − t). The equilibrium interest rate decreases in a way that is consistent with
a ”flight to safety“ effect: when a jump happens, demand for safe asset will increase as the
precautionary saving motive strengthens. More precautionary savings will bring down the
equilibrium interest rate. Two types of effects affect the interest rates. The first one is a
wealth effect: when the dividends decrease, there is a transfer of wealth from the Bayesian
to the robust agent because the robust agent suffers less from the decrease in the stock
price. The interest rate has a tendency to decrease as now the overall rare event risk is
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higher. The second one is belief revision: when both agents revise their beliefs downward,
the interest rate increases as the overall rare event risk is lower. At the moment a jump
happens, these two effects reinforce each other as both agents significantly increase their
expected jump intensity in addition to a wealth transfer from the Bayesian to the robust
agent. This is why there is a large negative jump in the equilibrium interest rate. When
the dividends fluctuate due to the movements of the Brownian motion, an increase of the
dividend leads to a wealth transfer in favor of the Bayesian and both agents become more
optimistic, the two effects all contribute to a higher interest rate. But when the dividends
decrease during normal times, the two effects operate in opposite directions and the overall
effect is ambiguous. The negative jump in the equilibrium interest rate also explains the
counter cyclical risk premium. The risk premium is too small compared to the data. But
this is understandable as the risk aversion is fairly small under log utility.
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Figure 1.13: Evolution of Trading Volume: Complete Markets

From Proposition 1.3.6, we know that the wealth shares allocated to stock are both
one in complete markets. Heterogeneous beliefs do not affect stock market trading volume.
Stock trading is only driven by wealth fluctuations in this case. Figure 13 plots the daily
trading volume and monthly trading volume in complete markets : the trading volume
spikes are lower than 0.15. The lower spikes in complete markets are not surprising as large
wealth fluctuations occur when jumps happen. But the effects of belief revision are absent
as heterogeneous beliefs dictate that agents have different holdings of disaster insurance
instead of stock in complete markets.
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Figure 1.14: Evolution of Wealth Share Allocated to Disaster Insurance and Wealth Ratio:
Complete Markets (Dashed Line: Pure Bayesian, Solid Line: Robust Agent.)

The wealth ratio is governed by the jump process given in Proposition 1.3.6. The drift
term reflects the main mechanism behind the long-run survival results in complete mar-
kets: agents with more accurate beliefs invest in securities with higher returns. The jump
term appears as agents have different holdings of disaster insurance. Once a jump happens,
there is a relative wealth transfer from the Bayesian agent to the robust agent. These two
mechanisms determine how the wealth ratio evolves in complete markets. In Figure 14, we
can see that agents have very different holdings of disaster insurance. The robust agent
shorts the disaster insurance while the Bayesian acts as a buyer of the insurance.22 This
enables the Bayesian to focus on investing in securities with higher returns. Without jumps,
the wealth ratio is decreasing as the Bayesian is accumulating wealth at a higher rate. But
when a jump happens, there is a large drop of the wealth ratio due to the relative wealth
transfer. These results are also consistent with the long-run survival literature. Sandroni
(2000) examines the market selection hypothesis in complete markets and establishes that
agents with correct beliefs are indeed selected in the long run. The first theorem of welfare
economics provides a link between competitive equilibrium and Pareto optimality: equilib-
rium allocations in economies with complete markets are Pareto optimal. Blume and Easley
(2006) therefore show that the market selection hypothesis is valid in the sense that agents
with correct beliefs will be selected in Pareto optimal economies with bounded endowment.
A consequence of Pareto optimality is that heterogeneous beliefs lead to different marginal
utilities. The central question in the long-run survival literature is whether differences in

22This is because the jump size of the disaster insurance is also negative. In this case, the robust agent
shorts the disaster insurance as he expects the price to drop more frequently.

30



marginal utilities translate into different consumption shares. Kogan et al. (2017) develop
necessary and sufficient conditions for long-run survival in complete market pure exchange
economies. The only restriction is that utility functions have to be time-separable.23 The
market selection hypothesis holds as long as the curvature of the utility functions drops fast
enough when consumption drops (the relative risk aversion coefficient is bounded) or the
aggregate endowment process is bounded. Cogley and Sargent (2009) notice that various
wealth allocations can emerge in a complete market setup, depending on the initial wealth
shares and the occurrence of contractions. For example, a particular sample path that fea-
tures no contractions is clearly favorable to the agent with correct beliefs. On the other hand,
the better informed agent will suffer greatly on a sample path with many contractions. 24

1.6 Sensitivity Analysis

In this section, I discuss how the choices of different prior probabilities and concerns for
model misspecification affect trading volume. I consider four different scenarios that involve
changing one parameter in the benchmark calibration with incomplete markets.
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Figure 1.15: Evolution of Trading Volume: Different Prior Probabilities (Λ1 = 0.01,Λ2 =
0.12, Λ̃2 = 0.15 (0.2 after a jump) Priors=[1/2, 1/2])

23The results in Kogan et al. (2017) do not extend to the recursive preference case. Borovička (2020) study
the long-run survival problem with recursive preferences and heterogeneous beliefs. There are three channels
that determine long-run wealth dynamics: the risk premium channel, the speculative volatility channel and
the saving channel. The saving channel is relevant since a high enough intertemporal elasticity of substitution
dictates that the agent with negligible wealth share chooses to save more and avoids extinction.

24It is important to distinguish between survival on a path and survival in the almost surely sense. Since
we choose a sample path in the calibration exercise, our focus is on survival on a path (instead of almost
sure survival).
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If we change the prior probabilities from [5/6, 1/6] to [1/2, 1/2], then the spike in monthly
trading volume is still 0.3 (see Figure 15), the major difference from the benchmark calibra-
tion is that the trading volume at the beginning is higher in this case because the agents
have larger disagreement due to the different priors. Their adjustment from the initial allo-
cation (0.5 shares of stock each) is therefore higher. A similar pattern emerges if we allow
the robust agent to have constant fear instead of time-varying fear. When the robust agent
sets the jump intensity for the bad state to be 0.2 all the time, the trading volume spike is
still 0.3 and the trading volume during the first month is higher than the benchmark case
(see Figure 16).
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Figure 1.16: Evolution of Trading Volume: Higher Constant Fear (Λ1 = 0.01,Λ2 =
0.12, Λ̃2 = 0.20,Priors = [5/6, 1/6])

In stark contrast, if the robust agent only sets the jump intensity for the bad state to be
0.15 all the time, the trading volume spike is only around 0.12 (see Figure 17). Therefore
the model’s ability to match the trading volume spike in the data hinges on the magnitude
of disagreement spikes after jumps in dividends.
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Figure 1.17: Evolution of Trading Volume: Lower Constant Fear (Λ1 = 0.01,Λ2 = 0.12, Λ̃2 =
0.15,Priors = [5/6, 1/6])

Figure 18 plots the evolution of daily and monthly tading volume when the robust
agent is also concerned with the persistence of the bad state. If the robust agent sets the
probability that the economy will stay in the bad state to be 0.75. The expected duration
of the recession is 4 years in this case. The concern for persistence misspecification does
not alter the benchmark results. We can conclude that misspecification about the potential
states (jump intensities) is much more important in terms of explaining trading activities.
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Figure 1.18: Evolution of Trading Volume: Higher Persistence (Λ1 = 0.01,Λ2 = 0.12, Λ̃2 =
0.15 (0.2 after a jump) Priors = [5/6, 1/6], P22 = 0.75)
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1.7 Conclusion

This paper introduces a novel approach that relates heterogeneous beliefs to rare disasters.
The key mechanism is a time-varying fear of model misspecification. The model generates
plausible dynamics for both prices and trading volume. The results also show that trading in
the stock market in response to rare events has important distributional consequencs, since
investors choose different exposures to financial risks based on their beliefs. An important
advantage of the model in this paper relative to other heterogeneous beliefs models is that
robust decision theory lends discipline to the specification of belief heterogeneity.

I used log preferences in this paper to obtain closed-form solutions, which helps to
clarify the underlying dynamics. Unfortunately, the price we pay for this clarity is that
we cannot fully capture the historical equity premium and risk-free rate. A larger equity
premium would likely reinforce the paper’s results. Therefore, a useful extension would be
to numerically solve a version with CRRA or recursive preferences.
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Chapter 2

The Market Selection Hypothesis
and Rare Disasters

2.1 Introduction

An important question in economics is whether agents with inaccurate beliefs can survive
and influence prices in financial markets. If they cannot, then only agents with accurate
beliefs will survive and dictate market prices. This is the market selection hypothesis. The
intuition that markets should eventually select agents whose beliefs are closest to the truth
is certainly appealing to economists. This conjecture provides support for both the efficient
market hypothesis and rational expectations.

One major insight in the existing literature is that the market selection hypothesis only
holds in complete markets. Another insight is that maximizing expected utility is not the
same as maximizing wealth. Wealth accumulation depends on expected log returns and
saving behavior. Therefore, expected returns, portfolio volatility and saving are the main
channels that determine long run survival in financial markets.

Why do incomplete markets have different implications for the market selection hypothe-
sis? Which channel is responsible for the differences? In this paper, I test the market selection
hypothesis in a continuous time asset pricing model with two agents that accommodates
both complete and incomplete markets. An essential feature is that the endowments can
jump. I show that the market selection hypothesis is valid when agents have log preferences.

One of the most notable features of the stock market is that stock market crashes
happen. Figure 1 plots the monthly log returns of the S&P 500 between 1950 and 2020. The
data show that although the monthly log returns are mostly between 5% and -5%; market
crashes happen sporadically in the US. The market crashes from the Great Recession and
the COVID-19 pandemic really stand out. They both produced a roughly 20% drop in the
index. Another well-known empirical fact about stocks is that they consistently outperform
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Figure 2.1: Log Returns of The S&P 500 (1950M1-2020M5). Shaded areas are NBER re-
cessions.

bonds by a high margin. This is the equity premium puzzle.1 The above empirical patterns
suggest that an important trade-off is involved in stock investments. To reap the benefits
of higher returns, investors need to allocate more wealth to the stock market. But a higher
exposure to the stock market may translate into large losses when stock market crashes.

Do people have different exposures to the stock market? Wolff (2021) report that the
top 1% US households in terms of wealth hold 25.8% of their total assets in the form of
stocks. The households in the middle three quintiles are less exposed to the stock market
as stocks only represent 8.6% of their assets.2 In this paper, I focus on the case in which
heterogeneous beliefs lead to differential exposures to the stock market. Moreover, market
crashes will trigger large wealth redistribution.

Jumps are important in the sense that they influence wealth dynamics in the long run.3

But in this paper, the wealth redistribution channel is not strong enough to invalidate the
market selection hypothesis. When both agents have log preferences, wealth accumulation
and utility maximization are no longer separated, long-run survival is determined by the log
optimal rule. An immediate implication is that an agent with irrational beliefs will vanish
as his portfolio choices are further away from those dictated by the log optimal rule. A

1Interestingly, some economists view rare disasters as a potential explanation for the puzzle. See Barro
(2006) and Barro (2009).

2The data are from the 2019 Survey of Consumer Finances.

3In comparison, a Brownian motion will not affect wealth dynamics when asset prices are governed by
diffusion processes. This is a result of the strong law of large numbers for Brownian motion. An example is
provided in section IV.
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rational agent, on the other hand, will survive as his portfolio choices follow the log optimal
rule. This result is robust as it holds in both complete and incomplete markets.

On the surface, the above result seems to contradict the many existing results in the lit-
erature suggesting that the market selection hypothesis tends to fail in incomplete markets.
But the results in this paper reveal that the main channel driving the existing results is the
saving channel. When both agents have log preferences, their saving behavior is identical
given that they have the same discount rate. So if the saving channel is deactivated, only
the agent with rational beliefs survive. Without the possibility of oversaving, the agent with
irrational beliefs cannot reverse the effects of poor asset allocation.

Using results from ergodic theory, I establish that the market selection hypothesis is
valid even if both agents cannot observe the true state. If an agent is not endowed with
the optimal filter, then he will vanish in the long run. This result is relevant as hidden
Markov models become more and more popular in the asset pricing literature. The intuition
behind this result is that the optimal filter’s time average loss is asymptotically smaller than
other strategies on almost all sample paths under certain conditions. The time average loss
determines long-run survival in a hidden Markov model with complete markets.

2.2 Literature

The market selection hypothesis is a long standing hypothesis in the economics literature.
The conjecture that agents with rational beliefs should prevail in the long run is certainly
plausible. The existing literature, however, establishes that the fate of agents in financial
markets is determined by a number of factors: beliefs, market structure and preferences.

In complete markets, beliefs turn out to be the most important factor. Blume and
Easley (1992) establish that agents who follow the log optimal rule survive in the long run
when saving is exogenous. Sandroni (2000) proves that agents with accurate beliefs are
indeed selected in complete markets with bounded endowments. Blume and Easley (2006)
further generalize the result: the market selection hypothesis is valid in Pareto optimal
economies with bounded endowments. Yan (2008) shows that elasticity of intertemporal
substitution also matters if endowment is unbounded. The main insight in the literature
is that agents with accurate beliefs will allocate more consumption to paths with high
probability according to the true model and this mechanism determines their survival in
the long run. But this insight only applies in the complete market setup.

When markets are incomplete, it is more difficult to obtain clear-cut results about long-
run survival. Blume and Easley (2006) demonstrate that the market selection hypothesis
may fail if market completeness is violated. They provide examples in which agents with
irrational beliefs might choose to save enough to compensate for poor asset allocation. Beker
and Chattopadhyay (2010) show that either some agent vanishes or the consumption of both
agents is arbitrarily close to zero infinitely often in a two agent incomplete market frame-
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work. Coury and Sciubba (2012) prove that survival does not even require agents’ beliefs
to merge with the truth in incomplete markets. Both Beker and Chattopadhyay (2010) and
Coury and Sciubba (2012) provide examples in which agents with corrrect beliefs vanish
or agents with incorrect beliefs survive. We can therefore conclude that correct beliefs are
neither necessary nor sufficient for long-run survival in incomplete markets. In a similar
vein, Cogley, Sargent and Tsyrennikov (2014) study the effects of market incompleteness on
the distribution of wealth when agents have heterogeneous beliefs. When markets are in-
complete, precautionary savings become more important as the learning agent accumulates
risk-free bonds. Eventually, both the well-informed agent and the learning agent survive
but the more knowledgeable agent is pushed to his debt limit.

Borovicka (2020) shows that preferences also play an important role in determining
survival. In a continuous time asset pricing model with complete markets, two agents are
endowed with identical recursive preferences and heterogeneous beliefs about the growth
rate of the aggregate endowment. For wide ranges of preference parameter values, the agent
with less accurate beliefs can survive or even dominate, especially in the case where risk
aversion is sufficiently higher than the inverse of intertemporal elasticity of substitution.

2.3 The Model

Consider a filtered probability space (Ω,F ,F = {F(t)}t≥0, P ). Let FW (t) be the σ-algebra
generated by a Brownian motion W (s); s ≤ t and let FN (t) be the σ-algebra generated by
a Poisson jump process N(s); s ≤ t. W (t) and N(t) are assumed to be independent. More
precisely, the σ-algebra F(t) is defined as F(t) = FW (t)×FN (t). I consider a pure-exchange
economy with infinite horizon .

The dynamics of dividend follow a jump diffusion process.

dD(t)
D(t−) = µDdt+ σDdW (t) + jDdN(t) (2.1)

The jump size jD is restricted to be in the interval (−1, 0) to ensure that the dividend
process remains positive. There are two types of agents: 1 and 2. The agents have equiva-
lent probability measures and commonly observe the aggregate dividend. They only have
incomplete information about the potential jump intensities of the Poisson process λ(t). To
simplify the analysis, I assume the agents know the true values of µD, σD and jD. The jump
size jD is assumed to be constant.

Denote agent i’s beliefs about λ(t) as λi(t), i = 1, 2. The agents have to agree about the
aggregate dividend. The following consistency requirement holds.

dD(t)
D(t−) = µDdt+ σDdW (t) + jDdN

1(t) = µDdt+ σDdW (t) + jDdN
2(t) (2.2)
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The above consistency condition tells us that the agents have to agree about whether a
jump happens4:

dN1(t) = dN2(t) =
{

0 if no jumps happen at time t,
1 if a jump happens at time t,

The following definition is useful in the derivation of stochastic discount factors.

DEFINITION 2.3.1. Let θ(t), λ(t) and ξ(t) be predictable processes. tn is a sequence of
jump times. In a jump-diffusion context, the change of measure is

LW (t) = exp
(

−
∫ t

0
θ(s)dW (s) − 1

2

∫ t

0
θ(s)2ds

)
(2.3)

LN (t) = exp
(

−
∫ t

0
λ(s)ξ(s)ds

) ∏
n,tn≤t

(1 + ξ(tn)) (2.4)

L(t) = LW (t)LN (t) (2.5)

Since multiple equivalent martingale measures exist in incomplete markets and the
agents have heterogeneous beliefs, we need to derive their agent specific stochastic discount
factors. Let r(t) be the equilibrium interest rate. The agent specific stochastic discount
factor is (i = 1, 2)

M i(t) = Li(t)
exp(

∫ t
0 r(s)ds)

(2.6)

where Li(t) is agent i’s change of measure from Definition 2.3.1. The stochastic discount
factor has the following differential form:

dM i(t) = −M i(t−)
[
r(t)dt+θi(t)dW i(t)−(λi(t)−λi

RN (t))dt−
(
λi

RN (t)
λi(t) −1

)
dN i(t)

]
(2.7)

where θi(t) is agent i’s market price of risk and λi
RN (t) = λi(t)(1+ξi(t)) is the market price

of rare event risk (the risk-neutral jump intensity).
In our incomplete markets economy, agents have access to 2 types of assets: a bond B(t)

with 0 net supply and a risky stock S(t) with net supply of 1. Their price dynamics are as
follows

dB(t) = B(t)r(t)dt (2.8)

dS(t) = S(t−)[µS(t)dt+σSdW (t)+jSdN(t)] = S(t−)[µi
S(t)dt+σSdW

i(t)+ji
SdN

i(t)] (2.9)

where jS is the jump size of the stock price process.

4According to the Girsanov theorem, if N is a Poisson process with jump intensity λ under a probability
measure P , then under a new probability measure Q, N has a different jump intensity λQ. This is different
from the diffusion case where a “drift adjustment” is required.
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Each investor’s problem is

max
ci

Ei
[ ∫ ∞

0
e−δtu(ci(t))dt

]
(2.10)

subject to

Ei
[ ∫ ∞

0
M i(t)ci(t)dt

]
≤ wi(0) (2.11)

where wi(0) is agent i’s initial endowment and δ is agent i’s discount rate.
The essence of the martingale approach is that it allows us to transform a dynamic

problem into a static one. It delivers the following optimality condition:

e−δtu′(ci(t)) = yiM
i(t) (2.12)

where yi is the Lagrange multiplier associated with agent i’s intertemporal budget con-
straint. An equivalent condition is

ci(t) = (u′)−1(yiM
i(t)eδt) (2.13)

Given the assumption of time-additive log utility:

ci(t) = (u′)−1(yiM
i(t)eδt) = 1

yiM i(t)eδt
(2.14)

yi = δwi(0) (2.15)

wi(t) = Ei[
∫∞

t M i(s)ci(s)ds]
M i(t) = 1

δ2wi(0)M i(t)eδt
(2.16)

ci(t) = δwi(t) (2.17)

By Ito’s lemma for jump diffusion

dwi(t) = [...]dt+ wi(t−)θi(t−)dW i(t) + wi(t−)
(
λi(t−)
λi

RN (t−)
− 1

)
dN i(t) (2.18)

The wealth process wi(t) is

dwi(t) = (1 − πi(t))wi(t−)dB(t)
B(t) + πi(t)wi(t−)dS(t) +D(t)dt

S(t) − ci(t)dt (2.19)

where πi(t) is the share of wealth allocated to the stock market by agent i at time t.

dwi(t) = (1 − πi(t))wi(t−)r(t)dt+ πi(t)wi(t−)[µi
S(t)dt+ σSdW

i(t) + ji
SdN

i(t)] − ci(t)dt
(2.20)
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DEFINITION 2.3.2. An equilibrium is a collection of asset prices {B, S} and a set of
consumption and portfolio choices {ci, πi} such that

1. Each agent’s consumption is optimal: the consumption plan ci maximizes lifetime
utility subject to the budget constraint and is financed by the portfolio choice πi.

2. Goods market and financial markets clear at all times. The market clearing conditions
are

c1(t) + c2(t) = D(t) (2.21)

w1(t) + w2(t) = S(t) (2.22)

π1(t)w1(t) + π2(t)w2(t) = S(t) (2.23)

PROPOSITION 2.3.1. The stock price process is given by

S(t) = D(t)
δ

(2.24)

µi
S(t) = µD (2.25)

σS = σD (2.26)

jS = jD (2.27)

The stock price process has the same drift term, volatility term, and jump size as the
dividend process.

PROPOSITION 2.3.2. In incomplete markets, the portfolio holdings are

πi(t) = θi(t)
σS

= 1
ji

S

(
λi(t)
λi

RN (t)
− 1

)
(2.28)

The wealth ratio k(t) = w2(t)
w1(t) is governed by

dk(t)
k(t−) = [θ2(t)2 −θ1(t)θ2(t)+(λ1(t)−λ1

RN (t))− (λ2(t)−λ2
RN (t))]dt+[θ2(t)−θ1(t)]dW (t)

+
(
λ1

RN (t)λ2(t)
λ1(t)λ2

RN (t)
− 1

)
dN(t) (2.29)

The equilibrium interest rate is

r(t) = δ + µi
S(t) − σSθ

i(t) + ji
Sλ

i
RN (t) (2.30)

σS − 1
1 + k(t)θ

1(t) = k(t)
1 + k(t)θ

2(t) (2.31)

λ1(t)
λ1

RN (t)
1

1 + k(t) + λ2(t)
λ2

RN (t)
k(t)

1 + k(t) = jS + 1 (2.32)

41



In principle, three nonredundant securities will complete the market as there are two
random sources. For example, introducing an index option in addition to the bond and the
stock will complete the market. But an index option may not be a good choice in terms of
tractability. We consider a zero net supply security that delivers tractability and fulfills the
function of disaster insurance at the same time. This security is a disaster insurance in the
sense that its payoff only depends on the jump component. Its price I(t) is:

dI(t) = I(t−)[µI(t)dt+ ji
IdN

i(t)] (2.33)

where ji
I is the jump size of the disaster insurance. The wealth process wi(t) is

dwi(t) = (1−πi(t)−πI
i (t))wi(t−)dB(t)

B(t) +πi(t)wi(t−)dS(t) +D(t)dt
S(t) +πI

i (t)wi(t−)dI(t)
I(t) −ci(t)dt

(2.34)
where πI

i (t) is the wealth share allocated to the disaster insurance by agent i.

PROPOSITION 2.3.3. Under complete markets, the portfolio holdings are

θi(t) = σS (2.35)

πi(t) = θi(t)
σS

= 1 (2.36)

πI
i (t) = 1

jI

(
λi(t)
λi

RN (t)
− 1

)
− jSθ

i(t)
jIσS

(2.37)

λRN (t) = 1
1 + k(t)

λ1(t)
1 + jS

+ k(t)
1 + k(t)

λ2(t)
1 + jS

(2.38)

r(t) = δ + µS(t) − σS
2 + jSλRN (t) (2.39)

The wealth ratio is governed by

dk(t)
k(t−) = [λ1(t) − λ2(t)]dt+

(
λ2(t)
λ1(t) − 1

)
dN(t) (2.40)

COROLLARY 2.3.1. Under complete markets, the wealth ratio at time t is

k(t) = k(0) exp
(∫ t

0
(λ1(s) − λ2(s))ds+

∫ t

0
log

(
λ2(s)
λ1(s)

)
dN(s)

)
(2.41)
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Under incomplete markets, the wealth ratio at time t is

k(t) = k(0) exp
(∫ t

0
(θ2(s)2−θ1(s)θ2(s)+(λ1(s)−λ1

RN (s))−(λ2(s)−λ2
RN (s))−1

2(θ2(s)−θ1(s))2)ds

+
∫ t

0
(θ2(s) − θ1(s))dW (s) +

∫ t

0
log

(
λ1

RN (s)λ2(s)
λ1(s)λ2

RN (s)

)
dN(s)

)
(2.42)

2.4 Long Run Survival in Complete and Incomplete Markets

The equations (41) and (42) describe how the wealth ratio fluctuates in the economy. In
this section, it is assumed that agent 1 has rational beliefs, i.e., he knows the true jump
intensity of the Poisson process λ(t). The survival, extinction, and dominance of an agent
can be defined in terms of the wealth ratio.5

DEFINITION 2.4.1. Almost sure extinction,survival and dominance.
1. Agent 2 becomes extinct if limt→∞ k(t) = 0 a.s.
2. Agent 2 survives if lim supt→∞ k(t) > 0 a.s.
3. Agent 2 dominates if limt→∞ k(t) = ∞ a.s.

When asset prices can jump, there is a redistribution channel that leads to large wealth
fluctuations when market crashes happen. Is this channel important enough in the exami-
nation of the market selection hypothesis? In order to emphasize the importance of jumps,
I show in the following example that a Brownian motion does not affect wealth dynamics
if the endowment process is governed by a diffusion process.

2.4.1 A Motivating Example

Here I consider a simple case without jumps. Aggregate dividend is governed by a geometric
Brownian motion.

dD(t)
D(t) = µDdt+ σDdW (t) (2.43)

I assume that agents have access to two assets, a bond and a stock. Since the only random
source is the Brownian motion W (t), markets are complete. The asset price dynamics are
as follows

dB(t) = B(t)r(t)dt (2.44)

dS(t) +D(t)dt = S(t)[µS(t)dt+ σSdW (t)] (2.45)

5Although the definition is only related to agent 2, the survival, extinction, and dominance of agent 1
can be defined analogously.
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The two agents have heterogeneous beliefs about the drift term µS(t). They also have to
agree about the stock price dynamics. We define ∆i(t) = µi

S(t)−µS(t)
σS

and θi(t) = µi
S(t)−r(t)

σS
to

be the agent specific disagreement process and market price of risk. Therefore the following
consistency requirement holds.

dS(t) +D(t)dt = S(t)[µ1
S(t)dt+ σSdW

1(t)] = S(t)[µ2
S(t)dt+ σSdW

2(t)] (2.46)

dW 2(t) = dW 1(t) − µ2
S(t) − µ1

S(t)
σS

= dW 1(t) − (θ2(t) − θ1(t)) (2.47)

Agent 1’s stochastic discount factor is

dM1(t) = −M1(t)
[
r(t)dt+ θ1(t)dW 1(t)

]
(2.48)

Agent 2’s stochastic discount factor is

dM2(t) = −M2(t)
[
r(t)dt+θ2(t)dW 2(t)

]
= −M2(t)

[
r(t)dt+θ2(t)(dW 1(t)−(θ2(t)−θ1(t))dt)

]
(2.49)

Using the martingale approach, we can derive the wealth ratio

k(t) = u′(c1(t))
u′(c2(t)) = y1M

1(t)
y2M2(t) = w2(t)

w1(t) (2.50)

dk(t)
k(t) = [θ2(t) − θ1(t)]dW (t) (2.51)

For simplicity, it is assumed that agent 1 knows the true drift term µS(t) and ∆2(t) is
also constant. In this case, we have θ2(t) − θ1(t) = ∆2(t). The wealth ratio at time t is

k(t) = k(0) exp[(θ2(t) − θ1(t))W (t) − 1
2(θ2(t) − θ1(t))2t] (2.52)

By the strong law of large numbers for Brownian motion

lim
t→∞

W (t)
t

= 0 a.s. (2.53)

We can conclude that as long as agent 2 does not have rational beliefs
(θ2(t) ̸= θ1(t) or ∆2(t) ̸= 0),

lim
t→∞

k(t) = 0 a.s. (2.54)
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It is not surprising that an irrational agent cannot survive in the long run when markets
are complete. But it is worth noticing that the long-run effects of the Brownian motion are
zero.

2.4.2 Complete Markets

When asset prices can jump, jumps lead to large wealth redistribution as agents have
different portfolio choices. The redistribution channel affects the long-run wealth dynamics
in the economy. The result is driven by the fact that the law of large numbers for Poisson
process dictates that the long-run effects of jumps are not zero.

The mechanism of the redistribution channel can be illustrated with the following propo-
sition that focuses on the case in which agent have constant beliefs.

PROPOSITION 2.4.1. In complete markets with constant beliefs, an agent with inaccu-
rate beliefs will not survive in the long run.

Proof. To simplify the analysis, I assume that the true jump intensity of the Poisson process
and both agents’ beliefs are constant: λ(t) = λ, λ1(t) = λ1, λ2(t) = λ2. Since agent 1 has
rational beliefs, we also have λ1(t) = λ1 = λ. When beliefs are constant, the wealth ratio in
complete markets is governed by

dk(t)
k(t−) = (λ1 − λ2)dt+

(
λ2
λ1

− 1
)
dN(t) (2.55)

the solution to the above stochastic differential equation is

k(t) = k(0) exp
(

(λ1 − λ2)t+ log
(
λ2
λ1

)
N(t)

)
(2.56)

By the strong law of large numbers for Poisson process (Çinlar (1975)):

lim
t→∞

N(t)
t

= λ = λ1 a.s. (2.57)

survival is determined by the sign of

(λ1 − λ2) + log
(
λ2
λ1

)
λ1 (2.58)

If λ1 ̸= λ2, the above term is always negative. We can conclude that

lim
t→∞

k(t) = 0 a.s.

To discuss the learning case where agents can learn about the jump intensity of the Pois-
son process, we need to make use of the theory of stochastic integral for Poisson processes
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and the law of large numbers for martingales. In the remainder of this paper, the concept
of predictability plays an important role.6

LEMMA 2.4.1. If N(t) is a Poisson process with predictable intensity λ(t), then Ñ(t) =
N(t) −

∫ t
0 λ(s)ds is an F(t) martingale.

Proof. E[Ñ(t)|F(t0)] = Ñ(t0) + E[Ñ(t) − Ñ(t0)|F(t0)] = Ñ(t0)

PROPOSITION 2.4.2. Let Ñ be the martingale defined in lemma 2.4.1 and h is a pre-
dictable process. If they satisfy the following condition

E

[ ∫ t

0
|h(s)|2dÑ(s)

]
< ∞

for all t ≥ 0. Then the process X given by

X(t) =
∫ t

0
h(s)dÑ(s)

is a martingale and
lim

t→∞

X(t)
t

= 0 a.s.

Proof. See Rosenkrantz and Simha (1992).

Proposition 2.4.2 can be viewed as the law of large numbers for martingales. The mar-
tingales in this context are closely linked to the Poisson process: if a stochastic integral is
defined based on Ñ , then it is a martingale and its long-run effects are negligible.7

When agents can learn about the jump intensity, the survival results can be summarized
as follows: an agent with irrational beliefs survives if he can learn the truth quickly enough.

PROPOSITION 2.4.3. 1. If the agent with incorrect beliefs cannot learn the truth, then
he will be driven out of the market.

2. If the learning agent can learn the truth quickly enough, then both agents survive. The
rate of convergence must satisfy the following condition: |(λ1(t) −λ2(t)) + log(λ2(t)

λ1(t))λ1(t)| <
1
tα for all t > t0 and α > 1.

Proof. See appendix.

6Recall that in Ito integration theory, we require the integrands to be adapted. But in point-process
integration theory, the requirement is stronger: the integrands have to be predictable.

7This does not mean that jumps are negligible or the redistribution channel is not working. We can
decompose a stochastic integral into two parts:

∫ t

0 h(s)dN(s) =
∫ t

0 h(s)dÑ(s) +
∫ t

0 h(s)λ(s)ds. The first part
is negligible; the second part is not.
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In complete markets with learning, the wealth ratio at time t is

k(t) = k(0) exp
(∫ t

0
(λ1(s) − λ2(s))ds+

∫ t

0
log

(
λ2(s)
λ1(s)

)
dN(s)

)
(2.59)

k(t) = k(0) exp
(∫ t

0
(λ1(s) − λ2(s))ds+

∫ t

0
log

(
λ2(s)
λ1(s)

)
λ1(s)ds+

∫ t

0
log

(
λ2(s)
λ1(s)

)
dÑ(s)

)
(2.60)

Proposition 2.4.2 allows us to focus on the following term which determines long-run
survival in complete markets with learning.

∫ t

0
λ1(s) − λ2(s) + log

(
λ2(s)
λ1(s)

)
λ1(s)ds (2.61)

In the existing literature, a link between long-run survival and relative entropy has already
been established. For example, Blume and Easley (2006) show that agents whose beliefs are
closest to the truth in terms of relative entropy survive in complete markets when both the
states and beliefs are independent and identically distributed. Here a similar interpretation
is possible with the help of the following definition.

DEFINITION 2.4.2. For two probability measures Q and P in a given measure space
such that Q ∈ Q (Q is absolutely continuous with respect to P), the relative entropy of Q
with respect to P is defined as

H =
∫
log(dQ/dP )dQ (2.62)

where dQ/dP is the Radon-Nikodym derivative of Q with respect to P. To simplify
notation, let L=dQ/dP. The change in the relative entropy from t to t+ ∆t is

H(t, t+ ∆t) = EL
t [logL(t+ ∆t)] − logL(t) (2.63)

The instantaneous growth rate of the relative entropy is

R(L(t)) = lim
∆t→0

H(t, t+ ∆t)
∆t (2.64)

Notice that the integrand in (61) can be decomposed as8

(
(λ(t) − λ2(t)) + log

(
λ2(t)
λ(t)

)
λ(t)

)
−
(

(λ(t) − λ1(t)) + log
(
λ1(t)
λ(t)

)
λ(t)

)

8Recall that agent 1 has rational beliefs, λ(t) = λ1(t).
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where
(

(λ(t)−λ2(t))+log
(

λ2(t)
λ(t)

)
λ(t)

)
is the negative of the instantaneous growth rate

of the relative entropy. If we adopt the instantaneous growth rate of the relative entropy as a
measure of distance between beliefs, then the natural interpretation of (61) is that long-run
survival is determined by the “cumulative” distance of beliefs. More precisely, an agent with
irrational beliefs is further away from the truth than a rational agent in the “cumulative”
distance sense. An irrational agent can only survive if the integrand in (61) converges to
zero quickly enough. If the irrational agent can learn the truth quickly enough, the integral
in (61) is finite and the wealth ratio converges to a finite number when t approaches infinity.

The term in (61) can also be connected to portfolio choices. Why does an agent with
irrational beliefs always vanish in complete markets? A general answer is that in complete
markets irrational agents will allocate more consumption to paths with low probability
according to the true model. But in the current setup, a specific answer is that irrational
agents will make portfolio choices that deviate from the log optimal rule. And there are
some subtle differences between optimists and pessimists even though they both vanish
in the long run. For an optimist who believes that the jump intensity is lower than the
truth, the first term λ1(s) −λ2(s) in (61) is positive. This is an indication that the optimist
holds more risky assets and earn higher expected returns. When there are no jumps, the

wealth ratio has a tendency to increase. But the second term log
(

λ2(s)
λ1(s)

)
λ1(s) in (61) is

negative. This indicates that the optimist’s wealth decreases when market crashes happen.
The optimist can earn higher returns in normal times. But once a disaster strikes, the return
becomes negative. The overall effect is that the volatility of the optimist’s portfolio is higher
and this undermines his long-run survival. The optimist can also bid up the price of the
risky asset and effectively depress his portfolio returns. Lower returns will further diminish
his chances of survival in the long run. There are two competing forces that shape the
prospects of long-run survival for agents in this economy: the first one is belief difference
(represented by λ1(s) −λ2(s)); the second one is the redistribution channel (represented by

log
(

λ2(s)
λ1(s)

)
λ1(s)).

A pessimist, on the other hand, will acquire less risky asset compared to the rational
agent. He cannot reap the full benefits of the disaster insurance and earn lower returns
from his portfolio. But an advantage of this strategy is that his portfolio returns have lower
volatility: he earns lower positive returns during normal times and large positive returns
during market crashes. Unfortunately the lower volatility is not enough to compensate for
lower returns.

2.4.3 Incomplete Markets

In incomplete markets with constant beliefs, the laws of large numbers for both Poisson
process and Brownian motion suggest that the two random sources have different long-run

48



effects: the jumps are not negligible while the Brownian has no impact on wealth dynamics
in the long run.

PROPOSITION 2.4.4. In incomplete markets with constant beliefs, the agent with inac-
curate beliefs will not survive in the long run.

Proof. In incomplete markets, the wealth ratio is governed by

dk(t)
k(t−) = [θ2(t)2 −θ1(t)θ2(t)+(λ1(t)−λ1

RN (t))− (λ2(t)−λ2
RN (t))]dt+[θ2(t)−θ1(t)]dW (t)

+
(
λ1

RN (t)λ2(t)
λ1(t)λ2

RN (t)
− 1

)
dN(t) (2.65)

The portfolio holdings are

πi(t) = θi(t)
σS

= 1
ji

S

(
λi(t)
λi

RN (t)
− 1

)
(2.66)

The equilibrium interest rate satisfies

r(t) = δ + µi
S(t) − σSθ

i(t) + ji
Sλ

i
RN (t) (2.67)

We have
θ2(t) − θ1(t) = jS

σS
(λ2

RN (t) − λ1
RN (t))

and
θ2(t) = σS

jS

(
λ2(t)
λ2

RN (t)
− 1

)
Therefore

dk(t)
k(t−) =

[
λ2

RN (t))λ1(t) − λ1
RN (t)λ2(t)

λ2
RN (t)

]
dt

+ [θ2(t) − θ1(t)]dW (t) +
(
λ1

RN (t)λ2(t)
λ1(t)λ2

RN (t)
− 1

)
dN(t) (2.68)

then

k(t) = k(0) exp
([

λ2
RN (t))λ1(t) − λ1

RN (t)λ2(t)
λ2

RN (t)
− 1

2(θ2(t) − θ1(t))2
]
t

+ [θ2(t) − θ1(t)]W (t) + log
(
λ1

RN (t)λ2(t)
λ1(t)λ2

RN (t)

)
N(t)

)
(2.69)

By the strong laws of large numbers for Poisson process and Brownian motion, survival
is determined by the sign of
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[
λ2

RN (t))λ1(t) − λ1
RN (t)λ2(t)

λ2
RN (t)

− 1
2(θ2(t) − θ1(t))2

]
+ log

(
λ1

RN (t)λ2(t)
λ1(t)λ2

RN (t)

)
λ1(t) (2.70)

Notice that

λ2
RN (t))λ1(t) − λ1

RN (t)λ2(t)
λ2

RN (t)
+ log

(
λ1

RN (t)λ2(t)
λ1(t)λ2

RN (t)

)
λ1(t)

= λ1(t)
((

1 − λ1
RN (t)λ2(t)
λ1(t)λ2

RN (t)

)
+ log

(
λ1

RN (t)λ2(t)
λ1(t)λ2

RN (t)

))

is always negative. We can conclude that

lim
t→∞

k(t) = 0 a.s.

Using the the theory of stochastic integral for Poisson processes and the law of large
numbers for martingales, we obtain the following results that are similar to those in the
complete markets case.

PROPOSITION 2.4.5. 1. If the agent with incorrect beliefs cannot learn the truth, then
he will be driven out of the market.

2. If the learning agent can learn the truth quickly enough, then both agents survive.

The rate of convergence must satisfy the following condition:
∣∣∣∣λ2

RN (t))λ1(t)−λ1
RN (t)λ2(t)

λ2
RN (t) +

log
(

λ1
RN (t)λ2(t)

λ1(t)λ2
RN (t)

)
λ1(t)

∣∣∣∣ < 1
tα for all t > t0 and α > 1.

Proof. See appendix.

Why does an agent with irrational beliefs vanish in incomplete markets? The key mech-
anism is that wealth accumulation and utility maximization coincide when agents have log
preferences. An agent survives if his choices are closest to the log optimal rule. In the pres-
ence of a rational agent, the irrational agent’s portfolio choices are further away from the
log optimal rule. Recall that in incomplete markets, agents only have access to a stock and
a bond. An optimist will allocate more wealth share to the stock market and earn higher
expected returns because of the equity premium. But at the same time, higher portfolio
volatility is detrimental to his survival. A pessimist will have lower exposure to the stock
market and lower portfolio volatility. But he is missing out on the equity premium. An
interesting pattern in the incomplete market wealth dynamics is that the wealth ratio also
fluctuates with the Brownian motion . But since the Ito integral is a martingale, the long-run
effects of the fluctuations induced by the Brownian motion are still zero. Here the same two
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competing forces, belief difference and the redistribution channel, determine agents’ fate
in the long run. In the existing literature, there are plenty of examples in which irrational
agents survive. The major insight behind these examples is that irrational agents can save
enough to avoid extinction.9 But in the current setup, the saving channel is no longer active
when agents have log preferences and the same discount rate.

2.5 Filtering in Complete Markets

In this section, the primary focus is on a hidden Markov model in which the jump intensity
of the Poisson process is governed by a Markov chain. Since the true state is not observable,
both agents will rely on filtering techniques. This is an ideal setup to generalize the notion
of “rationality” in the market selection hypothesis: an agent endowed with the optimal
filter will outperform other agents in financial markets asymptotically. Using the tools from
the robust control literature pioneered by Hansen and Sargent (2008), I discuss the wealth
dynamics when the economy is populated by two agents: a “Bayesian” agent (agent 1)
who is endowed with the optimal filter and a robust agent (agent 2) who relies on robust
filtering.10

The jump intensity, λ(t), is assumed to be governed by a n-state Markov chain in con-
tinuous time, with generator matrix Q. Without loss of generality, assume the n states
are Λ1 < Λ2 < ... < Λn. Let Pij(t) = Pr(λ(t + s) = Λj |λ(s) = Λi).11 P(t) is the tran-
sition probability matrix with Pij(t) as its (i, j)-th entry and the time t derivative of the
transition probability matrix is P′(t) = P(t)Q. The jumps are rare events by definition.
Agents in the economy do not have access to enough data to obtain good estimates of the
statistical properties of the rare events. The robust agent has 2 types of concerns about
model misspecification: (1) Misspecification about the potential states (jump intensities).
(2) Misspecification about the transition rates between different states qjk (the entries in
the generator matrix Q).

PROPOSITION 2.5.1. The optimal filter is

λ1(t) = E[λ(t)|F(t)] =
n∑

k=1
Λkp

1
k(t) (2.71)

9An important exception is Blume and Easley(1992). They show that survival is determined by an agent’s
distance to the log optimal rule if saving is exogenous. An irrational agent can happen to be closer to the
log optimal rule.

10The robust control literature focuses on model uncertainty which is relevant in a rare disaster context.
When agents have heterogeneous beliefs about rare disaster probabilities, it is reasonable to acknowledge
that they face substantial model uncertainty in forming beliefs.

11I assume that the Markov chain is time homogeneous: the probability P r(λ(t + s) = Λj |λ(s) = Λi) does
not depend on s.
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dp1
k(t) =

∑
j

qjkp
1
j (t)dt+ p1

k(t)
(Λk − λ1(t)

λ1(t)

)
dη1(t) (2.72)

η1(t) = N(t) −
∫ t

0
λ1(s)ds (2.73)

where p1
k(t) denotes the conditional probability that λ(t) = Λk.

Proof. See appendix.

The filtering equation in Proposition 2.5.1 is intuitive. Consider a potential state Λk

that is higher than the current estimate of jump intensity λ1(t). If no jumps are observed,
then the second term in (72) becomes negative and the growth of the conditional probability
of being in Λk decreases as well. If a jump is observed, then the conditional probability of
Λk increases. The filtering equation implies that investors’ beliefs will decrease smoothly as
long as they do not observe jumps.

Following Anderson et al. (2003), I define the time derivative of relative entropy as a
statistical measure of discrepancy between models.12 The filtering problem for the robust
agent is 13

min
λ2(t)

max
Q∈Q

EQ[(λ2(t) − λ(t))2|F(t)] (2.74)

subject to the time-varying fear constraint

R(L(t)) = lim
∆t→0

H(t, t+ ∆t)
∆t ≤ ηt (2.75)

where ηt is a time-varying bound on the instantaneous growth rate of the relative entropy.
The robust filtering problem dictates that the robust agent finds the best estimate in mean
square of the jump intensity under a worst case probability measure induced by the time-
varying fear constraint.

If the alternative models are Markov chains as well, the robust agent will be concerned
about misspecifications of the bad states and their transition rates.14 He will consider dif-
ferent values of the states (Λ2

k ̸= Λk) or different transition rates (q2
jk ̸= qjk). Time-varying

fear puts a constraint on the relative entropy between the reference model and the set of al-
ternative models. The entropy constraint will limit the agent’s choices in terms of potential
values of Λ2

k and q2
jk under consideration.

12See definition 2.4.2.

13Hansen and Sargent (2001) refer to this as ‘constraint preferences’, as opposed to ‘penalty preferences’.

14This is an example of what Hansen and Sargent (2019) call ‘structured uncertainty’.
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PROPOSITION 2.5.2. The robust agent’s beliefs evolve according to the robust filter

λ2(t) = EQ[λ(t)|F(t)] =
n∑

k=1
Λ2

kp
2
k(t) (2.76)

dp2
k(t) =

∑
j

q2
jkp

2
j (t)dt+ p2

k(t)
(Λ2

k − λ2(t)
λ2(t)

)
dη2(t) (2.77)

η2(t) = N(t) −
∫ t

0
λ2(s)ds (2.78)

where p2
k(t) denotes the conditional probability that λ2(t) = Λ2

k.

Robust filtering amplifies belief heterogeneity about rare events after a jump is observed.
The robust agent experiences a larger revision of his expected jump intensity than the
Bayesian agent due to concern for model uncertainty.

Recall that in complete markets , the wealth ratio at time t is

k(t) = k(0) exp
(∫ t

0
(λ1(s) − λ2(s))ds+

∫ t

0
log

(
λ2(s)
λ1(s)

)
dN(s)

)
(2.79)

Since the agents do not know the true state, the following integrand determines long-run
survival:

(λ1(t) − λ2(t)) + log
(
λ2(t)
λ1(t)

)
λ(t) (2.80)

One difficulty is that the loss function is based on squared errors in the derivation of the
filtering equation. The connection between the squared error loss function and the above
integrand is not obvious. In order to discuss wealth dynamics, we need to prove that the
same filtering equation can be derived under a different loss function.

PROPOSITION 2.5.3. Let x be a square-integrable random variable in the filtered prob-
ability space (Ω,F ,F = {F(t)}t≥0, P ). Let G be a sub sigma algebra of F . If we consider
the following Poisson loss function

l(x, x̂) = x log
(
x

x̂

)
− x+ x̂

and the squared error loss function

lSE(x, x̂) = (x− x̂)2

then the conditional expectation E(x|G) is the unique estimator minimizing the mean
loss under the Poisson loss function l and square errors.

Proof. See appendix.
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According to Proposition 2.5.3, the optimal filter can also be derived using the Poisson
loss function in the current hidden Markov setup.

Notice that

(λ1(t) − λ2(t)) + log
(
λ2(t)
λ1(t)

)
λ(t)

=
(

(λ1(t) − λ(t)) + log
(
λ(t)
λ1(t)

)
λ(t)

)
−
(

(λ2(t) − λ(t)) + log
(
λ(t)
λ2(t)

)
λ(t)

)
(2.81)

The integrand is indeed connected to the loss function l.
Another difficulty is that we cannot guarantee that the integrand is always negative.

To discuss wealth dynamics, we need to check the pathwise optimality of the optimal filter.
The following result from van Handel (2014) establishes that the optimal filter is pathwise
optimal in discrete time, given that both the signal and the filter are uniquely ergodic.

PROPOSITION 2.5.4. In discrete time hidden Markov models, if the signal and filtering
processes are both uniquely ergodic, then the filter x∗ is pathwise optimal:

lim inf
t→∞

1
t

t∑
k=1

l(xk, x̃k) − 1
t

t∑
k=1

l(xk, x
∗
k) > 0 a.s. (2.82)

for every strategy x̃ ̸= x∗.

Proof. See theorem 3.16 and corollary 3.17 in van Handel (2014).

We can prove the continuous time counterpart using the discrete time result. The key
idea is to write the continuous time average as a discrete time average over intervals of
length one and a vanishing remainder.

PROPOSITION 2.5.5. In continuous time hidden Markov models, if the signal and fil-
tering processes are both uniquely ergodic, then the filter x∗ is pathwise optimal:

lim inf
t→∞

1
t

∫ t

0
l(xs, x̃s)ds− 1

t

∫ t

0
l(xs, x

∗
s)ds > 0 a.s. (2.83)

for every strategy x ̸= x∗.

Proof. Let ζk =
∫ k+1

k (l(xs, x̃s) − l(xs, x
∗
s))ds and ψk =

∫ k+1
k |l(xs, x̃s) − l(xs, x

∗
s)|ds.

1
K
ψk ≤

∣∣∣∣∣ 1
K

K−1∑
k=0

ψk − 1
K − 1

K−2∑
k=0

ψk

∣∣∣∣∣+ 1
K(K − 1)

K−2∑
k=0

ψk (2.84)

1
t

∫ t

0
(l(xs, x̃s)−l(xs, x

∗
s))ds = 1

[t]

∫ [t]

0
(l(xs, x̃s)−l(xs, x

∗
s))ds [t]

t
+ 1
t

∫ t

[t]
(l(xs, x̃s)−l(xs, x

∗
s))ds

(2.85)
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where [t] is the largest integer less than or equal to t.
We have

1
[t]

∫ [t]

0
(l(xs, x̃s) − l(xs, x

∗
s))ds = 1

[t]

[t]−1∑
k=0

ζk (2.86)

and ∣∣∣∣1t
∫ t

[t]
(l(xs, x̃s) − l(xs, x

∗
s))ds

∣∣∣∣ ≤ 1
[t]ψ[t] (2.87)

we can conclude that

lim inf
t→∞

1
t

∫ t

0
(l(xs, x̃s) − l(xs, x

∗
s))ds > 0 a.s. (2.88)

Before proving the main result in this section, we need to make sure that the signal and
filter are both uniquely ergodic. van Handel (2009) and van Handel (2014) prove that three
conditions must be satisfied.

1. The Markov chain is absolutely regular: its transition kernel must converge to a unique
invariant measure in total variation. In the current setup, we need the Markov chain to be
irreducible.

2. The observation process is nondegenerate. In the current setup, this is a consequence
of Girsanov theorem for Poisson process, as long as the jump intensity does not equal zero.

3. The loss function should be equimeasurable. In the current setup, this is also satisfied
as the loss function is continuous.

All three conditions are met if we assume that the Markov chain is irreducible and all
the potential jump intensities are positive.

PROPOSITION 2.5.6. In complete markets, the robust agent vanishes. More generally,
if an agent is not endowed with the optimal filter, he will not survive in the long run.

Proof. In complete markets with filtering, the wealth ratio is governed by

k(t) = k(0) exp
(∫ t

0
(λ1(s) − λ2(s))ds+

∫ t

0
log

(
λ2(s)
λ1(s)

)
dN(s)

)
(2.89)

k(t) = k(0) exp
(∫ t

0
(λ1(s) − λ2(s))ds+

∫ t

0
log

(
λ2(s)
λ1(s)

)
λ(s)ds+

∫ t

0
log

(
λ2(s)
λ1(s)

)
dÑ(s)

)
(2.90)

According to proposition 2.4.2,
∫ t

0 log
(

λ2(s)
λ1(s)

)
dÑ(s) is a martingale and

limt→∞

∫ t

0 log

(
λ2(s)
λ1(s)

)
dÑ(s)

t is zero almost surely.
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We have

(λ1(t) − λ2(t)) + log
(
λ2(t)
λ1(t)

)
λ(t)

=
(

(λ1(t) − λ(t)) + log
(
λ(t)
λ1(t)

)
λ(t)

)
−
(

(λ2(t) − λ(t)) + log
(
λ(t)
λ2(t)

)
λ(t)

)
(2.91)

then by pathwise optimality in Proposition 2.5.5

lim sup
t→∞

1
t

∫ t

0
(λ1(s) − λ2(s)) + log

(
λ2(s)
λ1(s)

)
λ(s)ds < 0 a.s. (2.92)

lim
t→∞

k(t) = 0 a.s.

There are not many results in the literature that discuss the relationship between long-
run survival and robust control. A result with a similar flavor to Proposition 2.5.6 is found
in Anderson (2005). Anderson (2005) proves that all risk-sensitive agents have zero Pareto
weights in the long run when the economy is made up by both agents with time-additive
preferences and risk-sensitive agents. The intuition is that a social planning problem with
risk-sensitive agents can be viewed as a social planning problem with heterogeneous beliefs
in which risk-sensitive agents have irrational beliefs. In Proposition 2.5.6, if an agent is not
endowed with the optimal filter, then his time average loss is asymptotically larger. In this
sense, the robust agent also has irrational beliefs.

2.6 Conclusion

In this paper, the redistribution channel plays a prominent role. In the aftermath of major
market crashes (like the COVID-19 crash or the market crashes in 2008), investors who
were less exposed to the stock market might believe that they had made the right decision
to avoid large losses. But a natural question is whether they can thrive in the long run. In
this paper, it has been established that agents who are less exposed to the stock market
are not guaranteed to do well in the long run. This result tells us that we should exercise
caution when interpreting short-run trends in inequality as they may not generalize to
the long run case. Another insight in this paper is that the market selection hypothesis is
surprisingly resilient despite the fact that many results suggest that it does not generally
hold in incomplete markets. When agents have log preferences, it holds in both complete
and incomplete markets. In complete markets, it is valid even if agents cannot observe the
true state and rely on filtering techniques.
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Chapter 3

Portfolio Choice and
Intergenerational Inequality in
China: Theory and Evidence

“Fate has not been kind to China’s generation of baby-boomers. It will be even less kind as
they grow old."

—The Economist

3.1 Introduction

China’s baby boomers are truly the unlucky generation.1 They are less healthy than later
generations as their early years coincided with the Great Leap Forward (the Chinese econ-
omy contracted by 27.3% in 1961). Due to the Cultural Revolution, their school years can
only be described as unproductive. One cannot help but wonder if those were the only dis-
advantages of being a baby boomer in China. Using data from the China Household Finance
Survey (CHFS), we establish that the baby boomers in China are less wealthy than later
generations. They also have a lower willingness to take financial risks: they are less likely
to participate in the stock market and invest a lower fraction of their wealth in the stock
market.

The millennials in China have very different macroeconomic experiences. They grew up
during the reform and opening-up era. The Chinese economy has not experienced a single
recession since 1976. College degrees or even advanced degrees are no longer inaccessible.
It is therefore not surprising that they outperform the baby boomers in China in terms of
health and education. The CHFS data confirm that they exhibit more interest in the stock
market in addition to being wealthier than the baby boomers in China.

1The generations that interest us are baby boomers (born in 1946-1964), GenXers (born in 1965-1980)
and millennials (born in 1981-1996).
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What are the connections between macroeconomic experiences, risk-taking behavior and
intergenerational wealth dynamics? This paper focuses on generational belief differences
and proposes an “experiential learning” channel in return expectations and portfolio choice.
More specifically, we argue that different generations have different beliefs about market
returns due to their own limited experiences. This influences their risk-taking behavior
which, in turn, influences the growth rate of their wealth.

The CHFS is a comprehensive survey about household finance in China. The respondents
answer questions about assets holdings, debt, saving, consumption and financial literacy. We
use the data from the 2015, 2017 and 2019 waves of the CHFS.2 The 2015 survey includes
37289 households in 29 provinces and 350 counties. The sample size of the 2017 survey
increases to 40011 households from 29 provinces and 350 counties. 34643 households (rep-
resenting 29 provinces and 345 counties) participate in the 2019 survey. Since the CHFS
collects detailed information about household financial decisions, we are able to investi-
gate the differences between the baby boomers and the millenials in China, especially in
household wealth and risk-taking behavior.

Why should people be interested in the Chinese data when we already have many papers
documenting the portfolio choices of different generations in the US? By comparing China
and the US, we notice that the macroeconomic experiences of the two generations are
very different. The baby boomers in the US skipped the Great Depression and enjoyed the
prosperity of the post-war years. The millenials in the US, on the other hand, experienced
the Great Recession and the COVID-19 pandemic within two decades.

2The CHFS has been conducted since 2011. We focus on recent data for representativeness and complete-
ness.
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Figure 3.1: Median Net Worth Ratio of 65 and over vs. 35 and under in the US (Survey of
Consumer Finances)

Figure 1 plots Survey of Consumer Finances data on the ratio of median net worth for
those over 65 years of age to those under 35. For simplicity, we will refer to the households
in which the household head is older than 65 years as the old generation. Accordingly, the
households with household head under 35 years old are the young generation. In the US, the
old have always been wealthier than the young. In 1989 their net worth was 9 times greater
on average. However, over the course of the next 27 years this ratio more than doubled, to
over 20.

Figure 2 shows the ratio of median net worth for those over 65 years of age to those under
35 in the CHFS. In China, the young households are wealthier than the old households and
the gap seems to be widening as well. Figure 1 and Figure 2 paint an interesting picture:
the old generation has been doing really well in the US while their counterparts in China
have been lagging behind. What factors are responsible for the staggering differences in the
two countries? The data reveal that generational belief differences induced by “experiential
learning” seem to be at work in both countries.
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Figure 3.2: Median Net Worth Ratio of 65 and over vs. 35 and under in China (China
Household Finance Survey)

The “experiential learning” channel is first introduced in Malmendier and Nagel (2011).
A crucial piece of evidence in their paper is that differences in stock market participation
rates between different generations in the US are positively correlated with differences in
experienced stock market returns. For comparison purposes, we calculate experienced re-
turns for households in China and plot them against the differences in their stock market
participation rates in Figure 3.3 A superficial conclusion would be that the correlation is not
strong in the Chinese data. But we cannot overlook the fact that the Chinese stock market
did not come into existence until 1990. Weighted returns will not accurately capture the
old generation’s macroeconomic experiences due to the short history of the stock market in
China.

To overcome the shortcomings of weighted returns in China, we use average real GDP
growth rates as a proxy for different generations’ macroeconomic experiences. More pre-
cisely, we calculate the average real GDP growth rate in the past 55 years for the old
generation and the average real GDP growth rate in the past 20 years for the young gener-
ation.

3Following Malmendier and Nagel (2011), we calculate weighted returns with a weighting function that
put more weights on recent returns.
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Figure 3.3: Differences in Stock Market Participation Rates of Old and Young Individuals
Plotted against Differences in Experienced Stock Market Returns in China (in percentage
points)
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Figure 3.4: Differences in Stock Market Participation Rates of Old and Young Individuals
Plotted against Differences in Experienced Average GDP Growth Rates in China (in per-
centage points)
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Figure 3.5: Differences in Fractions of Wealth Allocated to Stocks of Old and Young Indi-
viduals Plotted against Differences in Experienced Average GDP Growth Rates in China
(in percentage points)

In Figure 4 and Figure 5, we plot differences in stock market participation rates and ex-
posures to the stock market against differences in experienced average GDP growth rates in
China. Stock market participation and exposures seem to be closely connected to macroeco-
nomic experiences in the Chinese data. The patterns are consistent with the intuition that
economic disasters determine people’s attitude towards stock investments. The generations
that skipped severe economic disasters are more interested in the stock market. The unlucky
generations that experienced severe recessions become more pessimistic. Due to their lower
exposures to the stock market, they cannot fully benefit from the equity premium. If they
had been more optimistic about the stock market, their wealth would have been increasing
more rapidly.

3.2 Literature Review

This paper is related to four strands of literature. First, it is largely inspired by the recent
macro literature that examines the implications of deviations from rational expectations.
As shown in a seminal paper by Woodford (2013), although the literature hasn’t reached an
unequivocal verdict regarding what expectation formation rules researchers should adopt,
a promising approach that relies on a statistically modest deviation from rational expec-
tations is to assume that beliefs are refined through induction from observed history. The
over-weighing of personal experiences has long been discussed in the psychology litera-

62



ture, named as availability bias as in Tversky and Kahneman (1974). Compared with a
full Bayesian approach, such belief formation mechanism exhibits strong over extrapolation
behavior (see Greenwood and Shleifer (2014) for a survey). Barberis, Greenwood, Jin, and
Shleifer (2015) and Barberis, Greenwood, Jin, and Shleifer (2018) rationalize a set of as-
set pricing anomalies when an over-extrapolative investor interact with a rational agent in
the financial market. Evidence of over extrapolation is pervasive. In financial markets, it is
supported by a seminal paper Malmendier and Nagel (2011), who uses data from Survey of
Consumer Finances and provides strong empirical support that personal experience in the
stock market has a prolonged impact on how much people invest in risky assets later in their
lives. In particular, those that experienced the 1930s great depression were less willing to
participate in the stock market, and invest significantly less even if they participate. Such
belief formation is not only present in the stock market, but also influences households’ ex-
pectation formation of inflation, labor market, housing market as well as overall business cy-
cle conditions (see Malmendier and Nagel (2015),Wee (2016), Malmendier and Shen (2018)
Kozlowski, Veldkamp, and Venkateswaran (2020) and Kuchler and Zafar (2019)). However,
those papers are most suited for studying macroeconomic aggregate and asset prices, but
not so much on wealth distribution. Acedanski (2017) attempts to solve a heterogeneous
expectations model a la Krusell and Smith (1998) to study wealth distribution. It focuses
on exogenous forecasting rules and stationary wealth distribution, while this paper embeds
endogenous heterogeneous beliefs and focuses on the dynamics of wealth distribution.

Second, this paper attempts to generate heterogeneous beliefs when individuals learn
from their own experience. Most macro-finance models with heterogeneous beliefs focus on
exogenous heterogeneous beliefs. Classic work includes Basak (2005), Harrison and Kreps
(1979), Scheinkman and Xiong (2003) and Borovicka (2020), just to name a few. Since their
focus is on asset prices, belief heterogeneity could be taken as an input without having
to model where it comes from. In this paper, beliefs are essentially endogenous, which
helps to link observable demographic structures with inequality. Nevertheless, this is not
the first paper to do so. Some recent papers have studied the aggregate implications of
heterogeneous generational bias induced by learning from experience. The fact that younger
people update their beliefs more frequently than the old has interesting implications on asset
prices. Ehling, Graniero, and Heyerdahl-Larsen (2017) develops an elegant asset pricing
model with learning from experience in a stationary diffusion environment. Malmendier,
Pouzo, and Vanasco (2019) solves a similar problem in an incomplete market. Schraeder
(2015) considers a noisy-rational expectation model with generational bias when agents
have CARA preferences, and Collin-Dufresne, Johannes, and Lochstoer (2016) solves such
model with Epstein-Zin preference, albeit with two generations.

Third, this paper is related to recent literature on disaster risk in the tradition of Barro
(2006). The incorporation of risk of rare disasters naturally generates a disaster premium,
which significantly reduces the level of risk aversion needed in matching empirically plausi-
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ble equity premium. Various extensions of disaster risk models also helps to solve the equity
premium puzzle, the volatility puzzle, and return predictability (see Tsai and Wachter (2015)
for a survey). When disaster risk is unknown and agents must infer its distribution from
historical data, Koulovatianos and Wieland (2011) shows that pessimism is triggered upon
the realization of a rare disaster, and rationalizes a prolonged period of decline in P-D ratio.
Moreover, they prove that although asymptotic beliefs are unbiased, one never reaches full
optimism of disaster risk as one would under rational expectation. It is the slow arrival
of information of disasters that keeps learning away from reaching infinite precision. In
this paper, the realization of a large negative shock (e.g., the Great Leap Forward) would
trigger such response from investors that experienced it, thus generating heterogeneous gen-
erational bias in the disaster risk distribution. Although there are several interesting papers
that combines heterogeneous beliefs or attitudes towards disaster risk in both complete and
incomplete markets (see Bates (2008), Chen, Joslin, and Tran (2010), Dieckmann (2011),
Chen, Joslin, and Tran (2012)), these models only include two agents and focus on cases
with dogmatic beliefs, while the model in this paper features a continuum of heterogeneous
agents with learning agents that constantly update their beliefs optimally, and focus on the
evolution of wealth distribution. Last but not least, this paper contributes to the recent
advancement of HACT (heterogeneous agent continuous time) models that link distribu-
tional considerations with macroeconomics (Gabaix, Lasry, Lions, and Moll (2016), Achdou,
Han, Lasry, Lions, and Moll (2017) and Ahn, Kaplan, Moll, Winberry, and Wolf (2018).
However, studying belief heterogeneity in such framework is still a relatively new area. Two
recent papers attempt to incorporate endogenous heterogeneous beliefs into such a frame-
work (Kasa and Lei (2018), Lei (2019)), and rationalize “state dependence” in the growth
rate of wealth, which rationalizes why inequality has been growing at such a fast speed
after 1980s. However, they focus on inequality within cohort with private equities. Here, we
generalize those models, and are able to solve distribution across cohort, and solve a model
with aggregate shock and public equity.

3.3 The Model

The model combines a Lucas (1978) pure exchange economy with a continuous-time OLG
Blanchard/Yaari demographic structure. It also embeds rare disaster risk in the tradition
of Rietz (1988) and Barro (2006). The goal is to solve for portfolio allocations, asset prices,
and the distribution of wealth when the arrival rate of disasters is unknown, and agents
must learn about it from their own experiences.

3.3.1 Environment

The economy consists of a measure 1 continuum of agents, each indexed by the time of
birth s, with exponentially distributed lifetimes. Death occurs at Poisson rate δ. When an
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agent dies, he is instantly replaced by a new agent with zero initial financial wealth. At each
instant of time t > s, all living agents receive an endowment flow ys,t where ys,t = ωYt, and
ω ∈ (0, 1). This can be interpreted as an agent’s labor income. That is, each existing agent
receives a constant fraction of the aggregate endowment.4 Agents have no bequest motive.
There is a representative firm that pays out dividend Dt = (1 − ω)Yt. In order to focus
on between-cohort inequality, we assume agents only differ in the timing of birth, but are
otherwise identical. That is, agents face only one source of idiosyncratic uncertainty, i.e.,
their birth and death dates. The exogenous aggregate endowment process is driven by two
aggregate shocks. It is governed by the following jump-diffusion process

dYt

Yt−
= µdt+ σdZt + κtdNt(λt) (3.1)

where Yt− denotes the endowment right before a jump occurs, if there is one, µ is the drift
absent disasters, and σ denotes the volatility of the 1-dimensional Brownian motion Zt,
which satisfies the usual conditions. It is defined on a probability space (ΩZ ,FZ ,PZ). Nt

is a Poisson process with hazard rate λt, defined on a probability space (ΩN ,FN ,PN ). We
then define (Ω,F ,P) as the product probability space, and the filtration of the combined
history as {Ft} = {FB × FN }. The jump process Nt follows

dNt =

1, with probability λtdt.

0, with probability 1 − λtdt.
(3.2)

That is, at each instant, there is λt probability that a disaster happens. We assume that
the jump size κt ∈ (−1, 0), which captures the fact that there is a decline in endowment
value when a disaster happens, but ensures that dividends remain strictly positive. The
hazard rate λt itself follows a random process, and is assumed to also take on two values,
a high hazard rate λh and a low hazard rate λl. It is characterized by an i.i.d Bernoulli
distribution,

λt =

λh, with probability π∗.

λl, with probability 1 − π∗.
(3.3)

We assume that the market is dynamically complete, and that investors can trade con-
tinuously in the capital market to hedge against both regular economic risk, as well as
disaster risk. To complete the market, agents need three securities (in addition to their
life insurance policies): a bond, an equity, and a disaster-contingent asset. The bond value

4This assumption follows Garleanu and Panageas (2015). It is a reduced form way to capture the co-
movement of the real economy and the financial market. Since the model focuses on the financial market,
we abstract away from life cycle labor income profiles.
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follows
dBt = rtBtdt (3.4)

The risky asset value follows

dSt +Dtdt

St−
= µS

t dt+ σSdZt + κS
t dNt(λt) (3.5)

where rt, µS
t , σS as well as κS

t are endogenous objects, and are determined in equilibrium.
Finally, the disaster-contingent security value is Pt, and follows the stochastic process

dPt

Pt−
= µP

t dt+ κP
t dNt(λt) (3.6)

This asset is in zero net supply. By convention, we assume the disaster-contingent security
pays off during normal times, but suffers a loss during disasters. That is, by holding the
disaster-contingent security, the investor gets rewarded µP

t fraction of of the asset value at
each instant, but the asset value drops by a magnitude of κP

t Pt upon a disaster shock. The
initial price P0 and the jump size κP

t can be chosen freely, but the drift µP
t is determined

endogenously. The real world counterpart of this security would be a catastrophe bond or
a hybrid security whose value depend on the adverse state of the economy.5

Investors observe the aggregate endowment process and know the values of µ, σ, λh, λl

and κt. However, they do not observe π∗, and must learn about it from their own limited
lifetime experience. The specific choice of which parameters to learn about is supported by
continuous-time filtering theory. As noted by Merton (1980), uncertainty about σ decreases
as sampling frequency increases. It disappears in the continuous time limit. Although uncer-
tainty about drift parameter µ does not dissipate, agents can still learn about it relatively
quickly, and achieve asymptotic convergence. In contrast, uncertainty about disaster risk
does not even disappear in an infinite horizon. To see how learning works, we need to
consider optimal filtering of a jump-diffusion process.

3.3.2 Filtering and Information Processing

Investors have common knowledge about the size of the disaster. However, they remain
uncertain about the likelihood of disasters. They must revise their beliefs sequentially, in
real-time. When an investor is born at time s, he is endowed with prior probability πs,s of
the hazard rate. For t > s, his evolving beliefs are fully summarized by the conditional mean

5In an incomplete market without disaster-contingent security, equilibrium bond and equity returns
change drastically (see Dieckmann (2011) for a comparison of asset pricing implications in complete vs.
incomplete market with rare disasters). Since the focus here is on portfolio reallocation rather than asset
pricing, we focus on the benchmark complete market setting.
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λ̄s,t = Es,t[λt], where the expectation Es,t[λt] = πs,tλh + (1 −πs,t)λl denotes the expectation
with respect to the time s born agent’s own filtration Ps,t at time t. We will specify how
the prior is chosen in the quantitative section. For now, let us focus on belief updating.

LEMMA 3.3.1. The evolution of the beliefs about π∗ by a Bayesian learning agent (denoted
by πs,t) is given by

dπs,t|dNt=0 = −(λh − λl)πs,t(1 − πs,t)dt (3.7)

dπs,t|dNt=1 = λhπs,t

λ̄s,t

− πs,t (3.8)

Proof. This is a direct application of the optimal filtering of a jump-diffusion process from
Liptser and Shiryaev (2001) Theorem 19.6, and is later applied in Benzoni, Collin-Dufresne,
and Goldstein (2011) and Koulovatianos and Wieland (2011).

Notice that when there is no jump, an agent’s beliefs about the probability of a disaster
follow a deterministic trend, with a negative drift of −(λh − λl)(1 − πs,t). Calm economic
times gradually improve agents’ optimism, albeit at a slow pace. However, when a disaster
occurs, beliefs shift discontinuously, and jump from πs,t to λhπs,t

λ̄s,t
. That is, the perceived

likelihood of a disaster occurring is suddenly amplified by a magnitude of λh

λ̄s,t
.6

3.3.3 Optimization

Agents continuously choose a non-negative consumption process cs,t, the fraction of wealth
allocated to the risky asset market αS

s,t, and the fraction of wealth devoted to the disaster-
contingent security αP

s,t. They continuously update their beliefs about disaster risk, and
dynamically trade assets given the return process and their beliefs, in order to maximize a
logarithmic flow utility over consumption goods. 7 They start with zero financial wealth, and
accumulate wealth over the life cycle. An annuity contract à la Yaari (1965) entitles δws,t

of earnings to living agents, while a competitive insurance company collects any remaining
wealth upon the unexpected death of the agent. Formally, the problem of an agent at time
s can be stated as

max
cs,t,αS

s,t,αP
s,t

Es,t

[∫ ∞

s
e−(ρ+δ)(t−s) log (cs,t)dt

]
(3.9)

6One might argue that Bayesian learning is contradicted by evidence of a ‘recency bias’. That is, it is
debatable whether agents weight past observations of disasters in a statistically optimal manner. However,
since we are primarily interested in generational belief differences, what matters is not the specific learning
algorithm at an individual level, but the cross-sectional differences in weights on the same event.

7As we shall see later, log preferences deliver two key advantages. First, they imply a constant savings
rate, which allows us to focus on the portfolio choice channel. Second, a log investor’s portfolio does not
need to include a hedging term (Gennotte (1986)). That is, his optimal portfolio is “myopic". Both these
simplifications are driven by the exact offsetting of income and substitution effects.
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s.t:

dws,t

ws,t−
=
(
rt + δ + αS

s,t(µS
t − rt) + αP

s,t(µP
t − rt) + ys,t − cs,t

ws,t−

)
dt+ αS

s,tσ
SdZs,t

+ (αS
s,tκ

S
t + αP

s,tκ
P
t )dNs,t(λ̄s,t)

(3.10)

where Es,t denotes the expectation of generation s evaluated at time t. The resulting
HJB equation associated with this problem is a nonlinear partial differential equation. With
the presence of aggregate shocks, it is not likely to have a closed-form solution. To bypass
this problem, we exploit the fact that the market is dynamically complete for all cohorts.
This allows us to employ the martingale approach (Cox and Huang (1989)). This allows us
to convert the dynamic programming problem into a static problem as follows

max
cs,s

Es,s

[∫ ∞

s
e−(ρ+δ)(t−s) log (cs,t)dt

]
(3.11)

s.t:
Es,s

[∫ ∞

s
e−δ(t−s)ξs,tcs,t

]
= Es,s

[∫ ∞

s
e−δ(t−s)ξs,tωYtdt

]
(3.12)

where ξs,t denotes the individual state price density.
From the first order condition (FOC) of consumption, we obtain

e−(ρ+δ)(t−s)

cs,t
= yse

−δ(t−s)ξs,t (3.13)

where ys denotes the Lagrange multiplier associated with the agent’s lifetime budget con-
straint. We can then relate cs,t to the initial consumption allocation cs,s using the following
equation

cs,t = cs,se
−ρ(t−s) ξs,s

ξs,t
(3.14)

To see how the consumption process evolves, we can first solve for the stochastic process of
the state price density.

LEMMA 3.3.2. By exploiting the fact that the regular Brownian motion and the compen-
sated Poisson process are martingales under the agent’s own filtration, one can derive the
individual state price density process as follows

dξs,t

ξs,t−
= (λ̄s,t − λN

s,t − rt)dt− θs,tdZs,t +
(
λN

s,t

λ̄s,t

− 1
)
dNs,t(λ̄s,t) (3.15)

where θs,t denotes the perceived market price of risk of the regular Brownian shock, and λN
s,t

is the perceived market price of disaster risk. It then follows that the true state price density
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follows
dξt

ξt−
= (λ̄t − λN

t − rt)dt− θtdZt +
(
λN

t

λ̄t

− 1
)
dNt(λ̄t) (3.16)

Define the disagreement process ηs,t = ξt

ξs,t
. We then have

dηs,t

ηs,t−
=
( 1

1 + κ̄
λs,t − λN

t

)
dt+

[
1 + κ̄

κ̄

(
−2λN

t

λt
− 1

)
− 1

]
dN(λ̄t) (3.17)

where κ̄ = p∗κh + (1 − p∗)κl.

Proof. See appendix.

As expected, the disagreement process ηs,t does not depend on the regular Brownian
shock, but only the disaster shock. When no disaster hits, the disagreement process has a
deterministic drift, which depends on how likely the agent perceives the disaster is likely to
happen, as well as on the market price of disaster risk. Since we know that cs,t = (ysξs,t)−1,
knowing the process of the state price density is equivalent to knowing the process of
consumption. Ito’s lemma then delivers

dcs,t

cs,t−
= (θ2

s,t − λ̄s,t + λN
s,t + rt)dt+ θs,tdZs,t +

(
λ̄s,t

λN
s,t

− 1
)
dNs,t(λ̄s,t) (3.18)

This is useful, because due to log utility, consumption is linear in financial wealth, i.e.,
cs,t = (ρ+ δ)ws,t. This implies that the stochastic process of the optimally invested wealth
follows

dws,t

ws,t−
= (θ2

s,t − λ̄s,t + λN
s,t + rt)dt+ θs,tdZs,t +

(
λ̄s,t

λN
s,t

− 1
)
dNs,t(λ̄s,t) (3.19)

Given the above individual optimal decisions, we are now ready for aggregation.

3.3.4 Aggregation

We start by defining a Walrasian equilibrium in this economy.

DEFINITION 3.3.1. Given preferences, initial endowments, and beliefs, an equilibrium
is a collection of allocations (cs,t, αS

s,t, αP
s,t) and a price system (rt, µS

t , µP
t , κS

t , κP
t ) such

that the choice processes (cs,t, αS
s,t, αP

s,t) maximize agents’ utility subject to their budget
constraints, and the market for consumption goods, bonds, risky asset and the disaster-
contingent security all clear, i.e.,

Yt =
∫ t

−∞
δe−δ(t−s)cs,tds (3.20)
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St =
∫ t

−∞
δe−δ(t−s)αS

s,tws,tds (3.21)

0 =
∫ t

−∞
δe−δ(t−s)αP

s,tws,tds (3.22)

0 =
∫ t

−∞
δe−δ(t−s)(1 − αS

s,t − αP
s,t)ws,tds (3.23)

By using the market-clearing condition for consumption goods, we can derive the stochas-
tic processes for ξt. Let us conjecture that the fraction of aggregate endowment consumed
by a newborn agent at time t is a fixed fraction βt = ct,t

Yt
= β. 8 We can then rewrite the

goods market clearing condition as

ξtYt =
∫ t

−∞
βδe−(ρ+δ)(t−s)ξsYs

ηs,t

ηs,s
ds (3.24)

Define ηt = e(ρ+δ(1−β))tξtYt, we can then rewrite the above into

ηt =
∫ t

−∞
βδe−βδ(t−s)ηs

ηs,t

ηs,s
ds (3.25)

Defining µη
s,t and κη

s,t as the drift and jump coefficients of ηs,t we are now ready to derive
the dynamics of ηt. Applying Ito’s lemma and Leibniz’s rule, we obtain

dηt

ηt
= µ̄η

t dt+ κ̄η
t dNt(λ̄t) (3.26)

where the weighted average coefficients are defined as

µ̄η
t = Es,t(µη

s,t) =
∫ t

−∞
fs,tµ

η
s,tds; κ̄η

t = Es,t(κη
s,t) =

∫ t

−∞
fs,tκ

η
s,tds (3.27)

and the wealth share fs,t is defined as

fs,t = βδe−βδ(t−s)
(
ηs

ηt

)(
ηs,t

ηs,s

)
= δe−δ(t−s) cs,t

Yt
(3.28)

Since we know the dynamics of Yt, we can then back out the dynamics of the state price
density.

dξt

ξt
=
(
µ̄η

t − µ+ σ2 − ρ− δ(1 − β)
)
dt− σdZt +

(1 + κ̄η

1 + κ̄
− 1

)
dNt(λt) (3.29)

Since we know that the state price density also has to follow eqn.(3.16), it directly gives
the solution of equilibrium prices.

8Appendix C.2 verifies this conjecture, and derives an explicit expression for β.
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PROPOSITION 3.3.1. In equilibrium, the short term interest rate, the market price of
risk for the regular Brownian shock, and the market price of disaster risk are given by

rt = ρ+ δ(1 − β)︸ ︷︷ ︸
effective patience with OLG

+ µ− σ2︸ ︷︷ ︸
risk adjusted growth

+ κ̄

1 + κ̄
Es,t(λ̄s,t)︸ ︷︷ ︸

market view of disaster risk

; (3.30)

θt = θ = σ; (3.31)

λN
t = Es,t(λs,t)

1 + κ̄
(3.32)

The closed form solutions for prices have intuitive interpretations. Let’s start with the
equilibrium interest rate. As always, the risk free rate increases when agents are less patient.
In a world of finite lives, the effective patience lessens due to death risk. Moreover, the
equilibrium interest rate increases when the endowment process has a higher rate of growth
and a lower volatility, which is captured in the second term. The third term reflects a flight
to safty motive coming from the market view of disaster risk, which is itself an endogenous
object. It depends on the wealth-weighted distribution of beliefs. Since κ̄ < 0, this implies
that the equilibrium interest rate decreases with market average pessimism. The desire to
save in the form of safe asset during disasters drives down the return on the safe asset,
leading to a low equilibrium interest rates during disaster episodes, as observed in the data
(see Nakamura, Steinsson, Barro, and Ursùa (2013)). Notice that the first and second term
are both constants, so variations in the interest rate are totally driven by variations in
market pessimism about disasters. The market price of the regular Brownian risk is less
interesting in this log-utility model. Since the disagreement is only about disaster risk, and
agents have common beliefs about the regular Brownian risk, the market price of risk is
therefore the same as the standard solution with log preferences, which simply equates to
the volatility of the risk. Finally, the market price of disaster risk increases with the market
view of the disaster likelihood. Lastly, λN

t also increases with the magnitude of the negative
jump.

3.3.5 Portfolio Allocations and Wealth Dynamics

This subsection discusses the key predictions of the model. Namely, how does the experience
of a rare disaster influence lifetime savings and portfolio allocations, and how do these
decisions influence an agent’s wealth accumulation. Recall that the optimally invested wealth
follows

dws,t

ws,t−
= (θ2

s,t − λ̄s,t + λN
t + rt)dt+ θs,tdZs,t +

(
λ̄s,t

λN
s,t

− 1
)
dNs,t(λ̄s,t) (3.33)
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Recall also that the budget constraint follows

dws,t

ws,t−
=
(
rt + αS

s,t(µS
t − rt) + δ + αP

s,t(µP
t − rt) + ys,t − cs,t

ws,t−

)
dt+ αS

s,tσ
SdZs,t

+ (αS
s,tκ

S
t + αP

s,tκ
P
t )dNs,t(λ̄s,t)

(3.34)

Since the market is complete, we can match coefficients with the wealth process in these
two stochastic differential equations. The share of wealth invested in the risky risky asset
market and the disaster-contingent security at time t for an agent born at time s are given
by the following expressions respectively

αS
s,t = θs,t

σS
= θt

σS
(3.35)

αP
s,t = 1

κP
t

(
λ̄s,t

λN
t

− 1
)

− κS
t θt

κP
t σ

S
(3.36)

Notice that all generations invest the same fraction of wealth in risky asset. However,
pessimistic generations hold less disaster-contingent security, as reflected in a higher λ̄s,t.
To complete the calculation, we still need to characterize µS

t , σS , κS
t and κP

t .

3.3.6 Equity Premium Dynamics

PROPOSITION 3.3.2. The equilibrium coefficients in the risky asset price and the
disaster-contingent security are given by

σS = σ (3.37)

κS
t = κt (3.38)

µS
t − rt = σ2 + µ̄η

t (3.39)

µP
t − rt = − κt

1 + κ̄
Es,t(λ̄s,t) (3.40)

Proof. See appendix.

The model produces an endogenous time-varying equity premium, both for the risky
asset as well as for the disaster-contingent security. When market pessimism rises, risky
asset and disaster-contingent security must pay higher average returns to clear the market.
This has interesting implications for inequality. Following a disaster shock, scarred investors
find safe asset investment more attractive. The increased aggregate demand of safe asset
then generates a decline in equilibrium interest rate, which then increases equity premium.
This general equilibrium effect of prices amplifies the initial partial equilibrium effect. Not
only does the scarred generation accumulate wealth at a slower pace due to less risk-taking,
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but they also sacrifice higher asset returns when it is the best time to buy the risky asset
and the disaster-contingent security.

COROLLARY 3.3.1. The share of wealth invested in the risky risky asset market and the
disaster-contingent security at time t for an agent born at time s are given by the following
expressions respectively

αS
s,t = 1 (3.41)

αP
s,t = 1

κ̄

(
λ̄s,t

E(λ̄s,t)
(1 + κ̄) − 1

)
− 1 (3.42)

If λs,t > E(λs,t), generation s is more pessimistic relative to the average generation, and
invest a lower share of thier wealth in risky portfolios, vice versa.

The resulting portfolio choice solutions are rather intuitive. Due to log utility of homo-
geneous beliefs on the Brownian motion risk, all investors invest all shares in risky asset.
However, pessimistic generations invest a lower share of their wealth in the disaster contin-
gency assets.

3.3.7 Evolution of the Joint Age-Wealth Distribution

This subsection studies the main object of interest, i.e, the evolution of the joint age-wealth
distribution. Note that with aggregate shocks, the Kolmogorov Forward equation, which
characterizes the evolution of the wealth distribution follows a stochastic partial differential
equation, and the distribution changes continuously. However, one can still study the long-
run stationary distribution by averaging out those shocks across time, and compares its
properties relative to the rational expectation economy.

PROPOSITION 3.3.3. The dynamics of the joint distribution of wealth and belief n(w, λ)
follows

dn = − ∂

∂w
(nµ̂wdt+ nσ̂wdZ) + 1

2
∂2

∂w2 (nσ̂2w2)dt+ [n(w(1 + κ̂), t)) − n(w, t)]dN (3.43)

Let p(w) = Es,tn(w, λ) denote the long run stationary distribution of wealth , and define
w̃s,t = ws,t

ωYt
. To a first order perturbation approximation, the long-run stationary distribution

of x = log (w̃) (eliminating all subscripts) is given by

p(x) ≈ Geζ0x︸ ︷︷ ︸
RE

[ζ1x+ g1]−1[e(λh−λ0)ζ1x − e(λl−λ0)ζ1x]︸ ︷︷ ︸
Learning

(3.44)

where ζ0 and ζ1 are constants. Moreover,

lim
x→∞

p(x) > lim
x→∞

pRE(x) (3.45)
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Proof. See appendix.

That is, we can decompose the long-run stationary distribution into two pieces. The
first piece features the standard resulting distribution of log of wealth as in the rational
expectation economy. The second piece reflects experiential learning, which produces a fatter
tail compared with the RE economy. As wealth becomes larger, the experiential learning
economy has more inequality compared with the Rational Expectation economy.

We need to emphasize one feature of the experiential learning economy called the “scale
dependence" of wealth accumulation (see Gabaix, Lasry, Lions, and Moll (2016)). In this
economy, the older households are on average richer, who are also accumulating their wealth
faster compared with the poorer and younger households. This is true both in normal times
as well as in disaster times. Recall that during normal times, the older households have
observed more data over their lifetime, and therefore take on more risk compared with
the younger household. During disaster times, even though all generations become more
pessimistic, it is the young generation’s beliefs that are hit the most, because they have less
life time experience, and would therefore over-extrapolate information from the disaster.
Therefore, “scale dependence" is even stronger during disaster times.

3.4 Calibration

In this section, we calibrate the above model to the Chinese data, and examine its quan-
titative implications for the dynamics of generational wealth inequality. Before presenting
the results, it is important to discuss the benchmark parameters being used.

Table 3.1: Benchmark Parameter Values

Parameters Value Source
ρ 1% Empirical estimate 1%-2%, chosen to match interest rate
δ 1.67% Average trading life expectancy of 60 years
ω 0.92 Dividend income share from NIPA
µ 8.76% Average real GDP growth rate in China
σ 4.94% Real GDP growth rate volatility in China
κ -0.273 Drop in Chinese real GDP in 1961
π∗ 0.89% Match annual disaster intensity from Barro (2006)
λH 24% Upper bound of disaster intensity in Barro (2006)
λL 1.5% Lower bound of disaster intensity in Barro (2006)

The birth and death rate δ = 1.67% is calibrated such that the average trading life
is from 20 to 80 years old, implying an average trading life expectancy of 60 years. The
parameter ω follows from Garleanu and Panageas (2015), which is chosen to match the
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fraction of capital income from the total income in the US. The drift coefficient µ and
volatility coefficient σ are estimated using real GDP data in China. The two hazard rates
λH = 24% and λL = 1.5% represent the upper and lower bounds of disaster probabilities,
respectively, following Barro (2006). The weight π∗ = 0.89% is chosen such that the average
rare disaster likelihood is 1.7%, which corresponds to the empirical estimate of disaster
frequencies from an international sample of 35 countries over 100 years in Barro (2006).
The jump size κ is chosen to match the real GDP drop in 1961. Next, empirical estimates of
discount rate are around 1% to 2%. However, a 2% discount rate generates a model implied
interest rate that is too high compared with the data. Therefore, we set ρ = 1%. Finally, we
assume that all agents start with a fixed prior that is equal to the Rational Expectations
value.

Using the above parameters, we first compute the long-run average distribution of wealth
and beliefs by simulation. The continuous time economy is discretized into discrete time with
annual frequencies. We simulate the economy with 8000 initial agents for 2000 years. Each
year, each living agent is endowed with ω fraction of aggregate endowment, and the wealth
share weighted average of prices are computed, and fed back into the growth of wealth for
each living agent. Then, δ fraction of the random sample of agents are dropped out at the
end of each year, which is then replaced by the newborns, who are endowed with zero finan-
cial wealth but a fixed fraction of aggregate dividend, and their beliefs are reset to the prior
in the next period. For surviving agents, their beliefs and wealth are updated. Prices are
again computed by the wealth weighted average, and the process carries on for 2000 years.
At the end of the simulation, the first 1000 years are discarded as a burn-in period, while
the last 1000 years of data are used to get the average joint age-wealth distribution. This
is then used as the initial distribution in 1951, the starting point of our calibration. Next,
we assume that only one disaster happened after 1951. In 1961, the Great Leap Forward
reduces the output by κ. We then re-run the simulation for 68 years to examine the response
of the wealth distribution between 1951 to 2019.
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Figure 3.6: Calibrated Path of Old to Young Wealth Ratio

Figure 3.6 plots the calibrated path of the old to young wealth ratio (65 and over vs.
35 and under). After the initial disaster, there is a gradual decrease of old to young wealth
ratio that lasts about 30 years. This reflects the lingering “belief scarring” effect. As time
goes by, the young people that experienced the Great Leap Forward become older. Over
the life cycle, their conservative portfolio strategies cause them to lose wealth relative to
the newer generations that have not experienced the disaster.

3.5 Conclusion

The CHFS data reveal that the baby boomers are in general poorer than the millennials in
China. In addition to wealth inequality, the two generations have very different risk-taking
behavior. Their stock market participation and exposures are highly correlated with their
experienced average GDP growth rates. The empirical evidence suggests that experiential
learning is an important channel in determining intergenerational wealth dynamics in the
economy. With the help of a model that combines rare disasters and overlapping generations,
we demonstrate that learning from macroeconomic experiences can have long-lasting effects
on portfolio choices and wealth accumulation.
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Appendix A

Fear and Trading

A.1 Proofs

Proof of Proposition 1.3.1.

Proof.

Pr(λ(t+ h) = Λk|N(t+ h) −N(t) = 0) = Pr(λ(t+ h) = Λk, N(t+ h) −N(t) = 0)
Pr(N(t+ h) −N(t) = 0) (A.1)

Pr(λ(t+h) = Λk, N(t+h)−N(t) = 0) =
∑
j ̸=k

qjkp̂j(t)h+ p̂k(t)(1−qkkh−Λkh)+o(h) (A.2)

Sum the above equation over all possible states, we get

Pr(N(t+ h) −N(t) = 0) = 1 −
∑

k

p̂k(t)Λkh+ o(h) (A.3)

If no jumps happen in this interval, then

p̂k(t+ h) = Pr(λ(t+ h) = Λk|N(t+ h) −N(t) = 0) (A.4)

lim
h→0

p̂k(t+ h) − p̂k(t)
h

=
∑

j

qjkp̂j(t) − p̂k(t)(Λk − λ̂(t)) (A.5)

dp̂k(t) =
∑

j

qjkp̂j(t)dt− p̂k(t)(Λk − λ̂(t))dt (A.6)

If one jump happens in this interval, then

p̂k(t+ h) = Pr(λ(t+ h) = Λk|N(t+ h) −N(t) = 1) = p̂k(t)Λkh

λ̂(t)h
= p̂k(t)Λk

λ̂(t)
(A.7)

p̂k(t+ h) − p̂k(t) = p̂k(t)Λk − λ̂(t)
λ̂(t)

(A.8)
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If we let h → 0, then right after the moment when jump happens, we add the increment in
(A.8) to (A.6) to obtain (5).

Proof of Proposition 1.3.3.

Proof.
ci(t) = I(yiM

i(t)) = 1
yiM i(t) (A.9)

yi = T

M i(0)wi(0) (A.10)

wi(t) = Ei[
∫ T

t M i(s)ci(s)ds]
M i(t) (A.11)

ci(t) = wi(t)
T − t

(A.12)

c1(t) + c2(t) = D(t) (A.13)

w1(t) + w2(t) = S(t) (A.14)

S(t) = D(t)(T − t) (A.15)

Using Ito’s lemma, we get

dS(t) +D(t)dt = S(t−)[µDdt+ ϕσdW (t) + jDdN
i(t)] (A.16)

Proof of Proposition 1.3.4.

Proof. (42) is obtained by matching the coefficients associated with the Brownian motion
and the Poisson jump terms in the two budget constraints (31) and (33).

We can plug the condition

ci(t) = (u′)−1(yiM
i(t)) = 1

yiM i(t) (A.17)

into the minimax problem, and we obtain

min
θi,λi

RN

Ei
[ ∫ T

0
−log(M i(t))dt

]
(A.18)

Use the expression for M i(t) in (20), this simplifies to a pointwise minimization problem:

min
θi,λi

RN

[
r(t) + 0.5θi(t)2 − (λi(t) − λi

RN (t)) − log

(
λi

RN (t)
λi(t)

)
λi(t)

]
(A.19)

Solve the above minimization problem, we obtain expressions (43) and (44).
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Proof of Proposition 1.3.5.

Proof.

k(t) = u′(c1(t))
u′(c2(t)) = y1M

1(t)
y2M2(t) = w2(t)

w1(t) (A.20)

k(t) = 1/c1(t)
1/c2(t) (A.21)

and
c1(t) + c2(t) = D(t) (A.22)

We obtain
c1(t) = D(t)

1 + k(t) (A.23)

c2(t) = D(t)k(t)
1 + k(t) (A.24)

The representative agent’s utility is

log(c1(t)) + k(t)log(c2(t)) (A.25)

The differential form of the stochastic discount factor is

dM i(t) = −M i(t−)[r(t)dt+θi(t)dW i(t)−(λi(t)−λi
RN (t))dt−

(
λi

RN (t)
λi(t) −1

)
dN i(t)] (A.26)

Using Ito’s lemma, we get

dk(t)
k(t−) = [θ2(t)2 −θ1(t)θ2(t)+(λ1(t)−λ1

RN (t))− (λ2(t)−λ2
RN (t))]dt+[θ2(t)−θ1(t)]dW (t)

+
(
λ1

RN (t)λ2(t)
λ1(t)λ2

RN (t)
− 1

)
dN i(t) (A.27)

We know that the representative agent’s marginal utility 1+k(t)
D(t) should equal agent 1’s

stochastic discount factor from the envelope theorem. This gives us another expression for

the evolution of agent 1’s stochastic discount factor as dM1(t) = d

(
1+k(t)
D(t)

)
.

Matching the corresponding terms associated with the drift term, the volatility term and
the jump term leads to the expressions in Proposition 1.3.5.

Proof of Proposition 1.3.6.

Proof. (56) and (57) are obtained by matching the coefficients associated with the Brownian
motion and the Poisson jump terms in the two budget constraints (31) and (54).
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Agreement on the prices dictate that θ1(t) = θ2(t) and λ1
RN (t) = λ2

RN (t). Therefore we
obtain

dM i(t) = −M i(t−)[r(t)dt+θ(t)dW i(t)−(λi(t)−λRN (t))dt−
(
λRN (t)
λi(t) −1

)
dN i(t)] (A.28)

Using Ito’s lemma, we get

dk(t)
k(t−) = [λ1(t) − λ2(t)]dt+

(
λ2(t)
λ1(t) − 1

)
dN i(t) (A.29)

The representative agent’s marginal utility should equal agent 1’s stochastic discount factor.

The expressions in Proposition 6 can be obtained by matching the relevant terms.
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A.2 Additional Tables and Graphs

Largest Daily Percentage Decreases in the S&P 500 Index
Rank Date Value

Weighted
Return

Equal
Weighted
Return

Recession

1 1987-10-19 -19.46 -18.42 N
2 2020-03-16* -11.98 -11.98 Y
3 1929-10-28 -11.68 -10.86 Y
4 1929-10-29 -10.03 -11.53 Y
5 1929-11-06 -9.70 -9.22 Y
6 2020-03-12* -9.51 -9.51 Y
7 1937-10-18 -9.26 -9.85 Y
8 2008-10-15 -9.00 -9.87 Y
9 1933-07-21 -8.99 -11.17 N
10 1933-07-20 -8.90 -9.85 N
11 2008-12-01 -8.86 -10.08 Y
12 2008-09-29 -8.71 -9.20 Y
13 1932-10-05 -8.39 -9.80 Y
14 1987-10-26 -8.29 -9.05 N
15 1932-08-12 -8.29 -8.21 Y
16 1934-07-26 -7.97 -10.16 N
17 1931-09-24 -7.83 -7.91 Y
18 1932-05-31 -7.74 -8.24 Y
19 2020-03-09* -7.60 -7.60 Y
20 2008-10-09 -7.57 -8.21 Y
21 1932-09-12 -7.47 -9.66 Y
22 1940-05-14 -7.19 -8.87 N

Table A.1: Market Crashes in the US. Source: CRSP. The ranking is based on value weighted
return. The returns on the dates marked by * are returns on the S&P 500 index.
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Figure A.1: The Market Crash on September 29, 2008: Price Changes
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Figure A.2: The Market Crash on September 29, 2008: Daily Turnover
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Appendix B

The Market Selection Hypothesis
and Rare Disasters

Proof of Proposition 2.3.1.

Proof.
ci(t) = I(yiM

i(t)eδt) = 1
yiM i(t)eδt

(B.1)

yi = δwi(0) (B.2)

wi(t) = Ei[
∫∞

t M i(s)ci(s)ds]
M i(t) = 1

δ2wi(0)M i(t)eδt
(B.3)

ci(t) = wi(t)δ (B.4)

c1(t) + c2(t) = D(t) (B.5)

w1(t) + w2(t) = S(t) (B.6)

S(t) = D(t)
δ

(B.7)

Using Ito’s lemma, we get

dS(t)dt = S(t−)[µDdt+ σDdW (t) + jDdN
i(t)] (B.8)

Proof of Proposition 2.3.2.

Proof.

k(t) = u′(c1(t))
u′(c2(t)) = y1M

1(t)
y2M2(t) = w2(t)

w1(t) (B.9)

k(t) = 1/c1(t)
1/c2(t) (B.10)
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and
c1(t) + c2(t) = D(t) (B.11)

We obtain
c1(t) = D(t)

1 + k(t) (B.12)

c2(t) = D(t)k(t)
1 + k(t) (B.13)

Following Basak and Cuoco (1998), we construct a representative agent that consumes the
aggregate dividend. The representative agent’s utility is

log(c1(t)) + k(t)log(c2(t)) (B.14)

The differential form of the stochastic discount factor is

dM i(t) = −M i(t−)[r(t)dt+θi(t)dW i(t)−(λi(t)−λi
RN (t))dt−

(
λi

RN (t)
λi(t) −1

)
dN i(t)] (B.15)

Using Ito’s lemma, we get

dk(t)
k(t−) = [θ2(t)2 −θ1(t)θ2(t)+(λ1(t)−λ1

RN (t))− (λ2(t)−λ2
RN (t))]dt+[θ2(t)−θ1(t)]dW (t)

+
(
λ1

RN (t)λ2(t)
λ1(t)λ2

RN (t)
− 1

)
dN i(t) (B.16)

We know that the representative agent’s marginal utility e−δt 1+k(t)
D(t) should equal agent 1’s

stochastic discount factor from the envelope theorem. This gives us another expression for

the evolution of agent 1’s stochastic discount factor as dM1(t) = d

(
e−δt 1+k(t)

D(t)

)
.

Matching the corresponding terms associated with the drift term, the volatility term and
the jump term leads to the expressions in Proposition 2.3.2.

Proof of Proposition 2.3.3.

Proof. (36) and (37) are obtained by matching the coefficients associated with the Brownian
motion and the Poisson jump terms in the two budget constraints (18) and (34).

Agreement on the prices dictate that θ1(t) = θ2(t) and λ1
RN (t) = λ2

RN (t). Therefore we
obtain

dM i(t) = −M i(t−)[r(t)dt+θ(t)dW i(t)−(λi(t)−λRN (t))dt−
(
λRN (t)
λi(t) −1

)
dN i(t)] (B.17)
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Using Ito’s lemma, we get

dk(t)
k(t−) = [λ1(t) − λ2(t)]dt+

(
λ2(t)
λ1(t) − 1

)
dN i(t) (B.18)

The representative agent’s marginal utility should equal agent 1’s stochastic discount factor.

The expressions in Proposition 2.3.3 can be obtained by matching the relevant terms.

Proof of Proposition 2.4.3

Proof. Part 1. In complete markets with learning, the wealth ratio is governed by

k(t) = k(0) exp
(∫ t

0
(λ1(s) − λ2(s))ds+

∫ t

0
log

(
λ2(s)
λ1(s)

)
dN(s)

)
(B.19)

k(t) = k(0) exp
(∫ t

0
(λ1(s) − λ2(s))ds+

∫ t

0
log

(
λ2(s)
λ1(s)

)
λ1(s)ds+

∫ t

0
log

(
λ2(s)
λ1(s)

)
dÑ(s)

)
(B.20)

According to proposition 2.4.2,
∫ t

0 log
(

λ2(s)
λ1(s)

)
dÑ(s) is a martingale and limt→∞

∫ t

0 log
(

λ2(s)
λ1(s)

)
dÑ(s)

t

is zero almost surely.

We assume that |λ1(t) − λ2(t)| < η1 for all t and limt→∞ λ1(t) − λ2(t) = ϵ1.

If λ1(t) − λ2(t) is bounded, so is log
(

λ2(t)
λ1(t)

)
λ1(t). It is therefore natural to assume that∣∣∣∣ log

(
λ2(t)
λ1(t)

)
λ1(t)

∣∣∣∣ < η2 for all t and limt→∞ log
(

λ2(t)
λ1(t)

)
λ1(t) = ϵ2.

For all ϵ > 0, there exists t1 such that |λ1(t) − λ2(t) − ϵ1| < ϵ if t > t1.

For all ϵ > 0, there exists t2 such that
∣∣∣∣ log

(
λ2(t)
λ1(t)

)
λ1(t) − ϵ2

∣∣∣∣ < ϵ if t > t2.

Let ϵ < 1
2 |ϵ1 + ϵ2| and t0 = max{t1, t2}, we have

(λ1(t) − λ2(t)) + log
(
λ2(t)
λ1(t)

)
λ1(t) < ϵ1 + ϵ2 + 2ϵ < 0 t > t0 (B.21)

Since limt→∞
1

t−t0

∫ t
t0

(ϵ1 + ϵ2 + 2ϵ)ds = ϵ1 + ϵ2 + 2ϵ, we can conclude that

lim
t→∞

1
t− t0

∫ t

t0
(λ1(s) − λ2(s)) + log

(
λ2(s)
λ1(s)

)
λ1(s)ds ≤ ϵ1 + ϵ2 + 2ϵ (B.22)
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If ϵ1 ̸= 0, then ϵ2 ̸= 0
lim

t→∞
k(t) = 0 a.s.

If an agent cannot learn the truth, his extinction is guaranteed.

Part 2. We assume that
∣∣∣∣(λ1(t) − λ2(t)) + log

(
λ2(t)
λ1(t)

)
λ1(t)

∣∣∣∣ < 1
tα for all t > t0.

We know that (λ1(t) − λ2(t)) + log
(

λ2(t)
λ1(t)

)
λ1(t) < 0. We have

∫ t

t0

(
(λ1(s) − λ2(s)) + log

(
λ2(s)
λ1(s)

)
λ1(s)

)
ds = −

∫ t

t0

∣∣∣∣∣(λ1(s) − λ2(s)) + log
(
λ2(s)
λ1(s)

)
λ1(s)

∣∣∣∣∣ds
(B.23)

and ∫ t

t0

∣∣∣∣∣(λ1(s) − λ2(s)) + log
(
λ2(s)
λ1(s)

)
λ1(s)

∣∣∣∣∣ds <
∫ t

t0

1
sα
ds (B.24)

we need α > 1 to make sure that

lim
t→∞

∫ t

t0

∣∣∣∣∣(λ1(s) − λ2(s)) + log
(
λ2(s)
λ1(s)

)
λ1(s)

∣∣∣∣∣ds < ∞ (B.25)

and

lim
t→∞

∫ t

t0

(
(λ1(s) − λ2(s)) + log

(
λ2(s)
λ1(s)

)
λ1(s)

)
ds < ∞ (B.26)

The variance of
∫ t

0 log
(

λ2(s)
λ1(s)

)
dÑ(s) is E

∫ t
0

(
log

(
λ2(s)
λ1(s)

))2
λ1(s)ds. In order to make sure

that the variance is finite, we need
∫ t

0

(
log

(
λ2(s)
λ1(s)

))2
ds < ∞.

If the agent with inaccurate beliefs can learn the truth quickly enough, both agents survive
as t goes to infinity.

Proof of Proposition 2.4.5.

Proof. Part 1. Under incomplete markets with learning, the wealth ratio at time t is

k(t) = k(0)exp
(∫ t

0

(
λ2

RN (s))λ1(s) − λ1
RN (s)λ2(s)

λ2
RN (s)

− 1
2(θ2(s) − θ1(s))2

)
ds

+
∫ t

0
(θ2(s) − θ1(s))dW (s) +

∫ t

0
log

(
λ1

RN (s)λ2(s)
λ1(s)λ2

RN (s)

)
dN(s)

)
(B.27)
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According to proposition 2.4.2,
∫ t

0 log
(

λ1
RN (s)λ2(s)

λ1(s)λ2
RN (s)

)
dÑ(s) is a martingale and

limt→∞

∫ t

0 log
(

λ1
RN

(s)λ2(s)
λ1(s)λ2

RN
(s)

)
dÑ(s)

t is zero almost surely.

We assume that
∣∣∣∣λ2

RN (t))λ1(t)−λ1
RN (t)λ2(t)

λ2
RN (t)

∣∣∣∣ < η3 for all t and limt→∞
λ2

RN (t))λ1(t)−λ1
RN (t)λ2(t)

λ2
RN (t) =

ϵ3.

If λ2
RN (t))λ1(t)−λ1

RN (t)λ2(t)
λ2

RN (t) is bounded, so is log
(

λ1
RN (t)λ2(t)

λ1(t)λ2
RN (t)

)
λ1(t). It is therefore natural to

assume that
∣∣∣∣ log

(
λ1

RN (t)λ2(t)
λ1(t)λ2

RN (t)

)
λ1(t)

∣∣∣∣ < η4 for all t and limt→∞ log
(

λ1
RN (t)λ2(t)

λ1(t)λ2
RN (t)

)
λ1(t) = ϵ4.

For all ϵ > 0, there exists t1 such that |λ2
RN (t))λ1(t)−λ1

RN (t)λ2(t)
λ2

RN (t) − ϵ3| < ϵ if t > t1.

For all ϵ > 0, there exists t2 such that
∣∣∣∣ log

(
λ1

RN (t)λ2(t)
λ1(t)λ2

RN (t)

)
λ1(t) − ϵ4

∣∣∣∣ < ϵ if t > t2.

Let ϵ < 1
2 |ϵ1 + ϵ2| and t0 = max{t1, t2}, we have

λ2
RN (t))λ1(t) − λ1

RN (t)λ2(t)
λ2

RN (t)
+ log

(
λ1

RN (t)λ2(t)
λ1(t)λ2

RN (t)

)
λ1(t) < ϵ3 + ϵ4 + 2ϵ < 0 t > t0 (B.28)

Since limt→∞
1

t−t0

∫ t
t0

(ϵ3 + ϵ4 + 2ϵ)ds = ϵ3 + ϵ4 + 2ϵ, we can conclude that

lim
t→∞

1
t− t0

∫ t

t0

λ2
RN (s))λ1(s) − λ1

RN (s)λ2(s)
λ2

RN (s)
+ log

(
λ1

RN (s)λ2(s)
λ1(s)λ2

RN (s)

)
λ1(s)ds ≤ ϵ3 + ϵ4 + 2ϵ

(B.29)

If ϵ3 ̸= 0, then ϵ4 ̸= 0
lim

t→∞
k(t) = 0 a.s.

If an agent cannot learn the truth, his extinction is guaranteed.

Part 2. We assume that
∣∣∣∣λ2

RN (t))λ1(t)−λ1
RN (t)λ2(t)

λ2
RN (t) + log

(
λ1

RN (t)λ2(t)
λ1(t)λ2

RN (t)

)
λ1(t)

∣∣∣∣ < 1
tα for all t > t0.

We know that λ2
RN (t))λ1(t)−λ1

RN (t)λ2(t)
λ2

RN (t) + log
(

λ1
RN (t)λ2(t)

λ1(t)λ2
RN (t)

)
λ1(t) < 0. We have

∫ t

t0

(
λ2

RN (s))λ1(s) − λ1
RN (s)λ2(s)

λ2
RN (s)

+ log
(
λ1

RN (s)λ2(s)
λ1(s)λ2

RN (s)

)
λ1(s)

)
ds =

−
∫ t

t0

∣∣∣∣∣λ2
RN (s))λ1(s) − λ1

RN (s)λ2(s)
λ2

RN (s)
+ log

(
λ1

RN (s)λ2(s)
λ1(s)λ2

RN (s)

)
λ1(s)

∣∣∣∣∣ds (B.30)

and ∫ t

t0

∣∣∣∣∣λ2
RN (s))λ1(s) − λ1

RN (s)λ2(s)
λ2

RN (s)
+ log

(
λ1

RN (s)λ2(s)
λ1(s)λ2

RN (s)

)
λ1(s)

∣∣∣∣∣ds <
∫ t

t0

1
sα
ds (B.31)
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we need α > 1 to make sure that

lim
t→∞

∫ t

t0

∣∣∣∣∣λ2
RN (s))λ1(s) − λ1

RN (s)λ2(s)
λ2

RN (s)
+ log

(
λ1

RN (s)λ2(s)
λ1(s)λ2

RN (s)

)
λ1(s)

∣∣∣∣∣ds < ∞ (B.32)

and

lim
t→∞

∫ t

t0

(
λ2

RN (s))λ1(s) − λ1
RN (s)λ2(s)

λ2
RN (s)

+ log
(
λ1

RN (s)λ2(s)
λ1(s)λ2

RN (s)

)
λ1(s)

)
ds < ∞ (B.33)

The variance of
∫ t

0 log
(

λ1
RN (s)λ2(s)

λ1(s)λ2
RN (s)

)
dÑ(s) is E

∫ t
0

(
log

(
λ1

RN (s)λ2(s)
λ1(s)λ2

RN (s)

))2
λ1(s)ds. In order to

make sure that the variance is finite, we need
∫ t

0

(
log

(
λ1

RN (t)λ2(t)
λ1(t)λ2

RN (t)

))2
ds < ∞.

We also need to worry about (θ2(s)−θ1(s))2. In order to make sure that both
∫ t

0 −1
2(θ2(s)−

θ1(s))2ds and
∫ t

0(θ2(s) − θ1(s))dW (s) are finite. We need∫ t

0
(θ2(s) − θ1(s))2ds < ∞ (B.34)

If the agent with inaccurate beliefs can learn the truth quickly enough, both agents survive
as t goes to infinity.

Proof of Proposition 2.5.1.

Proof.

Pr(λ(t+h) = Λk|N(t+h) −N(t) = 0) = Pr(λ(t+ h) = Λk, N(t+ h) −N(t) = 0)
Pr(N(t+ h) −N(t) = 0) (B.35)

Pr(λ(t+h) = Λk, N(t+h)−N(t) = 0) =
∑
j ̸=k

qjkp
1
j (t)h+p1

k(t)(1−qkkh−Λkh)+o(h) (B.36)

Sum the above equation over all possible states, we get

Pr(N(t+ h) −N(t) = 0) = 1 −
∑

k

p1
k(t)Λkh+ o(h) (B.37)

If no jumps happen in this interval, then

p1
k(t+ h) = Pr(λ(t+ h) = Λk|N(t+ h) −N(t) = 0) (B.38)

lim
h→0

p1
k(t+ h) − p1

k(t)
h

=
∑

j

qjkp
1
j (t) − p1

k(t)(Λk − λ1(t)) (B.39)

dp1
k(t) =

∑
j

qjkp
1
j (t)dt− p1

k(t)(Λk − λ1(t))dt (B.40)
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If one jump happens in this interval, then

p1
k(t+ h) = Pr(λ(t+ h) = Λk|N(t+ h) −N(t) = 1) = p1

k(t)Λkh

λ1(t)h = p1
k(t)Λk

λ1(t) (B.41)

p1
k(t+ h) − p1

k(t) = p1
k(t)Λk − λ1(t)

λ1(t) (B.42)

If we let h → 0, then right after the moment when jump happens, we add the increment in
(B.42) to (B.40) to obtain (72).

Proof of Proposition 2.5.3.

Proof.

E[l(x, x̂) − l(x,E(x|G))] = E[x log(x
x̂

) − x+ x̂] − E[x log( x

E(x|G)) − x+ E(x|G)]

= E[x log(E(x|G)
x̂

) − E(x|G) + x̂]

= E[E[x log(E(x|G)
x̂

) − E(x|G) + x̂|G]]

= E[E(x|G) log(E(x|G)
x̂

) − E(x|G) + x̂] = E[l(E(x|G), x̂)] ≥ 0
(B.43)

l(E(x|G), x̂) = 0 when x̂ = E(x|G), E(x|G) is the unique estimator minimizing the mean
loss under l.

E[lSE(x, x̂) − lSE(x,E(x|G))] = E[(x− x̂)2] − E[(x− E(x|G))2]
= E[(E(x|G) − x̂)(2x− x̂− E(x|G))]
= E[E[(E(x|G) − x̂)(2x− x̂− E(x|G))|G]]
= E[(E(x|G) − x̂)E[(2x− x̂− E(x|G))|G]] = E[lSE(E(x|G), x̂)] ≥ 0

(B.44)

lSE(E(x|G), x̂) = 0 when x̂ = E(x|G), E(x|G) is the unique estimator minimizing the mean
loss under lSE .
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Appendix C

Portfolio Choice and
Intergenerational Inequality in
China: Theory and Evidence

Proof of Lemma 3.3.2. See Dieckmann (2011) for the proof of eqn.(3.15) and eqn.(3.16).
The derivation of ξs,t process follows first by applying the Girsanov theorem for the jump
process, s.t:

dNs,t − λ̄s,tdt = dNt(λ̄t) − λ̄tdt (C.1)

With the change of measure, we can rewrite eqn.(3.15) into

dξs,t

ξs,t−
=
(
λ̄s,t − λN

s,t − rt + (
λN

s,t

λ̄s,t

− 1)(λs,t − λ̄t)
)
dt− θs,tdZt +

(
λN

s,t

λ̄s,t

− 1
)
dNt(λ̄t) (C.2)

Then the SDE for ηs,t follows directly from the application of multidimensional jump-
diffusion version of the Ito’s lemma. Notice that all agents agree on the diffusion risk,
therefore we can simplify the solution by imposing θs,t = θt, and that dZs,t = dZt. We can
further simplify the expression by noticing that by definition, the market price of the jump
risk is defined by λN

s,t = λs,t

1+κ̄ . Applying Ito’s lemma again on ηs,t = ξt

ξs,t
, we have

dηs,t

ηs,t
=
( 1

1 + κ̄
λs,t − λN

t

)
dt+

[
1 + κ̄

κ̄

(
−2λN

t

λt
− 1

)
− 1

]
dN(λ̄t) (C.3)
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Proof of proposition 3.3.2. To get the coefficient of the stock price, we can write down the
formula for stock prices, i.e.,

St = 1
ξt
Et

[∫ ∞

t
ξuDudu

]
= 1
ξt
Et

[∫ ∞

t
e−(ρ+δ(1−β))uηudu

]
= 1
ξt
ηt

∫ ∞

t
e−(ρ+δ(1−β))udu

= 1
ρ+ δ(1 − β)Yt

(C.4)

That is, stock price to dividend ratio is a constant, i.e.,

dSt

St−
= dYt

Yt−
(C.5)

Recall that the compounded stock market value follows the following process

dSt +Dtdt

St−
= µS

t dt+ σSdZt + κS
t dNt(λt) (C.6)

Matching coefficients, one get

µS = µ+ ρ+ δ(1 − β);σS = σ;κS
t = κt (C.7)

Now let’s turn to the pricing of the disaster insurance product. By definition, we have

µP
t = −κP

t λ
N
t + rt = − κt

1 + κ̄
Es,t(λ̄s,t) + rt (C.8)

C.1 Proof of Proposition 3.3.3

We first derive the stationary KFP equation with a general jump diffusion process of any
random variable ws,t

dws,t

ws,t−
= µ̂s,tdt+ σ̂s,tdZt + κ̂s,tdNt (C.9)

where dZt and dNt represent aggregate Brownian motion and jump shocks. To simplify
notation, we will now eliminate all subscripts in the following texts. Let f(w) be any function
of w, n(w) be the density function of w, and let A(t+dt) denotes the conditional expectation
of f(w) at t+ dt. We then have

A(t+ dt) =
∫ ∞

−∞
f(w)nt+dtdw

=
∫ ∞

−∞
(f(w) + df(w))n(w) − δf(w)n(w)dw

=
∫ ∞

−∞
f(w)(1 − δ)n(w)dw +

∫ ∞

−∞
df(w)n(w)dw

(C.10)
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We then have
d(A(t)) = −

∫ ∞

−∞
δn(w)f(w)dw +

∫ ∞

−∞
df(w)n(w)dw. (C.11)

Applying Ito’s lemma for the jump diffusion process of w, we can get

df(w) = f ′(w)[µ̂wdt+ σ̂wdZ] + 1
2f

′′(w)σ̂2w2dt+ [f(w(1 + κ̂)) − f(w)]dN (C.12)

Using integration by parts, we have∫ ∞

−∞
df(w)n(w)dw =

∫ ∞

−∞

[
f ′(w) [µ̂wdt+ σ̂wdZ] + 1

2f
′′(w)σ̂2w2dt

]
n(w)dw

+
∫ ∞

−∞
[f(w (1 + κ̂)) − f(w)]n(w)dNdw

=
∫ ∞

−∞
f(w)

[
− ∂

∂w
(n(w)µ̂wdt+ n(w)σ̂wdZt) + 1

2f(w) ∂
2

∂w2

(
n(w)σ̂2w2

)
dt

]

+
∫ ∞

−∞
[n(w (1 + κ̂)) − n(w)] f(w)dNdw

(C.13)
Notice that the way we write down changes in A(t) in (C.11) fixes the density of w in the
state space and calculate with Ito’s Lemma how f(w) will change. One can also approximate
d(A(t)) by linearly extrapolating the density at each point, that is,

d(A(t)) =
∫ ∞

−∞
f(w)∂n

∂t
dtdw =

∫ ∞

−∞
df(w)n(w)dw (C.14)

Plugging in the expression in eqn. (C.13), and equating the integrands, we get

dn = − ∂

∂w
(nµ̂wdt+nσ̂wdZ)+ 1

2
∂2

∂w2 (nσ̂2w2)dt−δn+[n(w(1+ κ̂), t))−n(w, t)]dN (C.15)

As one can see, the distribution of this variable is stochastic, and that there is no closed form
solution in general. However, we can still ask the question, what is the long-run stationary
distribution of this variable in this economy? That is, what is the solution of dp(w) =
Et (dn(w)) = 0? 1 By averaging out the KFP equation, we then have

− ∂

∂w
(E(µ̂)wp(w)) + ∂2

∂w2

(
E(σ̂2)

2 w2p(w)
)

− δp(w) + λ(pJ − p) = 0 (C.16)

We now apply this stationary KFP to the variables of interest in this model. Since the
aggregate economy is growing exponentially, and the newborn gets a constant share of it,
we will need to normalize wealth to get a stationary distribution. Therefore, instead of
examining the stationary distribution of absolute wealth, we will instead work with the
following normalized variable:

w̃s,t = ws,t

ωYt
(C.17)

1The expectation is taken as the time-series average.
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That is, the absolute wealth normalized by the newborn’s endowment. Since agents are born
with zero financial wealth, we have w̃s,s = ωYs

ωYs
= 1. This variable has a stationary distri-

bution absent aggregate shocks. Recall that, after imposing the market clearing condition,
the individual wealth dynamics follows the following

dws,t

ws,t−
=
(
σ2 + r − λ̄s,t + λN

t + δ + (λs,t − λ̄0
t )
(
λs,t

λN
t

− 1
))

dt+ σdZ +
(
λ̄s,t

λN
t

− 1
)
dNt

(C.18)
Applying Ito’s lemma for the jump-diffusion processes, we then have

dw̃s,t

w̃s,t−
=
(
σ2 + r − λ̄s,t + λN

t + δ + (λs,t − λ̄0
t )
(
λs,t

λN
t

− 1
)

− µ

)
dt+

(
λs,t

E(λs,t)
(1 + κt) − 1

)
dNt

(C.19)

which in short-hand can be written as

dw̃s,t

w̃s,t−
= µ̂(λs,t)dt+ κ̂(λs,t)dNt (C.20)

It turns out to be easier to work with log of wealth. Define x = log (w̃). With Ito’s lemma,
we can rewrite the above into

dx = µ̂dt+ log (1 + κ̂)dNt (C.21)

Recall that our final goal is to compute the long-run average marginal density of log wealth
p(x), which can be seen as

p(x) =
∫ ∞

0
n(x, λ)dλ (C.22)

Notice that we can further decompose the joint density n(.) into the product of the marginal
density of belief and the conditional density of wealth, i.e.,

n(x, λ) = n1(x|λ)n2(λ) (C.23)

From eqn. (C.21), we can write down the dynamics of n1(x|λ), i.e.,

0 = −∂n1
∂x

µ̂+ λ0 (n1(log (1 + κ̂) + x) − n1) − δn1 (C.24)

We can guess and verify a solution n1 = Aeζx, where ζ = λ0κ̂−δ
µ̂ and that A is the normalizing

constant of the conditional distribution. We can further approximate ζ around λ = λ0 = 0,
and get

ζ ≈ ζ0 + (λ− λ0)ζ1 (C.25)

where ζ0 = κ̄λ0−δ
d and ζ1 = κ̄d−κ̄(κ̄λ0−δ)

d2 , and where a = 1+κ̄
E(λs,t) , c = −2 − λ0

λN , d =
σ2 + r + λN + δ + λ0 − µ.
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To compute n2(λs,t), recall that

dλs,t = (λs,t− − λl)(λs,t − λh)dt− (λs,t− − λh)(λs,t− − λl)
(1 + λs,t−)
λs,t−

dNt (C.26)

Writing out the stationary KFP of λs,t and again abstract away from super(sub)scripts, we
can get

0 = −∂n2
∂λ

(λ− λh)(λ− λl) − n2(2λ− λl − λh + δ) + λ0(nJ
2 − n2) (C.27)

We can guess and verify the following approximate exponential solution

n2(λ) ≈ eg0+g1λ+ g2
2 λ2 (C.28)

We can then substitute this into the above ODE, and match the constants. This ensures
that the marginal density is non-negative, and that we are looking for a solution around
λ = 0.

In the end, we can simply get the marginal distribution of log wealth by integrating the
product of the conditional distribution of wealth and the marginal distribution of beliefs,
i.e.,

p(x) = G0e
(ζ0−λ0ζ1)x

∫ λh

λl

eλζ1xeg0+g1λ+ g2
2 λ2

dλ

= Geζ0x︸ ︷︷ ︸
RE

[ζ1x+ g1]−1[e(λh−λ0)ζ1x − e(λl−λ0)ζ1x]︸ ︷︷ ︸
Learning

(C.29)

Let pRE(x) denote the long run stationary distribution of log normalized wealth in the
rational expectation economy, we then have

lim
x→∞

p(x)
pRE(x) = lim

x→∞
[ζ1x+ g1]−1[e(λh−λ0)ζ1x − e(λl−λ0)ζ1x]

= lim
x→∞

ζ−1
1

[
−(λl − λ0)ζ1e

(λl−λ0)ζ1x
] (C.30)

where the second equality uses the L’hopital’s rule. Recall that ζ1 = κ̄d−κ̄(κ̄λ0−δ)
d2 . With the

calibrated parameter values, we then know that ζ1 < 0. Therefore, the above expression
goes to infinity wnen x → ∞. We then have

lim
x→∞

p(x) > lim
x→∞

pRE(x) (C.31)

That is, the experiential learning economy has a fatter right tail of wealth distribution
compared with the standard RE economy.
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C.2 Verification of Newborn Consumption Share

We start by defining βt, i.e.,
βt = ct,t

Yt
= (ρ+ δ)wt,t

Yt
(C.32)

where the second equality comes from consumption smoothing of a log agent. Since agents
are born without financial wealth, Wt,t is essentially the present value of all future earnings.

Wt,t = 1
ξt
Et

[∫ ∞

t
e−δ(u−t)ξuωYudu

]
= ωYtEt

[∫ ∞

t
e−(ρ+δ+δ(1−β))(u−t) η̄u

η̄t
du

]
= ωYt

ρ+ δ + δ(1 − β)

(C.33)

where the second equality uses the definition of η̄t, and the third equality follows from the
fact that the disagreement process η̄t is a martingale. We then have a fixed point for β, i.e.,

β = 1
ρ+ δ + δ(1 − β) (C.34)

This renders the two solutions

β1,2 = ρ+ 2δ
2δ ±

√
ρ2 + 4(ρ+ δ)δ(1 − ω)

2δ (C.35)

However, since the stock price is St = 1−ω
ρ+δ(1−β)Yt, we know that β < ρ+δ

δ has to hold. This
eliminate the positive root of β, while the negative root can satisfy the constraint. So the
value of β is

β = ρ+ 2δ
2δ −

√
ρ2 + 4(ρ+ δ)δ(1 − ω)

2δ (C.36)
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