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Abstract: N-Glycosylation (NG) and disulfide bonds (DBs) are two prevalent co/post-translational
modifications (PTMs) that are often conserved and coexist in membrane and secreted proteins
involved in a large number of diseases. Both in the past and in recent times, the enzymes and
chaperones regulating these PTMs have been constantly discovered to directly interact with each
other or colocalize in the ER. However, beyond a few model proteins, how such cooperation affects
N-glycan modification and disulfide bonding at selective sites in individual proteins is largely
unknown. Here, we reviewed the literature to discover the current status in understanding the
relationships between NG and DBs in individual proteins. Our results showed that more than
2700 human proteins carry both PTMs, and fewer than 2% of them have been investigated in the asso-
ciations between NG and DBs. We summarized both these proteins with the reported relationships in
the two PTMs and the tools used to discover the relationships. We hope that, by exposing this largely
understudied field, more investigations can be encouraged to unveil the hidden relationships of NG
and DBs in the majority of membranes and secreted proteins for pathophysiological understanding
and biotherapeutic development.

Keywords: posttranslational modifications; N-glycosylation; disulfide bonds; membrane and
secreted proteins; endoplasmic reticulum quality control; protein structure and function

1. Introduction

Both N-glycosylation (NG) and disulfide bonds (DBs) can form co- and post-translational
modifications (PTMs) [1] on proteins in the endoplasmic reticulum (ER) while they pass
through the secretory pathway. These two modifications are not only common but often
evolutionarily conserved in membrane and secreted proteins from prokaryotes to eukary-
otes. As two critical modifications, they facilitate protein folding and regulate protein
structure, function, stability, and cellular localization. Defects in either one can fail protein
ER quality control, trigger unfolded protein response, and cause pathological conditions
ranging from heritable congenital disorders of glycosylation as an example to acquired
disorders such as cancers, dementia, diabetes, autoimmune, infectious, and cardiovascular
diseases [2,3].

Owing to their importance, both NG and DBs have been frequently investigated in
numerous proteins. In UniProt [4], over 2700 human proteins have both PTMs annotated.
However, the associations between NG and DBs have only been well examined in a
few model proteins, such as influenza hemagglutinin (HA) [5–7]. Both past and recent
discoveries have shown that the enzymes responsible for adding, processing, and degrading
N-glycans are closely related to proteins with the abilities of adding, isomerizing, and
breaking disulfide bonds. Beyond some well-studied model proteins, how NG and DB
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formation affect each other in the remaining individual proteins is the focus of this review.
By reviewing research articles, we generally cataloged the observed relationships from the
host proteins into three kinds, including inhibition, promotion, and no relationship. More
importantly, we noticed that the majority of the studies did not investigate the interactions
between the two PTMs but studied them separately. As a result, some of the observed
structural and functional changes in proteins can be a synergistic effect of both instead of
one PTM. The reasons are likely that the tools required for these studies were not widely
recognized and/or the importance of the associations between them were not commonly
appreciated. To raise awareness, this review not only summarizes molecular foundations
to support a potentially complex relationship and the current known relationships between
NG and DBs in individual proteins but also enlists the relevant tools that can be used
for addressing these relationships and provides our recommendations for future high-
throughput analysis.

2. Molecular Foundations

When nascent proteins are translocated into the ER, NG and DB formation are two
closely associated events. NG is a complex process that refers to a dolichol pyrophosphate
donor transferring a tetradecasaccharide precursor en bloc to the nitrogen atom of the
asparagine side chain in a consensus sequence (namely, sequon), i.e., N–X–S/T, in which X
can be any amino acid but not proline [8]. Newly added N-glycans are further processed
while glycosylated proteins fold and mature in the ER. Glycoproteins that fail the quality
control in the ER are subjected to the ER-associated degradation process (ERAD) [9].
N-Glycans are bulky. The addition of an N-glycan can shape the local conformation
of a polypeptide chain through the first GlcNAc residue, the triose core, and the outer
sugar moieties [10–12]. Either intra- or extramolecular N-glycans can stabilize a loose
polypeptide conformation via both hydrophilic and hydrophobic interactions with the
peptide backbone [13]. The stabilized conformation can bring two free cysteine side-chains
in close proximity to promote an otherwise slow or energetically costly DB formation, as
experimentally proven in model peptides and whole proteins [12–15].

The covalent disulfide bond is formed by oxidizing two free thiol groups in two
cysteine residues in the vicinity. In the ER, DBs can be formed, isomerized, or broken by
a number of oxidoreductases. Over 20 ER resident oxidoreductases, also called protein
disulfide isomerase (PDI) family enzymes, have been discovered [16]. The characteristic
feature of PDI family proteins is the thioredoxin fold, C–X–X–C. This motif is usually the
catalytic domain of oxidoreductases. These enzymes can use the cysteines in the motif
to exchange electrons in the thiols of the substrate to either form or break DBs [17]. In
addition, the mixed DBs formed between the oxidoreductase and the substrate through
the thioredoxin fold can often stabilize the substrate and allow further modifications, such
as N-glycosylation, by other cooperating enzymes in the same complex or nearby [18].
Overall, PDIs can carry out a number of functions, including oxidoreduction, isomerization,
and chaperone activity [19].

Due to the spatial requirement of DBs, the protein structure can be largely perturbed
or stabilized after the formation of novel DBs or the reshuffling of existing DBs. For
glycoproteins carrying bulky N-glycans to fold and mature in the ER, the formation of DBs
can block or restrain the access of glycoenzymes or chaperones to N-glycans. Interestingly,
glycoenzymes and glycochaperones are often accompanied by oxidoreductases in the ER,
or the glycoenzyme itself has a thioredoxin fold that can interact with thiols in substrates, as
recently reviewed by Patel et al. [9]. For example, the oxidoreductases of MAGT1 or TUSC3
are part of STT3B of OST, the enzyme responsive to adding N-glycans to proteins; the
oxidoreductases of ERp57 and ERp72 form complexes with CNX/CRT, the ER chaperones
of N-glycoproteins; in the ER N-glycosylation quality control system, UGGT1 itself has
thioredoxin-like motifs and interacts with SELENOF (Sep15), a selenocysteine-containing
oxidoreductase [20]; further along the thread in the ERAD, BIP binds PDI, P5, and ERdj5,
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whereas EDEMs bind TXNDC11, P4HB, ERp46, etc. The intriguing roles of NG and DBs
are just beginning to be realized.

Beyond the ER, both NG and DBs can be further edited. For example, after exiting
the ER, N-glycans can be processed in the Golgi [21]. For DBs, a number of enzymes
both inside and outside of cells can break and reform these covalent bonds, which often
function as switches to activate or suppress host protein functions [22]. How NG and DBs
relate to each other beyond the ER remains a question [9]. A complete elucidation of these
interactions requires kinetic information of the modification in the time domain, as well as
spatial information on their cellular localization. As introduced later, kinetic measurements
of PTMs can be performed through traditional pulse-chase or mass spectrometry (MS).
The former has been well developed, while the latter is emerging [23]. Spatial informa-
tion can be delineated through inhibitors specific to an enzymatic step or stressors to a
particular organelle.

Nevertheless, not all DBs are linked to every NG in a protein. The functions of
both NG and DBs are pleiotropic. The Weerapana group has cataloged the functions of
reactive cysteines into five types, including structural, regulatory, redox catalytic, catalytic
nucleophile, and metal-binding cysteines [24]. Similarly, the functions of NG range from
facilitating local folding to promoting secondary structures, increasing protein stability,
protecting hydrophobic surfaces, reducing aggregation, guiding trafficking, and functioning
as epitopes for molecular recognition [25].

Given the close molecular associations between enzymes functioning in the formation
and processing of the two PTMs in the ER, as well as the broad availability of both PTMs in
membrane and secreted proteins, we asked what the current observed relationships of these
two PTMs are in individual proteins. Given that one-third of the mammalian proteome
is produced through the secretory pathway [26], most proteins have annotated DBs and
NG, as shown in UniProt. We anticipated that rich information can be obtained from
such exercises. Below, we summarize our findings on both the relationships in individual
proteins and the tools used to study them.

3. Overview of the Studies

To obtain the relevant articles, we searched PubMed using various keywords, includ-
ing “N-glycosylation and disulfide bonds”, “N-linked glycosylation and disulfide bonds”,
“N-linked glycans and disulfide bonds”, “carbohydrate and disulfide bond”, or “glycans
and disulfide”. Furthermore, we included the associated studies cited in the selected papers.
The combined list had nearly 600 articles.

After establishing the list, we first examined the types of proteins that were studied.
Most studied proteins were membrane and secreted proteins of humans, model organisms,
and viruses, as shown in Figure 1. Others examined proteins from venomous species
such as snakes and wasps, parasites such as hookworms, and agricultural species such
as vegetables, fishes, and silkworms. Most of these proteins were surface receptors, adhe-
sion molecules, secreted or membrane-tethered enzymes, cytokines, hormones, signaling
molecules, and extracellular matrix proteins. For viruses, the most studied proteins were
surface glycoproteins involved in recognition and fusion with host cells. All these results
suggested the importance of these two PTMs in diseases originating from cell–protein
interactions and cell–cell communications.

Second, we broadly classified all the reports into four categories. For most studies that
included both PTMs but ignored their relationships, we cataloged them as “no studies”. We
further divided the investigated relationships into three categories: promotion, inhibition,
and independent relationships, as summarized in Figure 2 and detailed in Table 1. In
Figure 2, the promoting relationship dominated current studies. This relationship, however,
was often observed passively by the diminished or inhibited formation of one type of
PTM when the other type of PTM was experimentally removed. To a much lesser extent,
an inhibitory relationship was observed, in which the formation of one PTM blocked the
development of the other. Only in very limited reports did proteins show independent
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modifications of these two PTMs, in which the removal of one PTM did not affect the
formation or the processing of the other. In the four sections below, we use detailed
examples to illustrate these observed relationships.

3/30/22, 9:21 AM Fig.1_update.svg
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Figure 1. Distribution of species hosting proteins studied for N-glycosylation and disulfide bonds.
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Table 1. Summary of the proteins showing interactions between N-glycosylation and disulfide bonds.

UniProt Accession Protein Name Position of DBs Position of N-Glycans Class Reference

A0A346IHA8 CD4-binding region of the
envelope glycoproteins 50–70 a, 219–248 a, 229–240 a, 369–402 a, 362–429, 597–603 a 390, 447 No relation [27]

Q9Y6R1 SLC4 Na+-coupled transporter
(NBCe1-A) 583–585, 630–642 c 597, 617 Inhibition [28]

Q99062 Granulocyte colony-stimulating
factor receptor 107–118, 153–162, 224–271, 364–371 27, 69, 104, 110, 365, 450, 547, 555, 586 Promotion [29]

Q62635 Gastric mucin (rat)
160 a, 420 a, 667 a, 767 a, 837 a, 892 a,
1136 a, 1151 a, 1212 a, 1227 a, 1243 a,

1350 a,
Promotion [30]

P49018 GPI-anchor transamidase (GPI8)
yeast 85 (interchain with C-194 in GPI16) b 256 a, 346 a Promotion [31]

P00750 Tissue-type plasminogen activator
(t-PA)

41–71, 69–78, 86–97, 91–108, 110–119, 127–208 b, 148–190 b,
179–203 b, 215–296, 236–278, 267–291, 299–430, 342–358 b,

350–419 b, 444–519 b, 476–492 b, 509–537 b
117, 184, 448 Inhibition [32,33]

P04275 Von Willebrand factor (VWF)

35–162 d, 57–200 d, 388–524 d, 410–559 d, 432–440 d, 509–695,
767–808, 776–804, 810–821, 867–996 d, 889–1031 d, 898–993 d,

914–921 d, 1060–1084, 1071–1111, 1089–1091, 1126–1130,
1149–1169, 1153–1165, 1196–1199, 1234–1237, 1272–1458,

1669–1670, 1686–1872, 1879–1904, 1899–1940 d, 1927–2088,
1950–2085 d, 1972–2123 d, 1993–2001 d, 2724–2774 b,

2739–2788 b, 2750–2804 b, 2754–2806 b

99 a, 156 a, 211 a, 666 a, 857 e, 1147
(atypical) e, 1231 e, 1515, 1574 e, 2223 e,

2290 e, 2357 e, 2400 e, 2546, 2585 e,
2790 e

Promotion [34–36]

P0DN86 Human chorionic gonadotropin
beta-subunit 9–57, 23–72, 26–110, 34–88, 38–90, 93–100 13, 30 Promotion [37–39]

Engineered heterodimeric
knob-into-hole Fc fragments 349–354 (interchain) 297 Promotion [40]

P32906 Yeast-alpha1,2 mannosidase 340–385, 468–471 96, 155, 224 Promotion [41]

O60896 Receptor activity-modifying
protein 3 (RAMP3) 40–72 b, 57–104 b 28, 57, 70, 102 Inhibition [42]
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Table 1. Cont.

UniProt Accession Protein Name Position of DBs Position of N-Glycans Class Reference

Q13087 PDIA2 18 (interchain) 127, 284, 516 Inhibition [43]

P04853 Hemagglutinin-neuraminidase
(Sendai virus) 129 (interchain) a 77, 499, 511 Promotion [21,44]

Q91UL0 Hemagglutinin-neuraminidase
(NDV)

123 (interchain), 172–196, 186–247, 238–251, 344–461, 455–465,
531–542 119, 341, 433, 481 Inhibition [45,46]

Hemagglutinin (Influenza A virus) 14–466, 52–277, 64–76, 97–139, 281–305, 473–477 8, 22, 38, 81, 165, 285, 483 Promotion [47,48]

P01229 Human lutropin subunit beta 29–77 b, 43–92 b, 46–130 b, 54–108 b, 58–110 b, 113–120 b 30 Promotion [49]

P35625 Metalloproteinase inhibitor 3
(TIMP3) 24–91, 26–118, 36–143, 145–192 d, 150–155 d, 163–184 d Inhibition [50]

Q16820 Meprin A 103–255, 124–144, 265–427, 273 a (interchain), 305 (interchain),
492 (interchain) d, 608–619 d, 613–628 d, 630–643 d 41, 152, 234, 270, 330, 426, 452, 546, 553 Promotion [51,52]

P01130 Low-density lipoprotein (LDL)
receptor

27–39 e, 34–52 e, 46–63 e, 68–82 e, 75–95 e, 89–104 e, 109–121 b,
116–134 e, 128–143 e, 148–160 e, 155–173 e, 167–184 e, 197–209

e, 204–222 e, 216–231 e, 236–248 e, 243–261 e, 255–270 e,
276–289 e, 284–302 e, 296–313 e, 318–329 e, 325–338 e, 340–352

e, 358–368 e, 364–377 e, 379–392 e, 667–681 e, 677–696 e,
698–711 e

97 a, 156, 272, 515 a, 657 Inhibition [53–55]

Q02817 MUC2 mucin

59–67 b, 37–169 d, 59–206 d, 391–528 d, 413–563 d, 435–443 d,
860–992 d, 882–1027 d, 891–989 d, 909–916 d, 4481–4622 d,

4503–4661 d, 4527–4535 d, 5075–5122 b, 5089–5136 b,
5098–5152 b, 5102–5154 b

163 a, 423 a, 670 a, 770 a, 894 a, 1139 a,
1154 a, 1215 a, 1230 a, 1246 a, 1787 a,
1820 a, 4339 a, 4351 a, 4362 a, 4373 a,
4422 a, 4438 a, 4502 a, 4616 a, 4627 a,
4752 a, 4787 a, 4881 a, 4888 a, 4955 a,

4970 a, 5019 a, 5038 a, 5069 a

Promotion [56,57]

P12476 VP7 82–135, 165–249, 191–244, 196–207 69 Promotion [22,54]

P04156 Major prion protein 179–214 181, 197 Promotion [58]

P05026 Sodium/potassium-transporting
ATPase subunit beta-1 126–149, 159–175, 213–276 158, 193, 265 Promotion [59,60]

P05231 Interleukin-6 (IL6) 45–51, 74–84 46 Inhibition [61–63]
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Table 1. Cont.

UniProt Accession Protein Name Position of DBs Position of N-Glycans Class Reference

H2AM12 Glycoprotein Gc 523–550, 580–589, 591–598, 471–487 493, 686 Promotion [64]

P22146 1,3-beta-Glucanosyltransferase 74–103, 216–348, 234–265, 370–421, 372–462 b, 379–445 b,
398–403 b

40 a, 57, 95 a, 149 a, 165 a, 253, 283 a,
321 a, 409 a, 495 a Promotion [65,66]

P32623 Probable glycosidase CRH2 28, 96 a, 190 a, 196 a, 233 a, 237 a, 261 a,
297 a, 310 a Promotion [66]

Q9UMF0 Intercellular adhesion molecule-5
(ICAM5)

55–99, 59–103, 142–198, 249–302 d, 344–383 d, 415–470 d,
498–552 d, 580–645 d, 673–725 d, 769–814 d

54,74,137,195,214,274,316,371,397,582,
636,645,762,793,794 Promotion [67,68]

O75829 Chondromodulin-I 131–193 b, 282–286 b, 283–323 b, 293–317 b, 297–313 b 243 a No relation [69]

P40225 Thrombopoietin 7–151, 29–85 197, 206, 234, 255, 340 a, 348 a No relation [70,71]

Q9UNQ0 ABCG2 protein 592–608, 603 (interchain) 596 Promotion [8,72,73]

P56817 beta-Site APP-cleaving enzyme
(BACE) 216–420, 278–443, 330–380 153 a, 172 a, 223 a, 354 a Promotion [74]

Q9H1U4
Multiple epidermal growth

factor-like domains protein 9
(MEGF9)

204–217 a, 206–224 a, 226–235 a, 238–251 a, 254–266 a, 256–272
a, 274–283 a, 286–298 a, 301–310 a, 303–317 a, 320–329 a,

332–346 a, 349–360 a, 351–371 a, 374–383 a, 386–397 a, 400–415
a, 402–422 a, 425–434 a, 437–449 a

40 a, 182 a, 205 a, 218 a, 245 a, 267 a, 305
a, 428 a, 468 a, 481 a, 500 a Inhibition [75]

P53634 Cathepsin 30–118, 54–136 e, 255–298 e, 291–331 e, 321–337 e 29 Inhibition [76,77]

P08709 Coagulation factor VII 348–367 360 Inhibition [76]

Q07837 rBAT 242–273, 571–666, 673–685 214, 261, 332, 495, 513, 575 Promotion [78]

O75355 Nucleoside triphosphate
diphosphohydrolase 3 (NTPDase3) 92–116, 261–308, 289–334, 347–353, 399–422 81 a, 149 a, 238 a, 381 a, 392 a, 402 a,

454 a Inhibition [79]

P08563 E2 glycoprotein (rubella virus) 53, 71, 115 Promotion [80]

Q9H9S5 Fukutin-related protein (FKRP) 6 (interchain) 172, 209 No relation [81]

O14773 Tripeptidyl-peptidase I 111–122, 365–526, 522–537 210, 222, 286, 313, 443 Promotion [82–85]

P15813 CD1d 120–184, 224–279 20, 42, 108, 163 Promotion [86–89]

O14656 TorsinA 44–162 a, 280–319 143, 158 Promotion [90,91]
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Table 1. Cont.

UniProt Accession Protein Name Position of DBs Position of N-Glycans Class Reference

P21825 Translocation protein SEC62 153, 62 e Promotion [92]

P04070 Protein C 331–345 97, 248, 313, 329 (atypical) Promotion [93]

K7WJ21 PtrMAN6 448, 452, 456 23, 194, 227, 375, 392 No relation [94]

P01848/P01850 TCR alpha and beta 22–72, 94 (with C-130 in TRBC1 or TRBC2) and 30–95, 130
(with C-94 in TRAC) 32, 66, 77 d, 113 d and 69 d Inhibition [95]

P01857 Immunoglobulin G1 Fc 27–83 d, 103 e, 109 e, 112 e, 144–204 d, 250–308 d 180, 297 Promotion [84,96–98]

Nicotinic acetylcholine receptor
fragment 128–142 141 Promotion [12]

Q07108 CD69 68 (interchain) e, 85–96 e, 113–194 e, 173–186 e 111 (atypical), 166 Inhibition [99,100]

P15813 Antigen-presenting glycoprotein
CD1d 120–184 e, 224–279 e 38 e, 60 e, 126 e, 181 e Promotion [101,102]

P04439 MHC class I heavy chain 125–188 e, 227–283 e 110 e Promotion [103,104]
a—predicted by sequence analysis (accessed from UniProt); b—by similarity (accessed from UniProt); c—a discrepancy between NG sites in the abstract and main text was found in [28].
We used the sites mentioned in the main text as they correspond with UniProt; d—PROSITE-ProRule annotation; e—UniProt.
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4. Promoting Relationship

Feng et al. [37] demonstrated through kinetic studies of intracellular folding of the
human chorionic gonadotropin (hCG)-β subunit that NG facilitated the rapid formation
of DBs and the folding of the hCG-β subunit, which harbors six DBs [39]. The relative
positions of NG and DBs are shown in Figure 3. Lacking the two NG sites slowed down
the folding of the β subunit more than fourfold from 7 min to 33 min in CHO cells, and
the slow formation of DBs retained the misfolded proteins up to 5 h in the ER before
degradation [37]. The co-expression of the α subunit could assist the appropriate folding
and secretion of the β subunit of the hormone lacking the NG. Among the six DBs in the
hCG-β subunit shown in Figure 3, the formation of Cys34–Cys88 occurred earlier than
that of Cys9–Cys57/Cys38–Cys90, while the remaining three pairs occurred later [39]. The
first three pairs are important in protein folding and secretion and N-glycan processing.
Eliminating these early formed DBs rendered part of the N-glycans to be high mannose
instead of complex glycans, which were sensitive to ER quality control and degradation.
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Another study was conducted in the β subunit of Na, K-ATPase. Na, K-ATPase is a
plasma membrane transporter that is responsible for the maintenance of potassium and
sodium homeostasis in animal cells [59]. The functional β subunit is a type II glycoprotein
composed of a large C-terminal ectodomain with three NG sites (Asn158, Asn193, Asn265)
and three conserved DBs (Cys126–Cys149, Cys159–Cys175, and Cys213–Cys276) [59]. The mu-
tation of Cys126–Cys149 increased the non-glycosylated proportion of the protein compared
to the wildtype from the Western blot [60], suggesting a promoting relationship. Mutating
each of the three glycosylation sites indicated their involvement in initial folding [59]. The
acquisition of at least one sugar moiety was necessary for the β subunit to ensure its associ-
ation with the α subunit through pulse chase. Interestingly, when all three N-glycans were
removed, the protein did not form aggregates through DBs but permanently associated
with BIP from degradation [59].

In addition to hCG and Na, K-ATPase, multiple other examples also indicate a
“strengthening” relationship between NG and DB. Mirazimi and Svensson [105] showed
that the chief role of NG on rotavirus VP7 is to facilitate correct intermolecular DB formation
in dimerization. Removal of NG induced VP7 misfolding through random intermolecular
DBs. Similar effects were also observed for MUC2 [56], vWF [36], meprin A [52], and
hemagglutinin [47], as shown in Table 1.

5. Inhibitory Relationship

The hemagglutinin-neuraminidase (HN) glycoprotein of Newcastle disease virus
(NDV) is responsible for virus attachment to host cell receptors, thereby initiating infec-
tion [4]. The HN protein is a type II membrane protein containing six potential NG sites:
Asn119, Asn341, Asn433, Asn481, Asn508, and Asn538 [45]. Among them, only four (Asn119,
Asn341, Asn433, Asn481) are utilized for NG [106]. The protein also has 13 cysteine residues
in the ectodomain [106], as summarized in Table 1. The cysteine residue closest to the
membrane anchor (Cys123) is involved in an intermolecular DB [107,108], while the other
12 cysteine residues form intramolecular DBs [107].

McGinnes and Morrison found that intramolecular DBs might play a critical role in
the usage of glycosylation sites [107]. They explored whether DB formation could be a
determinant of the two unused glycosylation sites, Asn508 (site 5) and Asn538 (site 6), in
HN protein [45]. Removing Cys531–Cys542 flanking the unused glycosylation site Asn538

by mutation or DTT promoted the NG of Asn538 for an efficiency of 39–59% and 26–27%,
respectively [45]. The successful NG was supported by the deglycosylation analysis with
endo H. Under similar conditions, the usage of the non-glycosylated site 5, Asn508, which is
far from any DB, was not improved. Together, these results suggest that the glycosylation of
Asn538 is under steric hindrance by the DB in the vicinity [45], whereas the non-glycosylated
Asn508 could be caused by other factors not related to DBs [45].

Another study investigating the lack of sequon utilization in tissue-type plasminogen
activator (t-PA) reported similar findings that folding and DB formation of t-PA nega-
tively impact the extent of core N-glycosylation [33]. As a result, they suggested that
variable usage of glycosylation sites could be caused by the transient accessibility and ap-
propriate orientation of the sequon relative to the transferase or dolichol-linked donor in a
folding event [33].

Human sodium bicarbonate cotransporter 1, NBCe1 (SLC4A4 gene), is an electrogenic
sodium/bicarbonate cotransporter localized in the plasma membrane [4]. The malfunction
of this gene is related to a series of diseases in the kidney, eye, ear, brain, and tooth. All
SLC4 Na+-coupled transporters are multipass transmembrane proteins containing a large
extracellular loop (EL-3) with multiple NG consensus sites and four highly conserved
cysteines [109]. NBCe1-A, one of the three variants, is a homodimer, and its two EL-3 loops
form unique conformations that are potentially critical to the function of the protein [28].
In the EL-3 loop of NBCe1-A, two sequons are glycosylated (Asn597 and Asn617) but not
Asn592, and four conserved cysteines form two intramolecular DBs (Cys583–Cys585 and
Cys617–Cys642), as shown in Figure 3 [28].
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In a detailed study evaluating the interplay between DBs and NG to define the EL-3
loop topology in NBCe1, it was found that the two EL-3 loops of the dimer formed a unique
clove conformation [28]. This conformation was “finely tuned” by glycosylation [28]. In
the absence of Cys583–Cys585 or the two NG sites, the third NG site, Asn592, became gly-
cosylated. With glycans, the two DBs were deeply buried from the external surface of the
EL-3 loop, which can sustain DDT-induced denaturation and enzymatic digestion under
basic conditions. Losing both DBs and NG made the loop adopt an extended structure that
could not be recognized by the designated antibody and was susceptible to chymotrypsin
digestion [28]. Instead of considering the steric hindrance between DBs and NG at Asn592,
the authors hypothesized that Asn592 was originally glycosylated at the nascent polypep-
tide chain of NBCe1-A and later removed when DBs and other glycosylation sites were
formed [28]. Removing NG did not affect the formation of two DBs; however, an ad-
ditional removal of one cysteine in the DBs by mutagenesis promoted the formation of
intermolecular DBs in the homodimer, which maintained transport function [28]. A com-
plex relationship must exist between NG and DBs in determining the final folding of EL-3
during NBCe1-A protein maturation; however, no kinetic experiments were performed to
monitor protein folding, and ER maturation was not specifically probed. It is, therefore,
difficult to elucidate how ER resident enzymes facilitate these processes. The study, on the
other hand, had systematic structural delineation by a combinatorial mutation of all four
cysteines in two DBs for a total of 12 mutants.

6. Independent Relationship

Envelope glycoprotein 160 (gp160) on human immunodeficiency virus (HIV) is critical
for viral binding to the CD4 receptor and fusion with CD4+ cells. The precursor gp160
needs to be cleaved to gp120 and gp41 to activate the binding domain on gp120 with CD4.
A study on the linkage region between gp120 and gp41, which is also the future binding
site of gp120 to CD4, suggested that DBs and NG in this region function independently [27].
The relative position between NG and DBs in this region is shown in Figure 3. Cys402 and
Cys429 are both located in the linker region but form separate DBs, of which Cys402 is critical
for cleavage. Mutation of Cys402 not only prevented the cleavage but also affected the
transport of gp160 and the future binding of gp120 to CD4+ cells [110,111]. Around Cys402,
there are two occupied NG sites Asn390 and Asn447. Mutating these NG sites did not affect
disulfide bonding through Cys402 or the relevant functions, suggesting an independent
relationship between DBs and NG.

In another study of the 25 kD extracellular matrix protein chondromodulin-I (ChM-I),
NG was critical in its solubility but had no effect on DBs [69]. ChM-I is a secreted protein
and has two separate domains, in which the hydrophilic N-terminal domain is heavily
glycosylated by one N-glycan and two O-glycans, whereas the hydrophobic C-terminal
domain harbors four DBs. As the two domains are separated, the removal of either the NG
or the N-terminal domain seems to have no effect on the formation of DBs in the C-terminal
domain, as shown in Figure 3.

7. Unknown Relation

For most of our searched studies that concerned both DBs and NG, the exact rela-
tionship between the two PTMs was not experimentally examined. Half of these studies
focused on experimental mapping of their sites without functional studies. One-third of
the remaining studies only predicted the potential DBs and NG by sequence alignment or
computational modeling without experimental data. For the articles that did examine the
functions of both modifications, many of them did not study or discuss their interactions
but rather examined them separately. For a very small number of papers, the potential
interactions were hypothesized but not experimentally verified.

For example, a very nice study investigated the role of NG and DB in the rat G
protein-coupled receptor class C, group 6, member A (GPRC6A) [112], a widely expressed
GPCR that functions importantly in many diseases ranging from metabolic syndrome



Int. J. Mol. Sci. 2022, 23, 3742 12 of 25

to cancer [113,114]. This protein is a class C GPCR with a large N-terminal extracellular
domain (ECD), which contains a Venus-flytrap (VFT) domain and a cysteine-rich domain
(CRD) [4]. The VFT domain is for ligand binding, and the CRD domain is for signal
transfer [112].

It was observed that the ECD domain of GPRC6A consists of nine sequons [112]. Only
seven asparagine residues carry N-glycans. Five of them are in the VFT domain, and Asn555

and Asn567 are located in the CRD [112]. The VFT domain also has two conserved cysteines
(Cys122 and Cys131), whereas the CRD domain has nine conserved cysteines, eight of which
form intra-CRD DBs [113]. Through analysis of different mutants by SDS-PAGE, it was
found that Asn555 is important for protein surface expression and that Asn567 regulates
receptor function. Furthermore, from the studies of two cysteines, Cys122 and Cys131,
C131 contributed to the formation of a homodimer through an intermolecular disulfide
bridge [112], and Cys122 contributed to the interdomain DB between VFT and CRD [115].
Mutation of C131A abolished the intermolecular DB and homodimer formation but did
not impair receptor surface expression and its function, whereas mutation of C122A was
responsible for the lowered signal response (40%) and higher (50%) surface expression [112].
This result suggested that the C122A mutation causes certain conformational changes. Not
only is Cys122 next to Asn121, but the DB between CRD and VFT domains can also be largely
shaped by the seven N-glycans carried by these two domains. It is likely that NG plays a
role in the potential conformation changes or intermolecular DB formation; however, no
experiments or discussion were presented on the relationships between NG and cysteine
disulfide bridges or cysteines in the paper.

Another study explored the role of the conserved cysteines and NG sites among
all alphaherpesviruses such as herpes simplex virus 1 (HSV-1) in virus production and
membrane fusion by single- and double-site directed mutagenesis [116]. Glycoprotein
K (gK) is a conserved virion protein in all alphaherpesviruses [117]. The N-terminal
extracellular domain of gK is important for HSV-1 to enter neurons via axonal termini.
This domain contains two conserved NG sites at Asn48 and Asn58 and four conserved
cysteines for two potential disulfide pairs of Cys37–Cys114 and Cys82–Cys243 according to
single-cysteine mutation and computational modeling [116].

It was found that viruses lacking Asn58 or lacking both sites (Asn48, Asn58) had
enhanced fusion [116]. Interestingly, deletion of Cys37 or Cys114 led to a gK-null phenotype
of few plaques, whereas mutation of Cys82 or Cys243 caused enhanced cell fusion. The
authors provided an extensive discussion on the potential interactions between NG and
DB on the basis of the known studies and hypothesized that the removal of NG at Asn58

could displace the DB formation, as the deletion of the Cys82–Cys243 disulfide recapitulated
a similar fusion phenotype of Asn58A. However, the authors did not further verify this
hypothesis, such as examining the presence of DBs through gel shift assays, labeling
assays for free thiols, or MS characterization. Therefore, the authors in the end did not
entail the specific relationship more than stating the presence of “a potentially important
relationship” [116].

Related to the ongoing COVID-19 pandemic, the immunogen SARS-CoV-2 spike pro-
tein and its endogenous binding target ACE2 are both heavily glycosylated with numerous
DBs. The SARS-CoV-2 S protein has a total of 22 sequons that to various extents are all gly-
cosylated [118–125], seven O-glycosylations [118,125], and 40 cysteines with 15 DBs [118].
Similarly, ACE2 was mapped to have seven NG sites [36,125], one O-glycosylation [125],
and four DBs [126,127]. According to mutations, molecular dynamics simulations of pro-
tein structures, and sequence alignment studies, eliminating certain DBs or NG on both
ACE2 and SARS-CoV-2 S proteins can alter binding affinity to each other and change
virus infectivity. For example, Cys480–Cys488 is considered the most important pair in the
receptor-binding domain (RBD) of SARS-CoV-2 S proteins, and this pair participates in
binding to the N-terminal of the host receptor that forms a stable SARS-COV-2 and ACE2
complex [126–128]. In addition, Cys133–Cys141 of ACE2 is responsible for making the loop
at dimer interference [76,128] and is predicted to be crucial for making interactions with
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the spike protein of SARS-CoV-2 [127]. Deletion of Asn90 glycosylation of ACE2 increased
the binding to S proteins, while removal of Asn322 of ACE2 decreased virus binding and
infection [125,129]. From the perspective of SARS-CoV-2 S protein, the Ser309 neutralizing
antibody binds Asn234 glycosylated RBD [32], and double mutations of N165A/N234A [35]
and N331Q/N343Q [53] in S protein both reduced the binding between the immunogen
and the receptor. Despite the extensive and rapid studies of NG and DBs in S proteins and
ACE2 in the past 2 years, no studies have examined the relationship between DBs and NG
in these two proteins. This phenomenon clearly indicates the severe understudy in this
important field.

8. Common Methods

Successful studies of the relationships between DB and NG relied on suitable tools.
Tables 2 and 3 summarize common methods used in studies of NG and DB, respectively.

Table 2. Summary of methodologies for the identification and structural analysis of N-glycosylation
in proteins.

NG detection

Staining procedures [130]

• Resolve protein on SDS-PAGE and stain the gel for glycoproteins

Affinity-based methods [130]

• Saccharide-binding protein (lectin-based)
• Enzyme-based methods
• Antibody-based methods

NMR spectroscopy [131,132]

X-ray crystallography [133]

Circular dichroism (CD) spectroscopy [64]

NG structural
analysis

Requires N-glycan removal prior to further
analysis which can be achieved by Chromatography

• Enzymatic removal [130,134]
• PNGase F
• Endo-H and peptide: N-glycanase [67]
• Chemical removal [130]
• β-Elimination
• Alkaline borohydride [135]
• Hydrazinolysis

• Weak anion exchange (WAX) [136]
• Gel filtration
• High-performance anion-exchange

chromatography with pulsed amperometric
detection (HPAEC-PAD) [137]

• Normal-phase high-performance liquid
chromatography (NP-HPLC) [138]

• Reverse-phase HPLC (RP-HPLC) [139]
• Mass spectrometry [140–146]
• MALDI-MS, ESI-MS, or LC–ESI-MS [147]
• LC–MS/MS [148]
• Targeted MS/MS [149]

NG functional
analysis

Chemical tools: inhibitors of glycosyltransferases and glycosidases (in vivo) [150]

• Tunicamycin
• Plant alkaloids: australine, castanospermine [151], deoxynojirimycin [151], deoxymannojirimycin,

kifunensine, swainsonine, and mannostatin A

Physical tools: adjust temperature, ATP, pH, etc.

Site-directed mutagenesis

Genetic glyco-engineering [152]

• Involves introduction of heterologous glycosylation machinery or inactivation of endogenous
enzymes.
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Table 3. Summary of the methodologies for the detection and analysis of disulfide bonds in proteins.

Quantify the amount of
unbound cysteine residues

Chemical labeling and spectroscopic detection [153]

• Ellman assay
• N-(1-pyrenyl)maleimide (NPM) labeling

Reduction methods

Reducing enzymes [153]

• 2-Mercaptoethanol (ME)
• Dithiothreitol (DTT)
• Tris(2-carboxyethyl)phosphine (TCEP)
• Tris(2-hydroxyethyl)phosphine (THP)

Detection/Analysis of DB

Edman degradation sequencing [154]

NMR spectroscopy [155,156]

X-ray crystallography [157]

2-Nitro-5-thiosulfobenzoate (NTSB) assay [158,159]

• Electrophoretic methods [153,160]
• Capillary electrophoresis sodium dodecyl sulfate (CE-SDS)
• Nonreducing SDS polyacrylamide gel electrophoresis (SDS-PAGE) [160,161]
• Diagonal gel electrophoresis [162]

Mass spectrometry approaches:
Front-end separation [153,163–169]

Mass spectrometry approaches:
Fragmentation types

• LC–MS/MS
• LC–ESI-MS/MS
• ETD-MS/MS
• ESI-MS/MS
• MS/MS/MS

• Activated ion ETD (AI-ETD) [170,171]
• CID [172,173]
• HCD [174]
• EThcD [175,176]
• Ultraviolet photodissociation

(UVPD)–MS [177]

Detect structural changes

Partial proteolysis by enzymes such as trypsin and pepsin

Functional assays

• Epitope tags such as haemagglutinin, hexahistidine, V5, FLAG (visualized using
antibodies)

• Biotin tags

Site-directed mutagenesis

X-ray analysis of N-glycosylation can be challenging due to the heterogenous gly-
coforms that impede diffraction-quality crystallization. Nevertheless, the 3D structures
of N-glycans in glycoproteins have been growing in PDB [178]. Various methods have
been explored, including engineering the host cell glycosylation machinery to produce
homogenous N-glycan-modified proteins for X-ray crystallography [133]. Many NMR
methods have been developed to study the structure of N-glycans, intact N-glycoproteins,
N-glycoprotein complexes, and model N-glycosylated peptides [131,132]. Synthetic model
glycopeptides have unique advantages in terms of forming well-defined sequences and
structures to interrogate their conformational effect in great detail under NMR [132]. In
particular, the relations between NG and DBs have been characterized using synthetic
model peptides, such as those derived from nicotinic acetylcholine receptor and prion
protein [12,58]. In addition, MS has also recently been developed to decipher glycoprotein
complex interactions through N-glycans, in which various glycoforms can be examined
individually [179].

For molecular engineering, mutagenesis is another common method that is widely
used to accurately pinpoint the site of modifications and to study the structural and
functional consequence upon complete, permanent, and selective removal of some or all of
these PTMs. The most frequently used mutagenesis is single-amino-acid substitution, even
though deletion of one or a chain of amino acids exists. It is worth mentioning the choice of
amino-acid replacements. Commonly, cysteines are mutated to alanines (A) or serines (S),



Int. J. Mol. Sci. 2022, 23, 3742 15 of 25

whereas asparagines are replaced by aspartic (D) and glutamic acids (E) or glutamines (Q),
even though some studies replaced threonine (T)/serine (S) in the sequons to abolish NG.

Chemical removal or tagging of DBs and NG is also frequently employed to identify
their presence and functions. For DBs, reducing agents can be used to disrupt the covalent
bond, and thiol-reactive chemical groups can modify the free thiols to distinguish them
from those that are occupied by DBs. Either a gel shift assay or MS can be employed
downstream to identify changes in these chemical perturbations. Chemical removal of
NG can be catalyzed by enzymes. Using enzymatic selectivity, different glycans can be
readily distinguished. For example, according to the degree of processing, N-glycans have
three types, i.e., high mannose, complex, and hybrid N-glycans. Endoglycosidase (endo H)
cannot cleave complex N-glycans, yet N-glycosidase F (PNGase F) can [134]. Therefore, the
two enzymes are frequently used to delineate the type of N-glycans. Chemical removal
can also be facilitated by small molecules, such as base-assisted beta-elimination and
hydrazinolysis [130], which are less selective than enzymatic reactions.

For structural characterization upon changes by DBs and NG, in addition to the
instrumental approaches mentioned above, several biochemical approaches have also been
developed. First, enzymes, particularly peptidase/protease, have been used to examine the
overall structures of proteins. Both trypsin and pepsin were used to assess the compactness
of the protein folding according to digestion efficiency. Second, for specific epitopes of a
protein, antibodies were developed for rapid and specific recognition.

In addition to the above in vitro analysis methods, in vivo tools to interrogate the
pathways in the formation and processing of the two PTMs were made available. A
selective perturbation to the pathways can be achieved through molecularly engineered
knockout, knockdown, or knock-in of a particular enzyme or chaperone. Targeted changes
can also be elicited through pharmacological inhibition by small molecules. Less selective
conditions, such as dithiothreitol (DTT) and 2-mercaptoethanol (2-ME) treatments, were
also used to induce a global reduction of all DBs in vivo.

One important aspect of characterizing the relationships between NG and DBs is to
examine the kinetics of protein maturation in the secretory pathway, as well as the kinetics
of enzymatic reactions that regulate NG and DB formation and processing. Due to the
migration shift in the gel after the formation of N-glycans and DBs, the protein maturation
kinetics have often been examined by pulse-chase gel-shift assays. Regarding the kinetics of
glycoenzymes with oxidoreductase activities, available studies are very limited. Historically,
radioisotope labeling was used to probe enzymatic reactions in vitro to build predictive
models for N-glycosylation [180,181]. Later, the MS characterization of glycans with and
without stable isotope labeling was adopted for safer measurements [182–184]. Recently,
targeted MS was developed to quantify the kinetics of stable isotope-labeled glycopeptides
for more accurate modeling, in which not only the rates of glycan synthesis/processing but
also the amino-acid sequences around glycosylation sites were monitored for “cell, enzyme,
and glycosylation” site-specific analysis [23].

Among all the techniques, we would like to highlight MS in the characterization of the
two modifications. With the advent of modern instrumentation, the method measures the
mass of peptides down to sub-ppm accuracy and attomole sensitivity. The instrument holds
promise for sequencing, i.e., structurally resolved, complex biological samples including
all proteins, peptides, nucleic acids, carbohydrates, lipids, and metabolites within [151].
It has been playing ever increasingly important roles in deconvoluting the structures of
proteins, including their DBs and glycosylation. In recent years, the application of the
technique has been moved from studying one protein at a time to studying a sub-proteome
by enrichment through a native moiety or chemical tagging. For example, glycoproteins
and glycopeptides can be enriched by lectins or hydrophilic metals, charcoal, organic
sorbents, or chemical bonding to sorbents through hydrazone and boronic acid diesters
and subsequently analyzed by MS for identification, quantification, or structural inter-
pretation [185–187]. Similarly, the thiol group has been a conventional substrate for MS
analysis either at the individual protein level or at the proteome level using methods such
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as ICAT [188]. With both label- and label-free quantitation rapidly developing, MS charac-
terization holds the potential both for steady-state analyses and for kinetic interrogations
in modeling biological processes. Several reviews are available that summarize the field of
MS characterization in either DBs [166,188] or NG [185–187].

9. Final Remarks

It is widely accepted that both NG and BDs can affect the folding, maturation, traffick-
ing, and degradation of host proteins; however, how to effectively control and engineer
these PTMs in individual proteins for disease prevention and treatments, respectively,
remains in its infancy. Unlike existing reviews on the mechanisms of enzymes functioning
in NG and DB formation pathways, our study focused on the relationships of the two PTMs
discovered in individual proteins. After reviewing more than 500 papers that investigated
both modifications in one protein, we noticed that most studies only mapped their posi-
tions or studied their functions separately. Fewer than 100 articles have experimentally
addressed the relationships between the two PTMs. We summarized the studied proteins
in Table 1.

From the intriguing cooperation observed between N-glycoenzymes and oxidoreduc-
tases in the ER, it is envisaged that close relationships between NG and DBs are anticipated
to widely exist in membrane and secreted proteins. Compared to the total human proteins
annotated in UniProt with DBs and NGs, the proteins in Table 1 comprise less than 2%.
As a result, for the most studied STT3B and STT3A substrate preferences, their complete
responsive sites in all substrate proteins are still elusive. A recent discovery-based study
carried out by proteomics on STT3A and STT3B substrate pools uncovered some interesting
proteins [75] that could not be explained by the known mechanisms. During CNX/CRT-
chaperoned N-glycoprotein folding, oxidoreductases are involved. It is known that there
are ERp57 obligate and ERp57 facultative substrates [189]. ERp72 was discovered to be the
alternative enzyme that acts on facultative substrates in the absence of ERp57; however,
it is unclear how the obligate and facultative substrates are determined in vivo. For other
complexes, such as EDEMs in ERAD, their protein substrates are just starting to emerge.

Even though relatively few proteins have been studied on the mutual relations be-
tween NG and DBs as exemplified in Figure 4, they are important disease biomarkers and
therapeutic targets. Understanding the function and regulation of these PTMs is, therefore,
critically important in disease treatment and prevention. Most of the studies used muta-
genesis to remove one or both PTMs for structural and functional effects; however, a few
studies introduced novel PTMs into proteins to engineer protein-based drugs/vaccines for
better stability and efficacy [48,190,191]. In addition, knowledge obtained from studying
these modifications can help researchers gain insights into early disease diagnosis and
prevention [50,58].
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Due to the diverse structures possessed by individual proteins and the complex
relationships, it is important to examine the entire sub-proteome to gain comprehensive
knowledge. The current intriguing interactions between the two PTMs derived from model
proteins should serve as an encouraging start for an exciting field. We believe that the
MS-led new generation of high-throughput high-accuracy analyses can quickly move this
field forward. Lastly, we hope that this review will encourage future studies to investigate
the relationship between NG and DBs and to better disclose their hidden linkages in the
remaining 98% of the proteins for novel insights into their structural and functional roles.
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