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Highlights: 

 Housekeeping genes can be used for reliable analysis of differences between

microarray and sequencing technology.

 Microarray tends to identify gene ontology related to membrane, cell surface,

and secreted proteins that sequencing technology often misses.

 Sequencing tends to identify gene ontology related to nuclear transcripts that

microarray technology misses.

 Both the probe coverage and detection sensitivity has contributed to the missing

gene identification by microarray

 Sequencing technology has greatly improved current microarray probe

coverage on the nuclear transcripts
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Abstract 

Microarray (MA) and high-throughput sequencing are two commonly used detection 

systems for global gene expression profiling. Although these two systems are 

frequently used in parallel, the differences in their final results had not to be examined 

thoroughly. Transcriptomic analysis of housekeeping (HK) genes provides a unique 

opportunity to reliably examine the technical difference between these two systems. 

We investigated here the structure, genome location, expression quantity, microarray 

probe coverage, as well as biological functions of differentially identified human HK 

genes by 9 MA and 6 sequencing studies. These in-depth analyses allowed us to 

discover, for the first time, a subset of transcripts encoding membrane and cell surface 

proteins, as well as nuclear proteins regulating transcription prone to differential 

identification by the two platforms. We hope the discovery can aid the future 

development of these technologies for comprehensive transcriptomic studies. 



4 
 

INTRODUCTION 

Sequencing and microarray (MA) are two major high-throughput technologies in 

gene expression profiling [1, 2]. The former is based on reading at individual nucleotide 

resolution of nucleic acids or their fragments; the latter is based on the hybridization 

principle through the use of nucleic acid template known to bind with the sample 

targets. The differences between these two technologies have been discussed frequently 

in recent publications[1-8]. Even though sequencing, especially the fast evolving next 

generation sequencing (NGS), is well regarded for its higher sensitivity than MA, the 

complementarity between these two systems has been well recognized. It is, however, 

not clear why sequencing is to miss some MA-identified genes (abbreviated as MA 

genes below).  

The reasons for lacking clear understanding, in our opinion, are following. Firstly, in 

the existing comparison studies, sample types used were constrained to one or a couple 

and each with limited measurements [4, 9]. Stochastic errors resolved from the small 

number of analyses can be prominent, which renders missing identification by each 

technique easily justifiable, and any further discussion on the causality less reliable. 

Secondly, because different tissue types at various biological states have drastically 

different gene expression profiles, results derived from one study cannot be easily 

merged with the others for more robust analysis.  

The studies of housekeeping (HK) genes are, however, different. These studies 

address gene expression at the entire organismal level. Not only that any gene in HK 

studies was derived from repeated analysis of a broad collection of different organs, 
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tissues, and cell types [10, 11], such that these identifications (often derived from more 

than a hundred runs) are very reliable; but also that if the studying species is the same, 

these genes are comparable[12]. Therefore HK genes are ideal candidates for 

examining the differences in MA and sequencing analyses. To date, numerous human 

HK-gene studies have been carried out. Initially, these studies were mostly conducted 

by MA [13-22] because of its low cost. Recently, the significant drop of spend in 

sequencing also enabled its analysis of HK genes [23]. The results derived from these 

large-scale analyses provided us a unique opportunity to reliably and comprehensively 

reveal the identification difference between the two technical platforms.  

To seek differences, we conducted here a series of in-depth analyses with 

consideration of the structural, localizational, and functional aspects of the detected 

genes besides commonly compared gene number and expression quantity. From our 

investigation of 15 human HK-gene datasets including 9 MA and 6 sequencing based 

studies, we discovered some interesting biases and identified gene ontology of 

membrane, cell surface, extracellular space, and nuclear related is prone to differential 

identification by the two techniques. The obtained information will help guide future 

selection and design of these techniques for comprehensive transcriptomic analyses.   

 

METHODS 

Data collection We obtained lists of HK genes from 15 published studies. MA was used 

in 9 studies, including Warrington[13], Hsiao [15], Eisenberg_03[14], Tu [16], Dezso 

[18], She [19], Chang [20], Shyamsundar [21], Zhu_MA; sequencing was employed in 
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the rest 6 studies as summarized in Table 1. In particular, Zhu_EST [22] and Podder [24] 

used expressed sequence tag technique (EST), Reverter [25] used massively parallel 

signature sequencing (MPSS), while Ramskold [26], Eisenberg_13[27] and Fagerberg 

[23] used RNA-sequencing (RNA-seq).  

To ease of comparison, we converted all the gene identifiers to Entrez gene ID using 

the Database for Annotation, Visualization and Integrated Discovery (DAVID ) v6.7  

(http://david.abcc.ncifcrf.gov/)[28, 29]. The resolved genes were divided into three 

categories based on their detection technique, i.e. MA unique, sequencing unique, and 

common to both techniques.  

 

Probe coverage (PC) As the probes on MAs will determine whether a gene can be 

detected or not, we studied the probe coverage of genes exclusively identified by 

sequencing. We obtained the probe information of 12 chips used in the 9 MA studies 

(some studies used more than one type of chips) from three sources, i.e. Gene 

Expression Omnibus (GEO) Database [30] (http://www.ncbi.nlm.nih.gov/gds), 

NetAffx Analysis Center [31] (https://www.affymetrix.com/analysis/index.affx), and 

Applied Biosystems Human Genome Survey Microarray 

(https://www.lifetechnologies.com/).  

To quantify the frequency that a gene is covered by MAs, we defined Probe 

Coverage (PC). If a gene is not included by any MA studies, the PC value will be zero; 

if a gene is included in all 9 MA studies, its PC value will be 9. If multiple gene symbols 

were mapped and each with different PC value, the highest PC value was considered.  

http://david.abcc.ncifcrf.gov/
http://www.ncbi.nlm.nih.gov/gds
https://www.affymetrix.com/analysis/index.affx
https://www.lifetechnologies.com/us/en/home/technical-resources.html
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Chromosomal location To localize the identified HK genes on chromosomes as well as 

mitochondria genome, we queried the database from National Center for 

Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov). Because gene 

annotation is not distributed evenly across chromosomes, we normalized our results 

based on annotated genes in each chromosome offered by the Ensembl genome (release 

68, July 2012) (http://jul2012.archive.ensembl.org/index.html).  

 

Gene structure To analyze the potential structural difference among the three groups of 

genes, we extracted the exon count, total exon and intron lengthes, as well as the coding 

sequences using RefGene information from University of California, Santa Cruz 

(UCSC) genome browser (http://genome.ucsc.edu/index.html). In detail, the gene lists 

were translated into Refseq gene ID in DAVID, and then queried against human 

genome assembly, GRCh38 [32] in UCSC genome browser. When multiple Refseq IDs 

were mapped, all IDs are considered. The total intron length was obtained by 

subtracting the total exon length that was the sum of all exons in a transcript. Only the 

coding sequence was considered in the analysis of GC content. 

 

Gene abundance We analyzed the expression level of HK genes with quantitative 

information, which includes datasets of Chang [20], Eisenberg_03 [14], She [19], 

Warrington [13], Shyamsundar [21] and Fagerberg [23]. To compare, we normalized 

the expression quantity by the highest value in each list. If a gene had several 

http://jul2012.archive.ensembl.org/index.html
http://genome.ucsc.edu/index.html
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expression values, the highest one was used.  

 

Detection breadth (DB) To quantitatively characterize across studies how effectively a 

HK gene was detected by the two technologies, we defined Detection Breadth (DB)[12], 

i.e. the number of studies in which a particular gene was resolved. If a gene was only 

resolved in one study, its DB value would be 1; if a gene was resolved in all MA studies, 

its DB value would be 9; similarly genes identified in all sequencing analyses would 

have DB value of 6. 

 

Functional analysis We conducted functional enrichment analysis on Gene Ontology 

(GO) Biological Process (BP_FAT) (i.e. the summarized version of BP in GO) using 

DAVID v6.7 [33] (http://david.abcc.ncifcrf.gov/) separately for four lists, i.e. MA 

genes, sequencing genes with PC=0 and PC > 0 values, as well as the shared genes. Top 

10 enriched functions in each list after filtering through default Fisher Exact p value 

(≥0.1) offered by DAVID [34] were obtained.  

 

Results 

Data collection  

We compiled 12,501 HK genes from 15 studies using either MA or sequencing 

based transcriptomic techniques[12] in which we removed 13 genes annotated to Homo 

sapiens neanderthalensis. Table 1 summarizes the 15 studies, in which 9 studies 

employed MA and 6 studies used sequencing. Sixty-five percent of these genes were 

http://david.abcc.ncifcrf.gov/
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discovered by MA, whereas almost all of them (90%) were identified by sequencing. 

Among them, sequencing technique identified 4,395 (35%) HK genes exclusively (i.e. 

sequencing genes); whereas MA alone identified only 1, 304 (10%) (i.e. MA genes); 

commonly identified genes were 6802. A Venn diagram of this comparison is shown in 

Fig. 1. The lists of MA and sequencing specific genes as well as the commonly 

identified genes using two techniques were listed in Supplementary Table S1. 

 

Microarray probe coverage 

  The probe coverage of the sequencing-specific HK genes was examined, and the 

results are summarized in Fig. 2. The chips used in 9 MA studies are summarized in 

Supplementary Table S2. Among 4,394 sequencing unique genes, 1,389 of them (32%) 

did not have any probe coverage in all the 9 MA studies, the rest 3,005 genes spread 

between PC values of 1 to 7. These results implied that the coverage of arrays used for 

HK-gene studies was limited. The missing identification of 3,005 sequencing genes 

with PC>0 suggested that besides probe coverage other factors had also contributed. In 

analysis below, we separately considered sequencing genes with PC=0 and PC>0 

coverage to seek potential explanation.  

 

Chromosomal location  

The genome location of genes identified by MA and sequencing alone, as well as by 

commonly identified genes, is summarized in Supplementary Table S3, in which we 

entailed the gene count and the percentage of HK gene distribution along 24 

chromosomes (X and Y chromosomes were considered separately) and the 
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mitochondria genome. In the table, the percentage was computed by HK genes 

obtained in each chromosome against both the total of number of HK genes detected 

and the total number of annotated genes in each chromosome on all three types of 

detections, i.e. MA alone, sequencing alone, and commonly identified. A detailed list 

of chromosomal location of each addressed gene can be found in Data In Brief, Table 1 

[35]. For ease of visualization, we plotted distribution of MA, sequencing, and 

commonly identified genes against the total annotated chromosomal genes as shown in 

Fig. 3. The results resembled the overall comparison in Fig. 1, in which sequencing 

identified much more genes than MA, and the trend is similar across all the 

chromosomes.   

An extreme case was appeared in mitochondria genome, in which there were no MA 

unique genes, and sequencing genes had particularly high (~85%) percentage of 

identification. In Ensembl database, mitochondria has only 13 confirmed genes, 

whereas sequencing analysis identified 11 of them, the other two genes were identified 

by both methods. A result suggesting mitochondria genome was quite conserved in all 

organs and tissues. Interestingly, there were also 11 Homo sapiens neanderthalensis 

mitochondria genes in the original dataset compiled only from sequencing analysis. As 

all the analyzed samples in the studied datasets were obtained from human samples, it 

was interesting to observe that this genome was also conservative across closely 

evolved species. The high efficiency of sequencing to identify mitochondria genes and 

the complete absence of MA contribution demonstrated the capacity of sequencing in 

sensitivity and de novo discovery of closely related non-modern human genes that were 
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lacking in MA analysis.  

 

Gene structure characteristics  

It was reported that sequencing tends to identify genes with longer exons [36, 37] 

We here analyzed the structural features in differentially identified genes by the two 

techniques. For all gene lists we complied above, Fig 4A shows their average exon 

number per gene; Fig. 4B shows their total exon length per gene; Fig. 4C shows the 

total intron length per gene. Slight difference was observed in all three comparisons, 

and the trend was similar to previous reports [36, 37].  

 It was also known that GC content can affect both sequencing and hybridization 

efficiencies [38-41]. Miss-sequencing has been reported to genomes with extreme GC 

contents [42, 43], and increased GC content (such as those exceeding 55%) has been 

associated with increased cross hybridization in microarray[39]. We therefore analyzed 

the GC content of gene detected by MA alone, sequencing alone, and jointly. Fig. 4D 

shows the GC percentage of each compared category.  

The average of exon count, total exon and intron length as well as the GC 

percentage of each analyzed category, i.e. MA alone, sequencing (PC=0), sequencing 

(PC>0), and commonly identified, is provided in Supplementary Table S4. The detailed 

value for each transcript concerned here is included in Data In Brief, Table 2 [35]. 

 

Gene abundance and detection breadth (DB) 

To analyze whether the observed identification difference was due to the low 
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expression, we studied the distribution of expression quantity among the exclusively 

identified genes as shown in Fig. 5A. In the figure, MA genes were evenly distributed 

across all normalized abundance levels; whereas almost all sequencing genes (98%) 

occupied the lowest expression level.  

  We also examined the DB distribution of MA and sequencing genes in Fig. 5B. 

Opposing to the profile in Fig. 5A, Fig. 5B showed that MA genes significantly skewed 

toward lower values, whereas sequencing genes spread much more evenly.  

The detailed value of expression and DB status for each gene detected by MA 

alone, sequencing alone, as well as jointly was summarized in Data In Brief, Table 3 

[35]. The detailed statistical value shown is Fig. 5 was provided as Supplementary 

Table S5. 

 

Functional analysis 

  For effective comparison, we also obtained the top-10 most enriched Gene Ontology 

(GO) biological process (BP) terms from four gene lists, i.e. MA genes, sequencing 

genes with PC=0, sequencing genes with PC > 0 values, and the shared genes. The 

visualization was achieved by plotting the results in heatmap in Fig. 6 using 

MultipleExperiment Viewer (MeV, a software package for displays of high throughput 

analysis) [44]. Clear distinction was observed between MA genes and the rest, in which 

the MA unique genes were uniquely enriched in cell surface and secretion related 

biological processes including “cell-cell signaling”, “defense response”, “regulation of 

response to external stimulus”, and “regulation of hormone levels”. The details of the 
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MA genes contributed to these biological processes were summarized in 

Supplementary Table S6. The common and sequencing genes have broadly covered 

other processes such as those occurred in nucleus and cytosol, including “RNA 

processing”, “translation”, and “mRNA metabolic process”. In addition, sequencing 

genes also uniquely enriched GO terms of “transcription”, “regulation of transcription”, 

“chromatin modification”, “tRNA metabolic process”, “DNA repair” in which 

“transcription related terms” were solely from PC=0 group while the rest from PC>0 

group. 

 

Discussion 

 

The advantages of sequencing and MA technologies as well as their 

complementarity have been discussed recently[1-8]. It is well known that sequencing 

based analysis comparing to MA is direct and probe-free; therefore it is more accurate 

and sensitive with unlimited dynamic range [7, 27, 45-47]. The challenges of 

sequencing based transcriptome analysis are however centered on the sequencing depth, 

genomic DNA contamination, and alignment errors raised by short reads among others 

[48, 49].  

Even though sequencing is known for its high sensitivity and unlimited dynamic 

range, yet the counting based nature rendered the measurement sensitive to sample 

complexity and sequencing depth. To achieve high coverage to low-expressing 

transcripts, larger quantity of samples and more reads are necessary[50, 51]. It was 

reported that at extremely high mapped-reads of 50 million in the fly modENCODE 
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samples, the detection of new transcripts was still not saturated [52]. Based on Malone 

and Oliver’s report [7] at 6-8 million mapped reads, the coverage of fly transcriptome 

was roughly 80-90%; whereas Blencowe et al. had estimated that in mammalians, 700 

million reads would be necessary for quantitatively access 95% of transcript expression 

[53]. However, based on studies of Tarazona et al.[54], excessive increase of 

sequencing depth will drastically increase false discovery rate, in some cases to 60%, 

with a significant increase on non-protein coding RNA detection and a minor increase 

on protein coding RNA. Therefore a balance between the depth of coverage and the 

false discovery rate was recommended. As a result, a compromised coverage of 

transcriptome by sequencing is anticipated.  

Because of these reasons, the complementarity in data obtained by parallel analysis 

using NGS and MA is well recognized. The missing identification of sequencing genes 

by MA can be easily explained. Yet the missing identification of certain MA genes in 

sequencing results has been, however, less discussed. Given the fact that NGS cannot 

practically obtain complete transcriptome, and considering that MA functions on a 

different technological principle than sequencing, it is reasonable to expect that the 

miss-identified genes by the two methods are different. As the missed genes can 

possess important biological functions [55-57], the awareness of types of transcripts 

that are prone to miss identification therefore is critical, and will help design strategies 

to compensate such loss.  

To obtain reliable information on genes that are sensitive to measurement biases, we 

chose to analyze HK genes. The reason is that in HK-gene analyses, each gene is 
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derived from hundreds of measurements; therefore, random error from small number of 

experiments can be effectively eliminated. To our knowledge, HK-gene studies are the 

largest systematic analysis of transcriptomes of the single species using the same 

technical platform; thereof their results can be the most reliable measurement and are 

comparable when the examined species is the same.  

After investigating a total of 15 human HK-gene datasets from 9 MA studies and 6 

sequencing studies, we obtained 4,395 sequencing-specific HK genes, 1,304 

MA-specific genes, and 6,802 common genes. The large number of common genes 

suggested that the two methods worked equally well, which was consistent with 

previous studies. The much smaller number of MA genes compared to those of 

sequencing also agreed with previous studies. The congruence suggested that results 

from HK genes can well represent results from others. Previously, the 

miss-identification of sequencing genes by MA had been largely believed due to the 

sensitivity of analysis[4, 58], and the missing-identification of MA genes by 

sequencing had no clear explanation.  

 We here focused on the in-depth investigation of the differentially identified genes 

with an aim to reveal the characteristics in the missing genes by each technique. Firstly, 

our quantitative analysis in Fig. 5A agreed with previous knowledge that sequencing 

was much more sensitive and identified genes with much less expression levels [12]. 

Similarly in Fig. 5B, the high sensitivity of sequencing allowed more common and 

reliable identification of transcripts among different studies supported by broad DB 

distribution, which is also consistent with existing knowledge [4, 6, 7, 40]. Conversely, 
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MA genes in Fig. 5B had much smaller DB value.  

Secondly, our probe coverage (PC) and genome location analyses in Fig. 2 and 3 

respectively further suggested that for MA to miss-identify sequencing HK genes was 

also due to the limited probe coverage besides its sensitivity. The lack of probe 

coverage appeared evenly distributed across chromosomes. The particular high 

percentage of sequencing genes in mitochondria genome as shown in Fig. 3 was due to 

its much smaller genome.  

To note, the arrays used for HK-gene studies were relatively old, and the probe 

design was based on past knowledge of human gene annotation. Current sequencing 

technology has largely advanced our knowledge of human genome and transcriptome, 

in such the UCSC human genome and NCBI Refseq human transcripts databases have 

been frequently updated. The more complete genome annotation and the improved 

array fabrication technology has made modern array probe collection significantly 

improved, and is able to provide the coverage of the entire Refseq database plus other 

sources such as long non-coding RNA database (www.Incrnadb.org). To examine 

current array coverage efficiency, we compared the sequencing detectable genes 

against the SurePrint G3 Human Gene Expression v3 8x60K microarray probe set from 

Agilent Technologies (Santa Clara, CA, USA). Only a marginal 152 sequence genes 

were not on this chip; therefore for modern array, probe coverage is no longer a major 

factor for missing identification. Yet the technology still suffers from the probe 

limitation. For example, this Agilent array had missed all 11 Homo sapiens 

neanderthalensis transcripts identified by sequencing. For de novo and discovery based 
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transcriptome analysis, sequencing will be a favorable choice. 

Thirdly, recent reports indicated a length bias in sequencing on gene identification 

and quantification[36, 59]. Our structure analysis in Fig. 4 (A-C) showed a slightly 

higher count and longer length of exons in sequencing genes compared with MA and 

common genes, which supported the existence of length bias, yet the influence seemed 

marginal than a major a factor contributing to differential HK-gene identification we 

observed here. In addition, GC content has also been discussed for their interference to 

sequencing identification efficiency and microarray cross hybridization and signal 

intensity [38-41]. Our results in Fig. 4D showed close ratios in MA alone, sequencing 

alone and commonly identified genes with similar standard deviation in all categories, 

suggesting GC content was also not the major contributor to the observed differential 

detection.  

Lastly, we sought out how different detection systems can impact the functional 

understanding of the examined biological samples by analyzing enriched GO_BP terms 

among studied genes in Fig. 6. Interestingly, we observed a unique pattern of MA genes 

that were distinct from the rest of genes. A preference on membrane and surface related 

protein-coding transcripts was clearly observed in MA analysis specifically. 

Interestingly, sequencing genes showed unique enrichment on nuclear related GO 

terms besides their high similarity in enrichment pattern to commonly identified genes. 

Surprisingly, the enrichment of “transcription” related GO terms was solely contributed 

by PC=0 sequencing genes. A result explained a lack of annotation of these genes that 

causing early probe design to fail including them. In the meantime, this result also 
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indicated the strength of sequencing technology to identify these important transcripts.  

Our observation on the identification strength of MA on membrane GO terms 

coincided with the computational analysis carried out by Young et al.[37]. Young et al. 

noticed in their study that gene ontology in RNA-seq had biased towards gene length as 

well as read counts, in which read counts contributed more than length. In their 

statistical algorithm after adjusting these biases, GO terms of membrane and 

extracellular region were ranked highest in their analysis.  

In addition, in previous proteomic studies conducted on cell surface and membrane 

proteins by us as well as by others when proteomics and sequencing based 

transcriptomics results were compared[60, 61], it was noticed that membrane and 

extracellular proteins were always under-represented in sequencing based 

transcriptomics. It is also well known that membrane proteins are lowly abundant, for 

proteomic analysis in which no amplification of protein quantity is possible, membrane 

proteins are extremely difficult to be detected and always require sophisticated 

enrichment and/or sensitive instruments for analysis [62]. Therefore, our current study 

as well as previous results supported the discovery of Young et al. that membrane and 

extracellular related GO terms are hampered in sequencing by abundant transcripts, and 

statistical corrections are needed for these GO terms to be identified.  

It is quite valuable for MA to detect these rare transcripts. The reason for MA to be 

less sensitive to the abundant transcripts is likely due to the methodology design, in 

which each gene is represented by a set of probes with certain spotting density, and the 

hybridization process is relatively independent from one another. This design penalizes 
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abundant transcripts when they saturate the probes, yet offers equal opportunity for rare 

transcripts to compete with abundant transcripts for binding based on the hybridization 

principle. The design also renders the technology insensitive to the total read counts 

and length biases suffered by sequencing. Nevertheless, it is inevitable that abundant 

transcripts can cause non-specific binding to array probes and, therefore, introduce high 

background. Currently there are no ideal methods for transcriptome analysis yet; 

however, the better understanding of their limitations will encourage future 

improvement for accurate interrogation of biological systems.  

 

Conclusion 

The technical differences of MA and sequencing have been frequently discussed in 

the past[9, 63, 64]. Most of these comparisons were conducted on a small scale with 

single sample type and limited number of measurements. Through our analysis on 

human HK-gene studies that were derived from hundreds of measurements covered the 

entire major organ and tissue types, we discovered that MA can more effectively 

identify surface and extracellular gene ontology that tends to be missed by sequencing 

analysis, while sequencing tends to identify more efficiently nuclear transcripts 

regulating transcription, DNA repair, and chromatin modifications. Our results 

coincided with the ontology bias predicted statistically by considering the length and 

count biases in sequencing technique[37]. From our current study, the two platforms 

show complementary biases. Since these two technologies also function on different 

principles, they are good orthogonal methods to each other, and can effectively validate 
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in high throughput many potential measurement errors. In our opinion, both 

technologies should exist and need to be constantly improved. We hope the obtained 

information can help advance current transcriptome analysis for more accurate and 

comprehensive studies.  
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Table 1. Summary of included housekeeping (HK) gene studies. 

HK-gene Study Technique Reference 

Warrington MA [13] 

Hsiao MA [15] 

Eisenberg_03 MA [14] 

Tu MA [16] 

Dezsö MA [18] 

She MA [19] 

Chang MA [20] 

Shyamsundar MA [21] 

Zhu_MA MA [22] 

Podder Sequencing_EST [24] 

Zhu_EST Sequencing_EST [22] 

Reverter Sequencing_MPSS [25] 

Ramsköld Sequencing_RNA-seq [26] 

Eisenberg_13 Sequencing_RNA-seq [27] 

Fagerberg Sequencing_RNA-seq [23] 
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Figure legends: 

Fig. 1. Venn diagram of the numbers of HK genes compiled from 9 microarray (MA) 

studies and 6 sequencing studies.  

Fig. 2. Probe coverage (PC) of genes exclusively detected by sequencing.  

Fig. 3. Chromosomal location of HK genes detected exclusively by sequencing based 

technique (sequencing genes, PC=0 and PC>0) and MA (MA genes) respectively as 

well as by commonly identified. Percentage was calculated by the gene count in each 

category to the total annotated genes in each chromosome. 

Fig. 4. (A) Exon count of genes exclusively detected by MA, sequencing (PC=0 and 

PC>0) and the shared genes, respectively; (B) Total exon length of genes exclusively 

detected by MA, sequencing (PC=0 and PC>0) and their shared genes, respectively; (C) 

Total intron length of genes exclusively detected by MA, sequencing (PC=0 and PC>0) 

and their shared genes, respectively. (D) GC content of genes exclusively detected by 

MA, sequencing (PC=0 and PC>0) and their shared genes, respectively. 

Fig. 5. (A) Abundance of HK genes exclusively detected by sequencing and MA, 

respectively (PC=0 and PC>0); (B) Detection breadth (DB) of genes exclusively 

detected by MA, sequencing (PC=0 and PC>0), respectively. 

Fig. 6. The top-10 enriched gene ontology (GO) clusters (biological processes_FAT) of 

genes exclusively detected by MA, sequencing (PC > 0 and PC = 0), and the shared 

genes, respectively. The color represents value of –log P. Red sidebar highlights GO 

terms uniquely enriched in MA genes. 

  



30 
 

Figures: 

 

 

 
 

Fig. 1 



31 
 

 

Fig. 2 

  



32 
 

 

 

 

 

Fig. 3 

  



33 
 

 
 

Fig. 4 

  



34 
 

 

 

 

Fig. 5 

  



35 
 

 
Fig. 6 




