
July 13th, 2021.

Craig Scratchley
School of Engineering Science,
Simon Fraser University,
Burnaby, BC
V5A 1S6

Re: ENSC 405W Requirement Specifications for Eye-bex by Eye-bex Inc.

Dear Dr. Scratchley,

Please find the design specifications document for Eye-bex Inc.’s first product, Eye-bex.
This document was created according to the ENSC 405W’s course instructions. The
Eye-bex is a route setter’s best friend in an indoor climbing gym. It provides significant
data about the popularity, reliability, and difficulty of the routes that have been set and are
in use by a gym’s climbers. It does this through a camera system that uses intelligent
computer vision to analyze the climbers and report back to the route setter through a web
dashboard.

This document serves the purpose of outlining the design specification that the team has
set for the product in an ordered and organized manner. The proof-of-concept demo will
showcase this design in the future. The document consists of alternatives considered, test
plans as well as justifications for each decision made in the process of design of this
product.

Eye-bex Inc. is a team of 7 engineering students from different disciplines ranging from
Computer to Systems Engineering. Our members are Amritha Raj K.R, Arsenen Gervacio,
Benjamin Martin, Kay Arellano, Nitish Mallavarapu, Takunda Mwinjilo and Yogesh Mundhra.

Thank you for taking your time to read the Eye-bex design specification document. Any
questions or comments in regard to the document can be sent to our Chief
Communication Officer, Yogesh Mundhra at ymundhra@sfu.ca.

Best Regards,

Benjamin Martin,
Chief Executive Officer,
Eye-bex Inc.

1

mailto:ymundhra@sfu.ca

2

Abstract
The Eye-bex system harnesses computer vision to provide feedback to climbing gym route
setters in the form of statistics. Our purpose is to assist in mentoring new route setters and
improve the current setting team by providing the data requested when consulting climbing
gym managers.

This design specification document follows in line with the requirement specification
document in mind. Design specifications that stem from the requirements document are
outlined in the following document. These design specifications were put in place after
thorough examination of each system, subsystem and component present in the Eye-bex
and the clients’ needs in mind. This included comparing alternatives for each component in
the hardware/firmware, computer vision and web app systems. The design specifications
are followed by appendices of a test plan for each of the systems and their various parts,
alternative design choices, as well as user interface and appearance design.

3

Change Log

Version
number

Description of change Date made Made by

1.0 Initial document 7th July 2021 Entire team

2.0 Hardware Section and
Appendix Draft
Completed

8th July 2021 Hardware Team
(Ben, Takunda,
Yogesh)

3.0 WebApp Section and
Appendix Draft

9th July 2021 Web App Team
(Kay, Arsenen)

4.0 Computer Vision Section
and Appendix Draft
Completed

10th July 2021 Computer Vision
Team (Amritha,
Nitish)

5.0 Appendix A, Abstract,
Introduction, Conclusion,
References

10th July 2021 Hardware team

6.0 List of Tables & Figures,
Formatting, Glossary,
References

11th July, 2021 Computer Vision
Team

4

Approvals

Name (Position): Benjamin Martin (CEO)

Signature:

Date: July 11th 2021

5

Table of Contents
Abstract 3

Change Log 4

Approvals 5

Table of Contents 6

List of Figures 9

List of Tables 10

Glossary 11

1. Introduction 12
1.1 Background 12
1.2 Scope 13
1.5 Design Classification Convention 14

2. System Architecture 15

3. Hardware 16
3.1 Microcontroller Unit 16
3.2 Camera Module 19
3.3 Casing 21
3.3.1 Casing Design 21

4. Computer Vision 24
4.1 Object detection 24
4.2 Motion Tracking 25
4.3 Cloud Services 26

5. Web Application 28
5.1 Frontend 29
5.2 Server-Side 30
5.3 Database 31
5.4 Deployment 33

6. Conclusion 34

References 36

6

Appendix A: Test Plan 40
A.1 Introduction 40

Test Purpose 40
Test Coverage 40
Test Methods 40
Test Responsibilities 40

A.2 Hardware Testing 40
A.3 Computer Vision Testing 42
A.4 WebApp Testing 45

Appendix B: Supporting Design Options 48
B.1 Hardware Options 48

B.1.1.1 Microcontroller Options 48
B.1.1.2 Microcontroller Decision 49
B.1.2.1 Camera Module Options 50
B.1.2.2 Camera Module Decision 52
B.1.3.1 Casing Options 53
B.1.3.2 Casing Decision 54

B.2 Computer Vision 54
B.2.1.1 Object Detection Options 54
B.2.1.2 Object Detection Decision 54
B.2.2.1 Motion Tracking Options 54
B.2.2.2 Motion Tracking Decision 54
B.2.3.1 Cloud Services Options 55
B.2.3.2 Cloud Services Decision 55

B.3 Web App Options 55
B.3.1.1 Front End Options 55
B.3.1.2 Front End Decision 55
B.3.2.1 Server-Side Options 55
B.3.2.2 Server-Side Decision 56
B.3.3.1 Database Options 56
B.3.3.2 Database Decision 57
B.3.4.1 Deployment Options 57
B.3.4.2 Deployment Decision 57

7

Appendix C: User Interface and Appearance Design 58
C.1 Introduction 58
C.2 User Analysis 58
C.3 Technical Analysis 59

C.3.1 Discoverability 59
C.3.2 Feedback 60
C.3.3 Conceptual Models 62
C.3.4 Affordances 62
C.3.5 Signifiers 62
C.3.6 Mappings 63
C.3.7 Constraints 63

C.4 Engineering Standards 64
C.5 Analytical Usability Testing 65
C.6 Empirical Usability Testing 66
C.7 Conclusion 68

8

List of Figures

FIGURE 1 Two climbers scaling a bouldering wall Pg. 12

FIGURE 2 Overview of the Eye-bex design Pg. 15

FIGURE 3 Raspberry Pi Zero W with ports labelled Pg. 16

FIGURE 4 The Raspberry Pi Camera V2 Pg. 19

FIGURE 5 Raspberry Pi casing Pg. 21

FIGURE 6 Computer Vision System Flowchart Pg. 24

FIGURE 7 YOLO object detection algorithm in action Pg. 24

FIGURE 8 Web application system Pg. 28

FIGURE 9 Database Schema Pg. 32

FIGURE 10 Home Page Mockup Pg. 60

FIGURE 11 Route Statistics Page Mockup with Toast Notification Pg. 61

FIGURE 12 Login Page Mockup Pg. 64

9

List of Tables

TABLE 1 Design Specifications For The Microcontroller Pg. 17

TABLE 2 Raspberry Pi Zero W Specifications Pg. 18

TABLE 3 Design Specifications For The Camera Module Pg. 20

TABLE 4 Raspberry Pi Camera Module V2 Pg. 20

TABLE 5 Design Specifications For Casing Pg. 22

TABLE 6 Physical Specifications for Casing Pg. 22

TABLE 7 Design specifications for YOLO object detection Pg. 25

TABLE 8 Design specifications for YOLO and MotPy motion tracking Pg. 26

TABLE 9 Design specifications for computing data Pg. 27

TABLE 10 Design Specifications For Frontend Pg. 29

TABLE 11 Design Specifications For Server-Side Software Pg. 30

TABLE 12 Design Specifications For Database Pg. 31

TABLE 13 Design Specifications For Deployment Pg. 33

TABLE 14 Alternate Microcontroller Specifications Pg. 49

TABLE 15 Alternate Camera Specifications Pg. 51

TABLE 16 Alternate Casing Specifications Pg. 54

TABLE 17 Alternate DatabaseSpecifications Pg. 57

10

Glossary

Term Definition

API Application Programming Interface

AruCo Markers Synthetic square marker composed by a wide black border and
an inner binary matrix that determines its identifier

AWS Amazon Web Services

CSI Camera Serial Interface

Data Visualization Graphical representation of information and data

EC2 Elastic Compute Cloud

Figma Online UI tool to create, collaborate, prototype and handoff

GPIO General Purpose Input/Output

JWT JSON Web Token

LED Light Emitting Diode

MERN Javascript stack used for easier and faster deployment of
full-stack web applications, comprises of MongoDB, Express,
React and Node.js

MotPy Library for track-by-detection multi object tracked implemented
in python

PaaS Platform as a Service

Route Setter Climbing Gym employee responsible for setting routes

S3 Simple Storage Service

Schema Structure described in a formal language supported by the
Database Management System

SD Secure Digital

USB Universal Serial Bus

YOLO You Only Look Once

11

1. Introduction

1.1 Background

Indoor rock climbing is a growing industry that provides physical activity for people of all
ages [1]. Climbing gym walls have a collection of rocks that form routes. Typically each
route is distinguished by a unique colour from its neighbors. In the figure below, a member
can be seen climbing the red route on the left, and another member is climbing the purple
route on the right.

Figure 1: Two climbers scaling a bouldering wall

Designing routes that are accessible and interesting for all body types is the challenge of
professional route setters employed by climbing gyms. All gyms aspire to provide
accessibility, and previous to our device the only tools were route setter’s individual
intuition and experience. Through consultation with local climbing gym owners and route
setters, we have devised the idea for Eye-bex. To assist route setters with this task, our

12

company will be developing Eye-bex: a camera-based system that utilizes computer vision
to track activity in climbing gyms and provide new metrics for route management.

The Eye-bex system can simply be mounted to view the targeted climbing wall and track
the movement of a climber and their interaction with certain holds. It can then analyze this
data to provide feedback on different routes which gyms can access through our web
application that will display the data Eye-bex has processed.

1.2 Scope

This document lays a foundation for the design of the Eye-bex and includes all
considerations made. These considerations are followed with rationale for the
proof-of-concept version of Eye-bex as well as a later engineering prototype.

The design sections specify the functionality of each subsystem, the factors of the design
choices, and the final selection of components. Appendix A provides a supporting test plan
for each subsystem, including the test procedure, the expected outcome, and room for
additional notes. Appendix B details additional design alternatives, and the justification of
the final design choice.

1.3 Design Challenges

Several design challenges arose in the deliberation for each system. In terms of hardware,
there was a question on whether a single-camera system would be enough to gauge a
climb holistically. One of the data points deemed necessary after consultation with the
client was a climber’s height. A climbing wall is slanted with the top portion closer to the
camera than the bottom of the wall. A single camera provides a two-dimensional image, so
a simple conversion from pixels to distance units is not a viable solution. Several
open-source computer algorithms have recently become available to meet these demands
with the addition of stickers of predetermined dimensions present in the frame of the video.
These stickers can be placed on the empty portions of the wall to provide calibration for
the size conversions of actual objects. Climbing gym owners encouraged this solution as a
branding opportunity.

A major decision that the team had to make was that of on-device processing versus cloud
processing. The benefits of on-device processing of video included no recurring fees
associated with the cloud, reliability and keeping the system as local as possible to the

13

gym. However, there were drawbacks because of the lack of scalability, the need for
maintenance, the cost of the processing hardware and the inability to collaborate on the
project remotely for all team members due to the pandemic. Cloud processing entailed
scalability, lower initial costs for the processing power required and the novelty of the
solution given the rise of cloud computing.

The overall functionality of the Eye-bex hinges on successful computer vision processing.
Some challenging aspects include tracking individual instances of climbers through video
frames, determining an algorithm for detecting when a hold is being used, and the
obscuring of the climber’s hands by their body.

1.5 Design Classification Convention

This section outlines the convention used for labelling and numbering specific
requirements.

D-X.Y.Z.{a}/{b}

where the D is a constant for all design specifications listed and X, Y and Z are used for
section, subsection, and sub-subsection, respectively. The letter a represents the
requirement is intended for the alpha or proof-of-concept. These will be demonstrated at
the ENSC 405W demo. The letter b is to indicate that the requirement is for the beta or
prototype stage.

14

2. System Architecture
The Eye-bex is made up of 3 systems: the hardware system, the computer vision system
and the web application (web app) system. The end-user will interact with the web-app
and the hardware system is installed by Eye-bex for each particular gym. The client will
have access to all the necessary statistics for each route that they have set and be able to
make decisions for routes in the future. The bulk of the processing of the data/statistics
presented to the user takes place in the computer vision system. Here, recorded video is
received from the hardware system through a wireless connection and analyzed to produce
raw data. The hardware system is responsible for recording and uploading video in chunks
to a cloud computing setup where the computer vision system resides. This hardware
system is a simple setup including a camera connected to a microcontroller with wireless
access to the climbing gym’s WiFi network. The in-depth system overview is presented in
Figure 2.

Figure 2: Overview of the Eye-bex design

15

3. Hardware
The hardware components are chosen to satisfy the physical and firmware requirements of
the system. They include the design choices in microcontroller, camera module, and
casing.

3.1 Microcontroller Unit

For this project, since the video processing is conducted on the cloud, the choice of a
microcontroller with wireless capabilities was paramount. Additionally, the microcontroller
itself need not be powerful enough to do computer vision calculations, however, it must be
able to record and store high-quality video. The microcontroller that is chosen must be able
to function without any connection to a laptop/computer since Eye-bex is a self-contained
unit that only needs a power supply and access to a wireless network. Since the
microcontroller will be storing large quantities of high quality video, it should also have
storage abilities to support that.

With those considerations in mind, the choice of microcontroller was the Raspberry Pi Zero
W. This is an affordable but powerful microcontroller with a small footprint that is powered
through one of 2 available microUSB ports. The Pi Zero W is a variant of the Pi Zero with
WiFi as well as Bluetooth capabilities. On top of its physical specifications, there is a large
amount of online documentation available as well as projects to help in development for
the Eye-bex. The Pi Zero W also features a camera port using a CSI camera connector.
This was a key factor in the choice of this microcontroller as it allows for a range of
cameras to be used with it.

Figure 3: Raspberry Pi Zero W with ports labelled

16

TABLE 1
Design Specifications For The Microcontroller

Specification ID Specification Description Requirement
Reference ID

D-3.1.1.a The microcontroller will be able to communicate

via 2.4GHz wireless connection

R-3.7.2.a

D-3.1.2.a The microcontroller will support a 8MP camera
through a CSI connector

R-3.4.2.b

D-3.1.3.a The microcontroller will be powered through a
microUSB port.

R-3.4.1.b

D-3.1.4.a The microcontroller will support a microSD card to
store videos

R-3.6.1.a

D-3.1.5.a The microcontroller will allow the user to set up a
wireless connection via the microUSB port.

R-3.4.4.a

R-4.1.2.a

R-5.4.1.a

D-3.1.6.a The microcontroller will allow Python scripts to
automate functionality.

N/A

D-3.1.7.a The microcontroller will receive and execute
commands from the remote cloud computer (EC2)
when needed.

R-5.4.2.a

D-3.1.8.a The microcontroller will power LED lights through
GPIO pins for status updates.

N/A

D-3.1.9.b The microcontroller will recover data and restore to
its previous state in case of a power interruption.

N/A

D-3.1.10.b The microcontroller will recover data and restore to
its previous state in case of a wireless connection
interruption.

N/A

17

TABLE 2
Raspberry Pi Zero W Specifications

Specification type Specification

Physical dimensions (length x width x
height)

66.0mm x 30.5mm x 5.0mm [2]

Weight 9g [2]

Processor Broadcom BCM2835 @1Ghz single-core
[2]

Memory 512MB RAM [3]

I/O HAT-compatible 40-pin header [3]

SD Card Support microSD card with a maximum 256GB
boot partition [4]

Wireless Connectivity ● 802.11 b/g/n wireless LAN [3]
● Bluetooth 4.1 [3]
● Bluetooth Low Energy [3]

Input Power Micro USB power [3]

Environment 0°C to 70°C [5]

Ports ● CSI camera connector [3]
● Mini HDMI [3]
● USB data/power port [3]
● USB power port [3]

Operating System ● Raspberry Pi OS with desktop
● Release date: May 7th 2021
● Kernel version: 5.10 [6]

18

3.2 Camera Module

The camera module was a key piece of the overall project. From the requirements
document, it must be high quality enough to gauge details on a climbing wall from a 20
feet distance. However, it must also satisfy weight constraints and be compatible with the
microcontroller of choice with ease. The choice of the camera module naturally followed
the choice of the microcontroller, in this case, the Pi Zero W. The Pi Zero W’s CSI interface
allows a range of Pi cameras to be chosen from. Of these, we wanted a camera that
reliably records video in at least 720p resolution and 15 frames per second. The camera
module choice also had to take into account availability in Vancouver.

The camera module that was selected for this project was the Raspberry Pi V2. This
camera is able to record 1080p video at 30 fps, which exceeds the base requirements that
were in place. The Pi Camera V2 is a general-purpose camera, in the sense that it does not
have any specialized lenses such as fisheye, wide-angle, or night vision. The camera is a
light-weight module which is helpful in reducing the overall weight of the device. This
camera module was relatively affordable and available readily. The camera module also
required the purchase of a ribbon cable as the CSI connector on the Pi Zero is slightly
smaller than other Pi Models.

Figure 4: The Raspberry Pi Camera V2

19

TABLE 3
Design Specifications For The Camera Module [7]

Specification ID Specification Description Requirement
Reference ID

D-3.2.1.a The camera module will record video in colour at

720p and 30 frames per second.

R-3.3.1.a

R-3.3.2.a

R-3.3.3.a

D-3.2.2.a The camera module will connect directly to the
microcontroller with a CSI cable.

R-3.4.2.b

D-3.2.3.a The camera module will be supported by the OS
running on the Pi Zero W.

N/A

D-3.2.4.a The camera module will have adjustable focus. N/A

D-3.2.5.a The camera module will recover from a power
failure.

N/A

TABLE 4
Raspberry Pi Camera Module V2 [8]

Specification type Specification

Physical dimensions (length x width x
height)

25mm x 23mm x 9mm

Weight 3g

Resolution 8MP

Sensor Sony IMX219 image sensor

Max image quality 3280 x 2464 pixels

Video Quality supported 1080p at 30fps
720p at 60fps
480p at 90fps

Interface Camera Serial Interface (CSI)

20

OS Support Raspberry Pi OS

Horizontal field of view 62.2 degrees

Vertical field of view 48.8 degrees

3.3 Casing

The physical casing houses the Pi Zero W and the Pi camera, as well as the ribbon cable,
and provides a mount for the device. It also provides an added layer of protection from the
environment and potential falls.

3.3.1 Casing Design

The Eye-bex casing design is required to be low weight, mountable, and provide space for
output status LEDs. The casing should support screw mounting to the wall, and provide
access to all
necessary input
ports used in the
design which are
specified in section
3.1. Ideally, it should
be 3d-printable for
affordability, local
accessibility, and
customizability. It
should protect the
device from any
reasonable impact,
and have vents to
cool the device.

21

TABLE 5
Design Specifications For Casing [9]

Specification ID Specification Description Requirement
Reference ID

D-3.3.1.b The case will encompass the camera module, the

microcontroller, the ribbon cable as well as the

wiring for 2 status LEDs.

R-3.2.4.b

D-3.3.2.b The case will have both USB ports exposed for
use.

R-3.4.4.a

R-3.7.1.a

D-3.3.3.b The case will not expose the SD card, or any
physical circuitry with the exception of the ports.

R-3.2.4.b

D-3.3.4.b The case will be wall mounted by screws. R-3.2.5.b

D-3.3.5.b The case will include vents for cooling. R-3.2.1.b

TABLE 6
Physical Specifications for Casing [9]

Specification type Specification

Physical dimensions (length x width x
height)

110.44mm x 44.2mm x 57.65mm

Weight 47.7g

Tools and parts required for assembly ● 4x 2mm x 8-10mm long hex head
bolts (pan or socket)

● 4x 3mm x 35mm long hex head
bolts (pan or socket) (bolts top,
main body & bottom)

● 2x 3mm x 5mm long hex head bolts
(pan or socket) (holds one end of
the zero down)

● 4x 3mm x 8-10mm long hex head

22

bolts (pan or socket) (holds front to
main body)

● 4x 3mm x 10 - 12mm long head
head bolts (pan or socket) (holds fan
to base)

● 4x 3mm nuts
● 1x Press in threaded insert.

23

4. Computer Vision

Figure 6: Computer Vision System Flowchart

4.1 Object detection
Object detection is one of the
classical problems in computer vision
where you work to recognize what
and where — specifically what
objects are inside a given
image and where they are in the
image. Our product Eye-Bex uses
object detection and tracking
for the analysis of the data from
climbing gyms. Using input videos
from the camera on the Eye-Bex
hardware, Python and the OpenCV
library will be utilized to implement
the YOLOv3-416 algorithm.

24

You Only Look Once created by Joseph Redmonn and Ali Farhadi, is a real time object
detection tool which can be used to identify specific objects in videos/images. YOLOV3 is
fast and accurate for real time applications. It predicts an objectness score for each
bounding box using logistic regression and multilabel classification for prediction of classes
[10]. We will be building on the pretrained model and custom training it to suit our needs of
classify rock features, various limbs, as well as calibration stickers.

TABLE 7
Design specifications for YOLO object detection

Specification ID Specification Description Requirement
Reference ID

D-4.1.1.a The object detection tool
will use Python and openCV
functions to process the
images to detect and
identify climbers, hands,
feet, rocks by color and
start/finish hold stickers

R-5.1.1.a
R-5.1.3.a
R-5.1.6.a
R-5.1.8.a
R-5.1.9.a
R-5.1.10.a

D-4.1.2.a ArUco markers will be used
to calculate climbers height

R-5.2.7.a

D-4.1.3.a YOLO model will be custom
trained to recognize when a
climber is actually holding
onto a hold vs. hovering
over a hold

R-5.2.1.a

4.2 Motion Tracking

The default motion tracking using just YOLO is quite jittery. We will be incorporating a
library called MotPy that will enhance the ability to track climbers. MotPy considers
previous frames to help smoothen out the YOLO bounding boxes, and give a more
accurate bounding box in future frames. Each bounding box is detected and once tracked
by MotPy, it shows the track box with an ID.

25

TABLE 8
Design specifications for YOLO and MotPy motion tracking

Specification ID Specification Description Requirement
Reference ID

D-4.2.1.a Motpy library will be utilized
for accurate tracking of
climbers, hands and feet

R-5.1.2.a
R-5.1.5.a

D-4.2.2.a When a climbers bounding
box reaches the finish hold,
a successful attempt will be
recorded in the database for
that specific route

R-5.2.5.a

R-5.2.6.a

R-5.2.3.a

4.3 Cloud Services

We will be using a variety of Amazon Web Services (AWS) to do all of the computer vision
processing on the cloud, rather than the actual Raspberry Pi itself. We will be using the
following Amazon Web Services

● EC2 (Elastic Compute Cloud)
Amazon EC2 is a web service that provides secure, resizable compute capacity in
the cloud. EC2 is the only cloud with 400 Gbps ethernet networking. It allows you to
run various virtual computers and manage the same with a single hardware.

● S3 buckets (Simple Storage Service)
S3 bucket is a cloud storage service to store and protect data. It is easy to use and
manage. It provides a flat, non-hierarchical structure storing data as objects in
buckets.

● Lambda
Serverless computing service in which several programming languages are
supported and lets you build, test, and deploy functions without managing servers or
runtimes. Our product eye - bex will be using lambda for all backend services.

26

TABLE 9
Design specifications for computing data

Specification ID Specification Description Requirement
Reference ID

D-4.3.1.a The data will be processed
and available in cloud for
access

R-5.2.9.a

D-4.3.2.a Video from the Raspberry Pi
will be uploaded to the EC2
server in chunks

N/A

D-4.3.2.a Lambda will handle the
computer vision processing
of the video input

N/A

D-4.3.3.a Processed data will be
stored in S3 buckets for
easy access from the web
app

N/A

27

5. Web Application

Figure 8: Web application system

Eye-bex’s web application, or web app for short, has the purpose of conveying all
important data in a manner intuitive to users with a simple interface. As we will be
designing a single page web application, we have chosen the MERN tech stack that will
suit the needs of our frontend, backend and database requirements. Figure 8 above
illustrates the MERN tech stack diagram where we will use MongoDB, Express JS, React
JS and Node JS.

The Eye-bex web app provide the following functionalities:
1. Log in as a routesetter of a climbing gym
2. Trigger the calibration of an Eye-bex camera system
3. Track active or archived routes
4. Filter through saved routes by using a tag system
5. View the statistics of a route with data visualization through charts, graphs etc.

28

5.1 Frontend

The user interface (UI) of the Eye-bex web app will be created using the React JS
framework alongside HTML and SCSS. React JS is a popular frontend framework that will
allow us to create a single page application (SPA) which will not require frequent page
reloading [11]. By eliminating reloads, we can expect faster response times as we will not
wait for a requested web page to render from the server. With React JS and its popularity,
we can also take advantage of its large online community for resources and the wide array
of libraries and packages dedicated to the framework.

As the client facing application of Eye-bex, we will also be utilizing Figma which is a user
interface design tool that will help us create visual mockups and prototype our designs
[12]. With Figma, we are able to leverage the free education plan granting us collaborative,
synchronous design features to help us with our workflow.

TABLE 10
Design Specifications For Frontend

Specification ID Specification Description Requirement
Reference ID

D-5.1.1.a The designed mockups will be used as a guide to
create UI components with React JS

R-7.1.1.a

D-5.1.1.b The web app will provide a user login page to send
a user authentication request to the server

R-5.3.1.b

D-5.1.2.b The frontend app will send a request to the server
to load an account specific dashboard page upon
authentication

R-5.3.2.b

D-5.1.3.a The web app will utilize a side navigation bar which
will link to the settings, routes and route tag page

N/A

D-5.1.4.a The routes page will display a selected route’s
related images and its statistics using a data
visualization package called Nivo

R-5.3.3.a
R-5.3.4.a
R-5.3.5.a
R-5.3.6.a
R-5.3.7.a
R-5.3.8.a

29

R-5.3.9.a
R-5.3.12.a

D-5.1.5.a The settings page will provide an interface for
camera system controls such as camera calibration
and status alerts

R-5.3.10.a
R-5.3.11.a
R-5.3.16.a
R-5.3.17.a

D-5.1.6.b The route tag page will provide an interface to
create custom tags

R-5.3.13.b
R-5.3.14.b
R-5.3.15.b

5.2 Server-Side

For the server-side implementation of Eye-bex we will be using Node.js with the Express.js
framework. Node.js with Express is a very popular combination used by many and will
allow us to create a flexible and robust server-side for the web app. With this framework
we can communicate between the front-end and database by using Application
Programming Interface (API) calls, some of which will need authentication [13].

TABLE 11
Design Specifications For Server-Side Software

Specification ID Specification Description Requirement
Reference ID

D-5.2.1.a The web server will use Node.js with an Express.js
framework

R-5.5.1.b
R-5.5.5.b
R-7.4.2.b

D-5.2.1.a Eye-bex will communicate using standard API calls R-5.3.1.a
R-5.4.2.a

D-5.2.2.b Eye-bex will use protected API calls that require
authentication

R-5.3.1.b
R-7.7.1.b
R-7.7.2.b

30

D-5.2.3.b The web server will send an encrypted JSON Web
Token (JWT) to the client upon user authentication

R-5.3.2.b

5.3 Database

The database we chose to use is MongoDB through MongoDB Atlas. MongoDB Atlas is a
free cloud-based service that allows us to implement the database server for Eye-bex.
MongoDB uses a noSQL structure which stores data in JSON (JavaScript Object Notation)
documents. NoSQL is generally simpler and more flexible than SQL databases which is
one of the major reasons we will be using MongoDB as it allows us to update and change
the database schema as needed while developing without having to create new tables. As
we will be using a NoSQL database we do not need to worry about normalization [14].

TABLE 12
Design Specifications For Database

Specification ID Specification Description Requirement
Reference ID

D-5.3.1.a Eye-bex will use a MongoDB database R-5.5.1.b

R-5.5.5.b

R-7.4.2.b

D-5.3.2.a The database will follow the Diagram shown in

Figure 8

R-5.5.2.a

R-5.5.3.a

R-5.5.4.b

R-5.5.6.a

R-5.5.7.b

31

Figure 8 below is the schema for our database. We will be using 4 collections, “Company”,
“User”, “Route”, and “Run”. The properties for each collection are outlined in the figure
below.

Figure 9: Database Schema

32

5.4 Deployment

For deployment of our web-app we will be using Heroku, along with a Github repository.
Heroku is a cloud platform as a service (PaaS) that allows us to deploy and run the code
we have created for our web app online. Heroku supports the 3 technology choices made
in 5.1 - 5.3 and allows us a more convenient, all-in-one place to host and monitor our
web-app [15].

TABLE 13
Design Specifications For Deployment

Specification ID Specification Description Requirement
Reference ID

D-5.4.1.a The web server and frontend will be hosted by
Heroku

R-5.4.2.a

33

6. Conclusion
The Eye-bex consists of several parts developed incrementally and the decisions made for
each system are listed below for the proof-of-concept prototype.

1. Hardware Design
a. Microcontroller

■ The Eye-bex will be controlled by the Raspberry Pi Zero W
microcontroller to record and transmit video to optimize for costs and
weight. Raspberry Pi comes with a known standard of quality and is
accompanied by relevant documentation to the design goals.

b. Camera
■ The camera module will be the Raspberry Pi Camera V2. It is the most

affordable option, accessible, and compatible with the microcontroller
while meeting all requirements for video quality.

c. Casing
■ The casing will be the 3d printable design detailed in section 3.3.1 for

its local accessibility, affordability, customizability, appropriate
access/cover of ports, and space for LED status lights.

2. Computer Vision Design
a. Object Detection

■ YOLOv3 will be used because of its speed and accuracy for smaller
objects like holds.

b. Motion Tracking
■ MotPy will be used for motion tracking as it meshes well with the

object detection algorithm and after some feedback from the
Progress Review Meeting #2

c. Cloud Services
■ AWS and the EC2 were chosen due to the widely available detailed

documentation, gentler learning curve and affordability.

3. Web Application Design
a. Front End

■ ReactJS was chosen due to the gentler learning curve and having a
team member with previous experience in developing using it.

b. Server side

34

■ NodeJS was chosen as the server-side framework to provide a
ubiquitous approach using JavaScript and also the flexibility it
provides

■ In tandem with NodeJS, Express JS is used as the backend
framework to complete the MERN tech stack as it supports single
page applications well.

c. Database
■ MongDB Atlas was chosen as it is the most popular noSQL

(non-relational) database available for free.
■ The non-relational database approach allows us to have a flexible

schema that can change as required by the client or by development.
d. Deployment

■ Heroku was chosen as the cloud-based deployment platform as it is
simpler to set up compared to alternatives such as AWS and provides
enough functionality.

35

References
[1] S. Farooqui, “Rock climbing’s Olympic debut, and its growing popularity come with
challenges,” CTVNews, 11-Dec-2019. [Online]. Available:
https://www.ctvnews.ca/sports/rock-climbing-s-olympic-debut-and-its-growing-popularity
-come-with-challenges-1.4726631. [Accessed: 11-Jul-2021]

[2] “Raspberry Pi Zero Guide: Projects, Specs, GPIO, Getting Started | Tom's Hardware”,
Tomshardware.com, 2021. [Online]. Available:
https://www.tomshardware.com/features/raspberry-pi-zero. [Accessed: 08-Jul-2021]

[3] “Buy a Raspberry Pi Zero W”, Raspberry Pi, 2021. [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-zero-w/. [Accessed: 08-Jul-2021]

[4] “SD cards - Raspberry Pi Documentation”, 2021. [Online]. Available:
https://www.raspberrypi.org/documentation/installation/sd-cards.md. [Accessed:
08-Jul-2021]

[5] “FAQs - Raspberry Pi Documentation”, Raspberry Pi, 2021. [Online]. Available:
https://www.raspberrypi.org/documentation/faqs/#pi-performance-temps. [Accessed:
08-Jul-2021]

[6] “Operating system images”, Raspberry Pi, 2021. [Online]. Available:
https://www.raspberrypi.org/software/operating-systems/. [Accessed: 08-Jul-2021]

[7] “Buy a Camera Module V2”, Raspberry Pi, 2021. [Online]. Available:
https://www.raspberrypi.org/products/camera-module-v2/. [Accessed: 08-Jul-2021]

[8] “Raspberry Pi Camera v2”, Farnell, 202. [Online]. Available:
http://www.farnell.com/datasheets/2056179.pdf. [Accessed: 08-Jul-2021]

[9] A. Gilliam, “Raspberry Pi Zero W Security Camera”, Thingiverse, 20-Sep-2017. [Online].
Available: https://www.thingiverse.com/thing:2544275. [Accessed: 08-Jul-2021]

[10] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement”, Pjreddie.com,
8-Apr-2018. [Online]. Available: https://pjreddie.com/media/files/papers/YOLOv3.pdf
[Accessed: 10-Jul-2021].

[11] K. Chinnathambi, “Creating a Single-Page App in React using React Router”, KIRUPA,
2017. [Online]. Available:
https://www.kirupa.com/react/creating_single_page_app_react_using_react_router.htm.
[Accessed: 09-Jul-2021]

36

https://www.ctvnews.ca/sports/rock-climbing-s-olympic-debut-and-its-growing-popularity-come-with-challenges-1.4726631
https://www.ctvnews.ca/sports/rock-climbing-s-olympic-debut-and-its-growing-popularity-come-with-challenges-1.4726631
https://www.ctvnews.ca/sports/rock-climbing-s-olympic-debut-and-its-growing-popularity-come-with-challenges-1.4726631
https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://www.raspberrypi.org/documentation/installation/sd-cards.md
https://www.raspberrypi.org/documentation/installation/sd-cards.md
https://www.raspberrypi.org/documentation/faqs/#pi-performance-temps
https://www.raspberrypi.org/documentation/faqs/#pi-performance-temps
https://www.raspberrypi.org/software/operating-systems/
https://www.raspberrypi.org/software/operating-systems/
https://www.raspberrypi.org/products/camera-module-v2/
https://www.raspberrypi.org/products/camera-module-v2/
http://www.farnell.com/datasheets/2056179.pdf?_ga=1.152577328.880870297.1479740269
https://www.thingiverse.com/thing:2544275
https://www.kirupa.com/react/creating_single_page_app_react_using_react_router.htm
https://www.kirupa.com/react/creating_single_page_app_react_using_react_router.htm

[12] “About Figma, the collaborative interface design tool”, Figma, 2021. [Online]. Available:
https://www.figma.com/about/. [Accessed: 09-Jul-2021]

[13] “Express - Node.js web application framework”, Express, 2021. [Online]. Available:
https://expressjs.com/. [Accessed: 09-Jul-2021]

[14] “What Is MongoDB?”, MongoDB, 2021. [Online]. Available:
https://www.mongodb.com/what-is-mongodb. [Accessed: 09-Jul-2021]

[15] “Cloud Application Platform | Heroku”, Heroku, 2021. [Online]. Available:
https://www.heroku.com/. [Accessed: 09-Jul-2021]

[16] “Arduino Nano 33 IoT | Arduino Official Store”, Arduino Official Store, 2021. [Online].
Available: https://store.arduino.cc/usa/nano-33-iot. [Accessed: 08-Jul-2021]

[17] “ARDUINO NANO 33 IoT WITH HEADERS”, Lee’s Electronic Components, 2021.
[Online]. Available:
https://leeselectronic.com/en/product/109980-arduino-nano-33-iot.html. [Accessed:
08-Jul-2021]

[18] “Raspberry SC15184 Pi 4 Model B 2019 Quad Core 64 Bit WiFi Bluetooth (2GB) :
Amazon.ca: Electronics”, Amazon, 2021. [Online]. Available:
https://www.amazon.com/Raspberry-Model-2019-Quad-Bluetooth/dp/B 07TC2BK1X.
[Accessed: 08-Jul-2021]

[19] “Raspberry pi 4 Model B 2GB RAM”, Lee’s Electronic Components, 2021. [Online].
Available: https://leeselectronic.com/en/product/167112-raspberry-pi-4-model-b-
2gb-ram.html. [Accessed: 08-Jul-2021]

[20] “Raspberry Pi 4 Model B specifications”, Raspberry Pi, 2021. [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/. [Accessed:
08-Jul-2021]

[21] “Raspberry Pi”, Wikipedia. 2021 [Online]. Available:
https://en.wikipedia.org/wiki/Raspberry_Pi. [Accessed: 08-Jul-2021]

[22] “Camera Module - Raspberry Pi Documentation”, 2021. [Online]. Available:
https://www.raspberrypi.org/documentation/hardware/camera/. [Accessed: 08-Jul-2021]

[23] “Arducam 12MP*2 Synchronized Stereo Camera Bundle Kit for Raspberry Pi and Pi
zero, Two 12.3MP IMX477 Camera Modules with CS Lens and Camarray Stereo Camera
HAT”, Arducam, 2021. [Online]. Available:
https://www.arducam.com/product/arducam-12mp2-synchronized-stereo-camera-bundle-

37

https://www.figma.com/about/
https://www.figma.com/about/
https://expressjs.com/
https://expressjs.com/
https://www.mongodb.com/what-is-mongodb
https://www.mongodb.com/what-is-mongodb
https://www.heroku.com/
https://www.heroku.com/
https://store.arduino.cc/usa/nano-33-iot
https://leeselectronic.com/en/product/109980-arduino-nano-33-iot.html
https://leeselectronic.com/en/product/109980-arduino-nano-33-iot.html
https://www.amazon.com/Raspberry-Model-2019-Quad-Bluetooth/dp/B%2007TC2BK1X
https://www.amazon.com/Raspberry-Model-2019-Quad-Bluetooth/dp/B%2007TC2BK1X
https://leeselectronic.com/en/product/167112-raspberry-pi-4-model-b-
https://leeselectronic.com/en/product/167112-raspberry-pi-4-model-b-
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://en.wikipedia.org/wiki/Raspberry_Pi
https://en.wikipedia.org/wiki/Raspberry_Pi
https://www.raspberrypi.org/documentation/hardware/camera/
https://www.raspberrypi.org/documentation/hardware/camera/
https://www.arducam.com/product/arducam-12mp2-synchronized-stereo-camera-bundle-kit-for-raspberry-pi-two-12-3mp-imx477-camera-modules-with-cs-lens-and-arducam-camarray-stereo-camera-hat/
https://www.arducam.com/product/arducam-12mp2-synchronized-stereo-camera-bundle-kit-for-raspberry-pi-two-12-3mp-imx477-camera-modules-with-cs-lens-and-arducam-camarray-stereo-camera-hat/

kit-for-raspberry-pi-two-12-3mp-imx477-camera-modules-with-cs-lens-and-arducam-cam
array-stereo-camera-hat/. [Accessed: 08-Jul-2021]

[24] “OpenCV AI Kit: OAK-D/1 Camera Buy and Customize”, Arducam, 2021. [Online].
Available: https://www.arducam.com/oak-opencv-ai-kit-camera/. [Accessed: 08-Jul-2021]

[25] “Buy a Raspberry Pi Zero Case”, Raspberry Pi, 2021. [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-zero-case/. [Accessed: 08-Jul-2021]

[26] S. Daityari, “Angular vs React vs Vue: Which Framework to Choose in 2021”,
CodeinWP, 10-Jan-2019. [Online]. Available:
https://www.codeinwp.com/blog/angular-vs-vue-vs-react/. [Accessed: 09-Jul-2021]

[27] “Flask vs Django: How to Understand Whether You Need a Hammer or a Toolbox”,
Steel Kiwi, 04-Oct-2019. [Online]. Available:
https://steelkiwi.medium.com/flask-vs-django-how-to-understand-whether-you-need-a-ha
mmer-or-a-toolbox-39b8b3a2e4a5. [Accessed: 09-Jul-2021]

[28] “What is the MERN Stack? Introduction & Examples”, MongoDB, 2021. [Online].
Available: https://www.mongodb.com/mern-stack. [Accessed: 09-Jul-2021]

[29] “About PostgreSQL”, PostgreSQL, 2021. [Online]. Available:
https://www.postgresql.org/about/. [Accessed: 09-Jul-2021]

[30] “Why MySQL?”, MySQL, 2021. [Online]. Available:
https://www.mysql.com/why-mysql/. [Accessed: 11-Jul-2021]

[31] V. Kuprenko, “Heroku vs. AWS: Which Cloud Solution Works Best in 2020”, Cloud
Academy, 04-Feb-2020. [Online]. Available:
https://cloudacademy.com/blog/heroku-vs-aws-which-cloud-solution-works-best/.
[Accessed: 09-Jul-2021]

[32] D. A. Norman, The Design of Everyday Things, Revised and Expanded ed. New York,
New York, USA: Basic Books, 2013.

[33] S. Munot, “Toast Notification or Dialog Box?”, UX Planet, 24-Jul-2017. [Online].
Available: https://uxplanet.org/toast-notification-or-dialog-box-ae32ad53106d. [Accessed:
09-Jul-2021]

[34] R. Roth, “3 Essentials for Great UX: Affordances, Signifiers & Feedback”, Career
Foundry, 27-Oct-2020. [Online]. Available:
https://careerfoundry.com/en/blog/ux-design/affordances-signifiers-feedback/. [Accessed:
09-Jul-2021]

38

https://www.arducam.com/product/arducam-12mp2-synchronized-stereo-camera-bundle-kit-for-raspberry-pi-two-12-3mp-imx477-camera-modules-with-cs-lens-and-arducam-camarray-stereo-camera-hat/
https://www.arducam.com/product/arducam-12mp2-synchronized-stereo-camera-bundle-kit-for-raspberry-pi-two-12-3mp-imx477-camera-modules-with-cs-lens-and-arducam-camarray-stereo-camera-hat/
https://www.arducam.com/oak-opencv-ai-kit-camera/
https://www.raspberrypi.org/products/raspberry-pi-zero-case/
https://www.raspberrypi.org/products/raspberry-pi-zero-case/
https://www.codeinwp.com/blog/angular-vs-vue-vs-react/
https://www.codeinwp.com/blog/angular-vs-vue-vs-react/
https://steelkiwi.medium.com/flask-vs-django-how-to-understand-whether-you-need-a-hammer-or-a-toolbox-39b8b3a2e4a5
https://steelkiwi.medium.com/flask-vs-django-how-to-understand-whether-you-need-a-hammer-or-a-toolbox-39b8b3a2e4a5
https://steelkiwi.medium.com/flask-vs-django-how-to-understand-whether-you-need-a-hammer-or-a-toolbox-39b8b3a2e4a5
https://www.mongodb.com/mern-stack
https://www.postgresql.org/about/
https://www.postgresql.org/about/
https://www.mysql.com/why-mysql/
https://www.mysql.com/why-mysql/
https://cloudacademy.com/blog/heroku-vs-aws-which-cloud-solution-works-best/
https://cloudacademy.com/blog/heroku-vs-aws-which-cloud-solution-works-best/
https://uxplanet.org/toast-notification-or-dialog-box-ae32ad53106d
https://careerfoundry.com/en/blog/ux-design/affordances-signifiers-feedback/
https://careerfoundry.com/en/blog/ux-design/affordances-signifiers-feedback/

[35] "ISO/IEC/IEEE International Standard - Systems and software engineering -
Engineering and management of websites for systems, software, and services
information," in ISO/IEC/ IEEE 23026 First edition 2015-05-15 , vol., no., pp.1-54, 15 May
2015, doi: 10.1109/IEEESTD.2015.7106438.

[36] "CAN/CSA-ISO/IEC 26557:18", Standards Council of Canada, 2018. [Online].
Available: https://www.scc.ca/en/standardsdb/standards/29417. [Accessed: 11- July-
2021].

[37] "ISO/IEC TR 12182:2015", iTeh Standards, 2021. [Online]. Available:
https://standards.iteh.ai/catalog/standards/iso/dd4d54fe-b335-4b03-ad59-
8424b1dc4752/iso-iec-tr-12182-2015. [Accessed: 11- July- 2021].

[38] "ISO 9241-161:2016 Ergonomics of human-system interaction -- Part 161: Guidance
on visual user-interface elements", CSA Group, 2021. [Online]. Available:
https://www.csagroup.org/store/product/iso_060476/. [Accessed: 11- Jul- 2021]

[39] "ISO/IEC/IEEE 12207:2017 Systems and software engineering -- Software life cycle
processes", CSA Group, 2021. [Online]. Available:
https://www.csagroup.org/store/product/iso_063712/. [Accessed: 11- Jul- 2021]

[40] C. Scratchley and M. Sjoerdsma. (2021). Human Factors & Usability Engineering
[PowerPoint Slides]. Available:
https://canvas.sfu.ca/courses/63024/files/folder/Powerpoints?
preview=16308516

39

https://canvas.sfu.ca/courses/63024/files/folder/Powerpoints?preview=16308516
https://canvas.sfu.ca/courses/63024/files/folder/Powerpoints?preview=16308516

Appendix A: Test Plan

A.1 Introduction

Test Purpose

The Eye-bex test plan details the steps for acceptance testing when deploying the device
with users. These tests also demonstrate meeting the design specifications for our
proof-of-concept demonstration.

Test Coverage

The tests detailed in Appendix A cover the hardware, web-app, and computer vision
subsystems. The tests also cover a range of priorities from Low to Medium to High to
classify which tests are detrimental to overall functionality and which carry a lower
significance in case of failure.

Test Methods

The testing will take place in-person at the Hangout Climbing gym facilities in Duncan, B.C.
The deployment and testing team will travel to the location, install the prototype, and verify
the tests described below on site.

Test Responsibilities

The verification of the subsystems of Eye-bex subsystems will be the responsibility of the
Eye-bex Inc. deployment and testing team. At least one member from each of the 3 teams
(hardware/firmware, computer vision, web app) will be present onsite at the climbing gym
for testing.

A.2 Hardware Testing

Test Name: Connectivity to WiFi and EC2 Priority (Low/Med/High): High

Test Description: Verify that the Raspberry Pi Zero W connects wirelessly to the
climbing gym’s WiFi network and is able to ping the EC2 IP address and send data to it.

Expected Outcome: The EC2 will respond to the ping requests and also be able to
display test videos sent from the Pi Zero W.

40

Passed (Yes/No) :

Notes on outcome:

Test Name: Video Recording Quality Priority (Low/Med/High): High

Test Description: The video recorded by the Pi should be 720p 15fps, with enough
focus to recognize and process height stickers. A test member will verify their height
processed by EC2 is accurate.

Expected Outcome: The height processed of the team member will be within an
accuracy tolerance of 5cm.

Passed (Yes/No) :

Notes on outcome:

Test Name: Power supply interruption Priority (Low/Med/High): Med

Test Description: Verify that the Pi Zero W recovers from a power cut (power cycle via
unplugging the microUSB connector) to its previous state
(recording/converting/uploading).

Expected Outcome: The previous operation is started from the beginning or the
microcontroller resumes where it had previously stopped.

Passed (Yes/No) :

Notes on outcome:

Test Name: Wireless connection
interruption

Priority (Low/Med/High): Med

Test Description: Verify that the Pi Zero W recovers from a wireless connection
interruption (momentarily turn off wifi and turn it back on manually on the Pi Zero W as an
operation is run) to its previous state (recording/converting/uploading).

Expected Outcome: The previous operation is started from the beginning or the
microcontroller resumes where it had previously stopped.

41

Passed (Yes/No) :

Notes on outcome:

Test Name: Daily storage cleanup Priority (Low/Med/High): High

Test Description: Verify that all video once processed by computer vision and relayed to
webapp is removed from the microSD card on the Pi Zero W.

Expected Outcome: No videos on microSD card after clearing function is called.

Passed (Yes/No) :

Notes on outcome:

Test Name: Casing status Priority (Low/Med/High): Low

Test Description: Verify that cables and internal circuitry are hidden and that status
LEDs are all functioning. Verify the condition of the case is without visible abrasion when
installed.

Expected Outcome: No visible scuffs on case. Red LED is blinking to indicate error
(such as a failure in recording/uploading). Green LED is stable to indicate recording.
Green LED is blinking for calibration.

Passed (Yes/No) :

Notes on outcome:

A.3 Computer Vision Testing

Test Name: Route Identification Priority (Low/Med/High): High

Test Description: After initiating Calibration, EC2 must send the route data for routes
identified by stickers to the database. It must transfer the image of the route, the colour
of the holds, the bounding box coordinates of each hold, an associated sequence
number, and the calibration data and time.

42

Expected Outcome: Check: Correct number of routes, all rocks in route classified, start
and end holds are correctly classified.

Passed (Yes/No) :

Notes on outcome:

Test Name: Height Classification Priority (Low/Med/High): High

Test Description: From 5 test climbs of climbers at different heights, the EC2 must be
able to identify the heights of each climber with an error of margin of up to 5cm.

Expected Outcome: The webapp correctly displays each climber’s height in a different
bucket of a histogram which contains 10cm buckets.

Passed (Yes/No) :

Notes on outcome:

Test Name: Individual Climber Tracking Priority (Low/Med/High): High

Test Description: From one test user climb, the EC2 must track and upload 1 individual
climb’s statistics to the database including which route was climbed.

Expected Outcome: Database is loaded with all required run data for the individual
climber.

Passed (Yes/No):

Notes on outcome:

Test Name: Order of holds used Priority (Low/Med/High): Low

Test Description: From one test user climb, the EC2 must upload the correct sequence
of holds used in the climb to the database.

Expected Outcome: The database correctly displays a list of holds used in the order in
which they were used.

Passed (Yes/No) :

43

Notes on outcome:

Test Name: Route Success Priority (Low/Med/High): High

Test Description: From one test user climb, the EC2 must correctly register if the climb
was a successful attempt.

Expected Outcome: Database displays the time-stamped attempt as a success.

Passed: Yes/No

Notes on outcome:

Test Name: Route Failure Priority (Low/Med/High): High

Test Description: From one test user climb that fails to reach the end-hold, the EC2
must correctly register the attempt was a failure.

Expected Outcome: Database displays the time-stamped attempt as a failure.

Passed: Yes/No

Notes on outcome:

Test Name: Simultaneous Climber Tracking Priority (Low/Med/High): High

Test Description: With 3 test climbers in the frame of the video, the EC2 must correctly
track each individual climb, and upload the associated processed statistics to the
database.

Expected Outcome: Database is loaded with three separate entries of the required run
data for the individual climbers.

Passed (Yes/No) :

Notes on outcome:

44

A.4 WebApp Testing

Test Name: Database connectivity Priority (Low/Med/High): High

Test Description: The web server is able to read data from the MongoDB database

Expected Outcome: The processed data is displayed correctly on the web app.

Passed (Yes/No) :

Notes on outcome:

Test Name: Microcontroller connectivity Priority (Low/Med/High): High

Test Description: The web app will ping the microcontroller, and send a calibration
command to the microcontroller.

Expected Outcome: The web app receives a ping response from the microcontroller,
and the calibration date in the database is updated for active routes.

Passed (Yes/No) :

Notes on outcome:

Test Name: Client connectivity Priority (Low/Med/High): High

Test Description: The React JS app must be in connection to the web server. Open all
pages of the webapp and ensure these pages are populated correctly.

Expected Outcome: The React JS app is able to dynamically display received data from
the web server without needing to reload a web page.

Passed (Yes/No) :

Notes on outcome:

45

Test Name: Login test Priority (Low/Med/High): Med

Test Description: With a pre-assigned username and password, a user must be able to
log in to the webapp

Expected Outcome: The user is authenticated and the home page is displayed on their
screen.

Passed (Yes/No) :

Notes on outcome:

Test Name: Navigation test Priority (Low/Med/High): High

Test Description: Once a user is logged in, they should be able to navigate from each
page to the others and back

Expected Outcome: User remains logged in through navigating to all pages.

Passed (Yes/No) :

Notes on outcome:

Test Name: Updated Route Data Priority (Low/Med/High): High

Test Description: Before the end of a day at midnight, the statistics displayed on the
web app should be updated with the daily user data, including the height histogram of
climbers and all other route specific statistics.

Expected Outcome: The last updated date on the web app is accurate and all data from
the day before is available to view.

Passed (Yes/No) :

Notes on outcome:

Test Name: Status updates Priority (Low/Med/High): Low

Test Description: The microcontroller must communicate to the web app whether it is
recording video or uploading and the EC2 must communicate to the web app whether it

46

is processing or not

Expected Outcome: UI elements displaying the microcontroller’s status should be
updated accordingly within 1 minute.

Passed (Yes/No) :

Notes on outcome:

47

Appendix B: Supporting Design Options

B.1 Hardware Options

The hardware components include the design choices in microcontroller, camera module,
and casing.

B.1.1.1 Microcontroller Options

While many microcontrollers were capable of controlling a camera to record video,
communicating wirelessly, and automation through a script, no option was as affordable or
accessible as the Raspberry Pi Zero W.

All other Raspberry Pi Models capable of WiFi connections were larger, more expensive,
and came with more processing power than was needed for our project. The raspberry Pi
models that didn’t come built-in with WiFi support required additional modules for WiFi
which were an additional expense that could be forewent with the Pi Zero W.

The Arduino Nano 33 IoT was the lead competitor for the choice of microcontrollers. It is
small, affordable, and comes with built in WiFi capability. However, it was unclear what
cameras could be attached. The Arduino IDE was viewed as inconvenient compared to the
Linux based operating system of Raspberry Pi. The documentation for camera projects
was also found inferior to those available to Raspberry Pi users.

48

TABLE 14
Alternate Microcontroller Specifications

Microcontroller Technical Specifications

Arduino Nano 33 ioT Operating Voltage 3.3V [16]

Clock Speed 48MHz [16]

DC Current per I/O
Pins

7mA [16]

Input Voltage 21V [16]

Power
Consumption

unspecified

PCB size 18mm X 45mm [16]

Weight 5g [16]

Cost $40 [17]

Raspberry Pi 4B Operating Voltage 3.3V

Clock Speed 1.5GHz [20]

DC Current per I/O
Pins

16mA [21]

Input Voltage 5.1V [20]

Power
Consumption

3W [21]

PCB size 58mm x 88mm [20]

Weight 49.89g [18]

Cost $77.5 [19]

49

B.1.1.2 Microcontroller Decision

The Raspberry Pi Zero W was chosen for the Eye-bex proof-of-concept prototype. The Pi
Zero W documentation guaranteed a camera to satisfy all our requirement needs. While
slightly larger than the Arduino Nano 33 IoT, the Pi Zero W and the camera module were
both available immediately in the Vancouver area. The Pi Zero W was also the cheapest
option, which not only reduced the price of the final product, but enabled our group to
purchase multiple boards to distribute amongst the team while working remotely, as well
as having a backup in case of fatal failure of one of the microcontrollers in use.

B.1.2.1 Camera Module Options

The camera module’s function for this device is recording video at relatively high quality
and frame rate. After the approval of the Raspberry Pi Zero W, several Pi camera modules
were considered. None of the specialized lenses in the alternative Pi cameras for IR video,
wide angle, fisheye, or ultra high resolution offered any advantage for our needs. The
additional lenses also require a more expensive camera module, the Pi HQ camera, which
would sizably increase costs.

Our initial design for the Eye-bex proof-of-concept demonstration is to use a single camera
setup, but if that proves insufficient then we may upgrade to a stereo camera system, from
Arducam. Though this was considered, the immediate availability of the Pi camera V2
module proved useful in getting development up and running.

The OAK-1/OAK-D cameras were also attractive options if we were to go for on-device
processing of the videos. They were, however, very expensive. The OAK development kits
are a very recent development and lack substantial documentation as well as previous
projects to reference, which means debugging the product could take up a significant
amount of time. The OAK cameras may not be scalable to multiple camera units should we
need to capture especially obscured walls where multiple perspectives are needed, as
each camera runs it’s own image processing on device.

50

TABLE 15
Alternate Camera Specifications

Camera Module Technical Specifications

Raspberry Pi HQ Camera [22] Physical
dimensions (length
x width x height)

38mm x 38mm x
18.4mm (excluding
lens)

Weight Not listed

Resolution 12.3 MP

Sensor Sony IMX477

Max image quality 4056 x 3040

Video Quality
supported

● 1080p at
30fps

● 720p at
60fps

● 480p at
60/90fps

Interface Camera Serial
Interface (CSI)

OS Support Raspberry Pi OS

Horizontal field of
view

Depends on lens

Vertical field of
view

Depends on lens

Arducam Synchronized Stereo Camera
Bundle Kit [23]

Physical
dimensions (length
x width x height)

HAT size 65x56mm
Camera board size
38x38mm

51

Weight 53g

Resolution 12.3MP

Sensor 2 x Sony IMX477

Max image quality 4056 x 3040

Video Quality
supported

● 2028 × 1522
at 30fps with
the Official
driver

● 4056*2 ×
3040 at 6fps
with
Arducam
driver

Interface Connects via HAT
and CSI cable

OS Support Supported by
Raspberry Pi OS

Horizontal field of
view

65 degrees

Oak-1 [24] Physical
dimensions (length
x width x height)

32 x 58 x 108 mm

52

Weight 42.52g

Resolution 12 MP

Sensor IMX378

Max Image Quality 4056x3040

Video Quality
supported

● 4K at 30 fps
● 1080p at

max 60fps
● 720p at max

60fps
● 480p at max

60fps

Interface USB Type-C

Horizontal field of
view

68.8 degrees

Vertical field of
view

81 degrees

B.1.2.2 Camera Module Decision

The Raspberry Pi Camera Module V2 was selected as the most affordable and available
option amongst the camera modules capable of recording video at 720p 30fps. Video
processing is being done on the cloud hence the need for an on-board processor like the
OAK system is redundant. Both the Arducam and the Pi HQ camera use the same sensor,
albeit the Arducam setup uses two of those sensors in parallel with a specific lens
mounted on both sensors. They are, however, expensive modules and exceed our
minimum requirements by a lot so it is hard to justify their cost.

B.1.3.1 Casing Options

The casing for the Eye-bex is required to protect the device, provide ventilation, and serve
as a mount to attach the Eye-bex to the wall. It must also retain access to the ports and
provide a space for LED status indicators. The options considered were limited and one of
them included the standard Pi Zero case that although includes a hole to house a camera,
does not provide any outlets for status LEDs to blink. Any other casing option apart from

53

the one selected and the generic case, would have to be an in-house design which could
take valuable development resources away from the project. Another disadvantage of the
Pi Zero Case is the exposure for unused pins which will invite climbing chalk, and there is
no space for a fan. The Pi Zero case is also not customizable should our design change,
whereas the 3D printable schematic is.

TABLE 16
Alternate Casing Specifications [25]

Camera Module Technical Specifications

Raspberry Pi Zero Case Physical
dimensions (length x
width x height)

104 x 79 x 41mm

Weight 30g

Wall Mountable No

B.1.3.2 Casing Decision

With the accessibility and customizability of 3D-printing, the Eye-bex proof-of-concept
case will be the custom casing design of section 3.3.1. The design incorporates wall
mounting, ventilation, I/O protection, space for a fan and status LEDs. The overall weight is
well below the requirements, and a single screw can support the weight of mounting the
device.

B.2 Computer Vision

B.2.1.1 Object Detection Options

Object detection technique is a combination of object localisation and classification. When
it comes to object detection, FR-CNN, SSD and YOLO are the most popular ones. The

54

team has experience on YOLO made it easier to choose from. YOLO comes with different
versions, among which version 3 and 4 are similar in performance. According to our
research, for smaller objects the version 3 provides better results in less time as compared
to version 4.

B.2.1.2 Object Detection Decision

We chose YOLOV3 as our object detection tool due to its speed and accuracy for smaller
objects. A team member having experience with YOLOV3 added value to the decision.

B.2.2.1 Motion Tracking Options

YOLO providing jittery results for motion tracking made us look into further options of
tracking. Two options were in consideration - Deep SORT and MotPy. One of the most
popular tracking frameworks is DeepSORT, an extension to SORT(Simple Real Time
Tracker). Whereas MotPy is a library that works well with YOLO to smoothen out the
bounding boxes.

B.2.2.2 Motion Tracking Decision

We chose MotPy library for the motion tracking as it works well with the detection tool we
chose. We considered the suggestions from TAs and decided to choose MotPy.

B.2.3.1 Cloud Services Options

We considered two options - cloud processing and on device processing. Cloud
processing is fast, reliable and easy to scale as compared to on device processing. AWS
ranks the best in cloud computing and platform service providers. Other popular choices
are google cloud, oracle cloud and IBM cloud.

B.2.3.2 Cloud Services Decision

We chose the most popular option in cloud computing, Amazon Web Services, due to its
ease of use, high performance and affordability. There is also a lot of documentation and
resources available for learning.

55

B.3 Web App Options

B.3.1.1 Front End Options

The main focus of research for the frontend was finding a suitable framework that would
suit the needs of a single page web application. Among frontend frameworks, the most
popular ones are React JS, Angular JS and Vue JS which narrowed down our options
down to three [26]. Among the three options, the team only has experience in using React
JS. However, all three of these frameworks are widely used, heavily supported and come
with a multitude of online resources.

B.3.1.2 Front End Decision

The React JS framework was chosen for the front end framework since the learning curve
was found to be easier compared to the other options [26]. Considering that a team
member has worked on a React application, we also hope to leverage this experience in
creating our web app.

B.3.2.1 Server-Side Options

The server side options were mainly divided by Python-based web development
frameworks and Node JS which is a JavaScript-based framework. For Python-based
frameworks, we had researched Flask and Django. Both of these options can be used to
build web applications however the latter comes equipped with more tools like an inbuilt
ORM (object relational mapping). Django also follows a model view template (MVT)
architecture [27]. On the other hand, Node JS is a runtime environment which gives us
more options for Node JS based frameworks.

B.3.2.2 Server-Side Decision

With the flexibility that Node JS offers, we chose to use it as the server side framework for
the web app as we found the MVT architecture in the Python-based options to be too rigid.
This will also allow us to use JavaScript as the consistent language used in both the client
and server side of our application. Along with Node JS, we will utilize Express JS as the
backend framework to complete the MERN tech stack of the web app. Express JS was
chosen as it can support single page applications and is known to be a standard
framework used to develop Node JS applications [28].

56

B.3.3.1 Database Options

The database is required to store all the data for our product. The database must be able
to hold various data types such as date, images (or reference to image), and have unique
ids. All of the databases researched were able to fulfill the technical requirements for our
database, and while there were many more options available, the outlined databases were
chosen based on popularity. With a higher popularity we would have access support from
online sources as well as compatibility with other technologies. Both of our other options
were SQL databases, which while very structured and supported by many, would require
us to build the database schema at the start and does not allow for flexibility further in the
project if we want to change the data we receive/send.

TABLE 17
Alternate Database Specifications

Database Technical Specifications

PostgreSQL [29] Database Type SQL

Price Free

License Type Open Source

Popularity Very High

Cloud Service Various Service
ex. Heroku, Google
Cloud SQL

mySQL [30] Database Type SQL

Price $2000 USD

License Type Proprietary

Popularity High

Cloud Service Heatwave

B.3.3.2 Database Decision

MongoDB Atlas was chosen as it was the most popular noSQL database available for free.
We chose to go with a noSQL database as the document structure allows us to change the

57

schema on the fly. This will help the implementation of our product as we will be able to
dynamically change what data is sent and retrieved from the computer vision processing.
This allows us to implement the database features in parallel with the computer vision
aspects as we can update the schema further in development. In addition MongoDB Atlas
fulfils all our performance requirements and is supported by the other technology choices
we made.

B.3.4.1 Deployment Options

For our deployment options, we needed a service that was cloud-based that is able to run,
and monitor the code for our web-app. Cloud-services allow us to have greater
accessibility which is a huge advantage during the COVID-19 pandemic and allows us to
work separately on the same application.

For cloud-based services, there were 2 main ones that we found online. Amazon Web
Services (AWS) and Heroku. AWS is an Infrastructure as a Service (IaaS) which means
there are many services that can help in almost every situation. The downside, however, of
using AWS is it is quite complicated to set up and requires someone experienced in
development operations to get things going. Heroku is a similar option that requires
deployment using git. Both these options had free versions that we were able to use and
met all our performance requirements [31].

B.3.4.2 Deployment Decision

We chose to go with Heroku as our cloud based deployment as it is much simpler to set up
with a lower learning curve. While AWS does contain more features and complexities, the
requirements for the deployment of our product are quite simple and are all fully covered
by what heroku can do. As they were both available for free, what really put Heroku over
the edge as our choice is the simplicity to set up and ease of use.

Appendix C: User Interface and Appearance Design

C.1 Introduction

In order to make Eye-bex as accessible as possible and to enhance our user experience,
the way our User Interface (UI) is designed is of the utmost importance. We want to ensure
that our product is easy to understand and use. In appendix C we will explain the design

58

choice and considerations we made in regards to how our users will interact with the
product.

In Appendix C we will cover the following topics:
1. User Analysis: Outlines the previous experience of our users and the

knowledge and restrictions we expect them to have
2. Technical Analysis: Details how our UI will be designed around the “Seven

Elements of UI Interaction” from Don Norman’s book “The Design of
Everyday Things” [32]

3. Engineering Standards: Details the engineering standards we will adhere to
4. Analytical Usability Testing: Outlines the testing procedure done from the

developers perspective and heuristic evaluations made for our UI
5. Empirical Usability Test: Outlines the testing that will be done with users of

various iterations of the UI
6. Graphical Mock-ups: Visual representations of what our UI will look like

C.2 User Analysis

The target market for Eye-bex is climbing gyms, thus we would expect our users to be
familiar with how climbing walls function and operate. Our product must be easy to learn
and integrate into the gyms operation as we are aiming for our system to be autonomous
with minimal input from the user. We will only have one customer-facing component, the
web app. Installation of the hardware will be done by the development support team in
person, and will require no input from the users besides where they want it set up.

The web application can be accessed online via our website. From the website users will
be able to login with the provided login information given with the hardware. As our users
may have different devices this website will be available for any device similar to a typical
web page you would visit online. This means, however, that they would have to connect to
the web page using wifi, which most gyms already have set up. This web-page will be
simple to use for anyone with a basic proficiency with technology and web browsing.

C.3 Technical Analysis

In designing our product, we have taken into account the seven design elements that have
been outlined by Don Norman in his book, “The Design of Everyday Things”. These
elements focus on creating intuitive and easy to use computer interfaces that prioritize the
user experience [32]. The following sections will showcase the different stages of design:

59

discoverability, feedback, conceptual models, affordances, signifiers, mappings and
constraints.

C.3.1 Discoverability

Discoverability refers to how visible an element or a feature is in an interface. The more an
element is discoverable, the easier it will be for a user to find it and use its features. If a
feature is hidden away or less prominent to a user, it will be less likely that they will even
know about it [32]. For Eye-bex, we have designed our product so that its key
functionalities are prioritized and organized in a way that is easily visible to our users.

In terms of the web app, creating a simple interface will help users focus on the main
features of the application and will eliminate a cluttered web page. One design element
that we will utilize is a side navigation bar that will expose and link to different pages of the
web app as seen in Figure 10 below. This allows us to highlight specific page views that
we want to direct users to like the camera settings page, routes analytics page etc.
Another reason to use a side navigation bar is that it also helps us avoid deeply nested
web pages which can decrease visibility and create an unpleasant navigation experience.
Additionally, styling elements in a web page can also help with discoverability as bright,
contrasting or bold colors and text can be used to bring attention to buttons, forms and
more.

60

Figure 10: Home Page Mockup

C.3.2 Feedback

Feedback from a product allows us to communicate to the user what a certain action has
achieved. This can be done by using visual, audio or tactile elements [32]. Giving feedback
to a user action lets the user know that the Eye-bex system is aware that an action was
taken and that it is being processed.

With the hardware camera system, its main form of feedback would be through the use of
status LEDs. Eye-bex will use red and green LEDs to visually display the current status of
the camera system where all the possible statuses are listed below.

1. Static Green: The Eye-bex camera system is recording video and is connected to
WiFi

2. Blinking Green: The Eye-bex camera system is calibrating
3. Static Red: The Eye-bex camera system is low on memory storage
4. Blinking Red: The Eye-bex camera system is experiencing one or more of the

following errors

61

a. Memory storage is full and has stopped recording
b. Uploading failure due to poor WiFi connection
c. Camera failure

Similarly, the web app will also utilize visual elements to provide feedback. A simple use
case would be a user clicking on a route’s analytics and the feedback will act as some sort
of confirmation that the web app is processing the request. This type of loading or waiting
state will be represented by a loading spinner which is commonly used by most software
applications. Another use case in which feedback is used would be when a user creates a
route tag. To let the user know that a route tag has been added to a route, the web app will
trigger a toast notification to confirm this action with the following message: “Route tag
added”. Toast notifications are small notifications that appear at the bottom or top of the
screen which disappear after a short period of time and can be seen at the top right corner
in Figure 11 [33]. This type of notification does not obstruct the current view of the web
page while also letting the user know if a request went through or not.

Figure 11: Route Statistics Page Mockup with Toast Notification

62

C.3.3 Conceptual Models

Conceptual models are developed by users to understand how processes work since it
abstracts actual design elements with their perceived concepts and ideas which may be
flawed [32]. To create a good system design, Eye-bex must help users develop the most
accurate mental model on how the product works without needing all of the technical
details. Users of Eye-bex will only need to interact with two of the three main systems, the
camera and web app system. A user can easily create a mental model by observing that
the camera records video footage and the route statistics are displayed in the web app.
This completely leaves out the computer vision system that actually analyzes the video
footage that the camera system recorded. To avoid this inaccurate representation of the
Eye-bex system, we will display cloud processing status information in the web app to
ensure that users know when the computer vision system is processing data and when it is
finished. Though it is not a system that they interact with, users will be aware it exists and
can develop a conceptual model that is most similar to the Eye-bex system.

C.3.4 Affordances

Affordance pertains to the perceived actions that can be made by interacting with a UI
element [32]. By providing strong clues on how UI elements should be interacted with, we
can aid users in how to use the web app and avoid confusing them with our interface.
Some obvious affordances that are used in our web app are buttons and text fields.
Buttons can show that a user can click on it while a text field affords text input provided by
the user.

C.3.5 Signifiers

Signifiers work with affordances as the actual clues that provide the visual information
perceived by the user [34]. These signifiers are what makes elements intuitive as it can
determine how a user will perceive a UI element and how one would interact with it. As too
much copy or text on web pages can lead to content overload, Eye-bex will use intuitive
icons as a sort of visual aid along with most labels. For example, the universal gear icon
will be used to indicate the settings menu in the web app which can be seen in the top
right of Figure 11.

63

C.3.6 Mappings

Mapping is used to describe the relationship between system functionalities and its real
world counterpart. Using physical analogies from the real world can help users understand
web app functionalities without being explicit. From the web app, users have the ability to
turn a camera on and off with a click of a button much like pressing a physical power
button.

C.3.7 Constraints

Constraints are restrictions placed upon the users of the system to stop them from taking a
certain action which may lead to undesirable consequences [32]. By enforcing constraints,
we can safeguard the Eye-bex system from possible errors that can be caused by users of
the system.

Such constraints that are enforced on our users relate to our camera and computer vision
systems. By leaving the camera system set up to the Eye-bex team and providing on and
off functionality on the web app, we can limit accessibility to the camera and avoid
possible tampering from users to limit errors. Eye-bex also isolates the computer vision
system from users by only sending status updates and ensuring that analyzed data cannot
be modified by users.

One other constraint that Eye-bex will enforce is to only allow users to access route
statistics that are associated with the gym they belong to. This can be done by creating an
account management system such that the entry point in the web app would require users
to login with the appropriate credentials as seen in Figure 13.

64

Figure 12: Login Page Mockup

C.4 Engineering Standards

Eye-bex will be following the standards set by CSA, IEEE and ISO. Below are the specific
standards for the software and UI components of Eye-bex.

1. IEEE/ISO/IEC 23026:2015 [35]
Systems and software engineering - Engineering and management of websites for
systems, software, and services information
Defines system engineering and management requirements for the life cycle of
websites, including strategy, design, engineering, testing and validation

2. CAN/CSA-ISO/IEC 26557:18 [36]
Tools and methods of variability mechanisms for software and system
Defines processes and their sub-processes for operating variability mechanisms for
software and system

65

3. ISO/IEC TR 12182:2015 [37]
Systems and software engineering - Framework of categorization of IT systems and
software, and guide for applying it
Defines the manner in which categorization of IT systems and software are
organised and expressed

4. ISO 9241-161:2016 [38]
Ergonomics of human-system interaction
Describes visual user-interface elements presented by software and provides
requirements and recommendations on when and how to use them

5. ISO/IEC/IEEE 12207:2017 [39]
Systems and software engineering - Software life cycle processes
Provides processes that can be employed for defining, controlling, and improving
software life cycle processes within an organization or a project

C.5 Analytical Usability Testing

This section will cover the analytical testing we will perform internally. The goal of the
analytical usability tests is to perform in-depth testing to find inaccuracies, bugs and other
errors that may hinder a user’s experience. These tests will help us determine when the
product meets the design goals and what changes are needed to reach them.

We will base the usability tests around the heuristics: learnability, efficiency, memorability,
errors and satisfaction [40]. We will use a point-based system and assign a value for each
of these on a scale from one to five, one being needs significant work and five representing
exceptional. Through this scale, we can analyse which aspect needs more work and further
investigate how we increase the score. We will test these heuristics on the following
aspects of our webpage:

1. Login/Logout Authentication
2. Route Selection
3. Route Statistics
4. Route Calibration
5. Custom Route Tag Creation/Deletion
6. Account Status and Management

66

In addition to the heuristic based usability tests, we will also perform end-to-end tests
performing the basic functions mentioned in Appendix A.4. These end-to-end tests give us
a perspective into how each sub-system in our project will interact compared to the system
as a whole. We will also include end-to-end tests to deal with error handling in which we
test edge cases such as deliberately inputting false values and performing actions without
proper authentication. These tests will help improve the security and reliability of our
system.

The analytical usability tests will be performed prior to empirical tests. Performing the
usability tests in this order allows us to ensure that external testers will be able to provide
feedback more concisely and effectively as there will be fewer errors.

C.6 Empirical Usability Testing

Empirical Usability Tests will be performed by end users without prior knowledge of our
product. These will be end-to-end tests that observe how new users may interact with our
web app and how intuitive the web app is to use. During these tests, developers will keep
track of certain metrics specified for each test such as time taken and actions done to gain
information used to analyze our UI. In addition to feedback from users which will be asked
after each test, the empirical usability tests will allow us to gain insight on the UI from an
outside source to help us achieve our goals of having an intuitive and effective user
interface. Below are the lists of tests we will have users take and the feedback we expect
in return.

Test Name: Login Page

Developer Prompt: Login to the web application (provides login credentials)

Expected Outcome: User is able to navigate to the web page and login using a given
credential

Passed (Yes/No) :

Time Taken:

User Feedback:

67

Test Name: Navigate to the Statistics Page of a Route

Developer Prompt: Navigate to the statistics page of any active route

Expected Outcome: User is able to navigate to Active Route Selection and then
navigate to its statistic page

Passed (Yes/No) :

Time Taken:

User Feedback:

Test Name: Statistics Readability Tests

Developer Prompt: State 4 statistics of the route

Expected Outcome: User states any of the following
- Route ID
- Color
- Number of Attempts
- Difficulty
- Percentage Success
- Average Time Taken
- Height Histogram

Passed (Yes/No) :

Time Taken:

User Feedback:

Test Name: Create a Tag

Developer Prompt: Create a custom tag called “Test Tag”

Expected Outcome: User is able to create a custom tag

Passed (Yes/No) :

Time Taken:

User Feedback:

68

Test Name: Add Tag

Developer Prompt: Add a custom tag “Test Tag” to a chosen route

Expected Outcome: User is able to add a custom tag to a route

Passed (Yes/No) :

Time Taken:

User Feedback:

Test Name: Calibration Test

Developer Prompt: Calibrate the camera for the whole wall

Expected Outcome: User is able to navigate back to the home page and press the
“Calibrate” button

Passed (Yes/No) :

Time Taken:

User Feedback:

C.7 Conclusion

The User Interface design is an integral part of Eye-bex’s success. With our goal to make
Eye-bex as accessible as possible, the web-app UI and customer-facing hardware
components must be easy to use for a commonplace user. To ensure our UI is able to keep
up with our goal, we took into consideration Don Norman’s philosophy of “Seven Elements
of UI Interaction” as well as several engineering standards to design mock-ups of the
web-app. As we develop the product the UI will be tested using both analytical usability
testing internally and empirical testing with our clients. For the proof-of-concept we plan on
having met all our UI standards and tests. For any further features added in alpha and beta
phase, as well as adjustments during development, we expect to keep up with our tests
and standards as we dynamically run through different iterations and gain feedback from
our empirical usability tests.

69

