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Abstract 

Maternal stress (early life stress (ELS) and prenatal stress (PNS)) influence offspring 

development via the biological embedding of stress. Maternal physiological stress 

system activation can be inherited by offspring in utero. However, the associations 

among maternal stress and offspring epigenetic profiles are unclear. This project aims to 

determine if PNS mediates the association between maternal ELS and offspring DNA 

methylation (EpiStress scores). A secondary analysis of data from expectant and new 

mothers (n=129) and their offspring was conducted. Age at sample collection and cell 

type proportions were highly correlated with offspring EpiStress scores leading to a 

stratified mediation analysis. Results indicate PNS was not a mediating factor between 

maternal ELS and offspring EpiStress scores. Maternal ELS negatively predicted 

newborn- and not infant EpiStress scores. This suggests that the biological embedding 

of stress from a mother to her newborn is specific to maternal ELS, not prenatal stress. 

Keywords:  Early life stress; prenatal stress; DNA methylation; glucocorticoid-

responsive polyepigenetic score 
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Chapter 1. Introduction 

1.1 Early Life Stress (ELS) 

Stress early in one’s life can impact people in a myriad of ways. Childhood 

maltreatment (CM; abuse or neglect)) is a significant stressor and has been shown to 

influence the development of depression (Negele et al., 2015; Cardoso et al., 2017). An 

estimated 20-25% of children aged 0 to 17 experience maltreatment (Peterson et al., 

2018; World Health Organization, 2020). This percentage is striking considering not only 

the vulnerability of children, but the long-term effects that CM might pose. Experiences 

of CM, or early life stress (ELS), in which a young person is the victim of sexual, 

physical, or psychological abuse and/or physical or psychological neglect are known to 

predict future physiological and psychological disturbances (Heim et al., 2019; Martins et 

al., 2021). For example, ELS is shown to influence physiological stress response system 

activation which has been associated with the development of adult mood disorders, 

such as depression and anxiety (Syed & Nemeroff, 2017; Dahmen et al., 2018). 

Furthermore, Bronfenbrenner’s ecological systems theory posits that in addition to 

biological influences on development, the environment, including social systems, quality 

of relationships, sense of community and belonging, and cultural values also impact 

overall development (Bronfenbrenner, 1992). This theory supports the notion that 

adverse early life experiences are influenced by a multitude of factors that might trigger 

various physiological responses from early life and possibly into adulthood. One 

physiological response that has been previously implicated in stress system activation is 

the hypothalamic-pituitary-adrenal axis. 

1.1.1 The Hypothalamic-Pituitary-Adrenal (HPA) Axis 

One of the most highly studied physiological stress systems is the hypothalamic-

pituitary-adrenal (HPA) axis (Entringer et al., 2009; Anderson, 2017). Stressors include 

any perceived threat (real or implied) that can elicit a physiological response within the 

body. When a stressful event occurs, a physiological response is triggered such that the 

HPA axis is activated. A cascade of events then follows. Neurons in the hypothalamus of 

the brain begin to release corticotropin-releasing hormone (CRH) which travels to the 

pituitary gland, also located in the brain, subsequently releasing adrenocorticotropin 
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hormones (ACTH) (Zhu et al., 2014; Gerritsen et al., 2017). Once the pituitary gland 

releases ACTH, the ACTH enters the blood and begins to circulate throughout the body, 

eventually reaching the adrenal glands which are situated on top of the kidneys. Upon 

the arrival of ACTH, the adrenal glands release hormones that have been implicated in 

the stress response: glucocorticoids (GCs; e.g., cortisol) and catecholamines (e.g., 

adrenaline and noradrenaline) (Zhu et al., 2014). The activation of the HPA axis occurs 

naturally in response to stressors. However, this response is not perpetually active. 

Cortisol that is released from the adrenal glands eventually feeds back to the 

hypothalamus and pituitary gland, effectively inhibiting further release of CRH and 

ACTH, respectively (see Figure 1) (Gjerstad et al., 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1: The hypothalamic-pituitary-adrenal (HPA) axis. The hypothalamus releases 
corticotropin releasing hormones (CRH; purple) which travel to the pituitary gland. The 
pituitary gland then releases of adrenocorticotropin hormones (ACTH; blue). The ACTH 
then enters circulation, reaches the adrenal cortex, and releases glucocorticoids (GCs; 
grey). GCs then travel throughout the body and the brain where they can bind to GC 
receptors (GRs) and exert their effects within cells. Image created by Nicholas Stacey 
(2021) and adapted from https://www.open.edu/openlearn. 
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HPA axis inhibition is integral to the negative feedback loop that returns the body 

to a homeostatic, or balanced, state once the stressor is removed. Chronic stress, 

however, can lead to persistent HPA axis activity and GC production, impairing the 

ability of the HPA axis to respond to negative feedback and maintain homeostasis. For 

example, the experience of ELS has been shown to lead to the development of mood 

disorders and atypical HPA axis function later in life, leading an individual to become 

more vulnerable to subsequent stressors (Brand et al., 2009; Gjerstad et al., 2018; Moog 

et al., 2018). A study by Gerritsen et al. (2017) investigated the influence ELS might 

have on the HPA axis and subsequent development of mood disorders. They found that 

genes such as FKBP5 play a role in the development of major depressive disorders as 

FKBP5 is able to modulate GC receptor activity and influence HPA axis functioning 

(Zannas et al., 2016; Gerritsen et al., 2017). However, not all studies show the same 

associations, perhaps due to differences in sample size and demographic variables 

(Buttenschøn et al., 2017; Gerritsen et al., 2017). 

Furthermore, chronic production of cortisol has been shown to compromise other 

bodily systems such as the immune system, as well as to exert adverse effects on the 

hippocampal, amygdalae, and prefrontal cortex (PFC) regions of the brain, where 

receptors for GCs are abundant (Taylor, 2010; Gjerstad et al., 2018; Van den Bergh et 

al., 2019). Hippocampal, amygdalae, and PFC brain regions have been shown to affect 

behaviour, learning and memory, emotion regulation, cognitive function, and to influence 

the later development of mood disorders such as depression and anxiety (Van den 

Bergh et al., 2019). A recent study by Moog et al. (2018) has suggested that maternal 

ELS might be reflected in the offspring’s brain morphology. Moog et al. (2018) examined 

the effects of maternal ELS on offspring brain volume, including total brain volume (a 

combination of grey matter, white matter, and cerebrospinal fluid), hippocampal volume, 

and amygdala volumes, hypothesizing that the effects of maternal ELS on the offspring 

occur in utero. Moog et al. (2018) found that the newborns (<30 days old) of mothers 

who experienced ELS had less total brain volume compared to newborns of mothers 

who did not experience ELS. As well, they found no relationship between maternal ELS 

and newborn hippocampal and amygdala volumes (Moog et al., 2018).  

It is difficult to ascertain when stress transmission occurs, for example, prior to 

conception or in utero during the prenatal period, especially if mothers were 

experiencing a mood disorder(s) throughout pregnancy. Moog et al. (2018) offer insight 
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into the possibility that maternal ELS is transmitted to the child in utero, and that the 

effects of maternal ELS might be represented through offspring brain morphology. While 

other studies show that ELS can alter HPA axis functioning and can lead to the 

development of mood disorders, including throughout pregnancy (Negele et al., 2015; 

Gerritsen et al., 2017; Thomas et al., 2018). However, results are inconsistent, and how 

and when stress transmission to the offspring occurs, as well as whether prenatal stress 

is involved, remains unknown. 

1.2 Prenatal Stress 

The Developmental Origins of Health and Disease (DOHaD) hypothesis 

proposes that fetal acquisition of diseases is attributable, in part, to its in utero 

environment—its mother (O’Donnell & Meaney, 2017). The experiences of ELS and 

prenatal stress might therefore lead to additive effects of stress across the lifespan, 

negatively affecting a mother and possibly her fetus. Accordingly, it is important to 

understand how prenatal stress might reach the fetus. Previous research suggests that 

prenatal stress alters maternal HPA axis function, leading to dysregulation of maternal 

GC production (Swales et al., 2018; Epstein et al., 2019). Maternal GC dysregulation 

has been shown to influence maternal vulnerability to mood disorders, as well as 

offspring birth weight and offspring susceptibility to altered fetal HPA axis function 

(Duthie & Reynolds, 2013). One physiological mechanism that has been proposed to 

play a role in the transmission of maternal stress, as well as a buffer to protect the fetus 

from maternal GCs, is the placenta. 

The placenta is an organ that develops during pregnancy and plays a key role in 

fetal development by enabling the exchange of essential nutrients and hormones 

(including cortisol) between the mother and her fetus. As the placenta is the interface 

between the mother and her fetus, it is here that elevated maternal GCs can exert their 

effects on the fetus. Maternal cortisol naturally increases during the last trimester of 

pregnancy and is a necessary component of fetal development, promoting fetal cell 

differentiation and fetal organ maturation (Krontira et al., 2020). However, chronic stress 

during pregnancy—and possibly ELS—might lead to an overactive maternal HPA axis. 

Consequently, elevated prenatal cortisol has been shown to decrease placental growth, 

and blood vessels are unable to develop as they normally would (Reynolds, 2013; 
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Ozmen et al., 2017). This could limit the exchange of appropriate nutrients between the 

mother and fetus, further affecting fetal development (Ozmen et al., 2017). 

Fortunately, the placenta contains enzymes that act as a protective barrier 

between excess maternal cortisol secretion and the fetus. One crucial placental enzyme 

is 11-beta hydroxysteroid dehydrogenase 2 (11β-HSD2) which transforms excess active 

maternal cortisol into its inactive form, cortisone, in the placenta before it is able to reach 

the fetus (Wyrwoll et al., 2011; Napso et al., 2018). However, excess maternal cortisol 

decreases the ability of placental 11β-HSD2 to convert cortisol to cortisone. When 11β-

HSD2 enzymes are decreased, maternal cortisol not only remains active, but it readily 

passes through the placenta and reaches the fetus (see Figure 2) (Reynolds, 2012). In 

addition to maternal cortisol affecting maternal psychological health, maternal HPA axis 

activity, placental 11β-HSD2 enzymes, and fetal HPA axis activity, it has been 

suggested that stressful life events can become biologically embedded through other 

mechanisms such as fetal gene transcription, gene expression, and epigenetic 

mechanisms like DNA methylation (Jensen Peña et al., 2012; Provençal & Binder, 2015; 

Aristizabal et al., 2020).  



6 

  

Figure 2: Glucocorticoid (GC) signaling between the mother, placenta, and fetus.  
The image depicts how stress experienced by the mother during pregnancy might lead to 
increases in maternal stress hormone concentrations (GCs). Maternal GC production may 
lead to overexposure of the fetus to GCs, influencing fetal health outcomes. CRH: 
Corticotropin releasing hormone; ACTH: Adrenocorticotropin releasing hormone; GRs: 
Glucocorticoid receptors. Image created by Nicholas Stacey and Karilyn Harris (2021) and 
adapted from Reynolds (2012), figure used with permission. 
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1.3 Biological Embedding of Maternal Stress 

The biological embedding of stress is a theory suggesting that stressful life 

experiences can get “under the skin,” leading to lasting changes in biological processes 

that alter one’s development, behaviour, and overall health later in life (Boyce & Kobor, 

2015; Aristizabal et al., 2020). This theory applies to women who experience ELS and 

subsequently prenatal stress as it encompasses the broad array of experiences one has 

throughout their lifetime rather than at a specific time point. Although the exact 

mechanisms of biological embedding have yet to be elucidated, HPA axis functioning 

has been proposed as one mechanism, as previously mentioned, as well as epigenetic 

modifications such as DNA methylation (DNAm) (Aristizabal et al., 2020). Epigenetics, 

“epi” (meaning above or on top of) and “genetics” (the genome), refers to various 

molecular processes that influence how our genetic code is expressed without the 

modification of the genome itself (Greally, 2018). In order to understand DNAm, a brief 

introduction to the genome, transcription and translation, and the plasma membrane, 

followed by a discussion of DNAm will be discussed next. 

1.3.1 The Genome 

The genome holds the instructions for cellular and organism development and is 

located in cells throughout the human body. The genome consists of three main 

components: a sugar group and a phosphate group (the sugar-phosphate backbone), 

and a nitrogenous base (Haddad, 2021). These three components make up one single 

nucleotide. Each sugar and phosphate group are chemically bound to one of four 

nitrogenous bases: adenine (A), thymine (T), guanine (G), or cytosine (C) (Haddad, 

2021). Adenine and thymine pair together, and guanine and cytosine pair together via 

two or three hydrogen bonds, respectively, and are called base pairs (Clancy & Brown, 

2008). The nitrogenous bases contain the information needed to produce messenger 

RNA strands. Messenger (mRNA) is a complement of the DNA strand, except that the 

thymine nitrogenous base is converted to uracil in mRNA (Clancy & Brown, 2008). This 

conversion is a preliminary step in the overall process leading to protein production. 

Protein production is the result of two key molecular processes: transcription and 

translation. 
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1.3.2 Transcription and Translation 

During transcription, an enzyme called RNA polymerase, as well as transcription 

factors, bind to the promoter region of the DNA and begin to create a complementary 

mRNA strand, one base at a time (Lee & Young, 2013). Once the mRNA strand has 

been transcribed, it exits the nucleus of the cell into the cytoplasm (the liquid that fills 

each cell) where translation begins. Three nitrogenous bases in a row, called triplet 

codons, enable the mRNA code to produce specific amino acids once transcription is 

complete (Lee & Young, 2013). Translation is the process in which the mRNA triplet 

codons are ‘read’ by molecular machinery (transfer RNA (tRNA) that contains 

anticodons, and two ribosomal subunits), and a polypeptide chain is formed (see Figure 

3) (Clancy & Brown, 2008; Lee & Young, 2013). The resulting polypeptide is important 

because proteins are involved in numerous biological processes and are essential for 

human development and function. For example, proteins influence biochemical reactions 

within cells and aid in the organization and maintenance essential for cell structure and 

function (Clancy & Brown, 2008). 

  

 

  

Figure 3: Transcription and translation of a single messenger RNA (mRNA) strand from 
a double-stranded piece of DNA. RNA polymerase uses the existing double-stranded DNA 
as a template to produce a single-stranded mRNA molecule that will eventually be translated 
into a polypeptide chain (Clancy & Brown, 2008). Image created by Nicholas Stacey (2021) 
and adapted from Clancy and Brown (2008). 
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1.3.3 The Plasma Membrane 

The plasma membrane is composed of a phospholipid bilayer with hydrophilic 

heads and hydrophobic tails that provides a protective barrier between the cytoplasm 

and the extracellular fluid. Proteins that are embedded in the cell membrane aid in 

controlling the transport of molecules into and out of the cell, allow the binding of 

molecules to receptors which can induce intracellular effects, enable enzyme activity that 

transforms molecules into other forms within the body, and finally, acts as a link between 

intracellular and extracellular structures (see Figure 4) (Clancy & Brown, 2018). There 

are exceptions, however, such that not all molecules require a protein channel for 

transport into the cell. Steroid hormones like cortisol and synthetic GCs like 

Dexamethasone (DEX) can readily permeate the cell membrane. 

 

 

 Once a GC enters the cell, it can bind to a GC receptor (GR) creating a GC-GR 

complex (Spengler & Binder, 2016). The GC-GR complex can then readily permeate the 

nuclear membrane, enter the nucleus of the cell (where the DNA is located), and initiate 

intracellular effects like gene transcription (Spengler & Binder, 2016). In order for GRs to 

act as transcription factors and initiate gene transcription, they must bind to the genome. 

This is accomplished when the GC-GR complex binds to glucocorticoid responsive 

elements (GREs); GREs are DNA sequences along the genome (Spengler & Binder, 

Figure 4: Transporters, receptors, enzymes, and anchors depicting the various ways 
that proteins can influence biological processes within or outside of the cell. The plasma 
membrane consists of a phospholipid bilayer, indicated by the hydrophilic heads (light grey 
circles) and hydrophobic tails (vertical blue lines between the hydrophilic heads). Molecules 
bind to receptors to induce intracellular effects; transporters move molecules out of cells; 
enzymes change existing molecules via chemical reactions; and anchors act as links between 
intracellular and extracellular structures. Image created by Nicholas Stacey (2021) and 
adapted from Clancy and Brown (2008). 
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2016). Once the GC-GR complex is bound to GREs, it can activate gene transcription 

and lead to protein production (Spengler & Binder, 2016). This process is illustrated in 

Figure 5. Because GCs and GRs are ubiquitous throughout the brain and body, the 

production and regulation of these hormones and receptors is essential for healthy and 

adaptive human functioning. Transcription factors that bind to the GC-GR complex 

impair its ability to bind to GREs. For example, the binding of the transcription factor 

nuclear factor-kappa B (NF-κB) to the GC-GR complex inside the nucleus prevents the 

GC-GR complex from binding to the DNA which inhibits protein synthesis (van der Goes 

et al., 2014). Additionally, protein synthesis can be influenced by epigenetic 

modifications such as DNAm. 

  
Figure 5: Mechanisms by which glucocorticoids (GCs) enter the cell and the cell nucleus. 
GCs readily pass through the cell membrane and bind to GC receptors (GRs) in the cytoplasm 
(left). The GC-GR complex readily permeates the nuclear membrane where it binds to the 
promoter region of GC responsive elements (GREs) along the genome which can activate 
transcription (“transactivation”). Transactivation leads to and up-regulation of protein synthesis. 
When transcription factors such as NK-κB shown here bind to the complex, transcription is 
repressed (“transrepression”). Transrepression leads to a down-regulation of protein synthesis 
(bottom right). Image from van der Goes, Jacobs, and Bijlsma (2014) and used with permission. 
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1.3.4 DNA methylation 

DNA methylation (DNAm) occurs when a methyl group (CH3) is chemically added 

to cytosine nitrogenous bases that are followed by guanine bases (see Figure 6) (Lyko, 

2018). These cytosine-guanine regions are known as CpG sites. The location of DNAm 

along the genome will determine whether protein synthesis can occur. When methylation 

occurs in regions such as gene bodies, it has been suggested that gene expression can 

proceed (Jones, 2012). Whereas when CpG sites in the promoter region of genes are 

methylated, gene expression is repressed because transcription factors are blocked 

from binding to the DNA by the methyl group. In contrast, when CpG sites in the 

promoter region of the DNA are not methylated, gene expression can proceed (see 

Figure 7) (Lyko, 2018). DNAm occurs through chemical processes involving enzymes 

called DNA methyltransferase (Dnmt) 1, -3A, and -3B which play individual roles in the 

establishment (Dnmt3 enzymes) and maintenance (Dnmt1) of DNAm patterns during 

embryonic development (Stewart et al., 2015; Lyko, 2018). 

Figure 6: DNA methylation. DNA methyltransferases (Dnmt3a and Dnmt3b) aid in the transfer 
of methyl groups (CH3; pink circle) onto the double-stranded DNA at the cytosine base at the 
cytosine-guanine sites along the genome. Unmethylated DNA is shown on the left; methylated 
DNA, with the help of Dnmt3a and Dnmt3b, is shown on the right. Actions of DNMT1 are not 
shown here. Image created by Nicholas Stacey (2021) and adapted from Moore, Le, & Fan 
(2013). 
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 During embryonic development when cells are rapidly dividing, methylated DNA 

plays a major role in determining cell type. For example, cells develop from stem cells 

and each stem cell has its own DNAm profile (Jones et al., 2018). Specific DNAm 

patterns are seen in all cell types and within different tissues, contributing the variation 

seen when measuring DNAm (Jones et al., 2018). For example, differential DNAm has 

been implicated in autoimmune disorders via the regulation of gene expression, and 

previous research has suggested that maternal stress can be epigenetically embedded 

via DNAm (Provençal & Binder, 2015; Heim et al., 2019; Mazzone et al., 2019).  

Interestingly, methylation marks that have been suggested to underlie the 

biological embedding of stress are erased in germ cells (Lyko, 2018). This begs the 

question of how stress could be transmitted to subsequent generations. First, female 

offspring are born with all of their oocytes (Tilly et al., 2004). This is important because 

fetal oocytes may therefore be directly exposed to maternal stress in utero, or via 

maternal germ line alterations that occur during the mother’s life. Additionally, genomic 

imprinting of DNAm can occur, such that DNAm is inherited in a parent-of-origin specific 

manner in both human and rodent models (Li et al., 1993; Ferguson-Smith, 2011; 

Carpenter et al., 2018). Second, paternal sperm micro RNAs (miRNA) may be implicated 

Figure 7: The effects of DNA methylation in the promoter region of the gene. The top 
image depicts an unmethylated promoter region representing an active gene (indicated by the 
green arrow), whereas the bottom image depicts a methylated promoter region representing a 
repressed gene (indicated by the red arrow). Image created by Nicholas Stacey (2021) and 
adapted from www.kkorthauer.org, figure used with permission. 
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in physiological alterations to the offspring. For example, Rodgers et al. (2013) used 

rodent models to test whether stress exposure alters miRNA in the sire’s sperm and 

reprograms the HPA axis of the offspring. The offspring of the sires who were exposed 

to six weeks of stress during puberty and adulthood and prior to breeding both exhibited 

reduced HPA axis responsivity, increased GC-responsive genes, and altered sperm 

miRNA (Rodgers et al., 2013). This study not only implicates miRNAs as a potential 

mechanism of stress transmission, but also illuminates the role that fathers might play in 

offspring health which is lacking from the literature. 

In line with the biological embedding theory of stress, then, maternal stress might 

get “under the skin” of her offspring as a result of maternal HPA axis alterations, 

offspring exposure to maternal GCs via the placenta, through epigenetic mechanisms 

such as DNAm, immune alterations, maternal germ line alterations, or perhaps via 

paternal stress exposure that alters the miRNA content of sperm. In an attempt to further 

quantify how maternal stress, specifically, might impact her offspring, Provençal et al. 

(2020) created an offspring EpiStress score. 

1.5 Offspring EpiStress Scores 

Individuals are differentially responsive to the stressful experiences that occur 

over the course of their lives, and it is unknown how these experiences are transmitted 

to subsequent generations. Provençal et al. (2020) created a glucocorticoid-responsive 

polyepigenetic score (EpiStress score) as a tool to measure these effects. The EpiStress 

score is a methylation risk score (i.e., scores that can be used to predict disease risk) 

that show differential responses to GCs (Hüls & Czamara, 2020; Provençal et al., 2020). 

An elastic net regression was performed on overlapping CpG sites from both adult blood 

samples from the Max Planck Institute of Psychiatry (MPIP) and an immortalized human 

hippocampal progenitor cell line to create the EpiStress scores (Provençal et al., 2020). 

The current project utilizes the EpiStress scores not only to measure prenatal stress, but 

also to determine if maternal ELS might influence the offspring’s DNAm. 

With the potential to use the newly created EpiStress score as a biological 

marker of maternal stress exposure in offspring, further validation of the EpiStress score 

was required. An additional study by Provençal et al. (2020) was conducted using the 

Prediction and Prevention of Preeclampsia and Intrauterine Growth Restriction Cohort 
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(PREDO). The PREDO cohort was previously established between 2005 and 2009 and 

is prospective study of Finnish women and their newborn children (Girchenko et al., 

2017). This cohort was designed to help identify risk factors and biological markers in 

vulnerable, pregnant women who might be at risk of preeclampsia and intrauterine 

growth restriction (Girchenko et al., 2017). Utilizing the PREDO cohort, Provençal et al. 

(2020) sought to find associations between mothers who were clinically diagnosed with 

depression or anxiety throughout pregnancy and offspring EpiStress scores. The results 

suggested that prenatal depression and prenatal anxiety were both negatively and 

significantly associated with the offspring’s EpiStress scores (Provençal et al., 2020). 
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1.6 Hypothesis 

Maternal early life stress (ELS), defined as the experience of abuse and/or 

neglect during childhood, is negatively associated with offspring EpiStress scores, and 

this relationship is mediated by prenatal stress (either prenatal depression or anxiety). 

1.7 Rationale 

Until now, research has attempted to draw connections between maternal ELS, 

prenatal stress, and DNAm of candidate genes that might play a role in the development 

of poor child health outcomes. Recently, Provençal et al. (2020) has shown significant 

associations between offspring EpiStress scores and prenatal stress. These findings 

suggest a possible link between prenatal stress and DNAm levels in offspring from a 

human hippocampal progenitor cell line and an adult whole blood sample after DEX 

exposure. What is currently unknown is the influence of maternal ELS on the molecular 

biology of her child, and whether prenatal stress mediates the relationship between 

maternal ELS and offspring EpiStress scores.  

The current study will utilize the EpiStress score to explore associations between 

maternal ELS and offspring DNAm levels. A negative association between maternal 

stress variables and offspring EpiStress scores is predicted because as maternal ELS 

and prenatal stress exposure increase, it is expected that offspring EpiStress scores will 

decrease. The current study attempts to further characterize the EpiStress score in 

terms of its application in both newborns (<30 days old) and infants (>=30 days old) in 

relation to demographic measures, brain morphology, and cell type. This 

characterization is fundamental for supporting the notion that the EpiStress score can be 

used as a biomarker of stress exposure in newborns and/or infants in future studies. 
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1.8 Research Aim 

The research aim of this project is to determine if maternal ELS (experiences of 

childhood abuse and neglect) is associated with EpiStress scores in offspring (where the 

data has not yet been stratified), in newborns (<30 days old) and in infants (>=30 days 

old), and if this relationship is mediated by prenatal stress (prenatal depression or 

anxiety). A summary of the proposed aims is provided in the Figure 8 where “EpiStress 

Scores” include all three groups (offspring, newborn, and infant) that will be tested. 

 

 

 

 

 

 

 

Prenatal  
Stress 

EpiStress Scores Maternal ELS 

Figure 8: Summary of the proposed aims of the research study. Maternal ELS is 
directly associated with EpiStress scores, as well as indirectly associated with EpiStress 
scores via exposure to prenatal stress (prenatal depression or anxiety). 
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Chapter 2. Methods 

2.1 University of California, Irvine (UCI) Cohort 

This project utilizes an existing prospective longitudinal study from the University 

of California, Irvine (UCI) for secondary data analysis. The longitudinal design allows for 

the identification of stress exposure (early life and/or prenatally) in the mother that might 

be biologically transmitted to her child (Caruana et al., 2015). The UCI cohort contains 

data collected from N=131 expectant mothers who were receiving prenatal care at the 

university, as well as at institutions and clinics that are affiliated with the university (Moog 

et al., 2018). Women were recruited during the first trimester of pregnancy and received 

depression and anxiety assessments once per trimester and once postpartum (Moog et 

al., 2018). Additionally, the Childhood Trauma Questionnaire (CTQ) was administered to 

the women to determine if any of them had experienced abuse or neglect throughout 

childhood and adolescence (Moog et al., 2018). 

A sample of expectant mothers (n=129) and their offspring from the UCI cohort 

was used in this study. The women had singleton, intrauterine pregnancies, and no 

known cord, placental, uterine abnormalities, fetal malformations, or conditions 

associated with atypical neuroendocrine function or corticosteroid use (Moog et al., 

2018). Mothers were aged 18-41, with no obstetric complications. Mothers were 

excluded if they reported using corticosteroids, illicit drugs, or antidepressant or anxiety 

medication during pregnancy (n=2), and offspring were excluded if they were less than 

34 weeks’ gestation or if they had any congenital, genetic, or neurological disorders at 

birth (Moog et al., 2018). Upon birth or shortly thereafter, blood was drawn by a small 

needle prick in the offspring’s foot (Moog et al., 2018). Maternal ELS measures were 

collected retrospectively via the CTQ, and prenatal stress (maternal depression and 

maternal anxiety) measurements were collected three times throughout pregnancy 

(Moog et al., 2018). This allows for the establishment of temporal precedence such that 

maternal ELS might influence prenatal stress which might ultimately influence the 

offspring’s neurological and stress profile development. See Tables 1-1 to 1-4 for a 

summary of maternal and offspring measures. 
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2.2 Research Ethics and Data Access 

The UCI institutional review board previously approved the study procedures; all 

participants provided written informed consent (Moog et al., 2018; Czamara et al., 2019). 

Ethical approval was also obtained from Simon Fraser University’s Office of Research 

Ethics (SFU ORE). 

2.3 Measures 

2.3.1 Maternal Measures 

Maternal Early Life Stress (ELS): In this thesis, maternal ELS was a dichotomous 

zero-one variable for the presence or absence of childhood maltreatment (CM). 

Assessments for maternal ELS were conducted using the Childhood Trauma 

Questionnaire (CTQ). The CTQ is a reliable and valid 28-item retrospective 

questionnaire that assesses CM prior to the age of 18, including: emotional-, physical-, 

and sexual abuse, and emotional- and physical neglect in childhood and adolescence 

(Bernstein et al., 2003). Cut-off values for each dimension of CM (emotional abuse ≥13, 

physical abuse ≥10, sexual abuse ≥8, emotional neglect ≥15, and physical neglect ≥10) 

were used to create a binary variable representative of CM exposure (Moog et al., 

2018). Mothers who were exposed to one or more type of CM, indicated by reaching or 

exceeding the cut-off score for at least one type of CM, were given a score of one 

compared to mothers who did not reach a cut-off score for CM and who were given a 

score of zero (Moog et al., 2018). The CTQ has been validated in diverse populations 

across the United States, including African-American, Asian-Pacific Islander, Hispanic, 

non-Hispanic Caucasian, and Caucasian participants, as well as in individuals struggling 

with substance abuse, psychiatric patients, and normative communities (Bernstein et al., 

2003). For further details, see Bernstein et al. (2003) and Moog et al. (2018). 

Prenatal Depression: Clinical assessments for prenatal depression were 

conducted using the Centre for Epidemiologic Studies Depression Scale (CESD). The 

CESD is a scale used to measure depression across ages and cultures (Radloff, 1977). 

This is a 20-item self-report tool measuring changes in depression levels the week prior 

to administration of the CESD (Moog et al., 2018). Responses are measured on a scale 

of 0-3 and depend on how frequently the symptom(s) occurs. The cut-off score for 
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clinical depression is 16 and above, where higher scores correlate to higher depressive 

symptomatology (Radloff, 1977). The total possible range of scores is between 0-60 

(Radloff, 1977). Mean CESD scores were calculated by adding each score per trimester 

and dividing by three trimesters; this was done to account for missing data. 

Prenatal Anxiety: Clinical assessments for prenatal anxiety were conducted using 

the State-Trait Anxiety Inventory (STAI). This is an inventory used to measure current 

anxiety symptoms (Julian, 2011). The state scale from the STAI was administered; it is a 

20-item self-report tool in which the items are rated on a 4-point Likert scale. Responses 

vary from 1) almost never, 2) sometimes, 3) often, to 4) almost always (Julian, 2011). 

The cut-off score for clinical anxiety is 39 and above, where higher scores correlate with 

higher anxiety symptomatology (Julian, 2011). The total possible range of scores is 

between 20-80 (Julian, 2011). Mean STAI scores were calculated by adding each score 

per trimester and dividing by three; this was done to account for missing data. 

Smoking Status: Maternal smoking was a dichotomous zero-one variable for the 

presence or absence of smoking at any time throughout pregnancy. Smoking throughout 

pregnancy was assessed via maternal self-report measures and further verified by 

measuring cotinine concentration in participants’ urine (Czamara et al., 2019). Cotinine 

was collected once per trimester using the Nicotine/COT(Cotinine)/Tobacco Drug Test 

Urine Cassette (Czamara et al., 2019). A predetermined cut-off value for the presence of 

smoking was set at ≥200 ng/ml and was coded as 1, and absence of smoking was 

coded as 0 (Czamara et al., 2019). 

2.3.2 Offspring Measures 

2.3.2.1 Demographic Measures 

Age at Sample Collection: Obtained from hospital records. Age at sample 

collection was stratified into infant- (≥30 days old) and newborn (<30 days old) samples 

due to the differences in cell type proportions during the early stages of immune 

development (Jacob, 2016). 

Sex: Obtained from hospital records. 
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Genotype: Blood was drawn from the offspring via a small needle prick in their 

heel (Czamara et al., 2019). DNA was extracted from those blood samples and was 

used for genetic analysis (Czamara et al., 2019). Genotyping was performed on Illumina 

Human Omni Express Arrays containing 713,014 single nucleotide polymorphisms 

(SNPs) (Czamara et al., 2019). SNPs refer to any single variation of a nucleotide along 

the genome (International Human Genome Sequencing Consortium, 2001). DNA 

samples had a call rate above 97% (Czamara et al., 2019). Call rates refer to the 

proportion of samples that were assigned a genotype when a particular assay was used 

(Gardner et al., 2013). Imputation was performed using Positional Burrows-Wheeler 

Transform (BWT) (Czamara et al., 2019). Imputed SNPs were removed if they had an 

information metric of <0.8 or if they had a minor allele frequency (MAF) of <0.01; 

duplicate and ambiguous SNPs were removed (Czamara et al., 2019). After Quality 

Control (QC), 602,807 SNPs were available (Czamara et al., 2019). For further details, 

refer to Czamara et al. (2019). 

Gestational Age: Obtained from hospital records. 

Birthweight: Obtained from hospital records. Offspring were weighed at birth and 

their birthweights were subsequently converted into percentiles (Moog et al., 2018). 

Age at MRI Scan: Offspring whose mother’s provided consent were administered 

an MRI scan five to 64 days after birth, with 67.5% of offspring scanned within the first 

30 days (Moog et al., 2018). 

DNA Methylation (DNAm): DNAm was analyzed using the Infinium Illumina 

MethylationEPIC BeadChip (EPIC) array using the DNA obtained from a heel prick of the 

offspring’s foot (Czamara et al., 2019). The EPIC array detects the presence of 

methylation at CpG sites along the genome via probes which correspond to either a 

methylated or an unmethylated CpG site; eight samples can be tested at one time 

covering a total of ~850,000 CpG sites using this technology (Illumina Array 

Technology). Functional normalization (funnorm) was performed on methylation beta-

values with the goal to remove unwanted variation due to control probes that are present 

on the array (Fortin et al., 2014; Czamara et al., 2019). Data was adjusted for technical 

factors (array row, experimental batch, and sample plate) using ComBat, QC was 

performed using the minfi package in R, and no outliers were detected (Czamara et al., 
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2019). Samples had a call rate of 95% or above (Czamara et al., 2019). Any CpGs with 

a detection value of p < 0.0001, those with probes missing more than three beads in 

>5% of the cohort, and those with non-specific or cross-hybridizing and SNP probes 

were removed (Czamara et al., 2019). The final dataset contained 768,910 CpGs 

(Czamara et al., 2019). 

EpiStress Scores: Provençal et al. (2020) created an EpiStress score utilizing 

adult whole blood samples from the Max Planck Institute of Psychiatry (MPIP) cohort 

(n=24,423) and progenitor cells from a human hippocampal progenitor cell line 

(n=6,096). The MPIP cohort consisted of 200 male participants, of which 81 received a 

clinical diagnosis of depression, and 97 female participants, of which 49 received a 

clinical diagnosis of depression (Provençal et al., 2020). A baseline measurement of 

whole blood samples from MPIP cohort participants was taken at 6:00pm, two hours 

after fasting and abstaining from coffee and physical activity (Provençal et al., 2020). At 

that time, participants received 1.5mg of DEX administered orally. A second blood 

sample was taken at 9:00pm to measure any deviations from baseline (Provençal et al., 

2020). 

The human hippocampal progenitor cell line came from an immortalized, 

multipotent human fetal hippocampal progenitor cell line from a 12-week-old fetus and 

was proliferated using growth factors (EGF, FGF) and 4-hydroxytamoxifen (4-OHT) 

(Provençal et al., 2020). The progenitor cells were treated with 1μM of DEX or a vehicle 

(ethanol) in four different experiments: three days of proliferation, during proliferation and 

seven days of differentiation (growth factors and 4-OHT were removed), during 

proliferation and differentiation in which cells were cultured for 20 additional days without 

DEX or ethanol, and finally, after proliferation and differentiation for 10 days (followed by 

20 days of washout to compare effects between treatments (see Provençal et al., 2020 

for more information). 

Using both the MPIP cohort whole blood samples and the human hippocampal 

progenitor cell line, an enrichment analysis revealed 496 DEX-responsive CpG sites that 

overlapped in each group (Provençal et al., 2020). Provençal et al. (2020) subsequently 

narrowed down those 496 sites to 24 CpG sites using an elastic net regression. Once 

the 24 CpG sites were identified, the sum of the methylation values across those 24 
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CpG sites was multiplied by a weight (representative of changes in DEX concentrations) 

to create the EpiStress scores (Provençal et al., 2020). 

2.3.2.2 Brain Morphology 

Brain Morphology: Offspring magnetic resonance imaging (MRI) scans were 

performed during natural sleep with a Siemens 3T scanner (Moog et al., 2018). Images 

were captured using a three-dimensional magnetization-prepared rapid gradient echo 

sequence (spatial resolution was a 1 x 1 x 1 mm voxel for T1-weighted images) and a 

turbo spin echo sequence (spatial resolution was a 1 x 1 x 1 mm voxel with a 0.5 mm 

interslice gap for T2-weighted images) (Moog et al., 2018). Hippocampal and amygdalae 

images were captured using a multi-modality, multi-template based automatic method 

that combines T1- and T2-weighted images, and manual corrections were performed on 

those images using ITK-Snap (Moog et al., 2018). Intracranial volume (ICV) consisted of 

three components: grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF), 

and was defined using the Advanced Neuroimaging Tools toolkit. For further details, 

refer to Moog et al. (2018). 

2.3.2.3 Cell Type 

Cell Type: Offspring blood cell proportions were estimated for CD4T cell-, CD8T 

cell-, B cell-, natural killer cell-, monocyte-, granulocyte-, and nucleated red blood cell 

proportions (Czamara et al., 2019). Cell type proportions were estimated using the 

Houseman method in which differentially methylated regions (DMRs) of the DNA were 

used to identify immune cells (Houseman et al., 2012). Houseman et al. (2012) used 

DNAm as a highly correlated measure of the distribution of white blood cells. Cell type 

has been previously shown to differ between newborns and infants and therefor was 

included in the analysis (Hermansen, 2001; Houseman et al., 2012; Jacob, 2016). For 

further details, refer to Houseman et al. (2012). 

2.3.3 Covariates 

Offspring sex and the first two principal components (PCs) of the offspring’s 

genotype were included as covariates because they have previously been shown to 

influence DNAm levels (Barfield et al., 2014; Saurez et al., 2020).  
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2.4 Statistical Analysis 

2.4.1 Descriptive Statistics 

Descriptive statistics (range, median, mean, and standard deviation) were 

conducted on maternal measures (see Table 1-1) as well as offspring demographic 

measures, brain morphology, and cell type (see Table 1-2). Descriptive statistics were 

also conducted separately for infant- (see Table 1-3) and newborn (see Table 1-4) 

demographic measures, brain morphology, and cell type due to significant associations 

between age at sample collection with offspring EpiStress scores and offspring cell type. 

2.4.2 Characterization Analysis of Offspring Measures 

2.4.2.1 Investigation of Offspring Demographic Measures 

Demographic measures (age at sample collection, gestational age, maternal 

smoking status, birthweight, genotype (the first two PCs), and sex) potentially associated 

with offspring EpiStress scores were analyzed via bivariate analyses in R (version 4.0.2). 

A characterization analysis was conducted using the Epigenome-Wide Association 

Study (EWAS) Atlas from the National Genomics Data Centre (NGDC). The EWAS Atlas 

is a digital tool that enables the identification of methylation at CpG sites of interest that 

have been previously implicated in disease(s) (Xiong et al., 2020). The purpose of the 

characterization analysis was to explore the possible relationship(s) between 

methylation levels at the 24 CpG sites used to create the EpiStress score and whether 

those sites have been previously established the literature. If any of the 24 CpG sites of 

interest correspond to a previously identified disease in the EWAS Atlas, the EWAS 

Atlas will reveal the trait, type, and occurrence of the disease(s) (see Appendix A). 

2.4.2.2 Investigation of Offspring Brain Morphology 

Brain morphology (right- and left hippocampal volume, right- and left amygdala 

volumes, and total ICV) potentially associated with offspring EpiStress scores was 

analyzed via bivariate analyses in R. A characterization analysis was conducted using 

the Blood-Brain Epigenetic Concordance (BECon) tool. BECon is a digital tool that 

enables the comparison of CpG sites of interest with a pre-existing database of human 

brain and blood methylation in individuals who are now deceased (Edgar et al., 2017). 
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The purpose of the characterization analysis was to explore the possible relationship(s) 

between methylation levels at the 24 CpG sites used to create the EpiStress score 

against an existing database of human brain and blood. BECon produces a summary of 

metrics from each CpG site entered into the tool. This includes chromosome location, 

gene coordinates, genes, gene regions, variability and Spearman correlations as they 

compare to Brodmann’s Area (BA) 10, 20, and 7, and in the blood. These are brain 

regions that correspond with the prefrontal cortex, the temporal cortex, and the parietal 

lobes (Edgar et al., 2017). 

BECon metrics are calculated from 16 deceased adults who were healthy upon 

their deaths and who donated their tissues to science (Edgar et al., 2017). The amount 

of variability refers to the range of the beta methylation values from the 

HumanMethylation450 BeadChip array (450K array) that fell between the 10th and 90th 

percentile (Edgar et al., 2017). In other words, variability is the difference in DNAm at a 

specific CpG site across individuals in each tissue (BA 10, 20, and 7, and in the blood) 

(Edgar et al., 2017). The percentiles are used to limit outlier effects at each CpG site, as 

outliers could potentially give an incorrect estimate of the total amount of variability 

(Edgar et al., 2017). Finally, Spearman correlations represent the correlations between 

methylation values at CpG sites and human brain methylation of BA 10, 20, and 7 

(Edgar et al., 2017). 

2.4.2.3 Investigation of Offspring Cell Type 

Cell type (estimated CD4T-, CD8T-, B cell-, natural killer cell-, monocyte-, 

granulocyte-, and nucleated red blood cell proportions) potentially associated with 

offspring-, infant-, and newborn EpiStress scores were analyzed via bivariate analyses in 

R.  
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2.4.3 Mediation analysis 

Two mediation analyses were performed: model 1 was a multivariate analysis of 

the association between maternal ELS and infant- and newborn EpiStress scores using 

prenatal depression as the mediating variable, and prenatal anxiety as the mediating 

variable for model 2. These relationships were examined using the Mediate function in 

the Mediation package in R. This package calculates the direct effect, indirect effect, 

total effect, and proportions mediated. 1,000 Bootstrap simulations were run due to the 

sample size of n=129. Bootstrapping is a sampling technique that assumes that the 

sample data is a proxy of the population and repeatedly resamples from that data to 

enable users to make inferences about the general population (Efron & Tibshirani, 

1994). Mediation effects were examined separately for infants and newborns (see Table 

1-6). The rationale for this analysis was to examine whether prenatal stress explained 

some or all of the association between maternal ELS and infant- or newborn EpiStress 

scores. It is expected that there will be negative associations because it has been 

suggested that as stress exposure increases, EpiStress scores are expected to 

decrease (Provençal et al., 2020). 

2.4.4 Missing Data 

Prior to testing, independent variables, mediating variables, and dependent 

variables were evaluated for missing data. According to Bennet (2001) results can be 

biased if more than 10% of the data is missing. As the independent variable (maternal 

ELS) was only missing five data points out of 129 (0.38%), no further methods were 

used to rectify this. To account for missing data for the mediating variables (prenatal 

depression and prenatal anxiety), a mean sum score was calculated by adding the total 

data points in each trimester and dividing by three trimesters. Using the mean sum 

scores, n=129 for both prenatal depression and prenatal anxiety. 
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Chapter 3. Results 

3.1 Descriptive Statistics 

Table 1-1 and 1-2 show descriptive statistics for maternal measures and 

offspring measures, respectively. Cut-off scores for prenatal depression are 16 and 

above and cut-off scores for prenatal anxiety are 39 and above. The mean sum scores 

for both measures of prenatal stress are below the cut-off scores, indicating that the 

average number of participants did not reach the threshold for a clinical diagnosis. Lower 

offspring EpiStress scores indicate higher glucocorticoid/stress exposure and because 

the weights of the scores are all negative, samples with higher methylation tend to have 

a more negative EpiStress score (-2.45 versus -0.84) (Provençal et al., 2020). Tables  

1-3 and 1-4 show descriptive statistics for infant- and newborn demographic measures, 

brain morphology, and cell type. 

Table 1-1. Descriptive statistics for maternal measures. 

Measures Final N 
(%) Range (%) Median Mean Standard 

Deviation 

Maternal Early Life 
Stress* 

124 
(96.12%) 

0 (63.7% did not 
experience ELS) or  

1 (36.3% did 
experience ELS) 

- - - 

Prenatal Maternal 
Depression (sum scores) 129 1.33 to 43 12.33 13.98 8.14 

Prenatal Maternal 
Anxiety (sum scores) 129 20 to 59.5 32.33 33.6 8.62 

Maternal Smoking 
Status* 

119 
(92.2%) 

0 (91.6% did not 
smoke) or 1 (8.4% did 

smoke) 
- - - 

*Categorical variable 
Proportions are indicated in percentages (%) 

 

  



27 

Table 1-2. Descriptive statistics for offspring demographic measures, brain 
morphology, and cell type. 

Demographic Measures Final N = 
129 (%) Range (%) Median Mean Standard 

Deviation 

EpiStress Scores 129 -2.45 to -0.84 -1.96 -1.95 0.22 

Age at Sample Collection 
(days) 129 2 to 68 26 27.37 13.10 

Sex 129 1 (53.5% male) or  
2 (46.5% female) - - - 

Genotype (PC1) 129 -0.10 to 0.18 0.0028 0.0016 0.085 

Genotype (PC2) 129 -0.50 to 0.085 0.024 0.00012 0.085 

Gestational Age 129 242 to 293 276 274.38 10.04 

Birthweight (percentile) 122 
(94.6%) 2 to 99 48 47.16 27.78 

Age at MRI Scan (days) 81 (62.8%) 5 to 64 24 26.49 13.11 

Brain Morphology (cm3) Final N = 
129 (%) Range (%) Median Mean Standard 

Deviation 

Right Hippocampal Volume 81 (62.8%) 931 to 1587.5 1195.5 1209.58 143.82 

Left Hippocampal Volume 81 (62.8%) 916.5 to 1488.5 1142.5 1171.79 131.96 

Right Amygdala Volume 81 (62.8%) 221 to 358 280.5 281.1 32.02 

Left Amygdala Volume 81 (62.8%) 195 to 360.5 271 271.88 31.92 

Intracranial Volume 79 (61.2%) 355859 to 639807 483473 487635.5 58337.73 

Cell Type Final N = 
129 (%) Range (%) Median Mean Standard 

Deviation 

CD4T Cell Proportions* 120 
(93.0%) 0.14 to 0.74 0.45 0.45 0.097 

CD8T Cell Proportions* 120 
(93.0%) 0.014 to 0.27 0.11 0.12 0.059 

B Cell Proportions* 120 
(93.0%) 0.005 to 0.39 0.16 0.16 0.084 

Natural Kill Cell 
Proportions* 

120 
(93.0%) 0.0 to 0.13 1.83e-18 0.0022 0.013 

Monocyte Proportions* 120 
(93.0%) 0.0 to 0.17 0.042 0.047 0.039 

Granulocyte Proportions* 120 
(93.0%) 0.0 to 0.71 0.18 0.19 0.11 

Nucleated Red Blood Cell 
Proportions* 

120 
(93.0%) 0.0 to 0.021 0 0.00057 0.0029 

*Estimated cell type proportions 
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Table 1-3. Descriptive statistics for infant demographic measures, brain morphology, 
and cell type. 

Demographic Measures Final N = 
48 (%) Range (%) Median Mean Standard 

Deviation 

EpiStress Scores 48 -2.45 to -1.56 -2.08 -2.06 0.17 

Age at Sample Collection 
(days) 48 30 to 68 38 40.96 9.90 

Sex 48 1 (39.6% male) or  
2 (60.4% female) - - - 

Genotype (PC1) 48 -0.098 to 0.16 0.026 0.010 0.088 

Genotype (PC2) 48 -0.50 to 0.085 0.023 -0.0079 0.10 

Gestational Age 48 242 to 288 275 273.06 11.57 

Birthweight (percentile) 45 
(93.75%) 2 to 99 51 49.44 25.91 

Age at MRI Scan (days) 27 
(56.25%) 8 to 58 32 33.33 13.61 

Brain Morphology (cm3) Final N = 
48 (%) Range (%) Median Mean Standard 

Deviation 

Right Hippocampal Volume 27 
(56.25%) 1015.5 to 1587.5 1210.5 1214.20 169.57 

Left Hippocampal Volume 27 
(56.25%) 916.5 to 1488.5 1202.5 1204.85 146.53 

Right Amygdala Volume 27 
(56.25%) 226 to 343.5 281.5 284 29.17 

Left Amygdala Volume 27 
(56.25%) 214.5 to 360.5 271 272.89 30.35 

Intracranial Volume 27 
(56.25%) 409005 to 639807 482965 496876.6 59599.61 

Cell Type Final N = 
48 (%) Range (%) Median Mean Standard 

Deviation 

CD4T Cell Proportions* 47 (97.9%) 0.28 to 0.74 0.47 0.48 0.098 

CD8T Cell Proportions* 47 (97.9%) 0.024 to 0.27 0.10 0.11 0.060 

B Cell Proportions* 47 (97.9%) 0.096 to 0.39 0.22 0.22 0.060 

Natural Kill Cell 
Proportions* 47 (97.9%) 0.00 to 0.023 2.28e-18 0.00071 0.0036 

Monocyte Proportions* 47 (97.9%) 0.00 to 0.13 0.014 0.025 0.032 

Granulocyte Proportions* 47 (97.9%) 0.00 to 0.36 0.12 0.14 0.074 

Nucleated Red Blood Cell 
Proportions* 47 (97.9%) 0.00 to 0.0046 0 9.82e-05 0.00067 

*Estimated cell type proportions 
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Table 1-4. Descriptive statistics for newborn demographic measures, brain 
morphology, and cell type. 

Demographic Measures Final N = 
81 (%) Range (%) Median Mean Standard 

Deviation 

EpiStress Scores 81 -2.38 to -0.84 -1.90 -1.88 0.22 

Age at Sample Collection 
(days) 81 2 to 29 20 19.32 6.37 

Sex 81 1 (61.7% male) or  
2 (38.3% female) - - - 

Genotype (PC1) 81 -0.10 to 0.18 -0.022 -0.0035 0.083 

Genotype (PC2) 81 -0.48 to 0.080 0.024 0.0049 0.073 

Gestational Age 81 248 to 293 276 275.16 8.99 

Birthweight (percentile) 77 (95.1%) 2 to 99 43 46.82 28.89 

Age at MRI Scan (days) 54  
(66.7%) 5 to 64 19.5 23.07 11.53 

Brain Morphology (cm3) Final N = 
81 (%) Range (%) Median Mean Standard 

Deviation 

Right Hippocampal Volume 54  
(66.7%) 931 to 1464 1171.75 1193.77 127.87 

Left Hippocampal Volume 54  
(66.7%) 924 to 1472 1136.75 1155.26 122.13 

Right Amygdala Volume 54  
(66.7%) 221 to 358 280.5 279.65 33.52 

Left Amygdala Volume 54  
(66.7%) 195 to 343 270.75 271.38 32.94 

Intracranial Volume 52  
(64.2%) 355859 to 608543 487200 482837.2 57666.86 

Cell Type Final N = 
81 (%) Range (%) Median Mean Standard 

Deviation 

CD4T Cell Proportions* 73 (90.1%) 0.14 to 0.67 0.43 0.43 0.091 

CD8T Cell Proportions* 73 (90.1%) 0.014 to 0.27 0.13 0.13 0.058 

B Cell Proportions* 73 (90.1%) 0.0050 to 0.38 0.11 0.13 0.077 

Natural Kill Cell 
Proportions* 73 (90.1%) 0.00 to 0.13 1.51e-18 0.0032 0.017 

Monocyte Proportions* 73 (90.1%) 0.00 to 0.17 0.064 0.061 0.037 

Granulocyte Proportions* 73 (90.1%) 0.00 to 0.71 0.22 0.23 0.11 

Nucleated Red Blood Cell 
Proportions* 73 (90.1%) 0.00 to 0.021 0 0.00087 0.0036 

*Estimated cell type proportions 
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3.2 Statistical Analysis 

3.2.1 Characterization Analysis of Offspring Measures 

3.2.1.1 Investigation of Offspring Demographic Measures 

A bivariate analysis of offspring EpiStress scores and demographic measures 

revealed that the offspring EpiStress scores were significantly and negatively correlated 

with age at sample collection (r = -0.46, p = 0.000000048) (see Figure 9). Offspring 

EpiStress scores were not correlated with offspring gestational age, maternal smoking 

status, offspring birthweight, offspring genotype (the first two PCs), or offspring sex (see 

Figure 9 and 10). The EWAS Atlas revealed traits that have been previously linked with 

the 24 CpG sites used to create the offspring EpiStress scores. The trait, type, and 

occurrence (out of 24 CpG sites) are depicted in Table 1-5. The two traits with the 

highest occurrence are multiple sclerosis (MS) which is present in 12 out of the 24 CpG 

sites (50%) and systemic lupus erythematosus (SLE) which is present in 15 out of the 24 

CpG sites (62.5%). The MS samples came from CD19+ B cells of those diagnosed with 

MS (mean age 40.7 years old) and controls (mean age of 43.3 years old), while the SLE 

samples came from whole blood of those diagnosed with SLE (mean age of 47 years 

old) and controls (mean age of 47.1 years old) (Xiong et al., 2020). 
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Figure 9: Bivariate analyses using offspring EpiStress scores and demographic 
measures. Demographic measures include age at sample collection (days), gestational age 
(days), maternal smoking status, and birthweight. 
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Figure 10: Bivariate analyses using offspring EpiStress scores and demographic 
measures. Demographic measures include the first two genotype PCs and sex. 
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Table 1-5. EWAS Atlas summary. A summary of 15 traits and the type of factor or 
illness associated with the 24 CpG sites used to create the EpiStress score. The 
occurrence of each trait per CpG out of a possible 24 CpGs is listed on the right. 

Trait Type Occurrence 

Air pollution (NO2) Environmental factor 5/24 (20.8%) 

B acute lymphoblastic leukemia Cancer 2/24 (8.3%) 

Breast cancer Cancer 3/24 (12.5%) 

Chronic fatigue syndrome Non-cancerous systemic intolerance 2/24 (8.3%) 

Crohn's disease Autoimmune disorder 4/24 (16.7%) 

Fatigue Phenotype 1/24 (4.17%) 

Fractional exhaled nitric oxide Phenotype 1/24 (4.17%) 

Gulf War illness Non-cancerous systemic intolerance 2/24 (8.3%) 

Hepatocellular carcinoma Cancer 5/24 (20.8%) 

Inflamed Crohn's disease Autoimmune disorder 1/24 (4.17%) 

Multiple sclerosis Autoimmune disorder 12/24 (50%) 

Osteoarthritis Degenerative disease 1/24 (4.17%) 

Preterm birth Phenotype 4/24 (16.7%) 

Systemic lupus erythematosus Autoimmune disorder 15/24 (62.5%) 

Vitamin B12 supplement Environmental factor 5/24 (20.8%) 
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3.2.1.2 Investigation of Offspring Brain Morphology (cm3) 

A bivariate analysis of offspring EpiStress scores and brain morphology (right- 

and left hippocampal volumes, right- and left infant amygdala volumes, and total 

intracranial volume) did not reveal any significant correlations (see Figure 11). Utilizing 

the Blood-Brain Epigenetic Concordance (BECon) tool by Edgar et al. (2017), the 24 

CpG sites found by Provençal et al. (2020) were individually examined for correlations 

between Brodmann’s Area’s (BA) 10, BA 20, and BA 7 in the brain and blood (see 

Figure 12). Four CpG sites (cg02862467, cg01400750, cg16141752, and cg20977312) 

that also correspond to MS and SLE from the EWAS Atlas were revealed to be variable 

in the blood, but not variable in BA 10, 20, nor 7. Two CpG sites (cg21344746 and 

cg04674060) were variable in all regions and the blood except BA 7, while one CpG site 

(cg12157761) was variable in all regions and the blood except BA 10 (see Figure 12).  

The CpG sites mentioned here show predominantly negative correlations with the brain 

regions, where a small portion show positive correlations. Of the positive correlations 

revealed by BECon, two CpG sites show correlations above 0.70 (cg23987336 and 

cg07052737). There are no other highly correlated regions. Extending these results to 

the 16 subjects who donated their tissues to science, beta values from the 

HumanMethylation 450K array indicate variable methylation between subjects and CpG 

sites, especially the in blood (see Figure 13).
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Figure 11: Bivariate analyses using offspring EpiStress scores and brain morphology (cm3). Brain morphology includes right- and left 
hippocampal volumes, right- and left amygdala volumes, and total intracranial volume (cerebrospinal fluid, grey matter, and white matter).  
No significant correlations were found. 
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Figure 12: Results from the Blood-Brain Epigenetic Concordance (BECon) tool showing the 24 CpG sites used to create the EpiStress 
score (left). Also shown is the gene(s) where the CpG site has been found, the gene region(s), the variability of each CpG site in one of three 
brain regions (Brodmann's Area (BA) 10, 20, and 7) and in the blood, and Spearman correlations (right) between each CpG site and BA 10, 20, 
and 7. Chr: Chromosome of the CpG; Coor: Genomic coordinate of the CpG. Image created by Karilyn Harris (2021) using the BECon tool. 
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Figure 13: Results from the Blood-Brain Epigenetic Concordance (BECon) tool showing the beta values (methylation level) from the 
450K array of the 24 CpG sites used to create the EpiStress score (y-axis). Also shown are the 16 subjects whose data was collected  
(x-axis) and who also show methylation at these same CpG sites in one of three brain regions (Brodmann's Area (BA) 10, 20, and 7), and in the 
blood. Image created by Karilyn Harris (2021) using the BECon tool. 
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3.2.1.3 Investigation of Offspring Cell Type 

A bivariate analysis of offspring EpiStress scores and DNAm estimated cell type 

(CD4T cell-, CD8T cell-, B cell-, monocyte-, granulocyte-, natural killer cell-, and 

nucleated red blood cells (nRBC) proportions) revealed that offspring EpiStress scores 

were significantly negatively correlated with estimated CD4T cell- (r = -0.72, p = <2.2e-

16***) and B cell (r = -0.56, p = 3.18e-11***) proportions (see Figure 14). Offspring 

EpiStress scores were also significantly and positively correlated with estimated 

monocyte- (r = 0.59, p = 1.044e-12***) and estimated granulocyte cell proportions (r = 

0.96, p = <2.2e-16***), with estimated granulocyte cell proportions revealing an almost 

perfect correlation (see Figure 15). As well, non-significant correlations were found 

between offspring EpiStress scores and both the estimated CD8T cell- (r = -0.12, p = 

0.18) and nRBC proportions (r = 0.25, p = 0.0052*) (see Figures 14 and 15). No 

correlations were found between offspring EpiStress scores and estimated natural killer 

cell proportions (see Figure 15). 

3.2.1.4 Investigation of Infant and Newborn Cell Type 

Because of the significant associations between offspring EpiStress scores and 

age at sample collection, and offspring EpiStress scores and estimated cell type 

proportions, the offspring EpiStress scores were stratified into infant- and newborn 

EpiStress scores. The purpose of this stratification was to determine if infant- and 

newborn EpiStress scores were differentially associated with estimated cell type 

proportions (CD4T cell-, CD8T cell-, B cell-, monocyte-, granulocyte-, natural killer cell-, 

and nRBC proportions). Cell type proportions change with age, and therefore it is 

hypothesized that the EpiStress scores are highly associated with age at sample 

collection because of their association with estimated cell type proportions (Jones et al., 

2018). 

Significant and negative associations were found between infant EpiStress 

scores and estimated CD4T cell- (r = -0.73, p = <6.4e-09***), while significant and 

positive associations were found between infant EpiStress scores and estimated 

monocyte- (r = 0.50, p = 0.00034***) and estimated granulocyte cell proportions (r = 

0.96, p = <2.2e-16***). No significant associations were found between infant EpiStress 
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scores and estimated CD8T cell-, B cell-, natural killer cell, and nRBC proportions (see 

Figures 16 and 17).  

Significant and negative associations were found between newborn EpiStress 

scores and estimated CD4T cell- (r = -0.70, p = 8.674e-12***) and estimated B cell (r = -

0.60, p = 2.289e-08***) proportions, while significant and positive associations were 

found between newborn EpiStress scores and estimated monocyte- (r = 0.50, p = 

8.837e-06***), granulocyte- (r = 0.96, p = <2.2e-16***), and nucleated RBC proportions 

(r = 0.26, p = 0.027*). No significant associations were found between newborn 

EpiStress scores and estimated CD8T cell- nor estimated natural killer cell proportions 

(see Figure 18). Notably, a differential association was revealed between the estimated 

B cell proportions of infants and newborns. B cells are white blood cells found in the 

adaptive immune system that produce antibodies via exposure to pathogens (Alberts et 

al., 2002). 
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Figure 14: Bivariate analyses using offspring EpiStress scores and estimated CD4T  
cell-, CD8T cell-, and B cell proportions. Associations between offspring EpiStress scores 
and cell type proportions of interest. 
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Figure 15: Bivariate analyses using offspring EpiStress scores and estimated 
monocyte-, granulocyte-, natural killer-, and nucleated red blood cell proportions. 
Associations between offspring EpiStress scores and cell type proportions of interest. 
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Figure 16: Bivariate analyses using infant EpiStress scores and estimated CD4T cell-, 
CD8T cell-, and B cell proportions. Associations between infant EpiStress scores and cell 
type proportions of interest. 
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Figure 17: Bivariate analyses using infant EpiStress scores and estimated monocyte-, 
granulocyte-, natural killer-, and nucleated red blood cell proportions. Associations 
between infant EpiStress scores and cell type proportions of interest. 

 

roportions. 
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Figure18: Bivariate analyses using newborn EpiStress scores and estimated CD4T cell-
, CD8T cell-, and B cell proportions. Associations between newborn EpiStress scores and 
cell type proportions of interest. 
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Figure 19: Bivariate analyses using newborn EpiStress scores and estimated  
monocyte-, granulocyte-, natural killer-, and nucleated red blood cell proportions. 
Associations between newborn EpiStress scores and cell type proportions of interest. 
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3.2.2 Mediation Analysis 

Given the known differences in cell type composition during the newborn and 

infant development period, and because age at sample collection was confounded with 

offspring EpiStress scores and cell type, a stratified mediation analysis was developed 

(Hermansen, 2001; Jacob, 2016). The goal of the stratified mediation analysis was to 

see if there were significant associations between maternal stress and infant EpiStress 

scores (>=30 days old), and maternal stress and newborn EpiStress scores (<30 days 

old). 1,000 Bootstrap simulations were run, and the mediation effects were examined 

separately for newborns and infants. Overall, no significant mediation (indirect) effects of 

either prenatal depression or prenatal anxiety were revealed. Infant mediation models 

did not reveal any significant direct- or indirect effects. Newborn mediation analyses, 

however, showed significant, negative direct and total effects when prenatal depression 

and prenatal anxiety were accounted for (see Table 1-6). 
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Chapter 4. Discussion 

4.1 Characterization Analysis: Summary 

4.1.1 Utility of Offspring EpiStress Scores 

A study by Suarez et al. (2020) examined associations between the EpiStress 

score at birth and future mental and behavioural disorders or total behavioural problems 

when the children reached 7 to 11 years of age. This study used the PREDO cohort, and 

fetal cord blood samples were obtained for genetic and epigenetic analyses. Child 

mental and behavioural disorder data was obtained from the Care Register for Health in 

Finland, and total behavioural problems were obtained from the mothers via a Child 

Behaviour Checklist (Saurez et al., 2020). Saurez et al. (2020) found that EpiStress 

scores were not significantly associated with the development of a mental or behavioural 

disorder during childhood, nor total behavioural problems. However, they did find that 

lower EpiStress scores were significantly associated with the number of days of inpatient 

or outpatient treatment for child mental or behavioural disorders (Saurez et al., 2020). 

This suggests that although children did not receive a formal mental or behavioural 

disorder diagnosis, there was a level of dysfunction that led to inpatient or outpatient 

treatment. In this case, and as with the current study, lower EpiStress scores could 

potentially identify children who might be at risk for future inpatient or outpatient 

treatment due to an array of adverse health outcomes. 

4.1.2 Age at Sample Collection and Autoimmune Disorders 

An investigation of demographic measures was conducted to inform the ways in 

which the EpiStress scores were associated with variables that are commonly influenced 

by DNA methylation. Of these variables, offspring EpiStress scores were significantly 

and negatively correlated with the offspring’s age at sample collection, while none of the 

other demographic variables were correlated. This correlation provoked the question 

about whether offspring EpiStress scores might be differentially associated with maternal 

stress in infants (>=30 days old) or newborns (<30 days old) and subsequently led to a 

stratified mediation analysis (refer to section 4.2). Offspring EpiStress scores would be 

expected to differ with offspring age since DNAm has previously been shown to be 
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lowest in newborns (Jones et al., 2015). Additionally, DNAm is differentially associated 

with cell type and immune development at this age (Jacob, 2016). 

Findings from the EWAS Atlas showed that MS and SLE, both non-cancerous, 

autoimmune disorders, have been previously associated with some of the CpG sites that 

the EpiStress scores are derived from. These disorders are the result of an abnormal 

bodily response to its own immune system but the causes of MS and SLE are both 

unknown. Two additional traits out of the 15 identified by the EWAS Atlas have also 

been associated with autoimmune disorders in adults: Crohn’s- and inflamed Crohn’s 

disease (“Crohn’s”), albeit at lower percentages than MS and SLE. Crohn’s is an 

autoimmune disorder that causes chronic inflammation of the gastrointestinal tract 

(Crohn’s and Colitis Foundation of America, 2014). It is suspected that genetic 

influences, environmental influences, and immune abnormalities play a role in their 

development (Axisa & Hafler, 2016; Charras et al., 2021). Although the autoimmune 

disorders listed do not have a known cause, the samples taken from the adults came 

from CD19+ B cell proportions, whole blood, and colon samples. This draws a parallel to 

the EpiStress scores which are partially derived from whole blood, and which show 

associations with estimated B cell proportions, indicating that EpiStress scores might 

represent immune differences rather than DNAm differences. 

4.1.3 Offspring EpiStress Scores are not Correlated with Brain Morphology 

An investigation of brain morphology information was conducted to inform the 

ways in which the offspring EpiStress scores were associated with brain morphology 

measurements in children. Right- and left hippocampal volumes, right- and left amygdala 

volumes, and total intracranial volume were considered in these analyses. Of these 

variables, offspring EpiStress scores were not significantly correlated with any of the 

brain morphology data, indicating that there was no association between offspring 

EpiStress scores and brain morphology in the UCI cohort. Offspring EpiStress scores 

showed no association with brain morphology, including in the hippocampal regions, 

even though the EpiStress scores were partially derived from an immortalized human 

hippocampal progenitor cell line. Immortalized cell lines allow for constant cell 

profileration in controlled environments without the need to recruit new participants and 

obtain new samples (Carter & Shieh, 2015). Regardless, many brain regions work 

together to process information, and brain cells (e.g., neurons and glia) each have their 
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own distinct DNAm profile (Jones et al., 2018). It is possible that a different cohort with a 

larger sample size might indeed show associations with brain morphology. 

Findings from the BECon tool revealed that four out of 24 CpG sites of the 

EpiStress scores were variable in the blood but were not variable in BA 10, 20, or 7, that 

two out of 24 CpG sites were not variable in BA 7, and that one out of 24 CpG site was 

not variable in BA 10. The remaining 16 sites were variable in all regions. Because the 

variability refers to the level of methylation per subject per CpG, these findings might 

indicate that the EpiStress scores are measuring a component(s) of the blood rather 

than the brain. This is especially relevant for the estimated cell type proportions and 

because the offspring EpiStress scores did not correlate with any of the brain 

morphology measures. The BECon tool revealed correlations between the 24 CpG sites 

and BA 10, BA 20, and BA 7. 30/72 of the CpG sites were negatively correlated and no 

correlations were stronger than -0.54; 40/72 of the CpG sites were positively correlated 

and two of the CpG sites were strongly correlated (e.g., above 0.70) with either BA 20 

(temporal cortex) or BA 7 (parietal lobes); and 2/72 of the CpG sites showed no 

correlation. The majority of CpG sites showed positive correlations with BA 10, BA 20, 

and BA 7; however, the modest correlations overall might indicate that DNAm of the 

CpG sites from the EpiStress scores are not necessarily influencing methylation in the 

prefrontal cortex, temporal cortex, or parietal lobes. 

4.1.4 Differential Infant- and Newborn Cell Type 

An investigation of cell type was conducted to inform the ways in which the 

EpiStress scores were associated with estimated immune cell proportions (monocyte-, 

granulocyte-, natural killer cell-, CD4T cell-, CD8T cell-, B cell-, and nRBC proportions). 

A technical variable (age at sample collection) rather than a biological variable was the 

only difference between infant- and newborn EpiStress scores when analyzing cell type 

proportions. This is expected because, as mentioned previously, cell type composition is 

undergoing rapid changes in newborns as their immune system develops. The results 

showed a highly positive correlation with offspring-, infant-, and newborn EpiStress 

scores and estimated granulocyte proportions. In other words, offspring-, infant-, and 

newborns with higher EpiStress scores tend to have greater estimated granulocyte cell 

proportions, possibly indicating that their innate immune systems are functioning 

normally to protect against pathogens early in life.  
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As well, differential associations between estimated B cell proportions and infant- 

and newborn EpiStress scores such that newborns had higher estimated B cell 

proportions and lower EpiStress scores. Rather than the EpiStress scores measuring 

associations between offspring DNAm and maternal stress, they might in fact be 

measuring offspring immune cell proportions that have been influenced by maternal 

stress. Glucocorticoids have been shown to have both anti-inflammatory and pro-

inflammatory effects and might explain the differences seen in the immune cell 

proportions in this dataset (Cruz-Topete & Cidlowski, 2015; Ronchetti & Riccardi, 2018). 

If the EpiStress scores indeed represent cell type proportions, and four out of 15 traits 

identified by the EWAS have been previously associated with autoimmune disorders in 

adults, consideration should be paid to the possibility that the EpiStress scores are 

representing offspring immune differences through DNAm.  

4.2 Mediation Analysis 

 A stratified mediation analysis of newborns and infants was conducted because 

the investigation of offspring demographic measures and offspring cell type revealed that 

offspring EpiStress scores were significantly and highly correlated with age at sample 

collection and cell type (CD4T cell-, B cell-, monocyte-, granulocyte-, and nRBC 

proportions). Offspring were stratified into newborns (<30 days old) and infants (>= 30 

days old) as cell type proportions are a major driver of DNAm differences, and these 

differences are seen in the first month of life.  

Infant mediation models did not reveal any significant mediation, direct, or total 

effects, whereas newborn mediation models revealed direct and total effects, and no 

mediation effects. A study by Sammallahti et al. (2021) demonstrated similar findings 

such that prenatal anxiety, specifically, did not correlate with DNAm in cord blood. It was 

expected that prenatal stress would mediate the relationship between maternal ELS and 

offspring EpiStress scores because exposure to stress is expected to associate with 

decreased EpiStress scores (Provençal et al., 2020). However, prenatal stress was not a 

mediating factor in the association between maternal ELS and infant- or newborn 

EpiStress scores, so it is possible that an alternative mechanism was at play. For 

example, it is possible that maternal ELS could be associated with socioeconomic 

status, employment and education status, and access to healthcare—sources of stress 

that are not purely psychological.  
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4.3 Limitations 

This study is not without its limitations. Associating maternal ELS with infant and 

newborn DNAm is a challenging and ongoing task because the mechanisms by which 

stress exposure is transmitted remain largely unknown (Aristizabal et al., 2019). 

Identifying biological marks in newborns and infants that is a result of transgenerational 

inheritance is challenging, and no causal claims can be made at this time. Further, 

researchers must be cognizant of the definitions that are used to characterize epigenetic 

mechanisms. Lappalainen and Greally (2017) and Greally (2018) caution against broad 

definitions that might equate epigenetics with the roles of transcriptional regulators. 

Epigenetic mechanisms like DNAm refer to gene activation and silencing; transcriptional 

regulators also accomplish this task. It is important, then, to clearly define how these 

terms are being used to ensure uniformity across studies. Longitudinal studies that use 

consistent definitions of methylation risk scores and molecular mechanisms are 

recommended.  

Additionally, the small sample size in the stratified sample (n=48 infants and 

n=81 newborns) presents issues adequately addressing power, and it is unclear whether 

maternal ELS or another factor(s) such as the postnatal environment is influencing the 

outcomes. For example, the mothers were not assessed for nursing status, i.e., 

breastfed or formula-fed babies. EpiStress scores have only been used in two studies to 

date which limits the generalizability of findings across populations, and the ethnicity of 

each participant is unclear in this analysis. The inability to appropriately correct for cell 

type due to the strong correlations found with the EpiStress scores is also a limitation in 

this study, and cell type proportions were estimated, not measured via cell sorting 

methods. As well, retrospective measures of maternal ELS may result in reporting bias 

due to one’s inability to accurately remember past events, especially if the mothers were 

experiencing depression and anxiety at the time of assessment (Reuben et al., 2016).  

Overall, these limitations make it difficult to determine if infant- and newborn 

biology, by way of cell type or DNAm, is indeed inherited from the mother via HPA axis 

alterations, GC exposure, epigenetic mechanisms, or if some other factor is at play. 

Further investigation and replication are required.  
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4.4  Conclusion 

Studying DNAm in infants and newborns which might be the result of maternal 

ELS exposure has the potential to identify mechanisms involved in the transgenerational 

transmission of stress from mother to offspring, specifically, newborns. Interestingly, 

prenatal stress was not shown to mediate the relationship between maternal ELS and 

infant- and newborn EpiStress scores, indicating that stressful life experiences prior to 

conception might have a greater impact on the offspring. The identification of biomarkers 

such as DNAm in newborns as a means of detecting transgenerational trauma is a 

daunting but important task. The hope is to hinder disease progression and maximize 

opportunities for children to thrive—in any environment. Children represent the future, 

and it is everybody’s responsibility to ensure their development is optimal.  
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Appendix 

Table A.1.: Detailed EWAS Atlas Results from the EWAS Atlas. The table depicts the 24 
CpG sites used to create the EpiStress score and the trait and type of factor or illness 
that the CpG site has previously been associated with. The “Publications” column 
shows the number of times the CpG site has been implicated in previous publications. 

CpG Site Trait Type Number of 
Publications 

cg01400750 
Air pollution (NO2) 
Preterm birth 
Systemic lupus erythematosus (SLE) 
Gulf Warm illness 

Environmental factor 
Phenotype 
Autoimmune disorder 
Systemic intolerance 

4 
7 
6 
1 

cg02862467 Multiple sclerosis (MS) 
SLE 

Autoimmune disorder 
Autoimmune disorder 

7 
6 

cg02927682 MS 
SLE 

Autoimmune disorder 
Autoimmune disorder 

7 
6 

cg03543954 Chronic fatigue syndrome 
SLE 

Systemic intolerance 
Autoimmune disorder 

3 
6 

cg03543954 Preterm birth 
SLE 

Phenotype 
Autoimmune disorder 

7 
6 

cg04674060 Preterm birth 
SLE 

Phenotype 
Autoimmune disorder 

7 
6 

cg04958055 No matching records N/A N/A 

cg07052737 
B Acute Lymphoblastic Leukemia 
MS 
SLE 

Cancer 
Autoimmune disorder 
Autoimmune disorder 

1 
7 
6 

cg07830557 
B Acute Lymphoblastic Leukemia 
MS 
SLE 

Cancer 
Autoimmune disorder 
Autoimmune disorder 

1 
7 
6 

cg08297985 

Chronic fatigue syndrome 
Osteoarthritis 
SLE 
Fractional exhaled nitric oxide 
Gulf War illness 

Systemic intolerance 
Degenerative disease 
Autoimmune disorder 
Phenotype 
Systemic intolerance 

3 
3 
6 
1 
1 

cg09571972 
Fatigue 
Preterm birth 
SLE 
Inflamed Crohn’s disease 

Phenotype 
Phenotype 
Autoimmune disorder 
Autoimmune disorder 

1 
7 
6 
1 

cg11316887 
Air pollution (NO2) 
Crohn’s disease (CD) 
SLE 

Environmental factor 
Autoimmune disorder 
Autoimmune disorder 

4 
4 
6 

cg11671363 
Air pollution (NO2) 
Crohn’s disease (CD) 
SLE 

Environmental factor 
Autoimmune disorder 
Autoimmune disorder 

4 
4 
6 

cg12157761 
Air pollution (NO2) 
Crohn’s disease (CD) 
SLE 

Environmental factor 
Autoimmune disorder 
Autoimmune disorder 

4 
4 
6 

cg13581015 
Air pollution (NO2) 
Crohn’s disease (CD) 
SLE 

Environmental factor 
Autoimmune disorder 
Autoimmune disorder 

4 
4 
6 
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Table A.1. continued… 

CpG Site Trait Type Number of 
Publications 

cg13718827 Breast cancer 
MS 

Cancer 
Autoimmune disorder 

13 
7 

cg16141752 Breast cancer 
MS 

Cancer 
Autoimmune disorder 

13 
7 

cg16312968 Breast cancer 
MS 

Cancer 
Autoimmune disorder 

13 
7 

cg18020065 
Hepatocellular carcinoma (HCC) 
MS 
Vitamin B12 supplement 

Cancer 
Autoimmune disorder 
Environmental factor 

7 
7 
1 

cg19118951 
HCC 
MS 
Vitamin B12 supplement 

Cancer 
Autoimmune disorder 
Environmental factor 

7 
7 
1 

cg20977312 
HCC 
MS 
Vitamin B12 supplement 

Cancer 
Autoimmune disorder 
Environmental factor 

7 
7 
1 

cg21344746 
HCC 
MS 
Vitamin B12 supplement 

Cancer 
Autoimmune disorder 
Environmental factor 

7 
7 
1 

cg23987336 
HCC 
MS 
Vitamin B12 supplement 

Cancer 
Autoimmune disorder 
Environmental factor 

7 
7 
1 

cg24850296 SLE Autoimmune disorder 6 

 


