
Constructions of APN Permutations
by

Benjamin Chase

B.Sc., University of New Brunswick, 2019

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
Department of Mathematics

Faculty of Science

© Benjamin Chase 2021
SIMON FRASER UNIVERSITY

Fall 2021

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Benjamin Chase

Degree: Master of Science

Thesis title: Constructions of APN Permutations

Committee: Chair: Imin Chen
Professor, Department of Mathematics

Petr Lisoněk
Supervisor
Professor, Department of Mathematics

Jonathan Jedwab
Committee Member
Professor, Department of Mathematics

Nadish de Silva
Examiner
Assistant Professor, Department of Mathematics

ii

Abstract

APN functions defined on finite fields of characteristic two provide the best protection
against differential cryptanalysis. They are used extensively in modern symmetric block
ciphers. It is beneficial when APN functions are permutations. EA-equivalence and more
generally CCZ-equivalence preserves the APN property. Only one example of APN permu-
tations is known in even dimensions and its generalizations are called Kim-type functions.
Our first result proves that all Kim-type APN functions in even dimensions greater than
six are EA-equivalent to Gold functions. Combined with a previous result this shows that
Kim-type APN functions are never CCZ-equivalent to permutations, except for dimension
six. Our second result provides several theoretical constructions of Walsh zero spaces for
Gold APN functions in odd dimensions. This allows one to construct new APN permuta-
tions that are CCZ-equivalent to Gold functions, but they are not EA-equivalent to them
or their inverses.

Keywords: finite field; Boolean function; cryptography; APN function; Walsh zero

iii

Acknowledgements

I would like to thank my supervisor Dr. Petr Lisoněk for the many helpful in-depth dis-
cussions and for his hospitality towards me during my time at SFU. I thank the examiners
Dr. Jedwab and Dr. de Silva for careful reading of my thesis and helpful comments. I am
thankful to many other people and organizations for various forms of support. In particular,
I would like to thank Jenika Merriam for all her love and unending support throughout the
thesis and for traveling across the country with me. I thank my parents for their love and
all of the opportunities they have provided for me over the years. I thank the Centre for Ex-
perimental and Constructive Mathematics (CECM) for computational support and Magma
license, and Léo Perrin for releasing an updated version of the software sboxU which has
been extremely useful to the thesis. I am grateful for the support of the Natural Sciences
and Engineering Research Council of Canada (NSERC) as well as the British Columbia
Graduate Scholarship.

iv

Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Thesis outline . 1
1.2 Brief history . 2

2 Background 4
2.1 Finite fields . 4
2.2 Almost perfect nonlinear functions . 7

2.2.1 APN functions on finite fields . 9
2.3 Equivalences which preserve cryptographic properties 12
2.4 Kim-type functions . 14
2.5 Walsh zeros . 22

3 Kim-type APN permutations 26
3.1 Preliminaries . 27
3.2 Main result . 28

3.2.1 Strategy of the proof . 28
3.2.2 Outline of the proof . 30
3.2.3 Case a2 = 0 . 30
3.2.4 Case a2 6= 0 . 33

4 Walsh zero spaces 43
4.1 The Walsh zero test and compatible subspaces 44

v

4.2 Computational investigations in low dimensions 48
4.2.1 Dimension 3 . 48
4.2.2 Dimension 5 . 50
4.2.3 Dimension 7 . 51
4.2.4 Dimension 9 . 51
4.2.5 Dimension 11 . 52

4.3 Constructions of some WZ spaces for Gold APN permutations 52
4.4 TI pairs of WZ spaces for Gold APN permutations 54
4.5 Applications . 58

4.5.1 Classifying EA classes of functions 58
4.5.2 Construction of new APN permutations 59

4.6 Other functions . 59
4.6.1 Monomial APN functions . 59
4.6.2 The Budaghyan-Carlet-Leander function 60
4.6.3 The Beierle-Carlet-Leander-Perrin function 61
4.6.4 Outlook . 62

Bibliography 63

Appendix A Magma code for Chapter 2 66

Appendix B Magma code for Chapter 3 68

Appendix C Magma code for Chapter 4 75

vi

List of Tables

Table 2.1 Known infinite families of APN power functions f(x) = xd. 9
Table 2.2 Krasnayová’s APN conditions. 15

Table 4.1 Component dimensions for the BCL function in dimension 12. 61
Table 4.2 Component dimensions for f(x) = x3 in dimension 12. 61

vii

List of Figures

Figure 3.1 Diagram for proof of Theorem 3.2.1. 31

Figure 4.1 WZ graph of the Gold APN permutation f(x) = x3 on F23 49
Figure 4.2 WZ graph of the Gold APN permutation f(x) = x3 on F25 50
Figure 4.3 WZ graph of the Gold APN permutation f(x) = x3 on F27 51
Figure 4.4 WZ graph of the Gold APN permutation f(x) = x3 on F29 51
Figure 4.5 WZ graph of Kasami and Welch APN monomials on F25 60
Figure 4.6 WZ graph of F0. 62
Figure 4.7 WZ graph of F1. 62

viii

Chapter 1

Introduction

The main objects of study in this thesis, almost perfect nonlinear functions (typically re-
ferred to as APN functions), are critical components in the S-boxes of many modern sym-
metric block ciphers, wherein they perform nonlinear substitutions on bitstrings. Examples
of block cipher designs that use S-boxes are Substitution-Permutation-Networks such as
the internationally adopted Advanced Encryption Standard (AES). Within these ciphers,
multiple rounds of permutations and substitutions are applied to a plaintext with a goal
to attain the cryptographic properties of confusion and diffusion. Functions with low dif-
ferential uniformity provide the provably best resistance to differential cryptanalysis, and
those that achieve the lowest possible differential uniformity are called APN functions. In
many cipher designs, it is required that the S-boxes be invertible in order to facilitate
decryption. Therefore, there is immense interest in finding APN functions that are also per-
mutations. For implementation purposes, it is necessary to work with functions defined on
an n-dimensional binary vector space. There exist APN permutations in odd dimensions,
although few have been classified into infinite families. The situation is more challenging in
even dimensions, where only one example of an APN permutation, which occurs in dimen-
sion six was discovered in 2009 by Browning et al. [7]. To date, no other APN permutations
in even dimensions have been found. On account of hardware considerations, it is often
desirable that S-boxes operate in even-dimensional space. Especially common is dimension
eight due to the standard of a byte being eight bits. AES uses the field inverse function in
dimension eight which has the lowest known differential uniformity in that dimension. We
will only consider functions mapping n input bits to n output bits but ciphers like CAST
do use S-boxes that map n input bits to m output bits.

1.1 Thesis outline

In Chapter 2 we give some necessary background on finite fields. We also give more details on
APN functions and describe some equivalences between functions that preserve important

1

cryptographic properties. The last two sections of Chapter 2 provide background for Chapter
3 and Chapter 4 respectively.

In Chapter 3 we study an infinite family of functions, called Kim-type functions, that
generalize the Kim function used by Browning et al. [7]. Finding more APN functions from
this family was originally posed as an open problem by Carlet in [12]. In July 2020, Li,
Li, Helleseth, and Qu [24] solved this by finding the exact conditions on the coefficients of
Kim-type functions that result in APN functions. Using this result, we prove that Kim-type
functions are affine equivalent to one of two Gold functions. A recent result of Göloğlu
and Langevin [20] showed that, for even n, Gold APN functions are never CCZ-equivalent
to permutations. Combined with our result, this shows that Kim-type functions in even
dimensions greater than six are never CCZ-equivalent to permutations.

In Chapter 4 we find new methods to construct APN permutations. We explore the
zeros of the Walsh transform of Gold APN permutations in odd dimensions. Specifically, we
provide several theoretical and computer-free descriptions of Walsh zero spaces. Recently,
there has been increased interest in Walsh zero spaces [10, 1]. Other than two trivial spaces,
our constructions are, as far as we know, the first explicit descriptions of Walsh zero spaces.
We also provide some theoretical constructions of trivially intersecting Walsh zero spaces for
Gold APN permutations. Browning et al. [7] gave an implicit proof that, if two Walsh zero
spaces of a function f intersect trivially, then f must be CCZ-equivalent to a permutation.
We modify this proof to allow us to explicitly construct permutations CCZ-equivalent to f .
Our hope is that the method of explicitly constructing trivially intersecting pairs of Walsh
zero spaces of various APN functions may eventually lead to finding APN permutations in
even dimension. We start Chapter 4 with description of how computations in low dimensions
aided us, providing examples along the way.

1.2 Brief history

In the early 1970s, joint work done by IBM and the NSA culminated in the internationally
adopted Data Encryption Standard (DES). The public release of DES in 1975 was met
with much criticism from cryptographers. Many had suspicions of a backdoor, since the
explanation for the structure of the S-boxes was not made available to the public, see page
107 of [34]. Hellman and Diffie argued that DES could be broken by brute force [17], which
it eventually was in 1997. In 1991, Biham and Shamir [3] discovered a new type of attack on
block ciphers called differential cryptanalysis. Indeed, later declassified documents showed
that the ideas of differential cryptanalysis were known to IBM and the NSA during the
process of designing DES.

Shortly after the techniques of differential cryptanalysis were made public, Nyberg [31]
introduced precise mathematical descriptions of functions that optimally protect against this
type of attack, called APN functions. A couple years later, in 1995, Nyberg and Knudsen

2

[32] proved that ciphers that are secure from differential cryptanalysis do exist, and they
gave a prototype of such a cipher. Most importantly, this lead to the concept of open source
cryptography where the complete mathematical structure of the ciphers is made public and
can be rigorously analyzed and peer reviewed.

In 1997 the National Institute of Standards and Technology (NIST) initiated a transpar-
ent international competition to choose a replacement for DES, with the intention that the
winner would become the Advanced Encryption Standard (AES) [29]. There were twenty-
one submissions. After three years of peer review and elimination of many candidates that
were proven to be insecure, Rijndael was chosen to be the algorithm for AES. Among the
candidates was CAST, a cipher developed by Carlisle Adams and Stafford Tavares which
has been approved for Government of Canada use by the Communications Security Estab-
lishment. Both Rijndael and CAST use S-boxes.

Many modern block ciphers rely on S-boxes. Recently, NIST has opened a competition
to chose a standard cipher, or a set of standard ciphers, for use in lightweight cryptography
[30]. With the recent growth of The Internet of Things, distributed control systems, smart
cards and similar devices, there is increased demand for cryptographic algorithms that can
efficiently fit into constrained devices. Out of the ten finalists, seven use S-boxes in their
designs.

3

Chapter 2

Background

In this chapter we present some necessary background information on finite fields, almost
perfect nonlinear functions, and equivalences between functions that preserve cryptographic
properties. We also present background information regarding Kim-type functions and
Walsh zeros which is needed in Chapter 3 and Chapter 4 respectively. This chapter does not
contain any original material; instead it aims to make the thesis self-contained to a large
extent. We note that the large amount of background material that was available to us at
the start of our research brought many results within reach. In particular our work rests
heavily on the work of Gold [18], Göloğlu, Krasnayová and Lisoněk [19], Li, Li, Helleseth
and Qu [24], and Perrin and Joly [33].

Many computations in this thesis were done with the support of the computer algebra
system Magma [5]. Computations illustrating or proving various parts of the thesis are
collected in Appendices A, B and C. They would have been possible with other computer
algebra systems such as Sage or GAP as well. We chose to use Magma as it appears to
be the most commonly used system in the area of APN functions, and we also have had
previous experience with it.

2.1 Finite fields

The contents of this section, unless otherwise specified, are taken from the first three chap-
ters of the monograph by Lidl and Niederreiter [25]. We use F2n to denote the finite field of
order 2n. We will assume some basic knowledge of field theory. In particular we will often
use the following without reference. The field F2n contains a subfield of order 2m if and only
if m divides n, and such a subfield is unique. The subfield F2m ⊆ F2n consists precisely of
elements a ∈ F2n such that a = a2m . We let F∗2n denote the multiplicative cyclic group of
nonzero elements of F2n . A generator of F∗2n is called a primitive element of F2n . Since F2n is
a field of characteristic two, we have that a+a = 0 for all a ∈ F2n and (a+b)2k = a2k +b2k for
all a, b ∈ F2n and any integer k. It follows that the map F : F2n → F2n , given by F (x) = x2

is a field automorphism called the Frobenius automorphism. If x 7→ xk is a permutation of

4

F2n then z1/k will denote the unique u ∈ F2n such that uk = z. As always, we will denote the
ring of univariate polynomials over F2n by F2n [x] and the ring of multivariate polynomials
in variables x1, . . . , xn over F2n by F2n [x1, . . . , xn].

The additive group of F2n naturally forms an n-dimensional vector space over F2, which
as usual will be denoted by Fn2 .

Throughout this thesis, we will call a map L : Fn2 → Fn2 linear if L(a+ b) = L(a) +L(b)
for all a, b ∈ Fn2 .

Definition 2.1.1 (Trace function). For positive integers m and n such that m divides n,
the trace function from F2n to F2m is defined as

Trnm(x) =
n/m−1∑
i=0

x2im
.

The trace function from F2n to F2 is called the absolute trace and we will denote it by Tr(x).

Lemma 2.1.2. Suppose m and n are positive integers such that m divides n. Then the
trace function Trnm : F2n → F2m satisfies the following properties.

(i) Trnm(a+ b) = Trnm(a) + Trnm(b) for all a, b ∈ F2n,

(ii) Trnm(ca) = cTrnm(a) for all c ∈ F2m, a ∈ F2n,

(iii) Trnm(a2m) = Trnm(a) for all a ∈ F2n,

(iv) Trnm(a) = n
m · a for all a ∈ F2m,

(v) if d is a positive integer that divides m, then Trnd (a) = Trmd (Trnm(a)) for all a ∈ F2n.

Lemma 2.1.3. For any a ∈ F2n, Tr(a) = 0 if and only if a = t2 + t for some t ∈ F2n.

Corollary 2.1.4. For a fixed a ∈ F∗2n, the set {x ∈ F2n : Tr(ax) = 0}, equal to {a−1(t2 +t) :
t ∈ F2n}, forms an (n− 1)-dimensional subspace (hyperplane) of F2n.

Proof. The map t→ t2 + t is linear and the dimension of its kernel is 1.

We will often consider functions f : F2n → F2n . It is well known that any such function
can be written uniquely as a univariate polynomial of degree less than 2n over F2n as

f(x) =
2n−1∑
i=0

cix
i

with ci ∈ F2n . It is clear that f is linear if and only if the exponent of each term of f is a
power of 2.

Lemma 2.1.5. Let A,B ∈ F∗2n and C ∈ F2n. Then the equation Ax2 + Bx + C = 0 has
exactly two roots in F2n if Tr

(
AC
B2

)
= 0 and no roots in F2n if Tr

(
AC
B2

)
= 1.

5

Proof. After substituting x 7→ B
Ay into Ax2 +Bx+ C = 0 and simplifying, we get

y2 + y + AC

B2 = 0

and the conclusion follows from applying Lemma 2.1.3.

Proposition 2.1.6. (Theorem 7.8 (ii) of [25]) Let f : F2n → F2n be given by f(x) = xd.
Then f(x) is a permutation of F2n if and only if gcd(d, 2n − 1) = 1.

Lemma 2.1.7. If gcd(n,m) = 1 then gcd(2n − 1, 2m − 1) = 1.

Proof. Let d = gcd(2n−1, 2m−1). Then 2n ≡ 1 (mod d) and 2m ≡ 1 (mod d) which implies
2rm+sn ≡ 1 (mod d) for any r, s ∈ Z. Specifically, since gcd(m,n) = 1, we can choose r and
s so that rm+ sn = 1. Then 21 ≡ 1 (mod d) and d = 1.

If n = 2m then throughout the thesis we will write q = 2m so that Fq is a subfield of
F2n . The set

U = {z ∈ Fq2 | zq+1 = 1},

sometimes called the “unit circle” in Fq2 , will play an important role. Note that U forms
a cyclic subgroup of F∗q2 of order q + 1. We will often use the fact that z = 1 is the only
element of U that is also an element of Fq. The following lemma is well known.

Lemma 2.1.8. Every y ∈ F∗q2 can be written uniquely as y = xz where x ∈ F∗q and z ∈ U .

Proof. There are (q − 1)(q + 1) = |F∗q2 | products of the form xz. Suppose x1z1 = x2z2 for
x1, x2 ∈ F∗q and z1, z2 ∈ U . Then x1/x2 = z2/z1 ∈ F∗q ∩ U = {1} and it follows that each
product xz is unique.

We say ω ∈ F2n is a primitive cube root of unity of F2n if ω 6= 1 and ω3 = 1. We will
use ω to denote a primitive cube root of unity of F2n throughout the thesis without further
reminders.

Lemma 2.1.9. The finite field F2n contains a primitive cube root of unity if and only if n
is even.

Proof. A primitive cube root of unity, say ω, is a solution in F2n to the equation x3 +1 = 0.
This equation factors as (x+ 1)(x2 + x+ 1) = 0. Since ω 6= 1, we are looking for solutions
in F2n to x2 + x+ 1 = 0 which exist if and only if n is even by Lemma 2.1.5.

We will need a condition for certain quadratic equations with arguments belonging
to U\{1}.

Lemma 2.1.10. Assume that A,B,C ∈ Fq and the equation Az2 + Bz + C = 0 has a
solution z ∈ U \ {1}. Then A = C.

6

Proof. Suppose Az2 +Bz+C = 0 and z ∈ U \ {1}. Raising the equation to the q-th power
and multiplying by z2 gives

z2(Az2 +Bz + C)q = z2(Aqz2q +Bqzq + Cq)

= z2(Az−2 +Bz−1 + C)

= A+Bz + Cz2 = 0.

Adding the equations yields

(Az2 +Bz + C) + (A+Bz + Cz2) = A(z2 + 1) + C(z2 + 1)

= (A+ C)(z2 + 1) = 0.

Since z 6= 1, the conclusion follows.

In Chapter 3 we will use the resultant to eliminate one variable from two multivari-
ate polynomials. Since including the full definition of the resultant would add unnecessary
complexity to the thesis, we treat the resultant as a “black box”. We use the most common
definition of resultant which is the determinant of the Sylvester matrix, see Chapter 3, Def-
inition 2 of [16]. This resultant is also implemented in Magma [5]. We denote by resy(A,B)
the resultant of polynomials A and B with respect to the eliminated variable y.

The following proposition follows from Chapter 4, Corollary 4 of [16].

Proposition 2.1.11. Let K be a ring. Let A,B ∈ K[x1, . . . , xn, y] and let R(x1, . . . , xn) =
resy(A,B). Let (x∗1, . . . , x∗n, y∗) ∈ Kn+1 be such that A(x∗1, . . . , x∗n, y∗) = B(x∗1, . . . , x∗n, y∗)
= 0. Then R(x∗1, x∗2, . . . , x∗n) = 0.

Example 2.1.12. Let F101 denote the finite field of order 101. Suppose A,B ∈ F101[x, y]
are given by A(x, y) = 4x4 + 3x3y2 + xy + y + 5 and B(x, y) = x4y3 + 2x2y + xy4. The
solutions to the system of equations A(x, y) = B(x, y) = 0 are

(0, 96), (49, 0), (15, 0), (11, 77), (52, 0) and (86, 0).

The roots of resy(A,B) are 0, 11, 15, 49, 52 and 86 and the roots of resx(A,B) are 0, 77 and
96. One can see that if (x∗, y∗) is a solution to the original system then x∗ is also a solution
to resy(A,B) = 0 and y∗ is also a solution to resx(A,B) = 0.

2.2 Almost perfect nonlinear functions

Recall that we denote by Fn2 the n-dimensional vector space over F2. Denote by (Fn2)∗

the set of nonzero vectors in Fn2 . Functions mapping from Fn2 to F2 are called Boolean
functions. Functions of this type have found many applications in computer science and

7

in digital communications (cryptography, coding theory). More generally, one can view
vectorial Boolean functions, f : Fn2 → Fm2 , as mapping to vectors of length m with Boolean
functions as components. Vectorial Boolean functions are used extensively in block ciphers.
Balanced functions are favored in cryptography as they remove biases that could be used
by attackers.

Definition 2.2.1. A function f : Fn2 → Fm2 is balanced if |{x ∈ Fn2 : f(x) = a}| = 2n−m

for each a ∈ Fm2 .

Lemma 2.2.2. The trace function Trnm : F2n → F2m is balanced.

We recall from Chapter 1 that almost perfect nonlinear (APN) functions were introduced
in the mid-1990s, when the mathematical methods started to play a significant role in
the design of symmetric cryptography. APN functions are highly sought after since they
optimally protect against differential cryptanalysis. For an in-depth overview of differential
cryptanalysis, see Section 4.4 of [34]. Differential cryptanalysis of a cipher F assumes that
an attacker knows a large number of pairs of plaintexts x, x + a ∈ Fn2 that have a fixed
difference a, as well as their corresponding ciphertext pairs F (x) and F (x + a) which are
encrypted using an unknown but fixed key. If a poor design of S-boxes used in F causes a
certain output difference b = F (x) − F (x + a) to occur much more or less given a certain
input difference a, then this statistical dependency can be exploited by an attacker to
recover (parts of) the secret key. It is therefore desired that these output differences are as
uniformly distributed as possible for a given input difference, which motivates the following
definitions.

Definition 2.2.3. The differential uniformity of a function f : Fn2 → Fn2 is given by

∆f = max
a∈(Fn

2)∗,b∈Fn
2

δf (a, b),

where
δf (a, b) = |{x ∈ Fn2 : f(x+ a) + f(x) = b}|.

In this thesis we only consider differential uniformity in characteristic 2 but it can also
be defined for functions on vector spaces of odd characteristic.

Proposition 2.2.4. Let f : Fn2 → Fn2 . Then ∆f is even and ∆f ≥ 2.

Proof. Suppose a ∈ (Fn2)∗ and b ∈ Fn2 are fixed. If r ∈ Fn2 is a solution to f(x+a)+f(x) = b

then r + a must also be a solution. For a fixed a ∈ (Fn2)∗ we have
∑
b∈Fn

2
δf (a, b) = 2n and

by applying the pigeonhole principle we have ∆f ≥ 2n−n = 1. But since ∆f is even we have
∆f ≥ 2.

Definition 2.2.5. We call a function f : Fn2 → Fn2 almost perfect nonlinear (APN) if
∆f = 2.

8

2.2.1 APN functions on finite fields

It is important to note that the definition of APN function given above only uses the vector
space structure of Fn2 but it does not require the domain to be the field F2n . We only work
with APN functions defined on fields F2n throughout this thesis, in order to exploit their
rich algebraic structure. Most of the literature follows this approach.

There exist six known families of APN monomial functions over F2n , see Table 1 of [9].
Moreover, for odd dimension n all of these families are permutations.

Name Exponent d Conditions
Gold 2i + 1 gcd(i, n) = 1

Kasami 22i − 2i + 1 gcd(i, n) = 1
Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i
Welch 2i + 3 n = 2i+ 1
Inverse 22i − 1 n = 2i+ 1
Niho 2i + 2

i
2 − 1, i even n = 2i+ 1

2i + 2
3i+1

2 − 1, i odd n = 2i+ 1

Table 2.1: Known infinite families of APN power functions f(x) = xd.

The formal definition of an APN function was introduced by Nyberg in 1993 and some
of the material in this section is taken from her paper “Differentially uniform mappings for
cryptography” [31].

Proposition 2.2.6 ([31]). For integers n, i with gcd(i, n) = 1, the Gold function f(x) =
x2i+1 is APN.

Proof. Suppose a ∈ F∗2n and b ∈ F2n are fixed. By Definition 2.2.3, we must show that the
number of solutions in F2n of the equation

(x+ a)2i+1 + x2i+1 = b

is at most 2. Expanding and simplifying gives

ax2i + a2i
x+ a2i+1 = b. (2.1)

If (2.1) has no solutions then we are done. Suppose (2.1) has distinct solutions r, s ∈ F2n

so that

ar2i + a2i
r + a2i+1 = b,

as2i + a2i
s+ a2i+1 = b.

9

Adding these two equations and rearranging gives

(
r + s

a

)2i

= r + s

a

which implies r+s
a ∈ F2i . But since gcd(i, n) = 1, it must be that F2i ∩ F2n = F2. Since

r + s 6= 0, it follows that r = s + a. Since r, s are freely chosen from the set of all possible
solutions to (2.1), the equality r = s+ a means that there are exactly two solutions.

Proposition 2.2.7. For n odd and gcd(i, n) = 1, the Gold function f(x) = x2i+1 is a
permutation of F2n.

Proof. Let d = gcd(2n − 1, 2i + 1). Then d divides gcd(2n − 1, (2i + 1)(2i − 1)) = gcd(2n −
1, 22i − 1). Since n is odd, gcd(2i, n) = 1 and by Lemma 2.1.7, gcd(2n − 1, 22i − 1) = 1. By
Proposition 2.1.6, f(x) = x2i+1 is a permutation of F2n .

The binary weight of a nonnegative integer z is the number of ones in its binary expansion
and it will be denoted by w2(z).

Definition 2.2.8 (Algebraic degree, page 45 of [11]). The algebraic degree of a function
f : F2n → F2n is the maximum binary weight of an exponent of any nonzero term of f .

Example 2.2.9. For n = 9, the algebraic degree of f(x) = x3 is 2, and the algebraic degree
of its compositional inverse g(x) = x1/3 = x341, which is also an APN permutation, is 5
since 341 = 20 + 22 + 24 + 26 + 28.

Example 2.2.10. A linear polynomial over F2n has the form f(x) =
∑n−1
i=0 cix

2i for some
ci ∈ F2n. Each exponent of every term is 2iand has binary weight w2(2i) = 1. Hence, a
polynomial f(x) over F2n is linear if and only if its algebraic degree is 1 and f(x) has no
constant term.

Example 2.2.11. For distinct integers i and j, the binary weight of 2i+2j is w2(2i+2j) =
2. Polynomials of algebraic degree 2 are called quadratic polynomials. In particular Gold
functions x 7→ x2i+1 are quadratic.

Example 2.2.12. Let f(x) = 1
x , with f(0) = 0, be the field inverse function on F2n.

Equivalently, f(x) = x2n−2. We have

w2(2n − 2) = w2

(
n−1∑
i=1

2i
)

= n− 1.

So the field inverse function has algebraic degree n− 1.

There are properties other than differential uniformity to consider when looking for
optimal cryptographic functions. For example, functions with low algebraic degree (like

10

the Gold function with algebraic degree 2) are prone to higher order differential attacks.
Thus finding APN functions with high algebraic degree is desirable. One particular way of
possibly increasing the algebraic degree is by taking the compositional inverse of the given
function if it exists. In particular for the Gold functions, taking the compositional inverse
already provides APN permutations of higher algebraic degree, see Example 2.2.9.

Proposition 2.2.13 ([31]). Let f : F2n → F2n be given by f(x) = 1/x and define f(0) = 0.
Equivalently, f(x) = x2n−2. Then ∆f = 2 when n is odd and ∆f = 4 when n is even.

Proof. Suppose a ∈ F∗2n and b ∈ F2n are fixed. Following Definition 2.2.3, we consider the
number of solutions in F2n of the equation

(x+ a)2n−2 + x2n−2 = b. (2.2)

By Proposition 2.1.6, f(x) is a permutation of F2n and so we can assume that b 6= 0. It is
clear that x = 0 and x = a are solutions if and only if a2n−2 = b, in which case, ab = 1. If
x 6= 0 and x 6= a then (2.2) becomes

(x+ a)−1 + x−1 = b

and rearranging gives
bx2 + abx+ a = 0 (2.3)

which has at most two solutions in F2n . Therefore ∆f is at least 2, regardless of the parity
of n. Furthermore, the only way that ∆f is greater than 2 is when ab = 1. In which case
(2.3) becomes

x2 + ax+ a2 = 0

and the result follows by applying Lemma 2.1.5.

The field inverse function of Proposition 2.2.13 has high algebraic degree (n − 1) and
it is always a permutation. It is close to being APN for even n since ∆f = 4. For these
reasons, among others such as simplicity of description, in dimension 8 this function is used
in the S-box of the Advanced Encryption Standard, which we discussed in Chapter 1.

One of the most important open problems concerning APN permutations is their exis-
tence in even dimensions. In 2006, Hou proved that for dimensions n = 2 and n = 4 no
APN permutations exist [21] and it was conjectured that no APN permutations exist in even
dimensions. Surprisingly, in 2009 Browning et al. [7] constructed an example of an APN
permutation of F26 , but it is not known if other APN permutations in dimension 6 exist.
Since then, no new APN permutations in even dimensions have been found. The question
of the existence of APN permutations in even dimensions greater than six is known as the
Big APN Problem.

11

2.3 Equivalences which preserve cryptographic properties

In this section we introduce some notions of equivalence that we will use throughout the
next two chapters. We follow Section 2.1 of [11].

Definition 2.3.1 (Linear and Affine function). Let f : Fn2 → Fn2 . Recall that f is called
linear if f(x+y) = f(x)+f(y) for all x, y ∈ Fn2 . Further, f is called affine if f(x) = g(x)+c
where g is linear and c ∈ Fn2 .

Definition 2.3.2. Two functions F : Fn2 → Fn2 and G : Fn2 → Fn2 are called affine equivalent
if there exist affine permutations L1, L2 of Fn2 such that

F (x) = L1(G(L2(x))).

Furthermore, if there exists an affine function L3 : Fn2 → Fn2 such that

F (x) = L1(G(L2(x))) + L3(x),

then we say that F and G are extended affine or EA-equivalent.

It is well known that EA-equivalence preserves the algebraic degree of a function when
the algebraic degree is greater than one. EA-equivalence also preserves the differential uni-
formity of a function. In particular, applying EA-equivalence to an APN function produces
another APN function.

The following lemmas will be useful when constructing affine equivalences from linear
permutations.

Lemma 2.3.3. A linear map L : Fq2 → Fq2 is a bijection if and only if L(z) has no nonzero
roots in Fq2.

Proof. Suppose L(z) is a bijection. Since L(0) = 0 it follows that 0 is the only root of L(z).
Conversely, suppose L(z) has no nonzero roots in Fq2 . If L(α) = L(β) for α, β ∈ Fq2 then
L(α + β) = 0. Since 0 is the only root of L(z), it must be that α = β. So L(z) is injective
on Fq2 . Thus L(z) is a bijection.

We will use the following lemma extensively in Chapter 3.

Lemma 2.3.4. Suppose L(z) is a linear map from Fq2 to Fq2 given by L(z) = zq+ tz. Then
L(z) is a bijection if and only if t /∈ U .

Proof. In light of Lemma 2.3.3, we will show that L(z) has a nonzero root in Fq2 if and only
if t ∈ U . Suppose α ∈ F∗q2 such that 0 = L(α) = αq + tα. Then αq−1 = t and

tq+1 = (αq−1)q+1 = αq
2−1 = 1.

12

Therefore t ∈ U . Conversely, suppose t ∈ U . If t = 1 then L(z) = zq + z for which every
element of Fq is a root. If t ∈ U\{1} then L(tq + 1) = (tq + 1)q + t(tq + 1) = tq+1 + 1 = 0
and tq + 1 is a nonzero root of L(z).

In 1998 an important equivalence relation more general than EA equivalence was intro-
duced by Carlet, Charpin, and Zinoviev [13]. Later it has become known as CCZ-equivalence.

Definition 2.3.5. Two functions F : Fn2 → Fn2 and G : Fn2 → Fn2 are CCZ-equivalent if
there exists an affine automorphism L of Fn2 × Fn2 such that

{(x, F (x)) : x ∈ Fn2} = L({(x,G(x)) : x ∈ Fn2}).

CCZ-equivalence is strictly more general than EA-equivalence together with taking in-
verses of permutations, see Section 2.1.1 of [11]. CCZ-equivalence preserves the differential
spectrum of functions, in particular their differential uniformity. That is, it preserves the
multiset of values δf (a, b) = |{x ∈ Fn2 : f(x + a) + f(x) = b}|, see page 136, paragraph 2,
of [11].

Example 2.3.6. Suppose F : F2n → F2n is a bijection. The transformation L(x, y) = (y, x)
is an affine automorphism of Fn2 × Fn2 and

L({(x, F (x)) : x ∈ Fn2}) = {(F (x), x) : x ∈ Fn2}.

Therefore F (x) is CCZ-equivalent to F−1(x). It follows that if F (x) is an APN permutation,
then its compositional inverse F−1(x) is also APN.

There is much active research [10] into how to partition a class of CCZ-equivalent func-
tions into EA equivalence classes. Data that remain invariant under certain equivalences are
often used to examine the possible equivalence between functions. Unlike EA-equivalence,
the algebraic degree of a function is not preserved under CCZ-equivalence, see page 36 of
[11]. Since CCZ-equivalence does not preserve the permutation property of a function, ap-
plying CCZ transformations may be used as a tool for finding new APN permutations. See
page 403 of [11] for a list of some other CCZ invariant parameters.

We will need some background from coding theory (see Chapter 3 of [28]) in order to
give the code-based criterion of CCZ-equivalence.

Definition 2.3.7. The Hamming weight w(x) of a vector x ∈ Fn2 is the number of nonzero
coordinates in x.

Definition 2.3.8. A binary code C with parameters [n, k, d] is an F2-linear subspace of Fn2
where dimF2 C = k and d = min{w(x) : x ∈ C\{0}}. We say d is the distance of C. It is
usual to refer to elements of C as codewords.

13

Definition 2.3.9. A generator matrix for a binary code C is a k × n matrix whose rows
form a basis for C.

We say that binary codes C and C ′ are equivalent if they are equal up to some permu-
tation of their coordinates. Thus permuting the columns of a generator matrix for a code
C will produce the generator matrix of an equivalent code C ′.

Definition 2.3.10. A parity check matrix for a binary code C is a generator matrix for
the dual code C⊥ = {x ∈ Fn2 : ∀y ∈ C, x · y = 0}

Definition 2.3.11. For a positive integer r, the binary simplex code Sr is a binary code
with parameters [2r − 1, r, 2r−1].

It is well known that for every nonzero x ∈ Sr the Hamming weight of x is 2r−1. The
generator matrix for the code Sr is a r×(2r−1) matrix whose columns consist of all distinct
nonzero vectors of Fr2. Therefore each such code is unique up to equivalence and a generator
matrix for Sr naturally corresponds to a permutation of Fn2 that fixes zero.

Let F : F2n → F2n . Assume that F (0) = 0, which can be achieved by an affine transfor-
mation which is a special kind of CCZ-equivalence. Let α be a primitive element of F2n and
fix a basis of F2n over F2. In the matrix below we express elements of F2n as n-dimensional
column vectors over F2 with respect to that fixed basis. Let

HF =
[

1 α α2 . . . α2n−2

F (1) F (α) F (α2) . . . F (α2n−2)

]
.

We will denote by CF the binary code with parity check matrix HF . The following was
observed by Browning et al. [6] and is given as Remark 4 of Proposition 160 of [11].

Proposition 2.3.12 ([6]). Let F,G : F2n → F2n satisfy F (0) = G(0) = 0. If CF and CG
are equivalent then F and G are CCZ-equivalent.

In this thesis we will show CCZ-equivalence by using Proposition 2.3.12, instead of
Definition 2.3.5.

2.4 Kim-type functions

The only known APN permutation in even dimensions was discovered by Browning et al.
in [7]. It was obtained by applying a certain CCZ-equivalence transformation (which we
formalize in Proposition 2.5.7) to the function

κ : F26 → F26 , κ(x) = x3 + x10 + ux24,

where u is a primitive element of F26 whose minimal polynomial over F2 is X6 +X4 +X3 +
X+ 1. The function κ is known as the Kim function, named after the first author of [7]. An

14

interesting property of this function, known as the subspace property, is that κ(cx) = c3κ(x)
for all c ∈ F23 ⊂ F26 .

Naturally, there has been much interest in generalizing the Kim function in hopes of
solving the Big APN Problem. In 2014, Carlet posed the following open problem regarding
generalized Kim functions:

Problem 2.4.1. [12, Section 3.7] Find more APN functions or, better, infinite classes of
APN functions of the form X3 + aX2+q + bX2q+1 + cX3q where q = 2n/2 with n even, or
more generally of the form X2k+1 + aX2k+q + bX2kq+1 + cX2kq+q, where gcd(k, n) = 1.

It has been customary to call functions of this form Kim-type functions, to recognize
that they generalize the Kim function.

The motivation for solving Problem 2.4.1 is given by possibly using the Kim-type APN
function as an ingredient to a suitable CCZ transformation to obtain APN permutations,
by analogy to the approach of [7]. We characterize such suitable transformations in Propo-
sition 2.5.7. There have been several lines of attack to approach Problem 2.4.1; we refer to
the Introduction section of [24] for a recent and detailed account of them. For the rest of
this section we write n = 2m and q = 2m so that Fq ⊂ Fq2 .

The first part of Problem 2.4.1 was resolved in the special case when the coefficients a, b, c
belong to the subfield Fq of Fq2 . Specifically, in Theorem 3.2 of [22] Krasnayová proved that
the function F : Fq2 → Fq2 given by F (X) = X3+bX3q+cX2q+1+dX2+q is APN if and only
if the conditions in Table 2.2 are satisfied. Please note that the notation used in Table 2.2 is
different from that of Problem 2.4.1. We chose to not change the notation in order to stay
consistent with the original references. We also note that our main reference [24] uses yet
another different but equivalent form of the Kim-type function. Starting from Theorem 2.4.2
we will be using the notation of [24] for Kim-type functions.

m odd m even
∆ = 1 + b+ c+ d 6= 0

Trm1
(

1+b
1+b+c+d

)
= 1 Trm1

(
1+b

1+b+c+d

)
= 0

1 + c+ b2 + bd 6= 0 -
Trm1

(
∆2

1+b2+c+bd

)
= 1 -

if Trm1
(
bd+c
∆2

)
= 1, then b2c2 + d2 6= ∆2(bd+ c)

Trm1
(

∆(T∆+c+d)(T 2∆2+bd+c)
(T∆2+bc+d)2

)
= 1,

for every T such that Trm1 (T) = 1, ∆T + 1 + b 6= 0,
T∆2 + bc+ d 6= 0 and ∆2T 2 + bd+ c 6= 0

Table 2.2: Krasnayová’s APN conditions.

The conditions given in Table 2.2 are not computationally efficient since there are expo-
nentially many conditions to check as the dimension increases. In an unpublished manuscript
by Göloğlu, Krasnayová, and Lisoněk [19], it is shown that the last condition in Table 2.2

15

can be simplified. Specifically, it leads to the conditions bd+ c2 + c+ d2 = 0 when m is even
or odd and b2 + bd + c + 1 = 0 when m is even (see Appendix A for these calculations),
and one more case which is shown in [19] to never occur. This led to the following theorem
regarding Kim-type functions with coefficients restricted to the subfield Fq of Fq2 .

Theorem 2.4.2. [19] Suppose that m ≥ 4 is an integer and let q = 2m. Let f : Fq2 → Fq2

be given by f(x) = x3q + a1x
2q+1 + a2x

q+2 + a3x
3 where a1, a2, a3 ∈ Fq. If f is APN, then

f is affine equivalent to G1(x) = x3 or f is affine equivalent to G2(x) = x2m−1+1.

Therefore Kim-type functions with a1, a2, a3 ∈ Fq produce no new APN functions. The
results of [19] were presented in a talk at the 13th International Conference on Finite Fields
and their Applications Fq13 in 2017 [27].

In July 2020, a major advance on the subject was obtained by Li, Li, Helleseth and
Qu [24] who resolved the first part of Problem 2.4.1 by completely characterizing APN
functions on Fq2 of the form f(x) = x3q + a1x

2q+1 + a2x
q+2 + a3x

3, where m ≥ 4 and
a1, a2, a3 ∈ Fq2 . We state their result in this section as Theorem 2.4.4. In contrast to
Table 2.2, the conditions given in [24] are much simpler and the number of conditions does
not increase as the dimension of F2n increases. This result was crucial for enabling our
research.

For the rest of this section we summarize the most important results of Li, Li, Helleseth
and Qu [24], without which our work would not be possible. Then we use the results of [24]
to present a much simpler proof of the main result from [19].

The following is an observation which is not stated as a numbered item in [24] but we
want to give it a label for our future reference, and we also state it in a slightly different
form.

Lemma 2.4.3. [24] Any function f : Fq2 → Fq2 given by f(x) = x3q + a1x
2q+1 + a2x

q+2 +
a3x

3 where a1, a2, a3 ∈ Fq2 is affine equivalent to a function f ′(x) = x3q+a′1x2q+1+a′2xq+2+
a′3x

3 where a′1 ∈ Fq and a′2, a′3 ∈ Fq2. If a2 = 0, then it is possible to choose f ′ such that
a′2 = 0.

Proof. If a1 = 0 then we are done. For any fixed a1 ∈ F∗q2 let b = a2m−1
1 . Then

f(bx) = b3qx3q + a1b
2q+1x2q+1 + a2b

q+2xq+2 + a3b
3x3

= b3q
(
x3q + a1

(
b

bq

)
x2q+1 + a2

(
b2

b2q

)
xq+2 + a3

(
b3

b3q

)
x3
)
.

Let
f ′(x) =

(1
b3q

)
· f(bx) = x3q + a′1x

2q+1 + a′2x
q+2 + a′3x

3

where a′1 = a1
(
b
bq

)
, a′2 = a2

(
b2

b2q

)
, and a′3 = a3

(
b3

b3q

)
. Note that f(x) is affine equivalent to

f ′(x) and since a1 = b2q, it follows that a1
(
b
bq

)
= bq+1 ∈ Fq.

16

For z ∈ Fq2 we denote z̄ = zq. The following constants are introduced in [24] where
they are used in Theorem 2.4.4; we will use them frequently in this section and throughout
Chapter 3.

θ1 = 1 + a2
1 + a2ā2 + a3ā3,

θ2 = a1 + ā2a3,

θ3 = ā2 + a1ā3,

θ4 = a2
1 + a2ā2.

(2.4)

The following theorem is the main result of [24].

Theorem 2.4.4. [24, Theorem 1] Let n = 2m with m ≥ 4 and f(x) = x̄3 +a1x̄
2x+a2x̄x

2 +
a3x

3, where a1 ∈ F2m , a2, a3 ∈ F2n. Let θi’s be defined as in (2.4) and define

Γ1 =
{

(a1, a2, a3) | θ1 6= 0, Trm1

(
θ2θ̄2
θ2

1

)
= 0, θ2

1θ4 + θ1θ2θ̄2 + θ2
2θ3 + θ̄2

2 θ̄3 = 0
}

(2.5)

and

Γ2 =
{

(a1, a2, a3) | θ1 6= 0, Trm1

(
θ2θ̄2
θ2

1

)
= 0, θ2

1θ3 + θ1θ̄
2
2 + θ2

2θ3 + θ̄2
2 θ̄3 = 0

}
. (2.6)

Then f is APN over F2n if and only if

(1) m is even, (a1, a2, a3) ∈ Γ1 ∪ Γ2; or

(2) m is odd, (a1, a2, a3) ∈ Γ1.

Any time we try to show affine equivalence using a linear permutation(s) of the input
and/or output of a function, we find the coefficients of those permutation(s) by expanding
its/their sufficiently general form and comparing coefficients.

Lemma 2.4.5. The Gold functions G2(x) = x2m−1+1 and G′2(x) = x2m+1+1 over Fq2 are
affine equivalent.

Proof. The result follows from observing that

G2(x2q) =
(
x2m+1)2m−1+1

= x22m+2m+1 = x2m+1+1 = x2q+1 = G′2(x).

Lemma 2.4.6. Let L1(u) = uq + tu and L2(u) = ruq + su for some r, s, t ∈ Fq2. Let
G1(x) = x3 and G′2(x) = x2m+1+1. Then

L1(G1(L2(x))) = (r3t+ s3q)x3q + (rqs2q + r2st)x2q+1 + (r2qsq + rs2t)xq+2 + (r3q + s3t)x3

17

and

L1(G′2(L2(x))) = (r2sq+rs2qt)x3q+(rq+2+s2q+1t)x2q+1+(r2q+1t+sq+2)xq+2+(r2qst+rqs2)x3.

Proof. Expanding gives

L1(G1(L2(x))) = L1((rxq + sx)3)

= L1((r2x2q + s2x2)(rxq + sx))

= L1(r3x3q + r2sx2q+1 + rs2xq+2 + s3x3)

= s3qx3q + rqs2qx2q+1 + r2qsqxq+2 + r3qx3

+ r3tx3q + r2stx2q+1 + rs2txq+2 + s3tx3

and

L1(G′2(L2(x))) = L1((rxq + sx)2q+1)

= L1((r2qx2 + s2qx2q)(rxq + sx))

= L1(rs2qx3q + s2q+1x2q+1 + r2q+1xq+2 + r2qsx3)

= r2sqx3q + rq+2x2q+1 + sq+2xq+2 + rqs2x3

+ rs2qtx3q + s2q+1tx2q+1 + r2q+1txq+2 + r2qstx3.

The proof is completed by rearranging the terms in the last expression of each expansion.

In the remainder of this section we include the proof of Theorem 2.4.2 using Theo-
rem 2.4.4. We mostly follow the original line of proof in [19] but we take significant advan-
tage of [24] which allows major simplifications in comparison to the original proof in [19]. In
the following proof we will often use linear maps L : Fq2 → Fq2 of the form L(u) = uq + tu

given in Lemma 2.3.4. Note that for the case of t ∈ Fq we only need to check that t 6= 1 for
L to be a bijection.

Proof of Theorem 2.4.2. Assume a1, a2, a3 ∈ Fq. Then the θi defined in (2.4) satisfy

θ1 = (1 + a1 + a2 + a3)2

θ2 = a1 + a2a3

θ3 = a2 + a1a3

θ4 = a2
1 + a2

2.

Assume f(x) = x3q + a1x
2q+1 + a2x

q+2 + a3x
3 is APN and therefore satisfies the conditions

given in Theorem 2.4.4. The third condition of Γ1 becomes θ1(θ1θ4+θ2
2) = 0 which simplifies

18

to
θ1S

2 = 0 (2.7)

where
S = a2

1 + a1a3 + a2
2 + a2.

The third condition of Γ2 becomes θ1(θ1θ3 + θ2
2) = 0 which factors as

θ1ST = 0 (2.8)

where
T = a1a3 + a2 + a2

3 + 1.

If f is APN, then it follows from Theorem 2.4.4 that θ1 6= 0. Thus we must have S = 0
for (2.7) to hold, and we must have ST = 0 for (2.8) to hold. Note that S = 0 and ST = 0
are exactly the conditions that result from simplifications of the conditions in Table 2.2
which we computed in Appendix A.

First we will show that f is affine equivalent to a function that has one of the following
forms:

(i) f1(x) = x3q + c1x
2q+1 + c2x

q+2,

(ii) f2(x) = x3q + c2x
q+2 + x3,

with c1, c2 ∈ Fq.
If a3 = 0 then f is of the form (i) and we are done. Assume a3 = 1. If a1 = 0 then f

is of the form (ii) and we are done. If a1 = a2 then f(x)q = f(x). Thus, f(x) ∈ Fq for all
x ∈ Fq2 , which contradicts f being APN. If a1 /∈ {0, a2} then let r = a2/a1. Since r /∈ U , it
follows by Lemma 2.3.4 that L(u) = uq + ru is a permutation of Fq2 . Also,

L(f(x)) = L(x3q + a1x
2q+1 + a2x

q+2 + x3)

= x3q + a2x
2q+1 + a1x

q+2 + x3 +
(
a2
a1

)
x3q + a2x

2q+1 +
(
a2

2
a1
xq+2

)
+
(
a2
a1
x3
)

=
(
a2
a1

+ 1
)
x3q +

(
a1 + a2

2
a1

)
xq+2 +

(
a2
a1

+ 1
)
x3.

Dividing the above by r + 1 gives a function that is affine equivalent to f and of the form
(ii).

Now assume a3 /∈ {0, 1}. It follows from Lemma 2.3.4 that L(u) = a3u
q + u is a permu-

tation of Fq2 . Also,

19

L(f(x)) = L(x3q + a1x
2q+1 + a2x

q+2 + a3x
3)

= a2
3x

3q + a2a3x
2q+1 + a1a3x

q+2 + a3x
3 + x3q + a1x

2q+1 + a2x
q+2 + a3x

3

= (a2
3 + 1)x3q + (a1 + a2a3)x2q+1 + (a1a3 + a2)xq+2.

Dividing the above by a2
3 + 1 gives a function that is affine equivalent to f and of the form

(i). Therefore, if f is APN, it must be affine equivalent to a function of the form (i) or (ii).
Now we will show that APN functions of the form f1 or f2 are affine equivalent to

G1(x) = x3 or G2(x) = x2m−1+1.
First consider f1(x) = x3q + c1x

2q+1 + c2x
q+2. Let S and T be defined relative to the

coefficients c1 and c2 of f1. That is,

S = c2
1 + c2

2 + c2

and
T = c2 + 1.

We consider the case of S = 0 and S 6= 0 separately. First suppose S = 0. If c2 = 0 then
c1 = 0 and f1(x)q = G1(x). If c2 = 1 then S = c2

1 = 0, but by Theorem 2.4.4, we require
that θ1 = c2

1 6= 0. So assume c2 /∈ {0, 1}. Let b ∈ Fq \ F2 be such that c2 = (b+ 1)2. Then it
follows from S = 0 that c1 = b2 + b. So f1 is of the form

f1(x) = x3q + (b2 + b)x2q+1 + (b+ 1)2xq+2. (2.9)

Let r ∈ Fq be such that r3 6= 1. The linear maps L1(x) = xq + r3x and L2(x) = rxq + x are
permutations of Fq2 . By Lemma 2.4.6 we have

L1(G1(L2(x))) = (r6 + 1)x3q + (r5 + r)x2q+1 + (r4 + r2)xq+2.

Dividing by r6 + 1, we see that G1 is affine equivalent to

F1(x) = x3q + r5 + r

r6 + 1x
2q+1 + r4 + r2

r6 + 1 x
q+2.

Letting

b′ = (r + 1)3

r3 + 1 = (r + 1)2

r2 + r + 1 , (2.10)

we have
F1(x) = x3q + (b′2 + b′)x2q+1 + (b′ + 1)2xq+2.

20

From the trace condition of Theorem 2.4.4 applied to function f1 in equation (2.9) we have

Trm1

(
θq+1

2
θ2

1

)
= Trm1

(
θ2
θ1

)
= Trm1

(
b2 + b

b2

)
= 0,

equivalently
Trm1

(1
b

)
= Trm1 (1).

To show that f1 is affine equivalent to G1, we must show that b′ takes all values from Fq \F2

such that Trm1 (b′−1) = Trm1 (1) as r runs through Fq \ F4. Let r′ = r + 1. Then

Trm1 (b′−1) = Trm1

(
r3 + 1

(r + 1)3

)
= Trm1

(
r′3 + r′2 + r′

r′3

)

= Trm1 (1) + Trm1
(1
r′

)
+ Trm1

(1
r′2

)
= Trm1 (1).

For any fixed value of b′, equation (2.10) can be written as a quadratic equation in variable r,
hence any b′ has at most two preimages r. It then follows by a counting argument, which has
to be performed separately for m odd and m even, that all values b′ such that Trm1 (b′−1) =
Trm1 (1) are produced from a suitable r. In both cases we have to note that b′ = 1 has exactly
one preimage r = 0. It follows that if S = 0, then f1 is affine equivalent to G1.

Now suppose S 6= 0, then from Theorem 2.4.4 it follows that m is even and T = c2 +1 =
0. Then c2 = 1 and

f1(x) = x3q + c1x
2q+1 + xq+2.

By Theorem 2.4.4, we require θ1 = c2
1 6= 0, that is, c1 6= 0. We also require the trace

condition

Trm1

(
θq+1

2
θ2

2

)
= Trm1

(1
c1

)
= 0.

Let r ∈ Fq \ F2 so that L(x) = xq + rx is a linear permutation of Fq2 . By Lemma 2.4.5,
G2(x) is affine equivalent to G′2(x) = x2q+1 and by Lemma 2.4.6 we have

L(G′2(L(x))) = (r3 + r)x3q + (r4 + 1)x2q+1 + (r3 + r)xq+2.

After dividing by r3 + r, we see that G2 is affine equivalent to

F1(x) = x3q + dx2q+1 + xq+2

where
d = (r + 1)2

r
.

21

Let r′ = r + 1 so that r′ is also in Fq \ F2. We have

Trm1
(1
d

)
= Trm1

(
r

(r + 1)2

)
= Trm1

(
r′ + 1
r′2

)
= Trm1

(1
r′

)
+ Trm1

(1
r′2

)
= 0.

Since each d is produced by at most two values of r, it follows again by a counting argument
that d takes all values in F∗q such that Trm1 (d−1) = 0. Thus f1 is affine equivalent to G2

when S 6= 0.
Finally, we consider f2(x) = x3q + c2x

q+2 + x3. Let S and T be defined relative to the
coefficient c2 of f2. That is,

S = c2
2 + c2

and
T = c2.

We note that θ1 = c2
2 must be nonzero. Since T = c2 6= 0 we must also have S = c2

2 +c2 = 0.
Therefore c2 = 1 and it follows that θ1 = θ2 = 1. From the trace condition, we have

0 = Trm1

(
θq+1

2
θ2

1

)
= Trm1

(
θ2
θ1

)
= Trm1 (1).

Therefore m must be even, hence Fq contains a primitive cube root of unity ω. Let L(x) =
xq + ωx which is a permutation of Fq2 since ω /∈ U when m is even. By Lemma 2.4.6 we
have

L(G1(L(x))) = (ω + 1)x3q + (ω + 1)xq+2 + (ω + 1)x3.

So f2 is affine equivalent to G1.
This completes the proof of Theorem 2.4.2.

2.5 Walsh zeros

Browning et al. [7] introduced a method that, assuming certain conditions are satisfied,
constructs a permutation that is CCZ-equivalent to a given function. In particular if the
given function is APN then this allows the possibility of finding an APN permutation.
In Proposition 2.5.7 we present this method in a different but equivalent form, using the
concept of Walsh zero spaces. We also include a proof of the proposition, which is contained
only implicitly in [7], because it allows one to explicitly construct a permutation CCZ-
equivalent to the given function.

The Walsh transform is well known and is used often in the area of mathematics of
digital communications. The Walsh transform is used to measures the correlation between a
function f(x) and an affine function ax+c. See Section 2.3.3 of [11] for a detailed introduction
to the Walsh transform and Chapter 5 of [11] for an up-to-date overview of how the Walsh
transform relates to the study of Boolean and APN functions.

22

Definition 2.5.1. The Walsh transform of a function f : F2n → F2n is given by

Wf (a, b) =
∑
x∈F2n

(−1)Tr(ax+bf(x)).

The Walsh spectrum of f is the multiset of values of Wf (a, b) for all a, b ∈ F2n .

Originally, the Walsh transform was used to study Boolean functions and the interest was
in finding the absolute values that the Walsh transform can take, in particular in collectively
minimizing the amplitudes of the Walsh spectrum. This was the motivation for the original
Gold paper [18] in which the application was finding sequences with favourable correlation
properties. As such, there is much infrastructure surrounding the Walsh transform that is
already in place. For our research, we are only interested in the Walsh zeros.

Definition 2.5.2. Given a function f : F2n → F2n, an element (a, b) ∈ F2n × F2n is a
Walsh zero of f if Wf (a, b) = 0.

Definition 2.5.3. Let f be a function from F2n to F2n. Suppose that Z is an F2-linear
subspace of F2n × F2n such that dimF2 Z = n and each element of Z other than (0, 0) is a
Walsh zero of f . We say that Z is a Walsh zero space of f (WZ space of f).

Definition 2.5.4. For a given function f : F2n → F2n, we say that two WZ spaces Y,Z
of f intersect trivially if Y ∩ Z = {(0, 0)}. We call {Y,Z} a TI pair (trivially intersecting
pair).

Suppose f : F2n → F2n . Since Tr(ax) is a balanced function of x, the space

Z[n,0] = {(a, 0) : a ∈ F2n}

is a WZ space of f . Furthermore,

Z[0,n] = {(0, b) : b ∈ F2n}

is a WZ space of f if and only if f is a permutation, since then Tr(bf(x)) is a balanced
function of x when b 6= 0. We call these two spaces trivial WZ spaces. Note also that
{Z[n,0], Z[0,n]} is a TI pair.

We will also require the notion of dual bases for F2n (see page 58 of [25]).

Definition 2.5.5. Two bases {α1, . . . , αn} and {β1, . . . , βn} of F2n over F2 are called dual
bases if Tr(αiβj) = δi,j for 1 ≤ i, j ≤ n where δi,j = 1 if i = j and 0 otherwise.

Proposition 2.5.6. For any basis {α1, . . . , αn} of F2n over F2 there exists a unique dual
basis {β1, . . . , βn}.

23

We now present a method from Browning et al. [7] which we formalize in terms of
Walsh zero spaces. The proof given below is taken from our joint paper with Dr. Lisoněk
[14]. Because there is no originality other than reformulating the result of [7], we included
the following proposition as well as some other ones in this background chapter of the thesis.

Proposition 2.5.7. Let f be a function from F2n to F2n. If there exist two WZ spaces of
f that intersect trivially, then f is CCZ-equivalent to an APN permutation of F2n.

Proof. Without loss of generality we can assume that f(0) = 0, since this can be achieved
by an affine transformation which is a special kind of CCZ-equivalence.

Let {α1, . . . , αn} and {β1, . . . , βn} be two dual bases of F2n over F2, that is, Tr(αiβj) =
δi,j where for 1 ≤ i, j ≤ n we let δi,j = 1 if i = j and δi,j = 0 otherwise. Let the nonzero
elements of F2n be labelled x1, . . . , x2n−1.

Let G =
(
G1

G2

)
be a (2n)× (2n− 1) matrix over F2 where G1 and G2 are n× (2n− 1)

matrices over F2 defined as follows. The entry in row i and column j of G1 is Tr(αixj).
With respect to the basis {β1, . . . , βn} we have

xj =
n∑
k=1

ckβk

where c1, . . . , cn ∈ F2. Then the entry in row i and column j of G1 is

Tr(αixj) = Tr
(
αi

n∑
k=1

ckβk

)
=

n∑
k=1

ckTr(αiβk) = ci

by the property of the dual bases. The entry in row i and column j of G2 is Tr(αif(xj)).
Similarly as above, we write f(xj) with respect to the basis {β1, . . . , βn}. Therefore the j-th

column of G is of the form
(

xj

f(xj)

)
where xj and f(xj) are represented as n-dimensional

column vectors with respect to the basis {β1, . . . , βn}. Let C be the binary linear code which
is the row space of G. Each codeword of C is of the form Tr(rxj + sf(xj))j=1,...,2n−1 where
r, s are fixed elements of F2n .

Let S and T be the two given trivially intersecting WZ spaces, and let B1 = {(a1, b1), . . . ,
(an, bn)} and B2 = {(an+1, bn+1), . . . , (a2n, b2n)} be their bases. Note that B1∪B2 is a basis
for F2n × F2n .

Let G′ =
(
G′1
G′2

)
be a (2n)× (2n− 1) matrix over F2 where G′1 and G′2 are n× (2n− 1)

matrices over F2 defined as follows. The entry in row i and column j of G′1 is Tr(aixj +
bif(xj)). The entry in row i and column j of G′2 is Tr(an+ixj + bn+if(xj)).

For i = 1, 2 let C ′i be the row space of G′i. Since S and T are WZ spaces for f , each
nonzero codeword of C ′i has weight 2n−1 for i = 1, 2. Thus C ′1, C ′2 are simplex codes Sn, and

24

G′1, G′2 are formed by pairwise distinct nonzero columns. Thus, with respect to the basis

{β1, . . . , βn}, the columns of G′ can be viewed as
(

x

g(x)

)
where x runs through all nonzero

elements of F2n and g(x) ∈ F2n . After letting g(0) = 0 we see that g is a permutation of
F2n .

Let C ′ be the rowspace of G′. Since B1∪B2 is a basis for F2n×F2n , each codeword of C ′

is of the form Tr(rxj+sf(xj))j=1,...,2n−1 where r, s are fixed elements of F2n . Thus the codes
C and C ′ are equal, and functions f and g are CCZ-equivalent by Proposition 2.3.12.

25

Chapter 3

Kim-type APN permutations

It has been 12 years since the discovery of APN permutations of F26 by Browning et al. [7].
To date, no other APN permutations in even dimensions have been found despite immense
interest in solving this aptly named “Big APN Problem”. There was hope that by general-
izing the Kim function used by Browning et al., one might find more APN permutations
over F22m for m ≥ 4. Recall from Chapter 2 that one such generalization, called Kim-type
functions, have the form

f(x) = x3q + a1x
2q+1 + a2x

q+2 + a3x
3

with q = 2m. Carlet’s open problem (see Problem 2.4.1) asked to find more Kim-type
functions that are also APN. The highly technical paper of Li, Li, Helleseth, and Qu [24]
resolved this by finding exact conditions on a1, a2, a3 ∈ Fq2 , for m ≥ 4 that determine if f
is APN or not. The arXiv version of [24] appeared in July 2020 and triggered a question of
immediate importance as to whether it enables a generalization of Theorem 2.4.2 to the case
when a1, a2, a3 ∈ Fq2 . Indeed, by performing linear transformations on f(x) we were able to
restrict the attention from this general case to several special cases which we were able to
resolve completely using the results of [24]. By case analysis we were able to either reduce to
the case of a1, a2, a3 ∈ Fq and apply Theorem 2.4.2, or apply suitable linear permutations
to show that here too f is affine equivalent to a Gold function, or arrive at a contradiction
by showing that f is not APN. In this way, in Chapter 3 we prove that Kim-type APN
functions in their most general form are affine equivalent to one of two well known Gold
functions G1(x) = x3 or G2(x) = x2m−1+1. This research is described in the remainder of
this chapter. A recent result of Göloğlu and Langevin [20] proves that, for even n, Gold
APN functions are never CCZ-equivalent to permutations. Hence, Kim-type functions with
m ≥ 4 are never CCZ-equivalent to APN permutations, thereby ending one approach to the
Big APN Problem. On the other hand, there is still a possibility for further research after
enriching the Kim-type functions by adding more monomials to them [26].

26

The material in this chapter is joint work with Dr. Lisoněk and has been published in
the Springer journal Cryptography and Communications (special issue for the conference
Boolean Functions and their Applications 2020) [15]. Dr. Lisoněk suggested some of the
formulations of the propositions and theorems and I contributed the remaining ones. We
worked together on the proofs, which are quite technical and would be hard to construct
just by a single author. I wrote Magma scripts to verify all nontrivial calculations for this
chapter (see Appendix B). Additionally, in the thesis I add some lemmas which have been
moved to Chapter 2, and I work out the proofs in much more detail. I also rearrange the
order of presentation to make it easier to follow, and I add a numerical example to show that
some very technical parts of the proof are unavoidable since the APN functions addressed
in those places in fact do exist.

3.1 Preliminaries

For the rest of this chapter we assume m ≥ 4 is an integer, n = 2m, and q = 2m so that Fq is
subfield of Fq2 . Recall from Chapter 2 that the unit circle U = {z ∈ Fq2 : zq+1 = 1} is a cyclic
subgroup of F∗q2 and that Fq ∩ U = {1}. For z ∈ U we have zq = z−1. This computational
rule is of critical importance in many proofs in this chapter. Note in particular that Kim-
type functions have exponents containing q. Since q is a power of 2 (characteristic of the
field), powers of q distribute over addition. To give an illustration of these computational
rules, consider a rational function f : Fq2 × Fq2 → Fq2 with coefficients in Fq. If a ∈ Fq and
z ∈ U then f(a, z)q = f(aq, zq) = f(a, z−1). Manipulating rational functions in this way will
be needed for many of the following propositions. They enable us to eliminate exponents
containing q from the expressions in our proofs, which is needed since computer algebra
systems cannot handle general exponents q. Expressions involving exponents containing q
describe infinitely many functions but after eliminating q (if possible) they are reduced
to a single expression. Lemma 2.1.8 is useful for this purpose. Although it introduces two
variables in place of one, the new variables are restricted to Fq or U and simplifications
are achieved. The terms involving exponent q must be simplified by hand and afterwards a
computer algebra system, such as Magma, can handle the rest.

Example 3.1.1. It follows from Lemma 2.1.9 that Fq2 contains a primitive cube root of
unity, say ω. Suppose f(a, u, z) is a rational function with variables ranging over Fq2 given
by

f(a, u, z) = ω2a

u+ z
+ a+ z2

u+ ω

and suppose that we would like to express the term f(a, u, z)q in a form that is free of q.
Under the general assumptions a, u, z ∈ Fq2, we have

f(a, u, z)q =
(
ω2a

u+ z

)q
+
(
a+ z2

u+ ω

)q
= ω2qaq

(u+ z)q + (a+ z2)q

(u+ ω)q = ω2aq

uq + zq
+ aq + z2q

uq + ω

27

and no further simplification is possible. On the other hand, if we assume a ∈ Fq and
u, z ∈ U then

f(a, u, z)q = ω2a

u−1 + z−1 + a+ z−2

u−1 + ω
.

Note that once the assumptions on a, u, and z are in place, a significant simplification was
achieved. Specifically the exponents containing q were removed.

3.2 Main result

Recall from Theorem 2.4.2 that Kim-type functions with coefficients belonging to Fq are
affine equivalent to Gold functions, that is, they do not produce any new APN functions.
We state the main result of this chapter, which generalizes Theorem 2.4.2 by allowing
coefficients of the Kim-type function to be in Fq2 .

Theorem 3.2.1. Suppose that m ≥ 4 is an integer and let q = 2m. Let f : Fq2 → Fq2 be
given by f(x) = x3q + a1x

2q+1 + a2x
q+2 + a3x

3 where a1, a2, a3 ∈ Fq2. If f is APN, then f
is affine equivalent to G1(x) = x3 or f is affine equivalent to G2(x) = x2m−1+1.

The proof of Theorem 3.2.1 follows from applying the propositions presented in the
rest of this chapter. We start by explaining the reasons for following our particular proof
strategy, and then we give a high level brief outline of the proof of Theorem 3.2.1, which is
visualized in Figure 3.1. The details of the proof then follow in the rest of the chapter.

3.2.1 Strategy of the proof

Of course, one of the main tools we will use in our proof is affine equivalence. Recall from
Chapter 2 that constructing affine equivalent functions requires affine permutations of Fq2 .
In this chapter we will only use linear permutations of Fq2 . The resulting equivalence is
called linear equivalence but we will use the more general term affine equivalence since this
is used more commonly in the area of APN functions, and it still preserves the invariants
that we care about. It follows from Lemmas 2.3.3 and 2.3.4 that linear transformations of
the form L(x) = x2m+k + tx2k are permutations of Fq2 if and only if t /∈ U . We will often
use a chain of these transformations as well as the affine permutation x 7→ ax for a ∈ F∗q2 .

Recall from Lemma 2.4.6 that applying an outer transformation of the form L1(x) =
xq + tx and an inner transformation of the form L2(x) = rxq + sx to either one of the Gold
functions G1(x) = x3 or G′2(x) = x2q+1 and expanding, results in a polynomial with Kim-
type exponents, for any r, s, t ∈ Fq2 . Similarly, applying transformations of the form of L1

and L2 to Kim-type polynomials and expanding results only in polynomials that have Kim-
type exponents. Therefore, to find a suitable choice of r, s and t we will expand expressions
and compare coefficients. For example, to construct an affine equivalence between G1 and a
Kim-type APN function f , we fully expand L1(G1(L2(x))) and compare its coefficients to
the coefficients a1, a2, a3 of f(x). If the expressions are simple enough, we will simply use trial

28

and error along with pattern matching. Note that there are three degrees of freedom for r, s, t
as well as three degrees of freedom for a1, a2, a3. At least at the first glance, it looks hopeful
that we may be able to construct suitable linear transformations. Indeed, by Lemma 2.3.4
the proportion of the transformations which are not permutations is |U |/(q2 − 1) ≈ 1/q,
which tends to zero with growing q.

As the characterizations of APNness of f in Theorem 2.4.4 are fairly complex expres-
sions, we first explore whether some simplifications are possible, keeping in mind that we
are allowed to consider a function affinely equivalent to f instead. Such simplifications can
be achieved by letting one of the coefficients vanish, as long as that can be done in full
generality, that is, by using affine equivalence. The motivation for the particular strategy
of the proof that we chose was the observation that letting a2 = 0 in the Kim-type func-
tion f(x) = x3q + a1x

2q+1 + a2x
q+2 + a3x

3 achieves the most simplifications in the APN
conditions of Theorem 2.4.4. Thus we analyzed this case first, and the rest of the proof was
essentially forced by covering the remaining special cases.

Before going through with the effort of analyzing the case of a2 = 0, it would be nice
to know how much work will remain to be done after. Fortunately it turns out that we
can transform a general Kim-type function to one with a2 = 0, except in two special cases
characterized below.

Proposition 3.2.2. Let f : Fq2 → Fq2 be given by f(x) = x3q + a1x
2q+1 + a2x

q+2 + a3x
3

where a1 ∈ Fq, a2 ∈ F∗q2 and a3 ∈ Fq2. If a1/a2 6∈ U and a1/a2 6= aq3, then f is affine
equivalent to h(x) = x3q + a′1x

2q+1 + a′3x
3 where a′1 ∈ Fq and a′3 ∈ Fq2.

Proof. Let t = a1/a2. Since t /∈ U , L(z) = zq + tz is a bijection of Fq2 by Lemma 2.3.4. Let
h0(x) = L(f(x)) so that

h0(x) =
(
a1
a2

+ aq3

)
x3q +

(
a2

1
a2

+ aq2

)
x2q+1 +

(
a1a3
a2

+ 1
)
x3

where f and h0 are affine equivalent. Now let

h1(x) =
(
a1
a2

+ aq3

)−1
h0(x)

so that f and h1 are also affine equivalent. The result follows from applying Lemma 2.4.3
to h1.

It turned out that one of the two remaining cases in Proposition 3.2.2 produced Kim-
type APN functions with complex coefficients and resolving this case ended up being an
extensive portion of the proof of Theorem 3.2.1. At the outset we could not have been sure
that we would resolve this case completely but throughout the focus was on isolating the
possible Kim-type APN functions as much as possible. Fortunately we were able to resolve
all of these cases.

29

3.2.2 Outline of the proof

Assume thatm ≥ 4 is an integer and let q = 2m. Let f(x) = x3q+a1x
2q+1+a2x

q+2+a3x
3 be

a Kim-type function where a1, a2, a3 ∈ Fq2 , and assume that f is APN. By Lemma 2.4.3, f
is affine equivalent to f ′(x) = x3q +a′1x

2q+1 +a′2x
q+2 +a′3x

3 where a′1 ∈ Fq and a′2, a′3 ∈ Fq2 .
Apply Proposition 3.2.2 to f ′. First suppose that the transformation succeeded in pro-

ducing a′2 = 0. Then we will show in Propositions 3.2.4 and 3.2.5 that f ′ is affine equivalent
to G1(x) = x3 or G2(x) = x2m−1+1.

Now suppose that the transformation to a′2 = 0 was not possible. Then we know that
there are two cases to be analyzed. First let a′1/a′2 ∈ U . In Proposition 3.2.6 we will show
that m is even, and furthermore either a′1, a′2, a′3 ∈ Fq (which reduces to Theorem 2.4.2) or
there exist u, z ∈ U such that a′1, a′2, a′3 have the form as given in the proposition. In the
latter case, we will show that f ′ is affine equivalent to G1 or to G2 in Proposition 3.2.8.
Suppose that a′2 6= 0 and a′1/a

′
2 = (a′3)q, then in Proposition 3.2.9 we will show that the

function f ′ is not APN, hence this case can not occur.
Since by now all possible cases have been exhausted, the outline of the proof of Theo-

rem 3.2.1 is complete.
The visualization of the proof given in Figure 3.1 is another possible view of this chain

of arguments, in fact the one given in the paper [15]. The diagram gives a more clear and
succinct representation of this process while the version of the proof given in this thesis may
be more intuitive.

3.2.3 Case a2 = 0

In the next three propositions we show that a Kim-type APN functions with a2 = 0 must
be affine equivalent to a Gold function.

Proposition 3.2.3. Let f : Fq2 → Fq2 be given by f(x) = x3q + a1x
2q+1 + a3x

3 where
a1, a3 ∈ Fq2 and a1 = 0 or a3 = 0. If f is APN, then f is affine equivalent to G1(x) = x3.

Proof. Suppose a1 = a2 = 0. Then θ1 = aq+1
3 + 1 and if f is APN then by Theorem 2.4.4,

θ1 6= 0 which implies a3 /∈ U . Thus, aq3 /∈ U and L(x) = xq + aq3x is a permutation of Fq2 .
Now

L(f(x)) = (x3q + a3x
3)q + aq3(x3q + a3x

3)

= (aq+1
3 + 1)x3

and it follows that f(x) is affine equivalent to G1(x) = x3.
Suppose a2 = a3 = 0. By Lemma 2.4.3 we can assume a1 ∈ Fq. Then θ1 = a2

1+1, θ2 = a1,
θ3 = 0, and θ4 = a2

1. Since f is APN it must satisfy the conditions given in Theorem 2.4.4.

30

f(x) = x3q + a1x
2q+1 + a2x

q+2 + a3x
3

a1, a2, a3 ∈ Fq2

f ′(x) = x3q + a′1x
2q+1 + a′2x

q+2 + a′3x
3

a′1 ∈ Fq, a′2, a
′
3 ∈ Fq2

Le
m
m
a
2.
4.
3

3.2.4 + 3.2.5
=⇒

f ′ ∼a G1 or f ′ ∼a G2a′2 = 0

f ′(x) = x3q + a′1x
2q+1 + a′2x

q+2 + a′3x
3

a′1 ∈ Fq, a′2 ∈ F∗q2 , a′3 ∈ Fq2

a
′ 2
6=

0

3.2.6 =⇒ 2.4.2 or 3.2.8
f ′ ∼a G1 or f ′ ∼a G2a′1/a

′
2 ∈ U

f ′(x) = x3q + a′1x
2q+1 + a′2x

q+2 + a′3x
3

a′1 ∈ Fq, a′2 ∈ F∗q2 , a′3 ∈ Fq2

a
′ 1/
a
′ 2
/∈
U

3.2.9 =⇒ f not APN
a′1/a

′
2 = (a′3)q

3.2.2 =⇒ f ′ ∼a f ′′,
f ′′(x) = x3q + a′′1x

2q+1 + a′′3x
3

3.2.4 + 3.2.5 =⇒
f ′′ ∼a G1 or f ′′ ∼a G2

a
′ 1/
a
′ 2
6=

(a
′ 3)
q

Figure 3.1: Diagram for proof of Theorem 3.2.1.

31

The third condition of Γ1 (2.5) becomes 0 = θ1θ4+θq+1
2 = (a2

1+1)a2
1+aq+1

1 = (a2
1+1)a2

1+a2
1 =

a4
1. So a1 = 0. The third condition of Γ2 (2.6) becomes 0 = θ2q

2 = a2
1, and again a1 = 0. In

both cases we have f(x) = x3q which is affine equivalent to G1(x) = x3.

Proposition 3.2.4. Let f : Fq2 → Fq2 be given by f(x) = x3q + a1x
2q+1 + a3x

3 where
a1 ∈ Fq and a3 ∈ Fq2. If (a1, 0, a3) ∈ Γ1 as defined in equation (2.5) then f is affine
equivalent to G1(x) = x3 or f is affine equivalent to G2(x) = x2m−1+1.

Proof. The cases of a1 = 0 or a3 = 0 are covered by Proposition 3.2.3, so assume a1 6= 0
and a3 6= 0. By Lemma 2.1.8 we can write a3 uniquely as a3 = yz with y ∈ F∗q and z ∈ U .
We have

θ1 = a2
1 + aq+1

3 + 1 = a2
1 + y2 + 1,

θ2 = a1,

θ3 = a1a
q
3 = a1yz

q,

θ4 = a2
1.

The second condition of Γ1 becomes

Trm1

(
θq+1

2
θ2

1

)
= Trm1

(
a2

1
(a2

1 + y2 + 1)2

)
= Trm1

(
a1

a2
1 + y2 + 1

)
= 0.

By Lemma 2.1.3 there exists t ∈ Fq such that

(t2 + t)(a2
1 + y2 + 1) + a1 = 0. (3.1)

The third condition of Γ1 becomes

0 = θ2
1θ4 + θ1θ

q+1
2 + θ2

2θ3 + θ2q
2 θ

q
3

= (a2
1 + y2 + 1)2a2

1 + (a2
1 + y2 + 1)aq+1

1 + a2
1(a1yz

q) + a2q
1 (a1yz

q)q

= (a4
1 + y4 + 1)a2

1 + (a2
1 + y2 + 1)a2

1 + a2
1(a1yz

−1) + a2
1(a1yz).

Multiplying by za−2
1 and simplifying gives

a1yz
2 + (a4

1 + a2
1 + y4 + y2)z + a1y = 0. (3.2)

The resultant of equations (3.1) and (3.2) with respect to y is

a2
1(Az2 +B)(Bz2 +A)

where A = (a1t+t+1)t3 and B = (a1t+a1+t)(t+1)3. See Appendix B for this computation.

32

If z = 1 then a3 ∈ Fq and by Theorem 2.4.2 f(x) is affine equivalent to G1(x) or G2(x).
So assume z ∈ U\{1} which implies z /∈ Fq and z2 /∈ Fq. Since A,B ∈ Fq, the resultant can
vanish only if A = B = 0. Simplifying A = B gives a1 = t2 + t and substituting this into
A = 0 gives (t + 1)3t3 = 0. Thus t = 0 or t = 1 and in both cases a1 = 0, a contradiction.
As we have exhausted all cases, this completes the proof.

Proposition 3.2.5. Let f : Fq2 → Fq2 be given by f(x) = x3q + a1x
2q+1 + a3x

3 where
a1 ∈ Fq and a3 ∈ Fq2. If (a1, 0, a3) ∈ Γ2 as defined in equation (2.6) then f is affine
equivalent to G1(x) = x3 or f is affine equivalent to G2(x) = x2m−1+1.

Proof. Note that θ1, θ2, θ3, θ4 are the same as in the proof of Proposition 3.2.4. The third
condition of Γ2 becomes

0 = θ2
1θ3 + θ1θ

2q
2 + θ2

2θ3 + θ2q
2 θ

q
3

= (a2
1 + y2 + 1)2a1yz

q + (a2
1 + y2 + 1)a2q

1 + a2
1(a1yz

q) + a2q
1 (a1yz

q)q

= (a2
1 + y2 + 1)2a1yz

−1 + (a2
1 + y2 + 1)a2

1 + a3
1yz
−1 + a3

1yz.

Multiplying by a−1
1 z gives

0 = (a2
1y)z2 + (a3

1 + a1y
2 + a1)z + (a4

1y + a2
1y + y5 + y)

= Az2 +Bz + C

where A = a2
1y, B = a3

1 + a1y
2 + a1, and C = a4

1y+ a2
1y+ y5 + y. If z = 1 then a3 ∈ Fq and

by Theorem 2.4.2 f is affine equivalent to G1 or G2. If z ∈ U\{1} then by Lemma 2.1.10
we have A = C. Hence,

A+ C = y(a1 + y + 1)4 = 0.

If y = 0 then a3 ∈ Fq and the result follows from Theorem 2.4.2. On the other hand,
if (a1 + y + 1)4 = 0 then θ1 = (a1 + y + 1)2 = 0 and (a1, 0, a3) /∈ Γ2.

3.2.4 Case a2 6= 0

Having covered the case a2 = 0, we now turn our attention to the cases where it was
impossible to drive the original function to the form a2 = 0 by linear permutations. The
next three propositions deal with the case of a2 6= 0.

Proposition 3.2.6. Let f : Fq2 → Fq2 be given by f(x) = x3q + a1x
2q+1 + a2x

q+2 + a3x
3

where a1 ∈ Fq, a2 ∈ F∗q2 and a3 ∈ Fq2, and assume that a1/a2 ∈ U . If f is APN, then m is
even, and furthermore a1, a2, a3 ∈ Fq or there exist u, z ∈ U such that

33

a1 = (u3 + z)2

u(u2 + z)2 ,

a2 = (u3 + z)2

(u2 + z)2 ,

a3 = uz2(u+ 1)2

(u2 + z)2 .

Proof. Under the assumptions listed in the proposition, we first prove that (a1, a2, a3) 6∈ Γ1

which, by Theorem 2.4.4, implies m is even and (a1, a2, a3) ∈ Γ2. Next we prove that
(a1, a2, a3) ∈ Γ2 implies the conclusions given in the statement.

If a1/a2 ∈ U then a1 6= 0. Since U forms a group under multiplication, there exists
u ∈ U such that a2 = a1u. By Lemma 2.1.8 we can write a3 uniquely as a3 = yz with
y ∈ Fq and z ∈ U . We have

θ1 = a2
1 + (a1u)q+1 + (yz)q+1 + 1 = y2 + 1,

θ2 = a1 + (a1u)qyz = a1 + a1yu
qz,

θ3 = (a1u)q + a1(yz)q = a1u
q + a1yz

q,

θ4 = a2
1 + (a1u)q+1 = 0.

If y = 1 then θ1 = 0 and (a1, a2, a3) /∈ Γ1 ∪Γ2 which, by Theorem 2.4.4 contradicts f being
APN. So assume y 6= 1.

The third condition of Γ1 becomes θ1θ
q+1
2 + θ2

2θ3 + θ2q
2 θ

q
3 = 0. Looking at each term

individually, we have

θ1θ
q+1
2 = (y2 + 1)(a1 + a1yu

qz)q+1 = (y2 + 1)(a1 + a1yuz
q)(a1 + a1yu

qz),

θ2
2θ3 = (a1 + a1yu

qz)2(a1u
q + a1yz

q) = (a2
1 + a2

1y
2u2qz2)(a1u

q + a1yz
q),

θ2q
2 θ

q
3 = (a1 + a1yu

qz)2q(a1u
q + a1yz

q)q = (a2
1 + a2

1y
2u2z2q)(a1u+ a1yz).

We can now factorize θ1θ
q+1
2 + θ2

2θ3 + θ2q
2 θ

q
3 with the help of Magma (see Appendix B) to

get
a2

1(a1yu
4 + a1yz

2 + a1u
3z + a1uz + y2u2z + u2z)(yz + u)(yu+ z) = 0. (3.3)

Recall that the only element of U that also belongs to Fq is 1. Since uz−1, u−1z ∈ U and
y ∈ Fq\{1}, the last two factors of equation (3.3) cannot vanish. Since a1 6= 0, the second
factor of equation (3.3) must vanish. That is,

a1(yu4 + yz2 + u3z + uz) = u2z(y2 + 1).

34

Since the right-hand side of the above is nonzero, we can write a1 as

a1 = u2z(y2 + 1)
D

(3.4)

where D = yu4 +yz2 +u3z+uz. Substituting a1 into θq+1
2 (which we have already expanded

above) we get

θq+1
2 = u4z2(y2 + 1)2(1 + yuzq)(1 + yuqz)

D2

and

θq+1
2
θ2

1
= u4z2(1 + yuqz + yuzq + y2)

D2

= u3z(yz + u)(yu+ z)
D2

= z(yz + u)(D + z(yz + u))
D2

= z(yz + u)
D

+ z2(yz + u)2

D2

= w + w2

where w = z(yz + u)/D. Note that for a fixed value of θq+1
2 /θ2

1, the equation

w2 + w + θq+1
2 /θ2

1 = 0

has exactly two solutions in Fq, by Lemma 2.1.5. However, a computation (see Appendix
B) gives wq +w = 1 which implies w /∈ Fq. It follows from Lemma 2.1.3 that Trm1 (θ

q+1
2
θ2

1
) 6= 0

and therefore (a1, a2, a3) /∈ Γ1. Since f is APN, it must be that (a1, a2, a3) ∈ Γ2 and m is
even.

Given that (a1, a2, a3) ∈ Γ2, we are left to show that (a1, a2, a3) = (a1, a1u, yz) can be
written in terms of u and z as in the conclusion of the proposition.

First suppose that a3 = 0. Then

θ1 = 1,

θ2 = a1,

θ3 = a1u
q,

θ4 = 0.

The third condition of Γ2 becomes

a1u
q + a2

1 + a3
1u
q + a3

1u = 0. (3.5)

35

Raising (3.5) to power q and adding the result back to (3.5) gives a1(uq + u) = 0. Since
a1 6= 0 it must be that uq +u = 0. So u ∈ Fq ∩U which implies u = 1 and substituting back
gives a1 = a2 = 1. Therefore a1, a2, a3 ∈ Fq.

Now suppose a3 6= 0, hence y 6= 0. Again we have θ1 = y2 + 1, θ2 = a1 + a1yu
qz, and

θ3 = a1u
q + a1yz

q. The third condition of Γ2 is θ2
1θ3 + θ1θ

2q
2 + θ2

2θ3 + θ2q
2 θ

q
3 = 0. Looking at

each term individually, we have

θ2
1θ3 = (y4 + 1)(a1u

q + a1yz
q),

θ1θ
2q
2 = (y2 + 1)(a2

1 + a2
1y

2u2z2q),

θ2
2θ3 = (a2

1 + a2
1y

2u2qz2)(a1u
q + a1yz

q),

θ2q
2 θ

q
3 = (a2

1 + a2
1y

2u2z2q)(a1u+ a1yz).

We can now factorize θ2
1θ3 + θ1θ

2q
2 + θ2

2θ3 + θ2q
2 θ

q
3 (see Appendix B) to get

a1(yu+ z)(Aa2
1 +Ba1 + C) = 0

where A = D(yz+u),D = (u2+z)2y+uz(u2+1), B = (y+1)2u3(yu+z) and C = (y+1)4u2z.
Since θ1 6= 0, we have y 6= 1, and again it follows that yu + z 6= 0 and yz + u 6= 0. Since
a1 6= 0 we are left with

Aa2
1 +Ba1 + C = 0

We will distinguish two cases: A = 0 and A 6= 0, equivalently, D = 0 and D 6= 0.
First let us assume that D = 0. If u2 = z, then D = u3(u2 + 1) = 0 and it follows that

u = z = 1 and a1, a2, a3 ∈ Fq. Otherwise

y = uz(u2 + 1)
(u2 + z)2

and
a1 = C

B
= (y + 1)2z

u(yu+ z) = (u3 + z)2

u(u2 + z)2 .

Then
a2 = a1u = (u3 + z)2

(u2 + z)2

and
a3 = yz = uz2(u+ 1)2

(u2 + z)2 .

Now
θq+1

2 /θ2
1 = (a1 + a1yu

qz)q+1

(y2 + 1)2 = (a1 + a1yuz
q)(a1 + a1yu

qz)
(y4 + 1)

and after substituting our new values for a1 and y given above, a computation (see Appendix
B) gives θq+1

2 /θ2
1 = 1. Hence, Trm1 (θq+1

2 /θ2
1) = 0 since m is even, and (a1, a2, a3) ∈ Γ2.

36

We complete the proof by analyzing the case A 6= 0. We note that a1 is also a root of

Aa2
1 +Ba1 + C + A

Aq
(Aqa2

1 +Bqa1 + Cq) = 0,

which after simplifications (see Appendix B) becomes

u(Ra1 + S) = 0

where R = (u + z)4(y + 1)2y2 and S = (y + 1)4(yuz2 + u2z + yu + z)uz. Since u ∈ U , we
have u 6= 0. Since θ1 = y2 + 1 6= 0, we have y + 1 6= 0. We also know that y 6= 0 since
a3 = yz 6= 0. If R = 0 then it follows that u = z and we get S = u3(y + 1)5(u2 + 1) = 0.
Thus u = z = 1 and a1, a2, a3 ∈ Fq. Now suppose R 6= 0 so that Ra1 + S = 0 and

a1 = S

R
= (y + 1)2(yuz2 + u2z + yu+ z)uz

(u+ z)4y2 . (3.6)

Plugging this value for a1 into the third condition of Γ2 and simplifying (see Appendix B)
yields

u2z2(y + 1)4(u+ 1)2(u+ yz)(y(u+ z2) + z(u+ 1))2D

(y(u+ z)2)4 = 0. (3.7)

Note that (u + 1)2 and (y(u + z2) + z(u + 1))2 are the only factors in the numerator of
equation (3.7) that can vanish. If u = 1 then

a1 = z(y + 1)2

y(z + 1)2

and
θq+1

2
θ2

1
= (yz + 1)(y + z)z

y2(z + 1)4 = w2 + w

where w = y+z
y(z2+1) . A calculation (see Appendix B) shows that wq +w = 1. So w /∈ Fq and

by Lemma 2.1.3 we have Trm1
(
θq+1

2
θ2

1

)
6= 0. Therefore the factor (u+ 1)2 cannot vanish. We

are left with the case of the other factor vanishing, that is,

y = z(u+ 1)
u+ z2 .

Substituting this into (3.6) and simplifying (see Appendix B) gives

a1 = u(z + 1)2

(u+ 1)(u+ z2) .

After plugging these values for y and a1 into θq+1
2 /θ2

1 and simplifying (see Appendix B) we
get

37

θq+1
2
θ2

1
= u

(u+ 1)2 = w2 + w

where w = 1
u+1 . Since u /∈ Fq it follows that w /∈ Fq (also it is easy to see that wq +w = 1).

Again, by Lemma 2.1.3 we have Trm1
(
θq+1

2
θ2

1

)
6= 0. Therefore the case A 6= 0 does not produce

any APN functions, and we have exhausted all cases.

We notice that a significant effort was spent analyzing the case a1/a2 ∈ U in the previous
proposition, and one may wonder if that extensive effort is necessary, that is, do the APN
functions obtained in that proposition in fact exist? Next we show a numerical example of
such a function which demonstrates that Propositions 3.2.6 and 3.2.8 are unavoidable. The
values for u and z used in the following example were found by a randomized computer
search.

Example 3.2.7. Let q = 24. Suppose f : Fq2 → Fq2 is given by

f(x) = x3q + a1x
2q+1 + a2x

q+2 + a3x
3

where

a1 = (u3 + z)2

u(u2 + z)2

a2 = (u3 + z)2

(u2 + z)2

a3 = uz2(u+ 1)2

(u2 + z)2 .

Suppose α is a primitive element of Fq2, which is a root of X8 + X4 + X3 + X2 + 1. If
u = α225 and z = α135 then u, z ∈ U and f is APN. See Appendix B for this calculation.

Proposition 3.2.8. Let f : Fq2 → Fq2 be given by f(x) = x3q + a1x
2q+1 + a2x

q+2 + a3x
3

where

a1 = (u3 + z)2

u(u2 + z)2

a2 = (u3 + z)2

(u2 + z)2

a3 = uz2(u+ 1)2

(u2 + z)2

for some u, z ∈ U such that u2 6= z, and m is even. If f is APN, then f is affine equivalent
to G1(x) = x3 or f is affine equivalent to G2(x) = x2m−1+1.

38

Proof. Sincem is even, Fq contains a primitive cube root of unity, say ω, where ω2+ω+1 = 0.
Since ω 6= 1, it follows that ω /∈ U . Let G′2(x) = x2m+1+1 and let

L1(x) = xq + tx

and
L2(x) = rxq + sx

for some r, s, t ∈ Fq2 . By Lemma 2.4.6 we have

L1(G′2(L2(x))) = c0x
3q + c1x

2q+1 + c2x
q+2 + c3x

3

where

c0 = r2sq + rs2qt,

c1 = rq+2 + s2q+1t,

c2 = r2q+1t+ sq+2,

c3 = r2qst+ rqs2.

To show the affine equivalence, we are left to find suitable r, s, t such that ci/c0 = ai for
i = 1, 2, 3, that is, to compare coefficients. Suppose s = 1 and r = ω2v where v ∈ U (other
choices for r, s are possible). Then

c0 = ωv2 + ω2vt,

c1 = v + t,

c2 = vqt+ 1,

c3 = ωv2qt+ ω2vq.

Assume c0 is nonzero, that is, v 6= 0 and t 6= ω2v. Recall that ua1 + a2 = 0. A computation
(see Appendix B) shows that

u
c1
c0

+ c2
c0

= ω(t+ v)(uv + 1)
v2(t+ ω2v)

which vanishes if v = 1/u. So let v = 1/u for the rest of the proof. After substituting this
into c0 and c1, another computation (see Appendix B) gives

a1 + c1
c0

= ω2(u7t+ ωu6 + ω2u3z2t+ ω2u2z2 + ωuz2t+ z2)
u(ut+ ω2)(u2 + z)2 .

The above vanishes when
t = ωu6 + ω2u2z2 + z2

u7 + ω2u3z2 + ωuz2

39

which factors as (see Appendix B)

t = (ωu3 + (u+ ω2)z)2

uD
(3.8)

where D = (ω2u3 + (u + ω)z)2. So fix t as the value of the right-hand side of (3.8) for the
rest of the proof. At this point we have determined the coefficients of L1 and L2.

We need to show that D 6= 0. Suppose towards a contradiction that D = 0. This happens
for z1 ∈ U where

z1 = ω2u3

u+ ω
.

Recall that zq1 = 1
z1

for z1 ∈ U , which is an important computational rule throughout this
chapter. A computation (see Appendix B) gives

zq1 + 1
z1

= ω(u+ 1)2

u3(ω + u+ 1) ,

so it must be that u = 1. But then z1 = 1 and u2 = z1, a contradiction.
Next we show that t 6= ω2/u. Suppose towards a contradiction that t = ω2/u. Then

(3.8) becomes
ω2D = (ωu3 + (u+ ω2)z)2.

Thus,
ω2(ωu6 + u2z2 + ω2z2) = ω2u6 + u2z2 + ωz2

which simplifies to ωu6 = ωu2z2 which implies u2 = z, a contradiction.
With these values for r,s and t, a computation (see Appendix B) shows that

c0 = (u2 + z)2

D
,

c1 = (u3 + z)2

uD
,

c2 = (u3 + z)2

D
,

c3 = uz2(u+ 1)2

D
.

Since u2 6= z, we have c0 6= 0 and

f(x) = x3q + a1x
2q+1 + a2x

q+2 + a3x
3

= x3q + c1
c0
x2q+1 + c2

c0
xq+2 + c3

c0
x3.

We are left to show that L1 and L2 are affine permutations of Fq2 , or prove the conclusion
in some other way. Since r = ω2/u /∈ U , it follows from Lemma 2.3.4 that L2 is a permutation

40

of Fq2 . We will show that if L1 is not a permutation of Fq2 then f is affine equivalent to G1

and if L1 is a permutation of Fq2 then f is affine equivalent to G2.
If t = 0 then L1 is clearly a permutation. Suppose t 6= 0. Note that

tq = (ωu3q + (uq + ω2)zq)2

uq(ω2u3q + (uq + ω)zq)2 .

Then by a factorization (see Appendix B), we have

tq + 1
t

= u3(u3 + z)2(u+ z)2

ω(u3 + ω2uz + ωz)2(u3 + ω2u2 + ωz)2

which implies t /∈ U unless u3 = z or u = z. If u3 = z then a1 = a2 = 0 and f is affine
equivalent to G1 by Proposition 3.2.3. If u = z then

θ1 = 1 + a2
1 + aq+1

2 + aq+1
3

= 1 + (u3 + u)4

u2(u2 + u)4 + (u2q + u2)2

u2q + u2 + u2q + u2

u2q + u2

= u8 + 1
u6 + u2 + (u2q + u2)(u6 + u2)

u6 + u2

= u8 + 1 + u4 + 1 + u8 + u4

u6 + u2

= 0

which contradicts f being APN. Therefore, assuming u3 6= z, we have that L1 is a permu-
tation of Fq2 and f(x) is affine equivalent to G′2(x) which is affine equivalent to G2(x) by
Lemma 2.4.5.

Proposition 3.2.9. Let f : Fq2 → Fq2 be given by f(x) = x3q + a1x
2q+1 + a2x

q+2 + a3x
3

where a1 ∈ Fq, a2 ∈ F∗q2 and a3 ∈ Fq2, and assume that a1/a2 = aq3. Then f is not APN.

Proof. We will show that, under the given conditions, (a1, a2, a3) /∈ Γ1∪Γ2. Hence the result
follows by Theorem 2.4.4.

By Lemma 2.1.8 we can write a2 uniquely as a2 = vz for v ∈ F∗q and z ∈ U . Now
choose y ∈ Fq so that a1 = vy. Plugging these into a1 = a2a

q
3 gives y = zqa3, so a3 = yz.

Substituting these into θ1, θ2, θ3, and θ4 gives

θ1 = a2
1 + aq+1

2 + aq+1
3 + 1 = (v + 1)2(y + 1)2,

θ2 = a1 + aq2a3 = 0,

θ3 = aq2 + a1a
q
3 = vzq(y + 1)2,

θ4 = a2
1 + aq+1

2 = v2(y + 1)2.

41

Suppose (a1, a2, a3) ∈ Γ1. Since θ2 = 0, the third condition of Γ1 is simply θ2
1θ4 = 0 and

substitution results in
v2(v + 1)4(y + 1)6 = 0.

By definition of Γ1, θ1 6= 0, so the last two factors above cannot vanish. Then it must be
that v = 0 which is a contradiction.

Suppose (a1, a2, a3) ∈ Γ2. Since θ2 = 0, the third condition of Γ2 simplifies to θ2
1θ3 = 0.

Substitution gives
v(v + 1)4(y + 1)6

z
= 0

and we have a contradiction by the same reasoning as the previous case.

As was explained in the proof outline in Section 3.2.2, we have exhausted all possible
cases and the proof of Theorem 3.2.1 is now complete.

42

Chapter 4

Walsh zero spaces

Although finding APN permutations in even dimensions is of great interest, only one exam-
ple in dimension six has been found. The situation is slightly better in odd dimensions, but
still not many APN permutations are known in general. Currently, all known APN permu-
tations in odd dimensions, up to CCZ-equivalence, belong either to a monomial family (see
Table 2.2.1) or one of the following sets: an infinite family of quadratic APN permutations
in odd dimension found in 2008 by Budaghyan, Carlet and Leander [8], and two quadratic
APN permutations in dimension nine found in 2020 by Beierle and Leander [2]. As such, it is
certainly still desirable to find more constructions of APN permutations in odd dimensions
as well.

Our motivation for this chapter is the following. Given a pair of trivially intersecting
Walsh zero spaces of a function f , one can apply the method of Browning et al. [7], which
we formalized in terms of Walsh zero spaces in Proposition 2.5.7, to construct permutations
CCZ-equivalent to f . Therefore, theoretical descriptions of Walsh zero spaces and their
trivially intersecting pairs are of interest in regards to constructing more and possibly new
APN permutations. But as far as we know, no such general descriptions are known except
for the two trivial Walsh zero spaces described in Section 2.5. Recently the importance
and applications of WZ spaces have been recognized more explicitly, see [10] and references
therein.

In this chapter, we study the Walsh zero spaces of Gold APN functions in odd dimen-
sions, because they have the simplest description of Walsh zeros among all known APN func-
tions whose Walsh zeros have been studied. Much research has already been done with Gold
functions due to their extensive applications in communication systems. In 1968, Robert
Gold [18] implicitly characterized the Walsh zeros of Gold functions while researching their
correlation properties. This simplicity is helpful when working on theoretical constructions
of trivially intersecting pairs of Walsh zero spaces.

In order to construct WZ spaces, we started by numerically listing WZ spaces for Gold
functions in small odd dimensions. Recall from Chapter 2 that this means we search for n-
dimensional subspaces of F2n×F2n such that every element except for (0, 0) is a Walsh zero.

43

It is not straightforward what form these spaces should take. We were able to take advantage
of computer algebra systems to analyze these spaces in low dimensions and because of this,
our theoretical constructions have been heavily motivated by these computational results.
Therefore we start by presenting our computational results in Section 4.2, followed by our
theoretical constructions of Walsh zero spaces and trivially intersecting pairs in Sections 4.3
and 4.4 respectively.

The material in this chapter is joint work with Dr. Lisoněk and it has been submitted
in October 2021 to Springer journal Cryptography and Communications (special issue for
the conference Boolean Functions and their Applications 2021). It was also accepted based
on a refereed five-page abstract by this conference as a talk. The full paper is also available
on arXiv [14].

I started by computing the Walsh zero spaces for the Gold APN functions in odd dimen-
sions up to and including dimension 9, see Appendix C. I analyzed numerically the structure
of the trivially intersecting pairs of Walsh zero spaces and presented the results in the form
of graphs in Section 4.2. I also automated the conversion of data format between Magma
and sboxU. By analyzing this data, we jointly inferred some patterns for constructions of
the Walsh zero spaces and their trivially intersecting pairs. I formalized these constructions
into the propositions and I authored most of the proofs.

4.1 The Walsh zero test and compatible subspaces

Recall the following definitions from Chapter 2. The Walsh transform of a function f :
F2n → F2n is given by Wf (a, b) =

∑
x∈F2n (−1)Tr(ax+bf(x)). We say that (a, b) is a Walsh

zero (WZ) of f if Wf (a, b) = 0. We call a subspace S of F2n × F2n a WZ space of f if every
element of S expect for (0, 0) is a Walsh zero of f and S has dimension n. We say that two
WZ spaces S, T of the same function intersect trivially if S ∩T = {(0, 0)}, and we call them
a TI pair.

In this section we characterize Walsh zeros of Gold APN permutations. That is, we
work in odd dimension throughout. We also define and give some results on certain additive
subspaces of F2n which we call compatible subspaces that we introduce for the purpose of
constructing Walsh zero spaces of Gold APN permutations.

The following proposition is useful as it allows us to check if a pair (a, b) ∈ F2n × F2n is
a Walsh zero of f : F2n → F2n without having to compute the sum

∑
x∈F2n (−1)Tr(ax+bf(x))

which grows with exponential time complexity in n. This simple characterization also allows
the theoretical constructions of WZ spaces given in Section 4.3. The following proposition
was proved implicitly by Robert Gold in [18].

Proposition 4.1.1 (The Walsh zero test for Gold APN functions). Suppose n is odd and
f : F2n → F2n with f(x) = x2i+1 such that gcd(i, n) = 1 (so f is a Gold APN function).
Then (a, b) ∈ F2n × F2n is a Walsh zero of f if and only if Tr(ab−

1
2i+1) = 0 or a 6= b = 0.

44

Proof. First we present a proof given in [23] which covers the case b = 1. We then extend
it to b 6= 1. The notation χ(y) = (−1)Tr(y) is introduced only to improve readability. Let
f : F2n → F2n be given by f(y) = y2i+1 with gcd(i, n) = 1. Then for any c ∈ F2n ,

Wf (A, 1) =
∑
y∈F2n

(−1)Tr(Ay+f(y))

=
∑
z∈F2n

χ((z + c)2i+1 +A(z + c))

=
∑
z∈F2n

χ(z2i+1 + cz2i + c2i
z + c2i+1 +Az +Ac)

= χ(Ac+ c2i+1)
∑
z∈F2n

χ(z2i+1 + c2−i
z + c2i

z +Az)

= χ(Ac+ c2i+1)
∑
z∈F2n

χ(z2i+1 + z(L(c) +A))

where L(c) = c2i + c2−i
.

It is clear that L is linear and that Tr(L(c)) = 0 for all c. Since the kernel of L is {0, 1},
the image of L contains all elements of F2n with trace 0. So if Tr(A) = 0 we can choose c
such that A = L(c). With this choice of c, we have

Wf (A, 1) = χ(Ac+ c2i+1)
∑
z∈F2n

χ(z2i+1) = 0

where
∑
z∈F2n χ(z2i+1) = 0 since z2i+1 is a permutation of F2n when n is odd.

If Tr(A) = 1, choose c so that L(c) = A+ 1. Then

Wf (A, 1) = χ(Ac+ c2i+1)
∑
z∈F2n

χ(z2i+1 + z) = χ(Ac+ c2i+1)Wf (1, 1).

The following is proved as Theorem 5 of [23],

Wf (1, 1) =

+2(n+1)/2 if n ≡ ±1 (mod 8)

−2(n+1)/2 if n ≡ ±3 (mod 8).

So Wf (A, 1) is nonzero when Tr(A) = 1. Therefore Wf (A, 1) = 0 if and only if Tr(A) = 0.
This result is extended to b 6= 0, 1 with a change of variables. Let z = b

1
2i+1x. Then

Wf (A, 1) =
∑
z∈F2n

χ(Az + f(z))

=
∑
x∈F2n

χ(Ab
1

2i+1x+ bf(x))

=Wf (a, b)

45

where A is chosen such that a = Ab
1

2i+1 . The condition Tr(A) = 0 becomes Tr(ab−
1

2i+1) = 0.
Finally, if a 6= b = 0 then Wf (a, b) =

∑
x∈F2n χ(ax) = 0.

Throughout this chapter this is the only Walsh zero test we use and so will refer to
Proposition 4.1.1 simply as the Walsh zero test. Now that we can easily determine Walsh
zeros for Gold APN permutations, we are tasked with the problem of finding Walsh zero
spaces.

WZ spaces have been recently appearing in literature. In Theorem 4 of [10], Canteaut and
Perrin prove that the number of EA-classes inside the CCZ-class of f : F2n → F2m is upper
bounded by the number of WZ spaces of f . Beierle, Carlet, Leander, and Perrin in [1] have
studied two new quadratic APN permutations in dimension 9 using numerical properties
of their WZ spaces. Furthermore, in [1] the authors show an interesting similarity between
their new APN permutations and Gold APN permutations in odd dimensions divisible by
3. We describe these new APN permutations in Section 4.6.3 and present our perspective
on the similarities to Gold APN permutations.

From now on let us define 0−
1

2i+1 = 0 as this will simplify some of the forthcoming
constructions and arguments and this convention is common in the literature. Let us note
that this works correctly for the Walsh zero test for Gold APN permutations, where for a
pair (a, 0) we get Tr(a · 0−

1
2i+1) = Tr(a · 0) = 0, as desired.

Definition 4.1.2. Let n be odd and gcd(i, n) = 1. Let S be an additive subspace of F2n. We
say that S is i-compatible if the set S−

1
2i+1 = {s−

1
2i+1 : s ∈ S} is also an additive subspace

of F2n.

Suppose X is an additive subspace of Y . Because the subspace relation is transitive, if
S is an i-compatible subspace of X then S is also an i-compatible subspace of Y .

For U ⊆ F2n and a ∈ F2n denote aU = {au : u ∈ U}.

Example 4.1.3.
(i) If n is odd and gcd(i, n) = 1 then the following subspaces of F2n are i-compatible: {0},
F2 and F2n.
(ii) If S is an i-compatible subspace of F2n, then µS is also i-compatible for each µ ∈ F2n.

We thank Claude Carlet for suggesting to us the current form of the following proposition
which was previously stated only for m = 3.

Proposition 4.1.4. Suppose m divides n and gcd(i, n) = 1. Then F2m is an i-compatible
subspace of F2n.

Proof. Let ξ ∈ F2m . Then (ξ−
1

2i+1)2m = (ξ2m)−
1

2i+1 = ξ
− 1

2i+1 . So ξ
− 1

2i+1 ∈ F2m and it
follows that {ξ−

1
2i+1 : ξ ∈ F2m} = F2m since x 7→ x

− 1
2i+1 permutes F2n .

Moreover, when n is a multiple of 3, then F2n contains the subfield F23 and the following
lemma applies.

46

Lemma 4.1.5. Suppose n is a multiple of 3 and gcd(i, n) = 1. Let ξ ∈ F23 ⊂ F2n. Then
ξ
− 1

2i+1 = ξ2i.

Proof. If ξ = 0 then the result follows from our definition 0−
1

2i+1 = 0. Otherwise, note that
raising both sides of ξ−

1
2i+1 = ξ2i to 2i + 1 yields the equivalent equation

ξ−1 = ξ22i+2i
.

Since ξ ∈ F23\{0} there are only two cases to consider: For i ≡ 1 (mod 3), we have

ξ22i+2i = ξ22+2 = ξ6 = ξ−1.

For i ≡ 2 (mod 3) we have

ξ22i+2i = ξ24+22 = ξ2+4 = ξ6 = ξ−1.

Lemma 4.1.6. Assume that n is odd and divisible by 3. Let S be the subspace of F2n

isomorphic to F23. Then each additive subspace of S is i-compatible whenever gcd(i, n) = 1.

Proof. This follows from Lemma 4.1.5. Indeed ξ 7→ ξ
− 1

2i+1 is a linear mapping on F23 .

As any two 2-dimensional subspaces (hyperplanes) of F23 can be obtained from each
other just by scaling by an element of F∗23 , it follows that if 3 divides n, then Lemma 4.1.6
and Example 4.1.3(ii) provide 2n − 1 two-dimensional i-compatible subspaces of F2n and
(2n − 1)/7 three-dimensional i-compatible subspaces of F2n . The latter ones are the cosets
of F∗23 in F∗2n .

For i = 1 it is easy to see that the proof of Lemma 4.1.6 does not extend to any higher
dimension. Indeed suppose that s 7→ s−1/3 is linear on F2n where n > 3 is odd, then
−1/3 ≡ 2k (mod 2n − 1) for some integer 0 ≤ k < n. It follows that

3 · 2k + 1 = M(2n − 1)

for some integer positive integer M . If n > 3 and k < n− 1 then 3 · 2k + 1 is too small for
this to happen. The only remaining possibility is 3 · 2n−1 + 1 = 2n− 1, which can not occur
either.

In Proposition 4.3.1 below we will see that i-compatible spaces can be used to construct
WZ spaces. Thus it is interesting to obtain as many i-compatible spaces as we can. We have
checked by exhaustive search that there are no two-dimensional i-compatible subspaces of
F2n other than those described above for odd n and relatively prime i in the range n ≤ 17
(see Appendix C). This motivates us to present the following open problem:

47

Problem 4.1.7. For odd n, do there exist i-compatible subspaces of F2n other than those
described by Example 4.1.3(i,ii), Proposition 4.1.4 and Lemma 4.1.6?

4.2 Computational investigations in low dimensions

In this section we describe our approach for obtaining the computational descriptions of
WZ spaces and their TI pairs for Gold APN permutations. Subsequently, in Sections 4.3
and 4.4 we analyze them and develop theoretical constructions. At first we attempted the
naive approach of a randomized vector subspace search with Magma for the Gold APN
permutation f(x) = x3. Along with the randomized vector space search being inefficient,
there is inherent uncertainty of whether or not it had found all possible WZ spaces of a
certain dimension. But these early results showed us that there do indeed exist nontrivial
TI pairs of Walsh zero spaces for Gold APN permutations which provided motivation for
further study.

Fortunately, a new algorithm for efficient searches of vector subspaces of specific dimen-
sions is given in [4]. Given a general subset S of elements, this algorithm finds subspaces
of a given dimension completely contained in S. This algorithm along with other tools for
analyzing S-boxes are implemented in Léo Perrin’s and Mathias Joly’s software package
sboxU [33]. The software uses C++ for multi-threading and Python for bindings. With the
help of sboxU, we have exhaustively listed all WZ spaces for Gold APN permutations up
to and including dimension 9.

We started our computational search with the Gold function f(x) = x3 in odd dimen-
sions. With sboxU, we were able to efficiently list every WZ space basis for f(x) up to
dimension 9. Of course the full vector space is needed for analysis, therefore we converted
the sboxU data to Magma for further processing described below. We analyzed these WZ
spaces with Magma since it has one of the best implementations of finite fields and linear
codes. Magma is also used by many authors of publications in this area. Later we checked
that our theoretical constructions do cover all the computed WZ spaces for all possible Gold
functions in odd dimensions up to and including dimension 9.

4.2.1 Dimension 3

First we exhaustively computed every Walsh zero for f(x) = x3 in Magma using the Walsh
zero test. That is, (a, b) ∈ F2n × F2n is a Walsh zero of f if and only if Tr(ab−

1
3) = 0.

Then we converted each Walsh zero (a, b) to its corresponding integer representation when
viewed as an element of F2n

2 , which is the required input format for sboxU. For example,
(0, 0, 1, 1, 0, 1) ∈ F6

2 corresponds to 13. Starting with n = 3, sboxU gives us 30 bases of WZ
spaces for f(x) = x3 which have no discernible patterns at first glance (see Appendix C).
Next we formatted the bases from sboxU back into elements of F2n ×F2n from their integer
representations and generated all Walsh zero spaces for f(x). For example, one of these

48

spaces is

Z = {(0, 0), (α4, α6), (α2, α3), (α6, α6), (α, α4), (α3, 0), (α5, α3), (1, α4)}

where α is a primitive element of F23 . We needed some way of categorizing theses spaces.
Since each element of Z belongs to F2n × F2n , projecting onto either the first or second
component gives us a subspace of Z. One idea is to find the dimensions of both of these
component projections for all 30 WZ spaces, which is easy to do but we will need some
notation to compactly present the data. Suppose a WZ space has da and db as dimensions
of the projections onto the first and second component respectively. Then we can represent
that WZ space by the symbol [da, db]. For example, we represent the WZ space Z given
above by [3, 2].

For the 30 WZ spaces of f(x) = x3, there are 120 TI pairs. We can represent all of this
data in a WZ graph as shown in Figure 4.1. Each node of the graph represents a set of WZ
spaces with corresponding component dimensions and the superscript indicates the number
of such spaces that exist. Each labelled edge indicates the number of TI pairs that exist for
the corresponding spaces.

[0, 3]1 [3, 2]7 [2, 1]7

[3, 0]1 [2, 3]7 [1, 2]7

1 21 28

7 28

7 28

Figure 4.1: WZ graph of the Gold APN permutation f(x) = x3 on F23 .

Therefore, we have organized the 30 = 1+1+7+7+7+7 WZ spaces into six categories
based on their different component projections. As a result we have also categorized the
120 = 1 + 7 + 7 + 21 + 28 + 28 + 28 TI pairs. Note that every WZ space belongs to a TI
pair; this is not the case in higher dimensions. Also, note that there happens to be no edges
connecting a node to itself. That is, no TI pair contains WZ spaces possessing identical
component projection dimensions.

The data given above are covered by theoretical constructions as follows. Proposi-
tion 4.3.1 accounts for all spaces of the form [3, 0], [2, 1], [1, 2], and [0, 3]. Spaces of the
form [3, 2] are obtained from Proposition 4.3.2. Spaces of the form [2, 3] are obtained from
Proposition 4.3.3 with m = 3.

However we did not try to obtain theoretical constructions from dimension 3 since the
small size of the space could force conditions that do not hold in higher dimensions. Our
first theoretical constructions were extracted by closely analyzing dimensions 5 and 7; since

49

they are prime we expect simpler behavior. The remaining theoretical constructions were
obtained by analyzing dimension 9 which has much more structure since F23 is a subfield
of F29 .

4.2.2 Dimension 5

There are 64 WZ spaces and 32 TI pairs in dimension 5. Spaces of the form [4, 1] do not
belong to any TI pair. The WZ graph is shown in Figure 4.2. Recall from Chapter 2, that

[0, 5]1 [5, 0]1 [4, 5]31 [4, 1]311 31

Figure 4.2: WZ graph of the Gold APN permutation f(x) = x3 on F25 .

{Z[5,0], Z[0,5]} is a TI pair. We see this trivial TI pair represented as an edge with label 1
in Figure 4.2. The remaining edge in Figure 4.2 indicating 31 TI pairs gave us initial data
for the first theoretical construction of a nontrivial TI pair. Note that the multiplicity of
the nontrivial WZ spaces is 31 = 25 − 1 = |F∗25 | indicating that perhaps these are scaled
versions of a single construction.

Before obtaining constructions for TI pairs we obtained constructions of WZ spaces.
Since WZ spaces of the form [4, 5] are n-dimensional in the second component, these spaces
must be of the form {(g(x), x) : x ∈ F25} for some g(x) ∈ F25 [x]. Thus, we can use
interpolation to find the unique polynomial g(x) for each WZ space of the form [4, 5].
After doing this and analyzing the results, we find that each of these WZ spaces are
of the form {(ax16 + a4x, x) : x ∈ F25} for a ∈ F∗25 . We noticed that x16 = x

1
2 in F25

and eventually we generalized this construction into the current form of Proposition 4.3.3:
{(µa, µ2i+1b) : a ∈ F2n , b ∈ F2m and Trnm(a) = b+b

1
2i } with µ fixed in F∗2n and gcd(i, n) = 1.

Observe that WZ spaces of the form [4, 1] are (n−1)-dimensional in the first component.
That is, the projections onto the first component are hyperplanes (see Corollary 2.1.4). It
follows that for every α ∈ F∗25 , projections onto the first component are given by {(x, 0) ∈
F25 × F25 : Tr(αx) = 0}. In other words, each WZ space of the form [4, 1] is characterized
uniquely by α ∈ F∗25 and the nonzero second component, say b. Let Zαb denote such a WZ
space. Then,

Zαb = {(x, c) ∈ F25 × F25 : Tr(αx) = 0 and c ∈ {0, b}}.

Ultimately, this construction was generalized to Proposition 4.3.1, which we can see by
modifying notation: Let S = bF2 := {0, b} and S−

1
2i+1 = {0, b−

1
2i+1 }. Let X = {x ∈ F25 :

∀a ∈ S−
1

2i+1 , Tr(ax) = 0}. Then Zαb = X × S.

50

4.2.3 Dimension 7

There are 256 WZ spaces and 128 TI pairs in dimension 7. Spaces of the form [6, 1] do
not belong to any TI pair. The WZ graph is shown in Figure 4.3. As one can see, the WZ

[0, 7]1 [7, 0]1 [6, 7]127 [6, 1]1271 127

Figure 4.3: WZ graph of the Gold APN permutation f(x) = x3 on F27 .

graphs in dimensions 5 and 7 have a very similar structure. Note the simple structure for
primes 5 and 7 in comparison to 9. This indicates that some forms of WZ spaces may be
“lifted” up to higher dimension. At the time, this gave us hope that theoretical descriptions
for WZ spaces were possible in general dimensions. Indeed we were able to achieve such
general constructions, not only for WZ spaces but also for TI pairs, which we present in
the next two sections. We found that Proposition 4.3.1 accounts for all spaces of the form
[7, 0], [6, 1], and [0, 7] and spaces of the form [6, 7] are obtained from Proposition 4.3.3 with
m = 7.

4.2.4 Dimension 9

There are 2630 WZ spaces and 262144 TI pairs in dimension 9. The WZ spaces correspond-
ing to [6, 3]73, [8, 1]511, [8, 3]511 do not participate in any TI pair. Note that the WZ graph

[0, 9]1 [9, 2]511

[9, 0]1 [8, 9]511 [7, 2]511

[8, 1]511 [8, 3]511

[6, 3]73

1 130305

511

511 130816

Figure 4.4: WZ graph of the Gold APN permutation f(x) = x3 on F29 .

looks similar to that of dimension 3, suggesting that dimensions which are multiples of 3
may have extra structure. In fact any nonprime dimension has a nontrivial subfield which
gives extra structure that may contribute to extra WZ spaces.

Luckily, most of the WZ spaces in dimension 9 have at least one small or one large
component dimension. If the component dimensions are small, then it is easier to organize
and to provide general constructions. If one of the component dimensions is large, then we
can use methods similar to the ones described for dimension 5.

51

Proposition 4.3.1 accounts for all spaces of the form [9, 0], [8, 1], [7, 2], [6, 3], and [0, 9].
Spaces of the form [9, 2] are obtained from Proposition 4.3.2. Spaces of the form [8, 9] and
[8, 3] are obtained from Proposition 4.3.3 with m = 9 and m = 3 respectively.

Once we had generalized the constructions of WZ spaces as much as we could, which
included merging many constructions, we started to characterize their trivial intersections.
Doing so was mostly straightforward except for TI pairs of the form {[9, 2], [8, 9]} and
{[8, 9], [7, 2]}. To find exactly which conditions must hold for these WZ spaces to intersect
trivially, there was a lot of back and forth between analyzing our generalized constructions
and the data provided computationally.

4.2.5 Dimension 11

In dimension 11, we were not able to list any WZ spaces of f(x) = x3 with sboxU in a
reasonable time. This may be because we could not get sboxU to output spaces continuously.
Therefore, we tried sampling subsets of Walsh zeros uniformly at random to use as input
with sboxU. Even after sampling up to 97% of all possible Walsh zeros, sboxU did not
return any WZ spaces.

4.3 Constructions of some WZ spaces for Gold APN permu-
tations

In this section we provide constructions of nontrivial WZ spaces for Gold APN permutations
in odd dimensions which are, as far as we know, the first such theoretical (computer-free)
constructions. As indicated before, these constructions are informed by the numerical ex-
amples in the previous section.

Proposition 4.3.1. Assume that n is odd and S is an i-compatible additive subspace of
F2n. Let f : F2n → F2n, f(x) = x2i+1, with gcd(i, n) = 1. Let

X = {x ∈ F2n : (∀a ∈ S−
1

2i+1) Tr(ax) = 0}.

Then X × S is a WZ space for f .

Proof. Let (0, 0) 6= (x, s) ∈ X × S. Then Tr(xs−
1

2i+1) = 0 by construction, hence (x, s) is a
Walsh zero of f . Since both X and S are linear spaces, X×S is also a linear space. Finally,
since s 7→ s

− 1
2i+1 is a bijection on F2n , we get dimS

− 1
2i+1 = dimS, and

dim(X × S) = dimX + dimS = (n− dimS) + dimS = n.

52

Proposition 4.3.2. Assume that n = 3k where k is odd. Let f : F2n → F2n, f(x) = x2i+1,
with gcd(i, n) = 1. Suppose ξ is a fixed element of F23 ⊂ F2n and µ is a fixed element of
F∗2n. Then

Z =
{(
x , µ−(2i+1)(ξTr(µx) + Tr(ξ2i

µx))
)

: x ∈ F2n

}
is a WZ space of f .

Proof. The additive closure of Z follows from the fact that

g(x) = µ−(2i+1)(ξTr(µx) + Tr(ξ2i
µx))

is an F2-linear function.
We now prove that each element (x, g(x)) ∈ Z\{(0, 0)} is a Walsh zero of f . We only

need to address the cases when g(x) 6= 0. Note that µ2i+1g(x) ∈ F23 . Using Lemma 4.1.5
we get

Tr(xg(x)−
1

2i+1) = Tr(xµ(µ2i+1g(x))−
1

2i+1)

= Tr(xµ(ξTr(µx) + Tr(ξ2i
µx))2i)

= Tr(xµξ2iTr(µx) + xµTr(ξ2i
µx))

= Tr(xµξ2iTr(µx)) + Tr(xµTr(ξ2i
µx))

= 0

because Tr(xµξ2iTr(µx)) = Tr(xµξ2i)Tr(µx) = Tr(xµTr(ξ2i
µx)). By considering the first

components of the elements of Z it is clear that dimZ = n.

While Proposition 4.3.2 holds for each ξ ∈ F23 , one obtains interesting results only when
ξ is a primitive element of F23 . If ξ = 0, 1 then Z is the trivial WZ space Z[n,0].

Proposition 4.3.3. Suppose n is odd and m divides n. Let f : F2n → F2n, f(x) = x2i+1,
with gcd(i, n) = 1. Suppose µ is a fixed element of F∗2n. Then

Z = {(µa, µ2i+1b) : a ∈ F2n , b ∈ F2m and Trnm(a) = b+ b
1
2i }

is a WZ space of f .

Proof. First we show that each element (µa, µ2i+1b) of Z except for (0, 0) is a Walsh zero
of f . Note that b−

1
2i+1 ∈ F2m . We have

53

Trn1 (µa(µ2i+1b)−
1

2i+1) = Trn1 (ab−
1

2i+1)

= Trm1 (Trnm(ab−
1

2i+1))

= Trm1 (b−
1

2i+1 Trnm(a))

= Trm1 (b−
1

2i+1 (b+ b
1
2i))

= Trm1 (b
2i

2i+1 + b
1

2i(2i+1))

= Trm1 (b
2i

2i+1) + Trm1

(
b

22i

2i(2i+1)

)
= 0

hence each nonzero element of Z is a Walsh zero of f .
Let (µa1, µ

2i+1b1), (µa2, µ
2i+1b2) ∈ Z. Then

(µa1, µ
2i+1b1) + (µa2, µ

2i+1b2) = (µ(a1 + a2), µ2i+1(b1 + b2)) ∈ Z

since b1 + b2 ∈ F2m and

Trnm(a1 + a2) = Trnm(a1) + Trnm(a2)

= b1 + b
1
2i

1 + b2 + b
1
2i

2

= (b1 + b2) + (b1 + b2)
1
2i .

Therefore Z is additively closed.
For each of the 2m choices for the second component µ2i+1b of an element of Z, there

are 2n−m choices for the first component µa such that Trnm(a) = b+ b
1
2i . It follows that the

dimension of Z is n.

Remark 4.3.4. The WZ spaces given in Propositions 4.3.1, 4.3.2, and 4.3.3 along with the
trivial WZ spaces Z[n,0] and Z[0,n] cover all possible WZ spaces for Gold APN permutations
in odd dimension up to and including dimension 9.

4.4 TI pairs of WZ spaces for Gold APN permutations

In this section we describe several theoretical constructions of trivially intersecting pairs of
WZ spaces for Gold APN permutations in odd dimensions. We checked using the sboxU
software package that these constructions cover all such pairs in dimensions less than or
equal to 9. Obviously, the two trivial WZ spaces Z[n,0], Z[0,n] intersect trivially.

54

Proposition 4.4.1. Let n = 3k where k is odd and f : F2n → F2n, f(x) = x2i+1, with
gcd(i, n) = 1. Let

Z = {(x, µ−(2i+1)(ξTr(µx) + Tr(ξ2i
µx))) : x ∈ F2n}

where ξ is a fixed element of F23 ⊂ F2n and µ is a fixed element of F∗2n. Then Z is a WZ
space of f and the pair {Z[0,n], Z} intersects trivially.

Proof. It follows from Proposition 4.3.2 that Z is a WZ space of f . If (x, c) ∈ Z[0,n] ∩ Z,
then x = 0 which implies c = 0. Therefore the pair {Z[0,n], Z} intersects trivially.

Note that in the above proposition, if ξ ∈ {0, 1} then Z becomes the trivial WZ space
Z[n,0].

Proposition 4.4.2. Let n be odd and f : F2n → F2n, f(x) = x2i+1, with gcd(i, n) = 1. Let

Z = {(µ(b+ b
1
2i), µ2i+1b) : b ∈ F2n}

with µ a fixed element of F∗2n. Then Z is a WZ space of f and the pair {Z[n,0], Z} intersects
trivially.

Proof. It follows from Proposition 4.3.3 with m := n that Z is a WZ space of f .
Suppose (µ(β + β

1
2i), µ2i+1β) ∈ Z ∩ Z[n,0]. Then µ2i+1β = 0 and since µ 6= 0, we have

β = 0. Therefore µ(β + β
1
2i) = 0 and the only element in the intersection is (0, 0).

Proposition 4.4.3. Let n = 3k where k is odd and f : F2n → F2n, f(x) = x2i+1, with
gcd(i, n) = 1. Let

Y = {(x, µ−(2i+1)(ξTr(µx) + Tr(ξ2i
µx))) : x ∈ F2n}

where ξ is a fixed element of F23 ⊂ F2n and µ is a fixed element of F∗2n. Let

Z = {(ν(b+ b
1
2i), ν2i+1b) : b ∈ F2n}

with ν a fixed element of F∗2n. Suppose also that Tr((ξ + ξ2i)(µν)−2i) = 0. Then Y and Z
are WZ spaces of f and the pair {Y,Z} intersects trivially.

Proof. It follows from Proposition 4.3.2 that Y is a WZ space of f and from Proposition 4.3.3
with m = n that Z is a WZ space of f .

Suppose towards a contradiction that there exists an element, different from (0, 0), in
Y ∩ Z. Then for this element, we have x = ν(b+ b

1
2i). It follows that b 6= 0 and

(µν)2i+1b = ξTr(µν(b+ b
1
2i)) + Tr(ξ2i

µν(b+ b
1
2i)). (4.1)

55

By looking at the right-hand side of (4.1) we can see that (µν)2i+1b ∈ {0, 1, ξ, ξ + 1}. But
since µ 6= 0, ν 6= 0, and b 6= 0, we have (µν)2i+1b ∈ {1, ξ, ξ + 1}. We will look at these three
cases below.

First assume that (µν)2i+1b = 1. Observe that

Tr(ξ2i
µν(b+ b

1
2i)) = Tr(ξ2i

µν(µν)−(2i+1) + ξ2i
µν(µν)−

2i+1
2i)

= Tr(ξ2i(µν)−2i) + Tr(ξ2i(µν)−
1
2i)

= Tr(ξ2i(µν)−2i) + Tr
(
ξ23i(µν)−

22i

2i

)
= Tr(ξ2i(µν)−2i) + Tr(ξ23i(µν)−2i)

= Tr((ξ2i + ξ)(µν)−2i) = 0

which contradicts (4.1).
Finally assume that (µν)2i+1b = z and z ∈ {ξ, ξ + 1}. Then

Tr(µν(b+ b
1
2i)) = Tr(zµν(µν)−(2i+1) + z

1
2i µν(µν)−

2i+1
2i)

= Tr(z(µν)−2i) + Tr(z
1
2i (µν)−

1
2i)

= Tr(z(µν)−2i) + Tr
(
z

22i

2i (µν)−
22i

2i

)
= Tr(z(µν)−2i) + Tr(z2i(µν)−2i)

= Tr((ξ + ξ2i)(µν)−2i) = 0

which again contradicts (4.1).
Since all cases are exhausted, the only element in the intersection is (0, 0) and the proof

is complete.

Proposition 4.4.4. Let n = 3k where k is odd and f : F2n → F2n, f(x) = x2i+1, with
gcd(i, n) = 1. Let

Y = {(ν(b+ b
1
2i), ν2i+1b) : b ∈ F2n}

with ν a fixed element of F∗2n. Suppose ξ is a fixed primitive element of F23 ⊂ F2n. Let

Z = X × S

with S = spanF2{µ, ξµ} for some fixed µ ∈ F∗2n and Z is constructed by applying Proposi-

tion 4.3.1. Suppose also that Tr((ξ + ξ2i)µ
2i

2i+1 ν−2i) = 1. Then Y and Z are WZ spaces of
f and the pair {Y,Z} intersects trivially.

Proof. It follows from Proposition 4.3.3 with m = n that Y is a WZ space of f .

56

Note that S is i-compatible by Lemma 4.1.6 and Example 4.1.3(ii): If T = spanF2{1, ξ}
then S = µT . From Proposition 4.3.1 we have

X = {x ∈ F2n : (∀α ∈ S−
1

2i+1)Tr(αx) = 0}

where
S
− 1

2i+1 = {0, µ−
1

2i+1 , (ξµ)−
1

2i+1 , ((1 + ξ)µ)−
1

2i+1 }.

Suppose towards a contradiction that (ν(b+ b
1
2i), ν2i+1b) is a nonzero element belonging to

Y ∩ Z. Then ν2i+1b ∈ S \ {0} = {µ, ξµ, (1 + ξ)µ}. We will look at these three cases below.
First assume ν2i+1b = µ. Take α = (ξµ)−

1
2i+1 ∈ S

− 1
2i+1 . By Lemma 4.1.5 we have

α = ξ2i
µ
− 1

2i+1 . Then by the condition defining X, we should have Tr(αν(b+ b
1
2i)) = 0. But

Tr(αν(b+ b
1
2i)) = Tr(ξ2i

µ
− 1

2i+1 ν(µν−2i−1 + µ
1
2i ν
− 1

2i−1))

= Tr(ξ2i(µ
2i

2i+1 ν−2i + µ
1

(2i+1)2i ν
− 1

2i))

= Tr(ξ2i
µ

2i

2i+1 ν−2i) + Tr(ξ23i
µ

22i

(2i+1)2i ν
− 22i

2i)

= Tr(ξ2i
µ

2i

2i+1 ν−2i) + Tr(ξµ
2i

2i+1 ν−2i)

= Tr((ξ + ξ2i)µ
2i

2i+1 ν−2i) = 1.

Finally assume that ν2i+1b = zµ and z ∈ {ξ, ξ + 1}. Take α = µ
− 1

2i+1 ∈ S−
1

2i+1 . By the
condition defining X, we should have Tr(αν(b+ b

1
2i)) = 0. But

Tr(αν(b+ b
1
2i)) = Tr(µ−

1
2i+1 ν(zµν−2i−1 + z

1
2i µ

1
2i ν
− 1

2i−1))

= Tr(zµ
2i

2i+1 ν−2i + z
1
2i µ

1
(2i+1)2i ν

− 1
2i)

= Tr(zµ
2i

2i+1 ν−2i) + Tr(z
22i

2i µ
22i

(2i+1)2i ν
− 22i

2i)

= Tr(zµ
2i

2i+1 ν−2i) + Tr(z2i
µ

2i

2i+1 ν−2i)

= Tr((ξ + ξ2i)µ
2i

2i+1 ν−2i) = 1.

Since all cases are exhausted, the only element in the intersection is (0, 0) and we are
done.

There are some similarities between both TI pair constructions above. Proposition 4.4.3
requires the condition

Tr((ξ + ξ2i)(µν)−2i) = 0 (4.2)

57

while Proposition 4.4.4 requires the condition

Tr((ξ + ξ2i)µ
2i

2i+1 ν−2i) = 1. (4.3)

If ξ = 0, 1 then (4.2) is always satisfied, while (4.3) is never satisfied.
A natural question to ask is how often the pairs of WZ spaces above intersect trivially.

Since there are too many pairs to list exhaustively, we could randomly generate possible
TI pairs by sampling ξ, µ, and ν uniformly from their domains. If ξ ∈ {0, 1} then in
Proposition 4.4.3 the trace condition is always satisfied and we get a trivial WZ space for
Y . In the following we analyze the cases when ξ /∈ {0, 1}. We compute the probability of
the trace condition being satisfied in Propositions 4.4.3 and 4.4.4.

Denote a = ξ + ξ2i which is nonzero when ξ is chosen uniformly at random from
F23\{0, 1}. Let ∈ F∗23 be fixed and let i ∈ N. Then Tr(a(µν)−2i) = 0 is satisfied with
probability close to 1/2 assuming that µ, ν are sampled uniformly at random from F∗2n , for
the following reasons. It is clear that µν is uniform and hence so is (µν)−1. Since x 7→ x2i is
a bijection, it also preserves the uniform distribution and so (µν)−2i is uniform. Therefore,
for µν ∈ F∗2n chosen uniformly at random, Tr(a(µν)−2i) = 0 is satisfied with probability
close to 1/2 because the trace function is balanced, see Proposition 2.2.2. (It will not be
satisfied with probability exactly 1/2 since 0 is the only element of F2n that cannot be
expressed as (µν)−2i .)

Similarly, let a ∈ F∗23 be fixed and let i ∈ N. Then Tr(a(µ
2i

2i+1 ν−2i) = 1 is satisfied with
probability close to 1/2 assuming that µ, ν are sampled uniformly at random from F∗2n , for
the following reasons. From Proposition 2.2.7 x 7→ x2i+1 is a permutation of F2n , hence the
inverse function x

1
2i+1 is also a permutation of F2n . Thus µ

1
2i+1 has a uniform distribution.

By the same reasoning as above, it follows that µ
2i

2i+1 is uniform and so is µ
2i

2i+1 ν−2i .

4.5 Applications

4.5.1 Classifying EA classes of functions

Recall that functions f and g mapping F2n to F2n are extended affine equivalent (EA-
equivalent) if there exist affine permutations L1, L2 of F2n and an affine function L3 such
that L1(f(L2(x))) + L3(x) = g(x) for all x ∈ F2n . In Chapter 2 we observed that EA-
equivalent functions are also CCZ-equivalent, but partitioning CCZ classes into EA classes
is in general a hard problem. This problem was addressed by Canteaut and Perrin [10] by
studying the structure of the Walsh zeros of functions. WZ spaces play an important role
in their investigations.

To bring up a more specific example, in [10, Lemma 12] it is stated that the CCZ class of
f(x) = x3 on F25 contains three EA classes, and this is based on the classification of 64 WZ
spaces that according to [10] were found experimentally. Here we can give a computer-free

58

description of these spaces: 32 of them are obtained from Proposition 4.3.3 with m = n = 5,
and the remaining 32 of them are obtained from Proposition 4.3.1 with S = µF2 where
µ ∈ F25 .

4.5.2 Construction of new APN permutations

If we know two trivially intersecting WZ spaces for an APN function f : F2n → F2n ,
then Proposition 2.5.7 allows us to construct an APN permutation f ′ of F2n . Then f ′ is
CCZ-equivalent to f , but in general it need not be EA-equivalent to it.

Recall from Example 2.2.9 that for n = 9, f(x) = x3 has algebraic degree 2 while
its compositional inverse g(x) = x

1
3 has algebraic degree 5. By applying Proposition 2.5.7

along with constructions of trivially intersecting WZ spaces provided in Section 4.4 above,
we found APN permutations of F29 of algebraic degrees 2, 4 and 5. Since the algebraic degree
is preserved by EA equivalence, the APN permutations of degree 4 are not EA-equivalent
to f or g.

But in general, it is hard to determine if a given APN function is “new”. One could check
if their new APN permutation is EA-equivalent to an already known one. However, many
APN functions are being constructed numerically. For example, in [35] over 8000 CCZ-
inequivalent APN functions in dimension 8 were found that do not belong to any known
families. Recently, 12921 more APN functions have been added to this list [2]. While checking
EA-equivalence is a relatively straightforward process, this would add large volumes of
computations to this thesis.

The constructions in Section 4.4 work in arbitrary odd dimensions and for all Gold APN
functions. It will be interesting to investigate how many EA-inequivalent APN permutations
they provide.

4.6 Other functions

Having constructed families of TI pairs for the Gold functions naturally we ask if similar
research is possible for other known APN functions. Given an APN function f , this would
amount to characterizing the Walsh zeros of f , listing the WZ spaces of f (although one
might be able to infer WZ spaces of f just from its Walsh zeros), and finally constructing
TI pairs of f .

We give details on several APN functions and their WZ graphs which may be of interest
due to their similarities to Gold functions.

4.6.1 Monomial APN functions

We have computed the WZ graphs of monomial APN functions of the form x 7→ xd given
in Table 2.2.1 up to and including dimension 9.

59

In dimension n = 3 we have found that all monomial APN functions have the same WZ
graph as the Gold WZ graph given in Figure 4.1.

In dimension n = 5 we have found that the Kasami APN monomial with d = 24 has the
same WZ graph as the Gold WZ graph given in Figure 4.2. The Kasami APN monomials
with d = 13, 26 and the Welch APN monomial with d = 7 all have the WZ graph given in
Figure 4.5.

[5, 4]31 [0, 5]1 [5, 0]1 [1, 4]3131 1

Figure 4.5: WZ graph of Kasami and Welch APN monomials on F25 .

The Dobbertin APN monomial with d = 29 and the Inverse APN monomial with d = 15
both have the two trivial Walsh zero spaces as their only Walsh zero spaces.

In dimension n = 7 we have found that the Kasami APN monomial with d = 96 has the
same WZ graph as the Gold WZ graph given in Figure 4.3. The Kasami APN monomials
with d = 13, 57, 104, 114 and the Welch APN monomial with d = 11 and the Niho APN
monomial with d = 39 and the Inverse APN monomial with d = 63 all have the two trivial
Walsh zero spaces as their only Walsh zero spaces.

In dimension n = 9 we have found that the Kasami APN monomial with d = 384 has the
same WZ graph as the Gold WZ graph given in Figure 4.4. The Kasami APN monomials
with d = 13, 241, 416, 482 and the Welch and Niho APN monomials, both with d = 19, and
the Inverse APN monomial with d = 255 all have the two trivial Walsh zero spaces as their
only Walsh zero spaces.

4.6.2 The Budaghyan-Carlet-Leander function

In 2008, Budaghyan, Carlet and Leander [8] discovered an infinite class of APN functions
which we describe below. Suppose gcd(k, 3) = 1, gcd(s, 3k) = 1, i = sk mod 3, t = 3 − i,
n = 3k, and the order of ω ∈ F2n is 22k + 2k + 1. It is proved in [8] that the function

f(x) = x2s+1 + ωx2ik+2tk+s

is APN. We call this function a BCL function and we will examine the case when s = 1.
Computationally we find that there are 190 WZ spaces of f(x) in F26 . The multiset

containing dimensions of projections onto each component is

{[6, 0], [6, 1]63, [6, 2]126}

which is the same as that for the Gold function x3. But it is not clear how the constructions
of the WZ spaces for Gold and BCL are related.

60

The only other dimension for the BCL function that we can compute is dimension
12, which takes too long to compute completely. But we can look at cases where either
component is restricted to a subfield.

Restriction on WZ components Multiset of dimensions of WZ spaces
a ∈ F212 , b ∈ F22 {[12, 0], [12, 1]3}
a ∈ F212 , b ∈ F23 {[12, 0], [12, 1]21, [12, 2]42}
a ∈ F212 , b ∈ F26 {[12, 0], [12, 1]64, [12, 4]126}
a ∈ F22 , b ∈ F212 ∅
a ∈ F23 , b ∈ F212 ∅
a ∈ F26 , b ∈ F212 ∅

Table 4.1: Component dimensions for the BCL function in dimension 12.

Restriction on WZ components Multiset of dimensions of WZ spaces
a ∈ F212 , b ∈ F22 {[12, 0], [12, 1]9}
a ∈ F212 , b ∈ F23 {[12, 0], [12, 1]21, [12, 2]42}
a ∈ F212 , b ∈ F26 {[12, 0], [12, 1]64, [12, 4]126}
a ∈ F22 , b ∈ F212 ∅
a ∈ F23 , b ∈ F212 ∅
a ∈ F26 , b ∈ F212 ∅

Table 4.2: Component dimensions for f(x) = x3 in dimension 12.

As we can see, Tables 4.1 and 4.2 are very similar but the Gold function has six extra
WZ spaces of the form [12, 1].

4.6.3 The Beierle-Carlet-Leander-Perrin function

In 2020, Beierle and Leander [2] proved that the functions F0, F1 : F29 → F29 given by

F0(x) = x3 + u2x10 + ux24 + u4x80 + u6x136,

F1(x) = x3 + ux10 + u2x17 + u4x80 + u5x192

are APN permutations.
There are 4758 WZ spaces and 663552 TI pairs for F0 and the WZ spaces corresponding

to [6, 3]143, [8, 1]511, [8, 3]1001 do not participate in any TI pair. There are 5150 WZ spaces
and 663552 TI pairs for F1 and the WZ spaces corresponding to [6, 3]192, [8, 1]511, [8, 3]1344

do not participate in any TI pair. Note that the WZ graphs given in Figures 4.6 and 4.7
have a similar structure to the WZ graph of the Gold function in dimension 9.

61

[0, 9]1 [9, 2]1295

[9, 0]1 [8, 9]511 [7, 2]1295

[8, 1]511 [8, 3]1001

[6, 3]143

1 330225

1295

511 331520

Figure 4.6: WZ graph of F0.

[0, 9]1 [9, 2]1295

[9, 0]1 [8, 9]511 [7, 2]1295

[8, 1]511 [8, 3]1344

[6, 3]192

1 330225

1295

511 331520

Figure 4.7: WZ graph of F1.

4.6.4 Outlook

As far as our results show, WZ graphs of distinct Gold functions are the same for the
dimensions for which we computed them. This could lead to a new and hopefully useful
equivalence relation more general than CCZ-equivalence.

So far we have worked with WZ graphs which contract all WZ spaces with the same
component dimensions into a single vertex. We can also consider more detailed WZ graphs
in which each vertex represents a distinct WZ space. While we do not draw these graphs in
larger dimensions due to their higher complexity, we can investigate them by using Magma.
Computationally, we have found that up to and including dimension n = 9, any two of these
detailed WZ graphs for Gold APN functions of F2n are isomorphic. Furthermore, certain
Kasami APN functions, which are described in Section 4.6.1, also have detailed WZ graphs
which are isomorphic to those of the Gold APN functions. It could be that there exist simple
transformations between such functions that explain these structural similarities.

Overall, given all the results in Section 4.6, the prospect of future research seems very
promising. It looks like our research can be continued with these APN functions or with
any of the sporadic APN functions that have not been generalized into an infinite family.

62

Bibliography

[1] C. Beierle, C. Carlet, G. Leander, L. Perrin. A further study of quadratic APN per-
mutations in dimension nine. arXiv:2104.08008, 2021.

[2] C. Beierle, G. Leander. New instances of quadratic APN functions. IEEE Transactions
on Information Theory, 2021.

[3] E. Biham, A. Shamir. Differential cryptanalysis of DES-like cryptosystems. Journal of
Cryptology, 4(1):3–72, 1991.

[4] X. Bonnetain, L. Perrin, T. Shizhu. Anomalies and vector space search: Tools for S-Box
analysis. Proceedings of ASIACRYPT 2019, pages 196–223.

[5] W. Bosma, J. Cannon, C. Playoust. The Magma algebra system I: The user language.
Journal of Symbolic Computation, 24(3-4):235–265, 1997.

[6] K.A. Browning, J.F. Dillon, R.E. Kibler, M.T. McQuistan. APN polynomials and
related codes. Journal of Combinatorics, Information and System Science, Special Issue
in honor of Prof. DK Ray-Chaudhuri on the occasion of his 75th birthday, 34:135–159,
2009.

[7] K.A. Browning, J.F. Dillon, M.T. McQuistan, A.J. Wolfe. An APN permutation in
dimension six. Finite Fields: Theory and Applications, 518:33–42, 2010.

[8] L. Budaghyan, C. Carlet, G. Leander. Two classes of quadratic APN binomials inequiv-
alent to power functions. IEEE Transactions on Information Theory, 54(9):4218–4229,
2008.

[9] M. Calderini, L. Budaghyan, C. Carlet. On known constructions of APN and AB func-
tions and their relation to each other. Cryptology ePrint Archive, Report 2020/1444,
2020.

[10] A. Canteaut, L. Perrin. On CCZ-equivalence, extended-affine equivalence, and function
twisting. Finite Fields and Their Applications, 56:209–246, 2019.

[11] C. Carlet. Boolean functions for cryptography and coding theory. Cambridge University
Press, 2021.

[12] C. Carlet. Open questions on nonlinearity and on APN functions. In International
Workshop on the Arithmetic of Finite Fields, pages 83–107. Springer, 2014.

[13] C. Carlet, P. Charpin, V. Zinoviev. Codes, bent functions and permutations suitable
for DES-like cryptosystems. Designs, Codes and Cryptography, 15(2):125–156, 1998.

63

[14] B. Chase, P. Lisoněk. Construction of APN permutations via Walsh zero spaces.
arXiv:2110.15582, 2021.

[15] B. Chase, P. Lisoněk. Kim-type APN functions are affine equivalent to Gold functions.
Cryptography and Communications, 13:981-983, 2021.

[16] D. Cox, J. Little, D. O’Shea. Ideals, varieties, and algorithms: An introduction to com-
putational algebraic geometry and commutative algebra. Springer Science & Business
Media, 2013.

[17] W. Diffie, M.E. Hellman. Cryptanalysis of the NBS data encryption standard, 1976.

[18] R. Gold. Maximal recursive sequences with 3-valued recursive cross-correlation func-
tions. IEEE Transactions on Information Theory, 14(1):154–156, 1968.

[19] F. Göloğlu, D. Krasnayová, P. Lisoněk. Generalized Kim APN functions are not equiv-
alent to permutations. Preprint, 2020.

[20] F. Göloğlu, P. Langevin. Almost perfect nonlinear families which are not equivalent to
permutations. Finite Fields and Their Applications, 67:101707, 2020.

[21] X. Hou. Affinity of permutations of Fn2 . Discrete Applied Mathematics, 154(2):313–325,
2006.

[22] D. Krasnayová. Constructions of APN permutations. Master’s thesis, Charles Univer-
sity, 2016. https://dspace.cuni.cz/handle/20.500.11956/83075.

[23] J. Lahtonen, G. McGuire, H.N. Ward. Gold and Kasami-Welch functions, quadratic
forms, and bent functions. Advances in Mathematics of Communications, 1(2):243,
2007.

[24] K. Li, C. Li, T. Helleseth, L. Qu. A complete characterization of the APN property of a
class of quadrinomials. IEEE Transactions on Information Theory, 67(11):7535–7549,
2021.

[25] R. Lidl, H. Niederreiter. Introduction to Finite Fields and their Applications. Cam-
bridge University Press, 1994.

[26] P. Lisoněk. APN permutations and double simplex codes. https://www.birs.ca/
workshops/2015/15w5139/files/Lisonek.pdf, accessed on 2021-11-23.

[27] P. Lisoněk, F. Göloğlu, D. Krasnayová. On a family of APN quadrinomials. The 13th
International Conference on Finite Fields and Their Applications. http://www.dma.
unina.it/Fq13/Files/Booklet/Abstracts-Fq13.pdf, accessed on 2021-11-20.

[28] J.H. van Lint. Introduction to coding theory, volume 86. Springer Science & Business
Media, 2012.

[29] National Institute of Standards and Technology, Computer Security Di-
vision, Information Technology Laboratory. AES development - crypto-
graphic standards and guidelines: CSRC. https://csrc.nist.gov/projects/
cryptographic-standards-and-guidelines/archived-crypto-projects/
aes-development, accessed on 2021-11-10.

64

https://dspace.cuni.cz/handle/20.500.11956/83075
https://www.birs.ca/workshops/2015/15w5139/files/Lisonek.pdf
https://www.birs.ca/workshops/2015/15w5139/files/Lisonek.pdf
http://www.dma.unina.it/Fq13/Files/Booklet/Abstracts-Fq13.pdf
http://www.dma.unina.it/Fq13/Files/Booklet/Abstracts-Fq13.pdf
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development

[30] National Institute of Standards and Technology, Computer Security Division, Informa-
tion Technology Laboratory. Finalists - lightweight cryptography: CSRC. https:
//csrc.nist.gov/Projects/lightweight-cryptography/finalists, accessed on
2021-11-10.

[31] K. Nyberg. Differentially uniform mappings for cryptography. In Workshop on the
Theory and Application of of Cryptographic Techniques, pages 55–64. Springer, 1993.

[32] K. Nyberg, L.R. Knudsen. Provable security against a differential attack. Journal of
Cryptology, 8(1):27–37, 1995.

[33] L. Perrin, M. Joly. sboxU, 2021. https://github.com/lpp-crypto/sboxU, accessed
on 2021-10-25.

[34] D.R. Stinson, M.B. Paterson. Cryptography: Theory and Practice. Fourth Edition.
Taylor & Francis/CRC Press, 2019.

[35] Y. Yu, M. Wang, Y. Li. A matrix approach for constructing quadratic APN functions.
Designs, Codes and Cryptography, 73(2):587–600, 2014.

65

https://csrc.nist.gov/Projects/lightweight-cryptography/finalists
https://csrc.nist.gov/Projects/lightweight-cryptography/finalists
https://github.com/lpp-crypto/sboxU

Appendix A

Magma code for Chapter 2

The following is Magma code for Example 2.1.12.

> F := GF(101);
> K<x,y> := PolynomialRing(F,2);
>
> A := 4*x^4 + 3*x^3*y^2 + x*y + y + 5;
> B := x^4*y^3 + 2*x^2*y + x*y^4;
>
> Ry := UnivariatePolynomial(Resultant(A,B,x));
> "Roots of R(y)", Roots(Ry);
Roots of R(y) [<0, 4>, <77, 1>, <96, 1>]
>
> Rx := UnivariatePolynomial(Resultant(A,B,y));
> "Roots of R(x) ", Roots(Rx);
Roots of R(x) [<0, 2>, <11, 1>, <15, 1>, <49, 1>, <52, 1>, <86, 1>]
>
> { [X,Y] : X,Y in F | Evaluate(A,[X,Y]) eq 0 and Evaluate(B,[X,Y]) eq 0 };
{

[0, 96],
[49, 0],
[15, 0],
[11, 77],
[52, 0],
[86, 0]

}

The following is Magma code showing how Krasnayová’s APN conditions can be simplified.

> R<b,c,d> := RationalFunctionField(GF(2),3);
> S<T> := PolynomialRing(R,1);
>
> frf := function(f) // Factor Rational Function

66

> mult := f/Normalize(f); // scalar multiple (w or w^2)
> if mult ne 1 then print mult; end if;
> return Factorization(Numerator(f)), Factorization(Denominator(f));
> end function;
>
> Delta := 1 + b + c + d;
>
> f := Delta*(T*Delta + c + d)*(T^2*Delta^2 + b*d + c);
> g := (T*Delta^2 + b*c + d)^2;
>
> q,r := Quotrem(f,g);
> f/g eq q + r/g;
true
>
> q; // Tr_1^m(q) = 0
T + (c + d)/(b + c + d + 1)
>
> frf(r);
b^3*d + b^2*c^2 + b^2*c + b*c^2*d + b*d^3 + b*d + c^3 + c*d^2 + c + d^2
[

<T + (c + d)/(b + c + d + 1), 1>
]
[]
>
> frf(b^3*d + b^2*c^2 + b^2*c + b*c^2*d

+ b*d^3 + b*d + c^3 + c*d^2 + c + d^2);
[

<b*d + c^2 + c + d^2, 1>,
<b^2 + b*d + c + 1, 1>

]
[]

67

Appendix B

Magma code for Chapter 3

> R1<aa1,yy,zz,tt> := PolynomialRing(GF(2),4);
> R2<a1,y,u,z> := RationalFunctionField(GF(2),4);
> F4<w> := GF(4); //w is a primitive cube root of unity
> R3<U,Z,T,V> := RationalFunctionField(F4,4);
>
> frf := function(f) // Factor Rational Function
> mult := f/Normalize(f); // scalar multiple (w or w^2)
> if mult ne 1 then print mult; end if;
> return Factorization(Numerator(f)), Factorization(Denominator(f));
> end function;
>
> // Proposition 3.2.4
> A := (aa1*tt + tt + 1)*tt^3;
> B := (aa1*tt + aa1 + tt)*(tt + 1)^3;
> Resultant(
> aa1*yy*zz^2 + (aa1^4 + aa1^2 + yy^4 + yy^2)*zz + aa1*yy,
> (tt^2 + tt)*(aa1^2 + yy^2 + 1) + aa1, yy)
> eq aa1^2*(A*zz^2 + B)*(B*zz^2 + A);
true
>
> // Proposition 3.2.6
> frf(
> (y^2 + 1)*(a1 + a1*y*u*1/z)*(a1 + a1*y*1/u*z)
> + (a1^2 + a1^2*y^2*1/u^2*z^2)*(a1*1/u + a1*y*1/z)
> + (a1^2 + a1^2*y^2*u^2*1/z^2)*(a1*u + a1*y*z)
>);
[

<y*z + u, 1>,
<y*u + z, 1>,
<a1, 2>,
<a1*y*u^4 + a1*y*z^2 + a1*u^3*z + a1*u*z + y^2*u^2*z + u^2*z, 1>

]

68

[
<z, 2>,
<u, 3>

]
>
> D := y*u^4 + y*z^2 + u^3*z + u*z;
> W := z*(y*z + u)/D;
>
> (u^4*z^2*(1 + y*1/u*z + y*u*1/z + y^2)/D^2) eq W^2 + W;
true
>
> Wq := 1/z*(y*1/z + 1/u)/(y*1/u^4 + y*1/z^2 + 1/u^3*1/z + 1/u*1/z);
> W + Wq;
1
>
> frf(
> (y^4 + 1)*(a1*1/u + a1*y*1/z)
> + (y^2 + 1)*(a1^2 + a1^2*y^2*u^2*1/z^2)
> + (a1^2 + a1^2*y^2*1/u^2*z^2)*(a1*1/u + a1*y*1/z)
> + (a1^2 + a1^2*y^2*u^2*1/z^2)*(a1*u + a1*y*z)
>);
[

<y*u + z, 1>,
<a1, 1>,
<a1^2*y^2*u^4*z + a1^2*y^2*z^3 + a1^2*y*u^5 + a1^2*y*u^3*z^2
+ a1^2*u^4*z + a1^2*u^2*z + a1*y^3*u^4 + a1*y^2*u^3*z
+ a1*y*u^4 + a1*u^3*z + y^4*u^2*z + u^2*z, 1>

]
[

<z, 2>,
<u, 3>

]
>
> A := D*(y*z + u);
> A eq y^2*u^4*z + y^2*z^3 + y*u^5 + y*u^3*z^2 + u^4*z + u^2*z;
true
> B := (y + 1)^2*u^3*(y*u + z);
> B eq y^3*u^4 + y^2*u^3*z + y*u^4 + u^3*z;
true
> C := (y + 1)^4*u^2*z;
> C eq y^4*u^2*z + u^2*z;
true
>
> Y := u*z*(u^2 + 1)/(u^2 + z)^2;
> frf((Y+1)^2*z/(u*(Y*u + z)));
[

<u^3 + z, 2>

69

]
[

<u, 1>,
<u^2 + z, 2>

]
> A1 := (u^3 + z)^2/(u*(u^2 + z)^2);
> (A1 + A1*Y*u*1/z)*(A1 + A1*Y*1/u*z)/(Y^4 + 1);
1
>
> Aq := ((1/u^2 + 1/z)^2*y + 1/u*1/z*(1/u^2 + 1))*(y*1/z + 1/u);
> Bq := (y + 1)^2*1/u^3*(y*1/u + 1/z);
> Cq := (y + 1)^4*1/u^2*1/z;
> frf(
> B*a1 + C + (A*Bq/Aq)*a1 + A*Cq/Aq
>);
[

<u, 1>,
<y + 1, 2>,
<a1*y^2*u^4 + a1*y^2*z^4 + y^3*u^2*z^3 + y^3*u^2*z + y^2*u^3*z^2
+ y^2*u*z^2 + y*u^2*z^3 + y*u^2*z + u^3*z^2 + u*z^2, 1>

]
[

<y*u + z, 1>
]
>
> A1 := (y+1)^2*(y*u*z^2 + u^2*z + y*u + z)*u*z/((u+z)^4*y^2);
> frf(A*A1^2 + B*A1 + C);
[

<z, 2>,
<u, 2>,
<u + 1, 2>,
<y + 1, 4>,
<y*z + u, 1>,
<y*u + y*z^2 + u*z + z, 2>,
<y*u^4 + y*z^2 + u^3*z + u*z, 1>

]
[

<u + z, 8>,
<y, 4>

]
>
> (y + z)/(y*(z^2 + 1)) + (y + 1/z)/(y*(1/z^2 + 1));
1
>
> Y := z*(u+1)/(u+z^2);
> A1 := (Y+1)^2*(Y*u*z^2 + u^2*z + Y*u + z)*u*z/((u+z)^4*Y^2);
> frf(A1);

70

[
<z + 1, 2>,
<u, 1>

]
[

<u + 1, 1>,
<u + z^2, 1>

]
> (A1 + A1*Y*u*1/z)*(A1 + A1*Y*1/u*z)/(Y^4 + 1);
u/(u^2 + 1)
>
>
> // Proposition 3.2.8
> a1 := (U^3 + Z)^2/(U*(U^2 + Z)^2);
> a2 := a1*U;
> a3 := U*Z^2*(U + 1)^2/(U^2 + Z)^2;
>
> //r = w^2*V;
> c0 := w*V^2 + w^2*V*T;
> frf(c0);
w^2
[

<V, 1>,
<T + w^2*V, 1>

]
[]
> c1 := V + T;
> c2 := 1/V*T + 1;
> c3 := w*1/V^2*T + w^2*1/V;
>
> frf(U*c1/c0 + c2/c0);
w
[

<T + V, 1>,
<U*V + 1, 1>

]
[

<V, 2>,
<T + w^2*V, 1>

]
>
> // V = 1/U
> c0 := w*1/U^2 + w^2*1/U*T;
> c1 := 1/U + T;
> c2 := U*T + 1;
> c3 := w*U^2*T + w^2*U;
>

71

> frf(a1 + c1/c0);
w^2
[

<U^7*T + w*U^6 + w^2*U^3*Z^2*T + w^2*U^2*Z^2 + w*U*Z^2*T + Z^2, 1>
]
[

<U, 1>,
<U*T + w^2, 1>,
<U^2 + Z, 2>

]
> frf((w*U^6 + w^2*U^2*Z^2 + Z^2)/(U^7 + w^2*U^3*Z^2 + w*U*Z^2));
w
[

<U^3 + w^2*U*Z + w*Z, 2>
]
[

<U, 1>,
<U^3 + w*U*Z + w^2*Z, 2>

]
> D := (w^2*U^3 + (U + w)*Z)^2;
> t := (w*U^3 + (U + w^2)*Z)^2/(U*D);
> t eq (w*U^6 + w^2*U^2*Z^2 + Z^2)/(U^7 + w^2*U^3*Z^2 + w*U*Z^2);
true
>
> frf(w^2*1/U^3/(1/U + w) + (U + w)/(w^2*U^3));
w
[

<U + 1, 2>
]
[

<U, 3>,
<U + w^2, 1>

]
>
> frf(w*1/U^2 + w^2*1/U*t);
w^2
[

<U^2 + Z, 2>
]
[

<U^3 + w*U*Z + w^2*Z, 2>
]
> frf(1/U + t);
w^2
[

<U^3 + Z, 2>
]

72

[
<U, 1>,
<U^3 + w*U*Z + w^2*Z, 2>

]
> frf(1 + U*t);
w^2
[

<U^3 + Z, 2>
]
[

<U^3 + w*U*Z + w^2*Z, 2>
]
> frf(w^2*U + w*U^2*t);
w^2
[

<Z, 2>,
<U, 1>,
<U + 1, 2>

]
[

<U^3 + w*U*Z + w^2*Z, 2>
]
>
> frf(
> (w*1/U^3 + (1/U + w^2)*1/Z)^2/(1/U*(w^2*1/U^3 + (1/U + w)*1/Z)^2)
> + U*(w^2*U^3 + (U + w)*Z)^2/(w*U^3 + (U + w^2)*Z)^2
>);
w^2
[

<U, 3>,
<U + Z, 2>,
<U^3 + Z, 2>

]
[

<U^3 + w^2*U*Z + w*Z, 2>,
<U^3 + w^2*U^2 + w*Z, 2>

]

The following is Magma code demonstrating an example of the complex APN function in
Proposition 3.2.6.

> m := 4;
> q := 2^m;
> F<alpha> := GF(2,2*m);
> U := { u : u in F | u^(2^m + 1) eq 1 };
> R<x> := PolynomialRing(GF(2));
> R!MinimalPolynomial(alpha);

73

x^8 + x^4 + x^3 + x^2 + 1
> u := alpha^225;
> z := alpha^135;
> u in U; z in U;
true
true
> a1 := (u^3 + z)^2/(u*(u^2 + z)^2);
> a2 := a1*u;
> a3 := u*z^2*(u + 1)^2/(u^2 + z)^2;
> f := func<x | x^(3*q) + a1*x^(2*q + 1) + a2*x^(q + 2) + a3*x^3 >;
>
> {
> { Multiplicity({* f(x+a) + f(x) : x in F *},b)
> : b in {* f(x+a) + f(x) : x in F *} }
> : a in F | a ne 0
> };
{

{ 2 }
}

74

Appendix C

Magma code for Chapter 4

Below is Magma code that counts the number of two-dimensional i-compatible subspaces
of F2n .

for n in [3..17 by 2] do
printf"n = %o\n", n;
F := GF(2,n);
Fs := Set(F) diff {F!0};
Zn := Integers(2^n - 1);

for i in [1..n-1] do
if Gcd(i,n) eq 1 then

E := { e : e in Zn | ((2^i + 1)*e + 1 eq 0) };
assert(#E eq 1);
e := Z!Random(E);

numspaces := #{ {a,b,a+b} : a,b in Fs
| (a^e + b^e eq (a+b)^e) and (a ne b)};

printf"CPU time %o \n", Cputime();
printf"[%o, %o], ", i, numspaces;

end if;
end for;
printf"\n\n";
end for;

n = 3
CPU time 0.820
[1, 7], CPU time 0.820
[2, 7],

n = 5

75

CPU time 0.860
[1, 0], CPU time 0.900
[2, 0], CPU time 0.920
[3, 0], CPU time 0.940
[4, 0],

n = 7
CPU time 1.200
[1, 0], CPU time 1.460
[2, 0], CPU time 1.740
[3, 0], CPU time 1.950
[4, 0], CPU time 1.970
[5, 0], CPU time 1.980
[6, 0],

n = 9
CPU time 2.220
[1, 511], CPU time 2.460
[2, 511], CPU time 2.700
[4, 511], CPU time 2.940
[5, 511], CPU time 3.180
[7, 511], CPU time 3.420
[8, 511],

n = 11
CPU time 7.180
[1, 0], CPU time 10.930
[2, 0], CPU time 14.690
[3, 0], CPU time 18.460
[4, 0], CPU time 22.210
[5, 0], CPU time 25.970
[6, 0], CPU time 29.720
[7, 0], CPU time 33.480
[8, 0], CPU time 37.230
[9, 0], CPU time 40.990
[10, 0],

n = 13
CPU time 101.120
[1, 0], CPU time 161.260
[2, 0], CPU time 221.410
[3, 0], CPU time 281.520
[4, 0], CPU time 341.670
[5, 0], CPU time 401.800
[6, 0], CPU time 461.900
[7, 0], CPU time 521.990
[8, 0], CPU time 582.090

76

[9, 0], CPU time 642.170
[10, 0], CPU time 702.250
[11, 0], CPU time 762.340
[12, 0],

n = 15
CPU time 1798.220
[1, 32767], CPU time 2838.110
[2, 32767], CPU time 3878.040
[4, 32767], CPU time 4917.970
[7, 32767], CPU time 5957.760
[8, 32767], CPU time 6997.550
[11, 32767], CPU time 8038.430
[13, 32767], CPU time 9079.290
[14, 32767],

The Magma code below finds bases for Walsh zero spaces for the Gold function x3 in
dimension n = 3. During its execution, it prepares the input data for sboxU, then it calls
sboxU to compute the Walsh zero spaces bases. Then it reformats the data for further
processing in Magma. It can be adapted for any function.

path := GetCurrentDirectory() cat "/";
ChangeDirectory(path cat "sboxu");

n := 3;
F<u> := GF(2^n);
Z := Integers();
R<x> := PolynomialRing(F);

IntRep := function(a,b)
S := Eltseq(a) cat Eltseq(b);
return &+[Z!S[i]*2^(i-1) : i in [1..2*n]];

end function;

// gold f(x) = x^(2^i + 1), gcd(i,n) = 1
d := 3;
f := x^d;

name := "3";
name;
WZ := [IntRep(a,b) : a,b in F | b eq 0 or Trace(a/Root(b,d)) eq 0];

//==
// sboxU

SetOutputFile(path cat "sboxu/" cat name cat ".py": Overwrite := true);
printf"#!/usr/bin/sage

77

from sage.all import *
from sboxU import *\n\n";
printf"wz = %o\n\n", WZ;

printf"n = %o
N_threads = 10
word_length = 2*n
out = extract_bases(wz, n, word_length, N_threads, \"fixed dimension\")
print \’wzs := [%%s];\\n\’ %% \’, \’.join(map(str,out)) ", n;

UnsetOutputFile();

System("~/sage/sage-8.9/sage " cat name cat ".py
> " cat "I" cat name cat ".m");

// reformat for magma
SetOutputFile(path cat "sboxu/" cat "I" cat name cat ".m":

Overwrite := false);

printf"n := %o;
F<u> := GF(2^n);
Z := Integers();
R<x> := PolynomialRing(F);\n", n;

printf"
F2 := GF(2);
FRep := function(I)

// find the binary representation of I
S := Intseq(I,2);
S := S cat [0 : i in [1..2*n-#S]];
// now split S into [a,b] in (F x F)
return [Seqelt([F2!S[i] : i in [1..n]], F),

Seqelt([F2!S[i] : i in [n+1..2*n]], F)];
end function;
WZS := [[FRep(I) : I in S] : S in wzs];
printf\"WZS := \"; WZS;
printf\";\";
exit;
";

UnsetOutputFile();

SetOutputFile(path cat name cat ".m": Overwrite := true);
printf"n := %o;
F<u> := GF(2^n);
Z := Integers();
R<x> := PolynomialRing(F);

78

f := %o;\n", n, f;

UnsetOutputFile();
System("magma -b " cat "I" cat name cat ".m
>> " cat path cat name cat ".m");
SetOutputFile(path cat name cat ".m": Overwrite := false);

printf"
// create sequence of all F2-linear WZ spaces
V := VectorSpace(GF(2),2*n);
WZS := [VectorSpaceWithBasis([V![Eltseq(S[1])

cat Eltseq(S[2])] : S in V1]) : V1 in WZS];

// dimensions of projections onto components
{* [#{Eltseq(v)[1..n] : v in W},
#{Eltseq(v)[n+1..2*n] : v in W}] : W in WZS *};

/*
// [d1,d2]^d
sd := [W : W in WZS | [#{Eltseq(v)[1..n] : v in W},

#{Eltseq(v)[n+1..2*n] : v in W}] eq [2^d1,2^d2]];
sd := [{[Seqelt(Eltseq(v)[1..n],F),

Seqelt(Eltseq(v)[n+1..2*n],F)] : v in s} : s in sd];
//{* [#{ab[1] : ab in s}, #{ab[2] : ab in s}] : s in sd *};
*/
";
UnsetOutputFile();
exit;

// output
> n := 3;
> F<u> := GF(2^n);
> Z := Integers();
> R<x> := PolynomialRing(F);
> f := x^3;
> WZS := [
> [
> [1, 0],
> [u, 0],
> [u^2, 0]
>],
> [
> [1, 0],
> [u, 0],
> [0, u^4]
>],
> [

79

> [1, 0],
> [u^2, 0],
> [0, u]
>],
> [
> [1, 0],
> [u^4, 0],
> [0, u^2]
>],
> [
> [1, 0],
> [0, u],
> [0, u^2]
>],
> [
> [1, 0],
> [u^2, u],
> [u^4, u^2]
>],
> [
> [u^4, 1],
> [1, u],
> [0, u^2]
>],
> [
> [u^4, 1],
> [u^6, u],
> [u^4, u^2]
>],
> [
> [u, 0],
> [u^2, 0],
> [0, 1]
>],
> [
> [u, 0],
> [u^6, 0],
> [0, u^5]
>],
> [
> [u, 0],
> [0, 1],
> [0, u^4]
>],
> [
> [u, 0],
> [u^2, 1],

80

> [1, u^4]
>],
> [
> [u^3, 0],
> [u^2, 0],
> [0, u^3]
>],
> [
> [u^3, 0],
> [u^6, 0],
> [0, u^6]
>],
> [
> [u^3, 0],
> [0, u^3],
> [0, u^6]
>],
> [
> [u^3, 0],
> [u^2, u^3],
> [u^6, u^6]
>],
> [
> [u^2, 0],
> [0, 1],
> [0, u]
>],
> [
> [u^2, 0],
> [u, 1],
> [1, u]
>],
> [
> [u^6, 0],
> [0, u],
> [0, u^6]
>],
> [
> [u^6, 0],
> [1, u],
> [u^3, u^6]
>],
> [
> [u^4, 0],
> [0, 1],
> [0, u^2]
>],

81

> [
> [u^4, 0],
> [u, 1],
> [1, u^2]
>],
> [
> [u^5, 0],
> [0, u^3],
> [0, u^2]
>],
> [
> [u^5, 0],
> [u^3, u^3],
> [1, u^2]
>],
> [
> [0, 1],
> [0, u],
> [0, u^2]
>],
> [
> [0, 1],
> [u^2, u],
> [u^4, u^2]
>],
> [
> [u, 1],
> [1, u],
> [1, u^2]
>],
> [
> [u, 1],
> [u^6, u],
> [u^5, u^2]
>],
> [
> [u^2, 1],
> [0, u],
> [1, u^2]
>],
> [
> [u^2, 1],
> [u^2, u],
> [u^5, u^2]
>]
>]
> ;

82

> // create sequence of all F2-linear WZ spaces
> V := VectorSpace(GF(2),2*n);
> WZS := [VectorSpaceWithBasis([V![Eltseq(S[1])
> cat Eltseq(S[2])] : S in V1]) : V1 in WZS];
>
> // dimensions of projections onto components
> {* [#{Eltseq(v)[1..n] : v in W},
> #{Eltseq(v)[n+1..2*n] : v in W}] : W in WZS *};
{*

[1, 8],
[2, 4]^^7,
[4, 2]^^7,
[4, 8]^^7,
[8, 1],
[8, 4]^^7

*}
>
> /*
> // [d1,d2]^d
> sd := [W : W in WZS | [#{Eltseq(v)[1..n] : v in W},
> #{Eltseq(v)[n+1..2*n] : v in W}] eq [2^d1,2^d2]];
> sd := [{[Seqelt(Eltseq(v)[1..n],F),
> Seqelt(Eltseq(v)[n+1..2*n],F)] : v in s} : s in sd];
> //{* [#{ab[1] : ab in s}, #{ab[2] : ab in s}] : s in sd *};
> */

83

	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Thesis outline
	Brief history

	Background
	Finite fields
	Almost perfect nonlinear functions
	APN functions on finite fields

	Equivalences which preserve cryptographic properties
	Kim-type functions
	Walsh zeros

	Kim-type APN permutations
	Preliminaries
	Main result
	Strategy of the proof
	Outline of the proof
	Case a2 = 0
	Case a2 =0

	Walsh zero spaces
	The Walsh zero test and compatible subspaces
	Computational investigations in low dimensions
	Dimension 3
	Dimension 5
	Dimension 7
	Dimension 9
	Dimension 11

	Constructions of some WZ spaces for Gold APN permutations
	TI pairs of WZ spaces for Gold APN permutations
	Applications
	Classifying EA classes of functions
	Construction of new APN permutations

	Other functions
	Monomial APN functions
	The Budaghyan-Carlet-Leander function
	The Beierle-Carlet-Leander-Perrin function
	Outlook

	Bibliography
	Appendix Magma code for Chapter 2
	Appendix Magma code for Chapter 3
	Appendix Magma code for Chapter 4

