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Abstract 

In this study, we introduced Latent Profile Analysis (LPA) as a novel technique for 

studying gestational chemical mixtures. Using data from the Maternal-Infant Research 

on Environmental Chemicals Study, a longitudinal birth cohort study of pregnant 

Canadian women and their children, we examined the relationship between 30 

gestational biomarkers and Verbal IQ, Performance IQ, and Full-Scale IQ. We generated 

five latent profiles: A Reference profile, a High Level profile, a Low Level profile, a High 

Organophosphate Pesticides profile, and a Smoking Chemicals profile. Multiple 

regression analysis showed strong negative associations between the Smoking 

Chemicals profile and IQ scores. We also found positive associations between the Low 

Level profile and IQ, and a negative association between the High Level profile and 

Verbal IQ. However, all 95% confidence intervals spanned the null. After conducting 

sensitivity analysis comparing LPA with k-means clustering, we concluded that LPA is a 

promising alternative to other clustering methods. 
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maternal-infant health; child neurodevelopment; MIREC 
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Chapter 1.  

Introduction 

1.1. Background 

1.1.1. Gestational Chemical Exposures and Child Neurodevelopment 

Exposure to toxins during the prenatal period can severely impact health outcomes later 

in life1–4. The central nervous system is especially vulnerable to the effects of chemical 

exposures during this time, as the fetus does not have a fully-formed blood-brain barrier or 

detoxifying enzymes to protect itself5–7. As such, many studies have been conducted on the 

associations between gestational chemicals and child neurodevelopment8–18. Researchers have 

discovered dozens of gestational neurotoxins; a non-comprehensive summary of these 

chemicals can be found in the literature review below. However, environmental epidemiologists 

have primarily focused on the effects of single chemicals or chemical groups in their studies. By 

failing to study chemical mixtures, researchers may underestimate the impact of aggregate 

exposures6,8,9,19. Low-dose exposures that do not meet the threshold of concern individually may 

still have severe cumulative effects20. It is therefore important for epidemiologists to shift their 

focus towards gestational chemical mixtures. 

Many challenges arise when studying chemical mixtures. First, it is important to be 

pragmatic when choosing which chemical mixtures to study20. Researchers must focus on more 

prevalent or dangerous mixtures in order to ensure public health relevance and minimize 

financial cost. Second, if several correlated exposure variables are included in the same 

multivariate model, collinearity will lead to instability and large standard errors for model 

parameters6,21,22. Finally, epidemiologists do not yet have a standard method for evaluating 

mixtures20. Multivariate regression analysis is commonly used to study smaller, less complex 

mixtures, but this method loses power when too many variables are included in the model6,23. 

These challenges make it difficult to choose a statistical technique that can accurately estimate 

the effects and interactions of many chemicals at once20,22. For a more in-depth discussion of 

the challenges of studying chemical mixtures, see Braun et al.'s 2016 review on the topic20. 

1.1.2. Machine Learning Techniques 

To mitigate the problems listed above, researchers have turned to unsupervised 

machine learning techniques for studying chemical mixtures. Machine learning is a branch of 
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statistics in which a computer system uses algorithms to analyse complex data and detect 

patterns24. Supervised machine learning techniques, in which the researcher specifies the 

patterns of interest, are a much more common form of machine learning25. A popular example of 

supervised machine learning is regression analysis. Unsupervised machine learning techniques, 

in which the computer is responsible for detecting patterns without predetermination, are a 

promising alternative for studying chemical mixtures24,25.  

Several unsupervised methods have been used to study chemical mixtures. Examples 

include k-means clustering, principal component analysis (PCA), and Bayesian kernel machine 

regression (BKMR)9,26–29. For the purpose of sensitivity analysis, this MSc thesis concerns itself 

with k-means clustering. In this technique, an algorithm uses Euclidean geometry to separate 

points in a dataset into distinct, non-overlapping subgroups called clusters25,26. This method’s 

relative simplicity makes it a popular choice for epidemiologists. However, it has two key 

disadvantages. First, the number of k-means clusters must be predetermined by the researcher, 

and there is not a standard way to make this decision25,30. Second, this method does not provide 

information about classification accuracy at the level of individual data points, meaning 

researchers cannot see how well each point represents its respective cluster31. For these 

reasons, the results of k-means clustering can be inconsistent and highly dependent on 

decisions made by the researcher. 

1.1.3. Latent Profile Analysis 

In this MSc thesis, I introduced a novel technique to the field of environmental 

epidemiology called Latent Profile Analysis (LPA). LPA is an unsupervised machine learning 

technique in which an algorithm uses patterns in continuous independent variables to generate 

homogeneous subgroups called profiles31,32. This technique has several advantages over other 

machine learning techniques. Unlike multiple linear regression analysis, LPA maintains 

statistical power when working with a large number of variables32. Also, because this method 

allows one to study the effects of mixtures as a whole, researchers do not have to be concerned 

about collinearity; in fact, models are easier to interpret when the independent variables are 

highly correlated. Unlike k-means clustering, LPA does not require the researcher to 

predetermine the number of profiles33,34. Quality measures such as the Bayesian Information 

Criterion (BIC) can be used to choose a model after statistical analysis has begun33. Finally, 

LPA is probabilistic, meaning that it generates the posterior probabilities that each data point will 

match each profile31. This allows researchers to assess classification accuracy. It is for these 
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reasons that I was interested in using LPA for my thesis project. Its ability to handle models with 

a large number of highly correlated continuous variables while providing more information than 

other common techniques makes it extremely promising for studying chemical mixtures. 
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1.2. Literature Review of Gestational Neurotoxins 

1.2.1. Overview 

In this section, I will be discussing a number of known gestational chemical groups and 

their associations with child neurodevelopment. It should be noted that due to the 

methodological nature of this project, this is not a comprehensive review. I did not include every 

known neurotoxin in my model, as this would be well outside the scope of a MSc thesis. 

Likewise, I will not be discussing every single study published about the neurotoxins I included 

in my study. The purpose of this review is to act as a brief introduction to the chemical groups 

that were used in my models. 

1.2.2. Heavy Metals: Arsenic, Cadmium, Lead, Manganese, and Mercury 

Arsenic 

Arsenic is used in manufacturing and can leach into groundwater from contaminated 

soil35. This toxin is a possible predictor of child neurodevelopment36. In a 2004 study in 

Bangladesh, increased arsenic exposure in children was found to be associated with lower IQ 

scores37. However, the effects of prenatal arsenic on child neurodevelopment are under-

researched. A study by Wang et al. found that higher prenatal arsenic levels in cord blood were 

associated with lower neurodevelopment in newborns, but we have little information about the 

effects on later cognitive development38.  

Cadmium 

Cadmium is a rare metal that is found as an impurity in underground pipes, which results 

in trace amounts leaching into drinking water39. Although it has not been thoroughly researched, 

prenatal cadmium exposure is believed to affect neurodevelopment40. A systematic review 

conducted in 2019 found that six of the nine available studies showed negative associations 

between prenatal cadmium exposure and neurodevelopment41. However, more study is needed 

to understand the exact effects of prenatal cadmium in terms of timing and dose-response. 

Lead 

Lead is a well-known neurotoxin that was once used in food cans, gasoline, and paints42. 

Although it was phased out of commercial use in Canada in the 1970’s, Canadian mothers are 
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still exposed to trace amounts of this metal in food, water, and household products. Gestational 

lead levels have been linked to lower IQ scores in preschool-aged children, especially boys, as 

well as an increased likelihood of cognitive disorders later in life14,36,43. Researchers have also 

found a synergistic interaction between prenatal lead and cadmium, which were negatively 

associated with neurodevelopment40. Researchers have not found a threshold of concern below 

which effects do not occur44,45.  

Manganese 

Manganese is a naturally-occurring element found in air, water, and soil46. Although it is 

an essential nutrient, studies have found that when maternal blood cadmium levels are too high 

or too low, it can negatively impact neurodevelopment in young children47–49. However, this 

chemical is also under-researched. A 2019 systematic review by Leonhard et al. found that they 

could not establish causal effects of prenatal manganese on child neurodevelopment, and 

concluded that more research is needed50. 

Mercury 

Mercury is a neurotoxic metal used in various industrial processes51. It is persistent in 

the environment and bioaccumulates in animals. Commonly found in rice and seafood, this toxin 

enters the body by ingestion and can cross the placenta to the fetus52. The effects of gestational 

mercury exposure have been well-documented; high doses have been found to cause severe 

neurological issues such as Minamata disease17,36,53. However, more research is needed to 

understand the effects of low mercury levels52,54. 

1.2.3. Polychlorinated Biphenyls 

Polychlorinated biphenyls (PCBs) are dioxin-related compounds that were once used in 

products such as paints, rubber, and hydraulic equipment, but were phased out of use in many 

countries in the late 1970’s55,56. Because these chemicals are persistent and bioaccumulative, 

pregnant mothers are still exposed to trace amounts of them in their everyday lives18. PCBs 

were first studied as neurotoxins in the 1980’s, but the effects of low level exposures have been 

under-researched57. Few studies focus on prenatal exposure to PCBs, and those that do have 

found inconsistent results. A systematic review by Dzwilewski and Schantz showed that 

prenatal PCBs are negatively associated with linguistic intelligence in older children but not in 
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toddlers18. More research is needed to understand the associations between this chemical 

group and neurodevelopment. 

1.2.4. Organochlorine and Organophosphate Pesticides 

Organochlorine pesticides (OCPs) have been banned in many Western countries but are 

still regularly used in other parts of the world58. They are persistent and bioaccumulative, and 

they can spread long distances easily. Research has shown that prenatal OCP exposure can 

impact neurodevelopment. A review by Saravi and Dehpour in 2016 found that many types of 

OCPs are associated with cognitive decline and memory loss59. When OCPs were first banned 

in the 1970’s, organophosphate pesticides (OPPs) rose in popularity60. Although they are less 

persistent in the environment than OCPs, OPPs are still considered to be dangerous and are 

heavily regulated in Western countries. Prenatal exposure to OPPs has been linked to negative 

effects on neurodevelopment in children61–63. 

1.2.5. Polybrominated Diphenyl Ethers 

Polybrominated diphenyl ethers (PBDEs) are persistent, bioaccumulative chemicals that 

are used as flame retardants in many industrial and commercial products64. Although the most 

dangerous PBDE mixtures have been banned in many countries, pregnant mothers are still 

regularly exposed to mixtures of PBDEs65. A review by Gibson et al. found that prenatal PBDE 

exposure is negatively associated with cognitive development, although the strength of the 

association is still not understood66. It is possible that these relationships are sex-dependent; a 

recent study year found associations between PBDEs and neurodevelopment in boys but not 

girls67. Further research is necessary to understand these inconsistencies. 

1.2.6. Phthalates 

Phthalates are used as plasticizers in many household and industrial products68. Studies 

have found sex-dependent associations between gestational phthalate exposure and child 

neurodevelopment, although results have been inconsistent. For example, a study by Kim et al. 

found negative associations between phthalates and neurodevelopment in 6-month-old boys 

only, while another by Téllez-Rojo found negative associations between mental development 

indexes and phthalates in girls only69,70. More research is needed to clarify these results. 
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1.2.7. Smoking Metabolites 

Exposure to cigarette smoke during the gestational period is linked to many child health 

outcomes, including neurodevelopment. Cotinine, a metabolite of nicotine, is negatively 

associated with Verbal IQ and psychomotor function71–73. Prenatal smoking has also been linked 

to increased conduct disorders and schizophrenia10,74. However, little study has been done on 

how smoking chemicals interact with other chemicals. Smoking metabolites should also be 

studied as part of chemical mixtures to determine whether they act synergistically with other 

exposures. 

1.2.8. Gestational Chemical Mixtures and Their Effects on Neurodevelopment 

Historically, most studies on prenatal neurotoxins have failed to consider the effects of 

complex chemical mixtures26. Most research that focuses on mixtures only includes chemicals 

within the same group; this approach has been used to study the effects of gestational 

phthalates, pesticides, PBDEs, and metals on cognitive development9,11,15,16,40,75. Due to their 

relative simplicity, these smaller mixtures can be studied using multiple linear regression. 

However, a few studies have assessed the impacts of more complicated mixtures on IQ. Most 

of these rely on unsupervised machine learning techniques. 

In 2018, Kalloo et al. used two unsupervised machine learning techniques, k-means 

clustering and PCA, to create clusters and components based on 43 gestational chemical 

exposures26. Their results were later used to study the effects of chemical mixtures on child IQ 

in the same cohort8. In 2020, Tanner et al. used weighted quantile sum regression (WQSR) to 

study the effects of a mixture of 26 gestational chemicals on IQ12. The same year, Guo et al. 

used BKMR to study the effects of a mixture of gestational heavy metals, pesticides, and 

phenols on IQ29. 

To my knowledge, LPA has not yet been used to study gestational chemical mixtures. A 

study by Carrol et al. in 2019 used a similar method called Latent Class Analysis (LCA) to find 

groups of mothers based on gestational chemical mixtures76. Unlike LPA, this method can only 

create classes using categorical independent variables. The researchers chose to dichotomize 

their exposure biomarker concentrations, which resulted in a loss of information. Another recent 

study by Khorrami et al. used LPA to determine associations between air pollution and lung 

cancer in the general population of Tehran, Iran77. The study used chemical exposure variables 

to create latent profiles showing risk stratification of different air pollutant combinations. While it 
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is similar to my MSc thesis, this study only used 12 chemical exposures, which were determined 

by geographical location instead of using biomarkers. Also, the study did not focus on chemical 

exposures during the gestational period.  
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1.3. Thesis Study Design 

1.3.1. Data Example: The MIREC Study 

To examine the associations between chemical mixtures and neurodevelopment, I used 

data from the Maternal-Infant Research on Environmental Chemicals (MIREC) Study. This is a 

prospective Canadian birth cohort study that began recruitment in 2008 with the aim of finding 

relationships between gestational exposures and maternal and child health outcomes78. The 

study population includes 2001 pregnant women from 10 Canadian cities. Hundreds of chemical 

biomarkers were measured in maternal hair, urine, and blood. Questionnaires were also 

administered to the mothers throughout the pregnancy and in the years following birth. Since 

2008, several follow-up studies have been conducted, including the MIREC-CD3 

Neurodevelopment Study79,80. In this follow-up, MIREC researchers travelled to a subset of the 

participants’ houses and administered questionnaires to the parents and cognitive development 

tests to the three-year-old children. This thesis concerns itself with the scores from one of these 

tests, the Wechsler’s Preschool and Primary Scale of Intelligence (WPPSI-III) test, which will be 

described below.  

1.3.2. The Wechsler’s Preschool and Primary Scale of Intelligence (WPPSI-III) 

For this MSc thesis, I used data from the WPPSI-III test, an IQ test that measures 

various aspects of intelligence through a series of core and supplemental subtests (Table 

A.1.)81–83. In WPPSI-III, subtests include the Receptive Vocabulary test, in which the child points 

to pictures that correspond with different words; the Information test, in which they answer 

general questions; the Block Design test, in which they copy three-dimensional designs; and the 

Object Assembly test, in which they assemble a simple puzzle. Subtest scores are generated 

based on time and accuracy of task completion.  

The subtest results are used to calculate three main IQ scores. First, the Receptive 

Vocabulary and Information subtests are used to calculate Verbal IQ (VIQ), a measure of 

linguistic intelligence. Second, the Block Design and Object Assembly subtests are used to 

calculate Performance IQ (PIQ), a measure of visuospatial intelligence. Finally, the composite 

Full-Scale IQ (FSIQ) is a combination of VIQ and PIQ and acts as the overall IQ test result. 

These scores are all scaled to a standardized sample based on the results of the total Canadian 

population. They have mean levels of 100 and standard deviations of 1581. Scoring procedures 
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can be found in the WPPSI-III Administration and Scoring Manual, and require the use of 

WPPSI-III scoring and interpretation software84. 

1.3.3. Study Objectives 

For this MSc thesis I had three main objectives. The first was to use LPA to create latent 

profiles based on gestational biomarkers in participants of the MIREC Study. My study 

population included 517 children who had complete WPPSI-III test scores and biomarker 

measurements. In my model, I chose to include 30 neurotoxins from the seven chemical groups 

described in the literature review above. These chemicals were measured in maternal blood and 

urine during the first trimester of pregnancy78. Once I had generated the profiles, my second 

objective was to determine associations between profile membership and child IQ using 

regression analysis. I used the posterior probabilities of profile membership as independent 

variables, and VIQ, PIQ, and FSIQ as dependent variables. Finally, my last objective was to 

conduct sensitivity analysis using k-means clustering in order to verify my profile generation and 

regression results. I chose k-means clustering as a comparison method because it has a similar 

output to LPA, meaning the results are directly comparable25,26. 

This is a manuscript-based thesis. Chapter 2 will be the manuscript that I intend to 

submit for publication to an epidemiology or biostatistics journal in Fall 2021. Chapter 3 will 

include my overall conclusions, direction for future study, and implications for researchers and 

policymakers. 
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2.1. Introduction 

The gestational period is a crucial time during which neurotoxic exposures can severely 

impact cognitive development1–4. Although much research has been done on the effects of 

gestational neurotoxins, most studies have only focused on one chemical at a time1,3,5–9. 

Researchers have used simple regression analysis to study many individual exposures, 

including lead, bisphenol A (BPA), and dichlorodiphenyldichloroethylene (DDE)1,3,10–13. However, 

comparatively little study has been done on the effects of chemical mixtures4. The few studies 

that do focus on mixtures usually restrict their models to chemicals in the same groups, such as 

heavy metals or polybrominated diphenyl ethers (PBDEs)14,15. This leads to several problems. 

The first is that these studies are not reflective of reality; we are not exposed to only one 

chemical at a time, but instead encounter a complex mixture of chemicals from different classes 

every day16. Second, if there are high levels of correlation between exposure variables, studying 

these chemicals individually can result in collinearity and large standard errors4,17,18. Third, 

researchers may underestimate the collective impact of a group of chemicals if each exposure 

only has a modest effect on neurodevelopment. Finally, the impact of mixtures may be different 

from the additive exposure effects, and these interactions are difficult to estimate if chemicals 

are studied individually19.  

The gap in research on chemical mixtures is due in part to a lack of appropriate 

statistical methods2,5,9,18. While simple statistical techniques such as regression analysis can 

show the effects of a few chemicals at a time, these methods are poorly equipped to handle a 

large number of correlated continuous variables20. A few unsupervised machine learning 

techniques have been used to study mixtures. For example, k-means clustering is commonly 

used to study many variables at once. However, this is a non-probabilistic method that requires 

the researcher to predetermine the number of clusters, and it is difficult to assess classification 

accuracy21. For this reason, we propose that an unsupervised machine learning technique 

called Latent Profile Analysis (LPA) be used to study chemical mixtures. 

LPA is a model-based technique that detects patterns in continuous independent 

variables22. Although this method is popular in psychology and behavioural sciences, it is much 

less common in the field of environmental epidemiology22–26. The purpose of LPA is to use 

patterns detected by machine learning to create homogenous, probabilistic subgroups called 

profiles22. Computer algorithms generate a variable called the posterior probability, which is the 

likelihood that a data point will fall into each profile20. LPA has several advantages over other 
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machine learning techniques. It can handle dozens of variables without losing power, making it 

more effective than linear regression for studying mixtures20,22. Its probabilistic nature allows 

researchers to assess classification accuracy, providing more accurate and nuanced results 

than non-probabilistic clustering methods such as k-means clustering22–24. Finally, LPA does not 

require the researcher to predetermine the number of profiles and has more rigorous methods 

of choosing a model than other unsupervised machine learning techniques20,24,25. 

The aim of this study is to introduce LPA to the field of environmental epidemiology as a 

tool for studying the effects of complex chemical mixtures on child neurodevelopment. We 

believe that the advantages of LPA over other more common statistical techniques make it well-

suited for this task. In this study, we use LPA to create profiles of pregnant Canadian women 

based on 30 gestational chemical biomarkers, and then examine associations between profile 

membership and child neurodevelopment. We also conduct sensitivity analysis, comparing the 

results found using LPA to those found using k-means clustering. 
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2.2. Methods 

2.2.1. Study Population 

We used data from the Maternal-Infant Research on Environmental Chemicals (MIREC) 

Study, an ongoing Canadian birth cohort study that began in 200827–29. The primary objective of 

the MIREC Study is to examine the role of gestational exposures, measured using biomarkers 

in maternal blood, urine, and hair, in maternal and child health outcomes. Details about eligibility 

and exclusion criteria are outlined by Arbuckle et al.28 Briefly, participants were recruited as 

follows: Researchers approached 8716 adult pregnant women in 10 Canadian cities, of whom 

2001 were eligible and gave their consent in either English or French (Figure B.1.). Participants 

had to be at least 18 years old, <14 weeks of gestation, and willing to provide cord blood 

samples and deliver at a local hospital. Exclusion criteria included known fetal abnormalities, a 

history of medical complications, or illicit drug use. At age 36-48 months, a subset of 610 

participating children were included in a follow-up study called the MIREC-CD3 

Neurodevelopment visit, in which researchers assessed neurodevelopment through a series of 

tests and questionnaires3,30–32. We restricted our study to the 517 participants with available 

measures for all first trimester chemicals and neurodevelopment scores of interest29,31,32. 

The MIREC Study received ethics approval from Health Canada and the Institutional 

Review Board of CHU Sainte-Justine Research Centre. For this project, we also received ethics 

approval from the Simon Fraser University review board. All participants gave informed consent 

to take part in this study.  

2.2.2. Neurodevelopmental Outcomes 

We measured neurodevelopment using the Wechsler Preschool and Primary Scale of 

Intelligence (WPPSI-III) test, which was administered during the MIREC-CD3 

Neurodevelopment visit when the participants were 36-48 months old1,31,32. The WPPSI-III test 

is designed to assess various aspects of child intelligence, and includes four subtests. Subtest 

scores are calculated based on time and accuracy and then combined to generate the three 

main IQ scores, as described in the WPPSI-III Administration and Scoring Manual33–35. Scores 

from the Receptive Vocabulary and Information subtests are combined to generate the Verbal 

IQ (VIQ) score, which measures linguistic intelligence34. Scores from the Block Design and 

Object Assembly subtests are combined to generate the Performance IQ (PIQ) score, which 

measures visuospatial intelligence. The overall summary measure of cognitive performance is 
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called the Full-Scale IQ (FSIQ), which is a composite score calculated from the VIQ and PIQ. All 

three IQ scores are scaled to a standardized Canadian sample with a mean of 100 and a 

standard deviation of 15.  

2.2.3. Biomarkers of Gestational Toxicant Exposure 

In our models, we included 30 potential neurotoxins measured in the first trimester: Five 

heavy metals (arsenic, cadmium, lead, manganese, and mercury), four organochlorine 

pesticides [OCPs; β-benzene hexachloride (BBHC), dichlorodiphenyldichloroethylene (DDE), 

oxychlordane, and trans-nonachlor], five organophosphate pesticides [OPPs; diethylphosphate 

(DEP), diethylthiophosphate, (DETP), dimethyldithiophosphate (DMDTP), dimethylphosphate 

(DMP), and dimethylthiophosphate (DMTP)], seven phthalates [monobutyl phthalate (MBP), 

monobenzyl phthalate (MBZP), mono-(3-carboxypropyl) phthalate (MCPP), mono-(2-ethyl-5-

hydroxyhexyl) phthalate (MEHHP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-

oxohexyl) phthalate (MEOHP), and mono-ethyl phthalate (MEP)], seven polychlorinated 

biphenyls (PCBs; Aroclor, PCB118, PCB138, PCB153, PCB170, PCB180, and PCB187), one 

polybrominated diphenyl ether (PBDE47), and one smoking metabolite (cotinine). These 

chemicals were chosen based on biomarker availability in the first trimester, as well as previous 

research on their neurotoxicity1,36–44. The metals, OCPs, PCBs, PBDE, and cotinine were 

measured in the maternal blood, and the OPPs and phthalates were measured in maternal 

urine28. Samples were stored at -20°C until analysis in the Toxicology Laboratory at the Institut 

national de santé publique du Québec, where they were quantified using gas 

chromatography/mass spectrometry.  

To account for the effects of plasma-lipid levels, we adjusted the OCPs, PCBs, and 

PBDE for participants’ plasma-lipid concentrations18,45. We accounted for variation in urine 

dilution in the OPPs and phthalates by adjusting for specific gravity using the equation: 

𝑃௖ = 𝑃[
1.015 − 1

𝑆𝐺
− 1] 

where Pc is the standardized chemical concentration, P is the unstandardized chemical 

concentration, SG is the specific gravity, and 1.015 is the median specific gravity among the 

study participants46. 
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For chemicals below the limit of detection (<LOD), we employed a single imputation “fill-

in” method47. We first log2-transformed our chemicals to reduce skewness, and then temporarily 

replaced the values <LOD with LOD/√2. Using these new values and the observed chemical 

concentrations, we determined the mean and standard deviation of a truncated lognormal 

distribution. The values <LOD were then replaced with values randomly sampled from this 

distribution.  

2.2.4. Covariates  

Trained researchers assessed potential confounders by administering standardized 

interviews and questionnaires to the mothers during the first and third trimesters3,30,48. To 

determine the appropriate covariates, we constructed a Directed Acyclic Graph (DAG) using 

information from previous studies (Figure B.2.)10,49–51. We adjusted for maternal age, race, 

education, marital status, household income, and prenatal alcohol consumption. We did not 

adjust for self-reported prenatal smoking because cotinine was already a factor in profile 

generation. Although child sex cannot be considered a confounder, we stratified results by sex 

because studies have found differing effects of gestational exposures on neurodevelopment in 

boys and girls1,3,8. Gestational age and birth weight were excluded from the model because they 

act as mediators, not confounders52. 

Measures for several of our covariates were missing in a small number of participants. 

Prenatal alcohol was missing for 4.3% of mothers, household income for 3.3%, and maternal 

education for 0.5%, which would have resulted in a total of 40 mothers (7.7%) being removed 

from the analysis. To avoid this, we used a single imputation approach to fill in these missing 

values. 

2.2.5. Statistical Analysis 

Descriptive Statistics 

We assessed the central tendency and distribution of the gestational biomarker 

concentrations and the children’s VIQ, PIQ, and FSIQ scores. We stratified the WPPSI-III 

scores by our chosen covariates to compare between demographics. To calibrate our 

inferences about associations between demographic characteristics, chemical mixtures, and 

neurodevelopment, we used linear regression analyses. We examined the relation between 

demographic characteristics and WPPSI-III scores, as well as the relation between the 

individual log2-transformed chemical concentrations and WPPSI-III scores. 
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Latent Profile Analysis 

We used LPA to create chemical mixture profiles based on 30 chemical biomarkers. To 

ensure that the biomarkers had adequate levels of correlation for profile interpretation, we 

conducted pairwise correlation analysis on the 30 individual chemical biomarkers. We then 

performed LPA with the RStudio packages tidyLPA and mclust53. To choose the number of 

profiles, we calculated the Bayesian Information Criterion (BIC) of 35 different models, 

manipulating the number of profiles from one to twelve, as well as assumptions about the 

variance within profiles and the covariance between chemical exposures. We chose the BIC as 

a quality measure because it penalizes model complexity more than other measures such as 

the Akaike Information Criterion (AIC)54. In addition to the BIC, we also considered 

interpretability when choosing a model. 

Once we had chosen the number of profiles, we generated the mothers’ posterior 

probabilities of profile membership. We then examined the demographic characteristics of 

participants in each of the five profiles. Additionally, we calculated the mean chemical 

concentration in each profile using the formula: 

𝑊 =  
∑ 𝑃௜𝑊௜

∑ 𝑃௜
 

where Xi is the log2-transformed chemical concentration in mother i and Pi is the posterior 

probability of profile membership in mother i. We converted biomarker concentrations to z-

scores to compare the profiles’ overall chemical compositions and determine the patterns 

detected by LPA. 

Regression Analysis of the Latent Profiles 

We used covariate-adjusted multiple linear regression analysis to measure the 

association between profile membership and WPPSI-III scores, running separate regression 

models for VIQ, PIQ, and FSIQ. Each model included the posterior probabilities of profile 

membership for every profile except the reference, as shown in the following equation: 

𝑌 = 𝛽଴ + 𝛽ଶ𝑍ଶ + ⋯ + 𝛽௞𝑍௞ + 𝛽௖ଵ𝐶ଵ + ⋯ + 𝛽௖௣𝐶௣     [Equation 1] 

where Y is the WPPSI-III score, Z2 … Zk are the posterior probabilities that a mother will fall into 

each of the k profiles, Z1 is the reference profile that is excluded from the model, and C1 … Cp 
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are p confounders. For example, the quantity β3 would be the change in mean IQ score as the 

posterior probability of membership in Profile 3 increases from 0 to 1, implying a 100% 

probability of inclusion in Profile 3 compared to Profile 1, adjusted for p confounders. 

Sensitivity Analysis Comparing LPA with K-means Clustering 

We conducted sensitivity analysis to compare LPA with k-means clustering, a more 

established method in the field of environmental epidemiology. Unlike LPA, k-means clustering 

requires that the researcher predetermine the number of clusters55,56. We first ran several 

models and used the “elbow method” to help us make this decision. For interpretation, we 

generated a heat map of mean biomarker concentration z-scores and compared them with the 

LPA results. 

Additionally, we used covariate-adjusted multiple linear regression analysis to measure 

the associations between class membership and WPPSI-III scores, once again running 

separate models for VIQ, PIQ, and FSIQ. We created dummy variables for each of the clusters 

(with 1 denoting membership to a cluster and 0 denoting non-membership). Each model 

included all dummy variables except for the reference cluster, as shown in the following 

equation: 

𝑌 = 𝛽଴ + 𝛽ଶ𝐷ଶ + ⋯ + 𝛽௞𝐷௞ + 𝛽௖ଵ𝐶ଵ + ⋯ + 𝛽௖௣𝐶௣     [Equation 2] 

where y is the WPPSI-III score, D2 … Dk are the dummy variables for each of the k clusters, D1 

is the reference cluster that is excluded from the model, and C1 … Cp are p confounders. For 

example, the quantity β3 would be the difference in the mean IQ scores of a participant in 

Cluster 3 compared to a participant in Cluster 1, adjusted for p confounders. 
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2.3. Results 

2.3.1. Study Population and Descriptive Statistics 

The MIREC-CD3 Neurodevelopment visit included 808 participants. 608 children took 

the WPPSI-III test, and 599 of those finished all subtests and received complete scores. After 

excluding those with missing chemical information, we included 517 MIREC participants in our 

study (Figure B.1.). Compared to the average Canadian mother in 2011, participants’ mothers 

were on average older (41% in the 35+ group), predominantly white (86%), with higher 

education levels (68% completed an undergraduate degree or higher) and household incomes 

(41% over $100, 000), and lower self-reported prenatal smoking (9%) and alcohol (17%) rates57. 

Parity was similar to the Canadian average (44% on their first child). 

  In covariate-adjusted regression models of participant characteristics and WPPSI-III 

scores, we found higher average scores in female children, as well as children with white, more 

educated, or low-parity mothers (Table B.1.). Prenatal smoking was negatively associated with 

all three IQ scores, but prenatal alcohol was positively associated with IQ. Maternal age and 

marital status were linked to higher VIQ but lower PIQ; however, the associations were 

imprecise with wide 95% confidence intervals.  

We calculated the geometric means of each chemical and found them to be similar to 

those found by Canadian Health Measures Survey (CHMS) at the time (Table 2.1.)58. The 

%>LOD was higher (>80%) for the heavy metals, phthalates, and most of the OCPs and PCBs, 

and lower for the OPPs, PBDE, and cotinine. We excluded all chemicals with less than 40% 

>LOD.  
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Table 2.1. Distribution of gestational chemical biomarkers in participating mothers in the MIREC 
study during their first trimester of pregnancy, as compared to the geometric mean 
concentrations found in the average Canadian mother in 2008, measured in the Canadian 
Health Measures Survey (n = 517). 

 % 
>LOD  

Mean (SD) GM (GSD) 
Percentiles CHMS 

GM58 
25th 50th 75th 95th Max 

Heavy metals - Whole Blood (ug/L)  
 

   Arsenic 96.5 1.1 (1.8) 0.8 (2.0) 0.6 0.8 1.2 2.3 34.5 0.9 

   Cadmium 97.5 0.3 (0.4) 0.2 (2.1) 0.1 0.2 0.3 0.7 5.1 0.4 

   Lead 100.0 7.2 (4.0) 6.4 (1.6) 4.6 6.2 8.5 14.1 41.4 8.9 

   Manganese 100.0 9.1 (2.8) 8.7 (1.4) 7.1 8.8 10.4 13.7 26.9 9.8 

   Mercury 91.5 1.0 (0.9) 0.6 (2.7) 0.4 0.7 1.3 2.8 7.8 0.7 

OCPs - Plasma (ng/L) 
 

   BBHC 64.0 6.3 (30.1) 2.3 (2.7) < LOD 2.1 3.4 9.0 500.0 4.8 

   DDE 99.2 90.9 (212.6) 55.23 (2.2) 35.7 49.1 77.1 214.6 2,656.3 102.2 

   Oxychlor 92.8 2.3 (1.2) 2.0 (1.8) 1.5 2.2 3.0 4.5 8.4 2.3 

   Transnona 85.7 3.4 (2.3) 2.9 (1.8) 2.0 3.0 4.3 7.4 18.3 3.1 

   OCP Sum NA 5.8 (3.3) 5.0 (1.7) 3.5 5.1 7.2 11.7 23.9 NA 

OPPs - Urine (ug/L) 
 

   DEP 73.1 7.5 (92.5) 2.6 (2.3) < LOD 2.5 4.2 9.8 2,104.8 2.0 

   DETP 49.1 1.1 (1.3) 0.7 (2.5) < LOD < LOD 1.2 3.1 15.6 NA 

   DMDTP 53.0 1.2 (2.3) 0.5 (3.6) < LOD 0.5 1.1 4.8 22.5 NA 

   DMP 77.4 5.1 (6.5) 3.2 (2.7) 1.8 3.3 6.2 14.7 71.5 2.6 

   DMTP 80.7 8.1 (11.9) 3.6 (4.0) 1.4 3.9 8.9 30.6 96.2 1.8 

Phthalates - Urine (ug/L) 
 

   MBP 99.6 19.8 (37.5) 12.6 (2.3) 7.8 12.1 19.2 47.1 525.9 18.0 

   MBZP 99.4 8.9 (14.9) 5.4 (2.5) 3.1 4.8 9.1 25.3 182.0 9.3 

   MCPP 80.3 2.0 (4.7) 0.9 (3.3) 0.5 0.9 1.7 7.2 72.0 1.1 

   MEHHP 99.4 13.9 (24.2) 9.5 (2.2) 6.1 9.1 14.1 34.7 355.8 20.0 

   MEHP 98.1 3.3 (4.6) 2.3 (2.2) 1.4 2.2 3.7 9.1 53.0 3.4 

   MEOHP 99.4 9.2 (13.1) 6.7 (2.1) 4.4 6.5 9.5 22.7 171.1 13.0 

   MEP 100.0 149.6 
(969.3) 

33.2 (4.0) 12.4 26.0 71.5 416.0 20,800.0 50.0 
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   DEHP Sum NA 26.1 (40.6) 18.6 (2.1) 12.5 18.1 26.4 63.8 550.6 NA 

PCBs - Plasma (ng/L) 
 

   Aroclor 98.7 84.6 (79.7) 65.0 (2.0) 41.1 64.2 94.6 225.1 659.6 NA 

   PCB118 77.0 3.0 (2.5) 2.4 (1.9) 1.7 2.5 3.4 6.6 30.2 3.1 

   PCB138 94.2 5.8 (5.4) 4.5 (2.0) 2.9 4.5 6.6 15.1 46.8 5.5 

   PCB153 99.8 10.5 (10.1) 8.0 (2.0) 5.0 7.6 11.8 27.9 80.9 8.2 

   PCB170 58.8 2.9 (3.7) 2.0 (2.2) < LOD 2.0 3.1 8.1 40.3 NA 

   PCB180 96.7 7.8 (10.1) 5.5 (2.2) 3.2 5.3 8.4 21.2 114.9 5.8 

   PCB187 47.2 2.3 (2.4) 1.7 (2.0) < LOD < LOD 2.5 5.7 26.9 NA 

   PCB Sum NA 30.0 (29.3) 23.2 (2.0) 14.3 22.0 34.3 78.3 262.8 NA 

PBDEs - Plasma (ng/L) 
 

   BDE47 65.0 15.0 (45.2) 7.3 (2.7) < LOD 6.8 11.7 38.1 727.3 10.8 

Tobacco Metabolites - Plasma (ng/L) 
 

   Cotinine 54.4 2871.4 
(17325.1) 

7.7 (11.8) < LOD 6.5 20.0 270.0 180,000.0 NA 
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2.3.2. Latent Profile Analysis 

We created a heat map showing the correlation between 30 log2-transformed 

biomarkers (Figure 2.1.). We found high levels of correlation within the OCPs, the OPPs, the 

phthalates (except for MEP), and the PCBs. There was also correlation between several 

chemical groups. The PCBs, OCPs, and most of the metals were correlated, as were cotinine 

and cadmium, a component of cigarette smoke59.  

We generated 35 models, changing the number of profiles and the assumptions for 

variance and covariance to attain the lowest BIC. The highest quality models included a model 

with five profiles and equal variance and covariance (BIC = 40697) and a model with two 

profiles and varying variance and covariance (BIC = 40405). Accounting for interpretability, we 

chose the model with five profiles. 

Figure 2.2. shows the LPA results. We found one profile with mean biomarker 

concentrations similar to those of the total group (the Reference profile), one with high 

biomarker concentrations (the High Level profile), one with low biomarker concentrations (the 

Low Level profile), one with high OPPs and low levels of every other chemical (the High OPPs 

profile), and one with high levels of cotinine and cadmium (the Smoking Chemicals profile). 

Certain chemicals had greater levels of variation between the profiles than others (Figure 2.2.). 

Specifically, there was high variance of PCB and smoking chemical concentrations between 

profiles. 

Table 2.2. shows the demographic characteristics of participants in each of the five 

profiles. For this table, participants were assigned to whichever profile they matched most 

closely based on their posterior probabilities. We found that the Reference group was 

comparatively larger (n = 365) and the High Level, Low Level, High OPPs, and Smoking 

Chemicals profiles were comparatively smaller (n = 33, 20, 79, and 20 respectively). We also 

examined the spread of the posterior probabilities between profiles to assess classification 

accuracy. The mothers in the three smaller profiles tended to have high posterior probabilities 

(mean >0.99), as did those in the Reference profile (mean = 0.97), whereas mothers in the High 

OPPs profile had lower posterior probabilities (mean = 0.88). The demographic characteristics 

of the Reference profile were similar to those of the total sample, although mothers were more 

often white with higher socioeconomic status. The High Level profile had children with much 

older, non-white mothers. Both the High OPPs profile and the Low Level profile had younger, 

unmarried mothers with lower socioeconomic status, and the Low Level profile contained mostly 

girls (80%). The Smoking Chemicals profile tended to have younger, non-white, unmarried 
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mothers with much lower socioeconomic status and high levels of prenatal smoking, although it 

should be noted that not every mother in this profile reported prenatal smoking. 
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Figure 2.1. Correlation heat map of 30 log2-transformed chemicals measured in participating 

mothers in the MIREC study during their first trimester of pregnancy (n = 517).  
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Figure 2.2. Mean log2-transformed chemical compositions of the five profiles generated by 
Latent Profile Analysis, with boxes showing standard deviation (n = 517). 
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Table 2.2. Demographic characteristics for total study population and for participants in each 
latent profile. Participants were assigned in whichever profile they matched most closely using 
the highest posterior probability. 

 
Total Reference High Level Low Level High OPPs Smoking 

Chemicals 
 

n = 517 n = 365 n = 33 n = 20 n = 79 n = 20 

Child Sex 
      

     Male 49 49 48 20 54 50 

     Female 51 51 52 80 46 50 

Maternal Age             

     19-30 21 17 12 50 29 40 

     30-35 39 41 30 30 34 30 

     35+ 41 42 58 20 37 30 

Maternal Race             

     White 86 90 73 85 78 70 

     Other 14 10 27 15 22 30 

Maternal Education             

     Highschool 5 3 6 15 10 20 

     College 27 25 24 25 37 45 

     Undergrad 39 40 42 60 29 30 

     Grad 29 33 27 0 24 5 

Marital Status             

     Married 72 75 70 60 68 55 

     Unmarried 28 25 30 40 32 45 

Household Income             

     < 40 000 10 6 9 20 17 45 

     40 000 - 80 000 29 27 33 30 34 25 

     80 000 - 100 000 21 22 12 30 20 10 

     > 100 000 41 45 46 20 29 20 

Parity             

     0 44 45 42 45 37 50 

     1 41 41 46 20 47 35 

     2 12 11 12 15 13 15 
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     3+ 3 3 0 20 4 0 

Prenatal Smoking             

     No 91 94 91 100 95 30 

     Yes 9 6 9 0 5 70 

Prenatal Alcohol             

     No 83 82 82 95 87 75 

     Yes 17 18 18 5 13 25  
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2.3.3. Regression Analysis of the Latent Profiles 

We conducted covariate-adjusted regression analysis (as shown in Equation 1) to 

measure the association between the posterior probabilities and the three WPPSI-III scores 

(Table 2.3.). We used the Reference Profile as the reference in our analysis, as this profile was 

the most representative of the average mother. The Smoking Chemicals profile had a strong 

negative association with VIQ, PIQ, and FSIQ in both boys and girls, although there was 

uncertainty in the effect estimates with wide 95% confidence intervals. In the High Level profile, 

we found a negative association with VIQ in both boys and girls; however, the results for PIQ 

and FSIQ were inconsistent. In the Low Level and High OPPs profiles, we found a positive 

association with all three IQ scores in girls but not boys. For all regression coefficients the 95% 

confidence intervals covered the null value. 

Notably, the beta coefficients found using group membership were higher than those of 

the individual chemical biomarkers or survey questions. For example, in the Smoking Chemicals 

Profile, the mean FSIQ for all children was 5.7 points [95% CI (11.0, -0.4)] lower than that of the 

Reference Profile (Table 2.3.). In contrast, the self-reported prenatal smoking variable only 

showed a 3.8 point [95% CI (-0.2, 7.9)] decrease of FSIQ in all children compared to those with 

non-smoking mothers (Table B.1.). Furthermore, doubling the cotinine biomarker resulted in 

only a 0.2 point [95% CI (-0.2, 0.5)] decrease for FSIQ in all children (Table B.2.). Since the 

log2-cotinine levels in the Smoking Chemicals profile are roughly 12 greater than those of the 

Reference profile, this means that cotinine by itself would only account for a 2.4 point decrease 

in FSIQ (Table B.2.; Figure 2.2.). Effect estimates also differed from the additive effects of each 

of the chemicals. For example, the coefficients in the High Level profile were higher than those 

of the individual PCBs, but lower than the combined effects of all the PCBs.  
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Table 2.3. Covariate-adjusted linear regression coefficients showing the associations between 
latent profile membership and WPPSI-III scores, adjusted for maternal age, race, education, 
and marital status, household income, parity, and prenatal alcohol, compared to medium level 
Reference Profile, with 95% confidence intervals. Results are shown for all children, and then 
stratified by sex (n = 517). 
 
 

VIQ (95% CI) PIQ (95% CI) FSIQ (95% CI) 

Intercept (Reference Level Profile) 

     All 105.2  97.2 101.4 

     Boys 104.6 99.7 102.7 

     Girls 106.6 94.7 100.4 

High Level Profile 

     All -3.1 (-7.6, 1.3) 2.2 (-3.1, 7.5) -0.5 (-5.1, 4.2)  

     Boys -4.4 (-11.3, 2.6) -0.7 (-8.7, 7.4) -2.8 (-10.2, 4.5) 

     Girls -2.5 (-8.2, 3.1) 2.9 (-4.3, 10.0) 0.3 (-5.7, 6.2) 

Low Level Profile 

     All 0.5 (-5.3, 6.4) 4.7 (-2.2, 11.7) 3.0 (-3.1, 9.1) 

     Boys -3.2 (-17.0, 10.5) -0.2 (-16.1, 15.7) -2.2 (-16.8, 12.3) 

     Girls 0.3 (-5.9, 6.6) 6.1 (-1.9, 14.0) 3.6 (-2.9, 10.2) 

High OPPs Profile 

     All 1.1 (-2.4, 4.5) -0.3 (-4.4, 3.8) 0.6 (-3.1, 4.2) 

     Boys -2.3 (-7.6, 3.0) -2.0 (-8.2, 4.1) -2.4 (-8.0, 3.2) 

     Girls 3.4 (-1.1, 8.0) 0.3 (-5.5, 6.1) 2.3 (-2.5, 7.1) 

Smoking Chemicals Profile 

     All -3.7 (-9.5, 2.2) -6.4 (-13.3, 0.6) -5.7 (-11.9, 0.4) 

     Boys -4.7 (-13.8, 4.3) -7.8 (-18.3, 2.7) -7.1 (-16.7, 2.5) 

     Girls -2.7 (-10.2, 4.8) -6.6 (-16.2, 2.9) -5.3 (-13.2, 2.6) 
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2.3.4. Sensitivity Analysis Comparing LPA and K-means Clustering  

The “elbow method” of determining the number of clusters showed that 5-8 clusters were 

appropriate for this study population. We chose a model with five clusters generated by k-

means clustering to compare with the LPA results. The clusters were similar to the profiles 

generated by LPA; Figure 2.3. shows a cluster with low to middling biomarker concentrations, 

one with high biomarker concentrations, one with low biomarker concentrations, one with high 

OPPs, and one with high concentrations of smoking chemicals. While these patterns were 

similar to the ones detected by LPA, there were some key differences between the clusters and 

the profiles. First, the Reference, High Level, Low Level, and High OPPs clusters were all of 

similar sizes (n = 119, 111, 131, 138 respectively), although the Smoking Chemicals cluster was 

comparatively small (n = 18; Table B.3.). Second, the range of mean z-scores was smaller in 

some of the clusters, showing weaker patterns in the High Level and Low Level clusters (Figure 

2.3.). Finally, the Reference cluster had lower mean biomarker concentrations and was less 

representative of the overall population than the Reference profile. 

When we conducted covariate-adjusted linear regression analysis shown in Equation 2, 

we found that the Smoking Chemicals cluster had a consistent negative association with all 

WPPSI-III scores, although 95% confidence intervals consistently covered the null (Table B.4.). 

The High Level cluster had negative associations with VIQ and FSIQ, but not PIQ. The Low 

Level cluster was positively associated with VIQ but negatively associated with PIQ and FSIQ. 

We found no consistent trends in the High OPPs cluster. No noteworthy patterns were detected 

when we stratified by child sex. 
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Figure 2.3. Sensitivity analysis comparing LPA results with k-means clustering results, showing 
z-scores for the mean biomarker concentrations in each latent profile (left) and k-means cluster 
(right; n = 517).  
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2.4. Discussion 

Using LPA, we generated five clearly defined latent profiles which showed risk 

stratification of gestational chemical mixtures. We found a High Level profile, a Low Level 

profile, a High OPPs profile, a Smoking Chemicals profile, and a medium level Reference 

profile. We verified the accuracy of the profiles in a sensitivity analysis comparing LPA with k-

means clustering. Unlike k-means clustering, LPA does not have a bias towards creating 

profiles of equal size, and this allows for the generation of very small profiles with high 

classification accuracy. The large size of the Reference profile in our study indicates that this 

profile acted as a catch-all group for mothers who did not fit any of the other patterns. 

We found a strong negative association between the Smoking Chemicals profile and 

VIQ, PIQ, and FSIQ when compared to the Reference profile, although the 95% confidence 

intervals spanned the null. Furthermore, the magnitude of the regression coefficients for the 

Smoking Chemicals profile in relation to WPPSI-III scores were larger than the corresponding 

regression coefficients for self-reported prenatal smoking and the cotinine biomarker by itself 

(Table 2.3.; Table B.1.; Table B.2.). We did not expect the effect estimates of the Smoking 

Chemicals profile to be so much greater than the cotinine biomarker, which is a measure that is 

less prone to error than self-reported smoking. Although more research is needed in this area, 

our results suggest that the latent profile detected by LPA may be a better tool for studying the 

health effects of smoking than these measures. 

In both boys and girls, the High Level profile had a negative association with VIQ but not 

PIQ, although the 95% confidence intervals spanned the null. As shown in Figure 2.2., the High 

Level profile had a higher concentration of PCBs than any of the other chemicals, and can 

therefore be interpreted as a highly concentrated PCB mixture. We found that the associations 

in Table 2.3. were reflective of trends in the individual PCBs, which were all negatively 

associated with VIQ, but had inconsistent associations with PIQ. See Table B.3. for comparison. 

Our findings are consistent with the literature; studies have shown significant negative 

relationships between PCBs and VIQ, but not PIQ60,61. Studies have been done on VIQ-PIQ 

discrepancies and their impact on child development and developmental disorders, but more 

research is needed to determine why these differences occur62–65.  

Both the Low Level profile and the High OPPs profile were positively associated with IQ 

scores in girls but not boys. This result is consistent with previous studies that have shown that 

some chemicals may have differing effects on boys and girls1,3,8. However, the results in the 
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Low Level profile may be partly due to the unequal sex distribution; it may be that the larger 

group of girls are more indicative of the actual patterns for this profile. It should also be noted 

that the exposure concentrations of the OPP profile were similar to those of the Reference 

profile, as the OPPs did not show high levels of variance between profiles. This profile also had 

the lowest classification accuracy of the five. This may explain the inconsistent effect of 

membership in the profile on IQ. 

When we conducted sensitivity analysis using k-means clustering, we found that the five 

clusters had similar patterns to the five profiles, albeit less pronounced. We found that k-means 

clustering had three main disadvantages: The unclear method of choosing a model, the 

tendency towards choosing clusters of the same size, and the non-probabilistic nature of cluster 

assignment. We chose to use a model with five clusters because that was the number of 

profiles LPA generated, but this would have been a more difficult decision had we not done LPA 

first. The clusters were mostly the same size (except for the smaller Smoking Chemicals 

cluster). This may have resulted in lower classification accuracy, which would explain the lower 

biomarker variance between clusters. However, because this method does not generate 

posterior probabilities, we could not assess classification accuracy. Although the small sizes of 

some of the latent profiles may make them less applicable to large groups of the general 

population, they are still indicative of patterns within the population, and we found them to be 

more effective at detecting harmful chemical mixtures than the more generalized clusters. We 

therefore conclude that LPA is a more useful method for studying the effects of gestational 

chemical mixtures. 

This study builds on other work that has used unsupervised machine learning 

techniques to estimate the health effects of chemical mixtures. Several similar studies have 

been done using k-means clustering, which is why we chose this method for sensitivity 

analysis2,66–68. PCA has also been used to determine new variables for chemical mixtures36,67,69. 

One recent study by Carroll et al. used Latent Class Analysis (LCA) to study phthalate and 

phenols70. LCA is similar to LPA, but it only works with categorical independent variables71. 

Therefore, chemical exposures were dichotomized in the study, reducing accuracy70. Had we 

chosen to use this method, we could not have differentiated the profiles nearly as well, and 

would have missed information about the spread of the PCBs and the existence of the reference 

group, among other results. Finally, a recent study by Khorrami et al. used LPA to find 

associations between mixtures of air pollutants and lung cancer72. In this study, however, 
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pollutant concentration was ascertained using geographical location, not chemical biomarkers. 

Also, that study did not focus on gestational chemical exposures. 

Our study has several limitations. The first is that mothers in the MIREC cohort tend to 

be older, wealthier, more educated, more likely to be white, and less likely to report prenatal 

smoking and drinking than the Canadian average28. Therefore, we may not be accurately 

reflecting the exposure patterns found in more vulnerable populations. Secondly, there were 

several chemicals with relatively low %>LODs, and the imputation method we used may have 

underestimated the variance for these chemicals47. Third, due to high levels of correlation, it can 

be difficult to distinguish between the effects of gestational exposures and chemicals in the 

postnatal environment60,73. Fourth, while much work has been done to ensure the validity of the 

WPPSI-III test, IQ tests for children often have problems with accuracy34,74. Regardless of the 

training of test administrators, scores can vary based on the children’s levels of cooperation, 

motivation, or fatigue, especially in children with intellectual disabilities75. Fifth, exposure 

misclassification for non-persistent chemicals may have affected the analysis results18. For 

example, the poorly defined profiles for phthalates in Figure 2.2. may be due to the fact that 

phthalate exposure is measured with error. Finally, the complexity of LPA results can make 

them difficult to interpret, leading some researchers to prefer simpler methods such as LCA or 

k-means clustering26,70. In certain situations, the simpler methods are more useful. For example, 

when all the profiles have high classification accuracy, the posterior probabilities are all so close 

to 0 or 1 that a probabilistic method becomes unnecessary26. However, despite these 

limitations, we believe that LPA is a promising technique that is worthy of more study. 

In conclusion, we recommend the use of LPA as a technique for studying chemical 

mixtures. Although further research is needed to understand LPA’s capabilities, we believe that 

this is an effective alternative to other clustering methods. This technique can find patterns in 

large, complex datasets while avoiding many of the disadvantages of other machine learning 

techniques. It generates a helpful new variable that can be used to study the effects of chemical 

mixtures on other health outcomes. 
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Chapter 3.  

Conclusion 

3.1. Summary 

In summary, this MSc thesis showed that LPA is a promising technique for studying 

chemical mixtures, and that it compares favourably to k-means clustering. This study 

contributes to the growing field on appropriate statistical measures for the analysis of chemical 

mixtures1–3. For my first objective, I used LPA to generate five latent profiles of MIREC 

participants based on 30 gestational biomarkers. These five profiles were found using patterns 

in exposure mixtures in different subgroups of the population, highlighting common mixtures in 

pregnant Canadian women. They identified subgroups with very high and low levels of PCBs 

respectively, as well as one with high OPPs, and one with high smoking chemicals.  

This thesis also contributes to the field of gestational chemical mixtures and their effects 

on neurodevelopment4–8. For my second objective, I not only showed the risk stratification of 

different chemical mixtures and how they impact IQ scores, but also confirmed that PIQ and VIQ 

can be affected differently. I found that the Smoking Chemicals profile was associated with a 

large decrease in all three IQ scores in both sexes, that the High Levels profile was negatively 

associated with VIQ, and that the Low Level and High OPPs profile were positively associated 

with IQ in girls but not boys. However, these associations were imprecise and had wide 95% 

confidence intervals which covered the null values, perhaps due to a small sample size. 

For my third and final objective, I conducted sensitivity analysis using k-means 

clustering. I repeated my first two objectives using this method, first creating five clusters, and 

then regressing cluster membership against IQ. The clusters I generated had similar patterns to 

the latent profiles. However, this method’s bias toward clusters of the same size led to less 

chemical variation between the clusters and weaker regression results. I found that, while k-

means clustering was faster and easier to use than LPA, the difficulty choosing a model and 

lack of information about classification accuracy resulted in less useful results than those of 

LPA. From my experiment I concluded that LPA shows potential as a method for studying 

chemical mixtures and that it compares favourably against k-means clustering. However, more 

research is needed to understand LPA’s capabilities in terms of number of predictor variables 

for profile generation and statistical power for determining effects. Future directions of work are 

discussed in Section 3.3.  
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3.2. Relevance for Policymakers and Environmental Health 

Researchers 

There are two main reasons that stakeholders would find my research relevant to their 

work; some will be more interested in the methodology I employed, and some will be more 

interested in my results. From a methodological perspective, this study is relevant to 

epidemiologists because it introduces a new machine learning technique that can be used to 

study complex chemical mixtures. Although most neurotoxins are still studied one at a time, 

exposure mixtures are becoming an increasingly common topic of study for environmental 

epidemiology6,7,9,10. However, researchers are still exploring new techniques for tackling this 

issue2. Many problems arise when studying complex chemical mixtures; researchers must 

choose the appropriate mixtures to study, and contend with collinearity in highly correlated 

datasets, the loss of power when a large number of variables are included in the model, and 

interactions between individual chemicals1. LPA is a method that helps avoid these issues. It 

finds the strongest patterns in a population, allowing researchers to prioritize more common 

mixtures. It does not lose power when more variables are added to the model. Finally, it allows 

one to study the effects of mixtures as a whole, avoiding problems with interactions or 

collinearity. I believe that epidemiologists would do well to consider this method for studies 

beyond the scope of my thesis. 

This work is also relevant to several groups who may be interested in the profiles I 

generated. Researchers studying gestational exposures need to shift their focus away from 

single chemical exposures and towards chemical mixtures7,9,11. While excellent work has been 

done in this field on single exposures, studies on mixtures can more accurately reflect the harm 

of chemicals during pregnancy. That said, it is important to focus on the mixtures that are most 

relevant to society1. My work highlights several specific chemical mixtures that deserve more 

attention, as they are found in specific subgroups of the population. For example, the High and 

Low Level profiles show that we need to be paying attention to PCB exposure during 

pregnancy, because this biomarker varies wildly between mothers and is negatively associated 

with VIQ. Also, the subgroup of young mothers with higher levels of OPP exposure may be the 

result of our shift away from OCPs12. It will be important to keep an eye on this group in the 

future. 

Environmental epidemiologists need to convey the importance of chemical mixtures to 

policymakers. Oftentimes, policymakers will focus on single chemical exposures, and will 
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emphasize “safe” doses extrapolated from studies on high level exposures13–15. This is a point of 

contention in environmental epidemiology. Studies have shown that many chemicals, such as 

lead, phthalates, and air pollution, have no safe threshold of exposure11,13,15. We are beginning 

to understand that low-dose chemical exposures, especially during vulnerable times such as the 

gestational period, are far from benign. Despite this, policymakers still ascribe some chemicals 

a threshold below which neurotoxic effects are negligible, and use these thresholds to make 

policy decisions15. However, any messaging about “safe” doses ignores the fact that exposure 

to many simultaneous low-dose chemicals can be just as dangerous as exposure to high levels 

of a single chemical14. Government officials and policymakers need to reframe their 

understanding of this complex issue. 

Finally, this study is relevant to one very important group of stakeholders: Pregnant 

mothers. Information regarding gestational exposures is large in volume and contradictory16. 

This can be overwhelming for parents trying to make decisions about their children’s health. The 

onus should not be on pregnant mothers to avoid every potential neurotoxin; this would be 

impossible given these chemicals’ pervasiveness in our environment. However, it is important 

that people understand that gestational chemical exposures can severely impact child 

neurodevelopment. Effective knowledge translation about the neurotoxicity of chemical groups 

such as smoking metabolites, pesticides, and PCBs may help mothers make informed 

decisions11. Obstetricians, gynecologists, and pediatricians can provide guidance and early 

intervention in this area. Using patient-centred actions and communication strategies, these 

health workers can help mitigate the impacts of gestational neurotoxins. 
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3.3. Future Topics of Study 

My research demonstrates the promising nature of LPA for studying gestational 

chemical mixtures, which is something that has not been done before in the field of 

environmental epidemiology. Most applications of LPA in the literature have been in the fields of 

psychology and behavioural sciences; LPA has been used to study mental health treatment 

outcomes, noncognitive skill, emotional labour strategies, and PTSD symptoms17–20. However, 

further research is necessary to understand LPA’s capabilities, including the number of predictor 

variables that can be used in a model, the level of correlation the variables can have, and the 

applicability of profiles between populations. My study opens the doors for a wide variety of new 

research focusing on LPA and the effects of chemical mixtures. 

First, the profiles I generated could be used in future research to study other child health 

outcomes, such as birth weight or behavioural disorders. This would allow us to understand the 

effects of these specific chemical mixtures more fully. These studies would have the advantage 

of being fast and easy to conduct, as profile generation was the most time-consuming part of my 

project. 

This research could also be repeated with a different cohort to further assess these 

profiles’ applicability in other populations. It would be beneficial to test LPA with a larger sample 

size of Canadian women to see if similar profiles are generated and to try to get adequate 

power for significant results. It would also be ideal to study populations with higher biomarker 

concentrations, which tend to be quite low in Canadian women12. Finally, repeating this study 

with a different cohort could confirm the effect sizes of these chemical mixtures on IQ, which 

were much higher than those of our individual chemical exposures.  

If future researchers use LPA to study neurodevelopment, they may choose to use 

different chemical mixtures to generate the latent profiles. For this project, I used the 30 known 

neurotoxins that were available in a large portion of my study population21–28. Future studies 

could be conducted to test the limits of how many chemical exposures LPA can handle at once. 

I would also be interested in conducting similar research without using cotinine as a variable, as 

it was a very strong driver of chemical profile membership and I would like to see how the 

profiles would be generated without it.  

Finally, environmental epidemiologists may conduct studies using other measures to 

form profiles. While this is, to my knowledge, the first study to use LPA on gestational chemical 

mixtures, many studies have been conducted in other fields using different variables that are 
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relevant to human health17–20. I am interested in seeing LPA used on other variables in the field 

of environmental epidemiology. In particular, I would like to try creating profiles based on both 

chemical exposures and other demographic variables. Although we did not choose to do this for 

this project, it is possible to adjust for covariates directly in the model29. Overall, I am excited to 

explore LPA’s capabilities further in future projects. 
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Table A.2. Unadjusted linear regression coefficients showing the associations 
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Table A.3. Unadjusted linear regression coefficients showing the associations 
between prenatal chemical exposures (two-fold increase in chemical 
exposure) and WPPSI-III scores in participants from the MIREC Study, 
with 95% confidence intervals (n = 517). 
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Table A.1. 

Descriptions of WPPSI-III subtests for younger age band (aged two years and six months to 
three years and eleven months). * 

Subtest Type Composites What the child does 

Receptive 
Vocabulary 

Core VIQ, FSIQ, and GLC Points to the picture that corresponds to certain 
words 

Information Core VIQ and FSIQ Answers general information questions (verbally or 
by pointing) 

Block Design Core PIQ and FSIQ Uses blocks to copy a design 

Object Assembly Core PIQ and FSIQ Completes puzzles 

Picture Naming Supplemental GLC and VIQ 
(substitute) 

Names objects from picture 

*From Gordon B. Test Review: Wechsler, D. (2002). The Wechsler Preschool and Primary Scale of 
Intelligence, Third Edition (WPPSI-III). San Antonio, TX: The Psychological Corporation. Canadian 
Journal of School Psychology. 2004;19(1-2):205-220. 
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Table A.2. 

Unadjusted linear regression coefficients showing the associations between MIREC participant 
demographic characteristics and unadjusted mean WPPSI-III scores, with 95% confidence 
intervals (n = 517). 

 
VIQ (95% CI) PIQ (95% CI) FSIQ (95% CI) 

Child Sex 
   

     Intercept 106.7 (105.2, 108.3) 100.9 (99.1, 102.7) 104.2 (102.6, 105.8) 

     Male 0.0 (ref) 0.0 (ref) 0.0 (ref) 

     Female 5.3 (3.2, 7.5) 4.2 (1.6, 6.7) 5.5 (3.2, 7.8) 

Maternal Age 
   

     Intercept 107.8 (105.4, 110.3) 104.0 (101.2, 106.9) 106.7 (104.1, 109.2) 

     19-29 0.0 (ref) 0.0 (ref) 0.0 (ref) 

     30-34 1.3 (-1.8, 4.3) -0.2 (-3.7, 3.4) 0.6 (-2.6, 3.7) 

     35+ 2.8 (-0.2, 5.8) -2.3 (-5.7, 1.2) 0.3 (-2.8, 3.5) 

Maternal Race 
   

     Intercept 110.0 (108.8, 111.2) 103.5 (102.1, 104.9) 107.6 (106.3, 108.8) 

     White 0.0 (ref) 0.0 (ref) 0.0 (ref) 

     Other -3.6 (-6.8, -0.4) -3.1 (-6.8, 0.6) -3.8 (-7.1, -0.5) 

Maternal Education 
   

     Intercept 102.5 (97.9, 107.1) 94.9 (89.4, 100.4) 98.5 (93.7, 103.4) 

     Highschool 0.0 (ref) 0.0 (ref) 0.0 (ref) 

     College 2.7 (-2.4, 7.7) 6.0 (0.0, 12.0) 4.6 (-0.7, 9.9)  

     Undergrad 7.7 (2.8, 12.6) 9.6 (3.7, 15.4) 9.8 (4.7, 14.9) 

     Grad 11.3 (6.3, 16.3) 9.9 (3.9, 15.8) 12.0 (6.8, 17.3) 

Marital Status 
   

     Intercept 110.5 (109.2, 111.8) 102.2 (100.7, 103.8) 107.2 (105.8, 108.5) 

     Married 0.0 (ref) 0.0 (ref) 0.0 (ref) 

     Unmarried -3.6 (-6.0, -1.1) 2.9 (0.0, 5.8) -0.5 (-3.1, 2.0) 

Household Income 
   

     Intercept 105.6 (102.0, 109.1) 103.9 (99.7, 108.1) 105.1 (101.4, 108.8) 

     <40 000 0.0 (ref) 0.0 (ref) 0.0 (ref) 

     40 000 - 80 000 1.6 (-2.5, 5.7) -2.0 (-6.8, 2.8) -0.2 (-4.5, 4.1) 
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     80 000 - 100 000 4.2 (-0.1, 8.5) -1.4 (-6.4, 3.6) 1.9 (-2.6, 6.3) 

     >100 000 6.3 (2.4, 10.2) 0.1 (-4.5, 4.7) 3.9 (-0.3, 8.0) 

Parity 
   

     Intercept 111.2 (109.5, 112.9) 104.6 (102.6, 106.5) 108.9 (107.1, 110.6) 

     0 0.0 (ref) 0.0 (ref) 0.0 (ref) 

     1 -2.1 (-4.5, 0.3) -2.3 (-5.1, 0.5) -2.5 (-5.0, 0.0) 

     2 -5.0 (-8.6, -1.3) -3.3 (-7.6, 0.9) -4.8 (-8.6, -1.1) 

     3+ -8.6 (-14.9, -2.2) -4.6 (-11.9, 2.8) -7.7 (-14.3, -1.1) 

Prenatal Smoking 
   

     Intercept 109.8 (108.6, 111) 103.4 (102.0, 104.7) 107.4 (106.2, 108.6) 

     No 0.0 (ref) 0.0 (ref) 0.0 (ref) 

     Yes -4.0 (-8.0, 0.0) -3.7 (-8.3, 0.9) -4.2 (-8.4, -0.1) 

Prenatal Alcohol 
   

     Intercept 109.3 (108.1, 110.5) 102.3 (100.9, 103.7) 106.5 (105.2, 107.8) 

     No 0.0 (ref) 0.0 (ref) 0.0 (ref) 

     Yes 1.0 (-2.0, 4.0) 4.6 (1.2, 8.0) 3.0 (-0.1, 6.1) 
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Table A.3. 

Unadjusted linear regression coefficients showing the associations between prenatal chemical 
exposures (two-fold increase in chemical exposure) and WPPSI-III scores in participants from 
the MIREC Study, with 95% confidence intervals (n = 517). 

 
VIQ (95% CI)  PIQ (95% CI)  FSIQ (95% CI) 

Heavy Metals 
   

     Arsenic -1.2 (-2.3, 0.0) -0.4 (-1.7, 1.0) -1.0 (-2.2, 0.2) 

     Cadmium -1.0 (-2.1, 0.0) -1.0 (-2.2, 0.2) -1.2 (-2.3, -0.1) 

     Lead -0.8 (-2.5, 0.8) 1.2 (-0.7, 3.1) 0.2 (-1.5, 1.9) 

     Manganese -0.8 (-3.4, 1.7) -1.4 (-4.4, 1.6) -1.3 (-4.0, 1.4) 

     Mercury 0.4 (-0.4, 1.2) 0.7 (-0.2, 1.6) 0.6 (-0.2, 1.4) 

OCPs 
   

     BBHC 0.1 (-0.7, 0.9) 0.0 (-0.9, 0.9) 0.1 (-0.7, 0.9) 

     DDE -0.2 (-1.3, 0.8) -0.4 (-1.5, 0.8) -0.3 (-1.4, 0.7) 

     Oxychlor 1.5 (0.2, 2.8) 1.3 (-0.2, 2.9) 1.6 (0.2, 3.0) 

     Transnona 1.2 (-0.1, 2.5) 0.9 (-0.6, 2.4) 1.1 (-0.2, 2.5) 

     Sum of OCP 1.4 (0.0, 2.8) 1.2 (-0.4, 2.8) 1.4 (0.0, 2.9)      

OPPs 
   

     DEP -0.5 (-1.4, 0.4) -0.6 (-1.6, 0.5) -0.6 (-1.6, 0.3) 

     DETP 0.1 (-0.7, 1.0) 0.5 (-0.5, 1.4) 0.4 (-0.5, 1.2) 

     DMDTP 0.7 (0.1, 1.3) 0.3 (-0.4, 1.0) 0.6 (0.0, 1.2) 

     DMP 0.2 (-0.6, 1.0) 0.1 (-0.8, 1.0) 0.2 (-0.6, 1.0) 

     DMTP 0.5 (-0.1, 1.1) 0.1 (-0.5, 0.8) 0.4 (-0.2, 1.0) 

Phthalates 
   

     MBP -0.5 (-1.5, 0.4) -1.1 (-2.1, 0.0) -0.9 (-1.9, 0.1) 

     MBZP -0.3 (-1.2, 0.5) 0.1 (-0.9, 1.1) -0.2 (-1.1, 0.7) 

     MCPP -0.4 (-1.1, 0.2) -1.1 (-1.9, -0.4) -0.9 (-1.5, -0.2) 

     MEHHP -0.2 (-1.2, 0.8) -0.7 (-1.9, 0.4) -0.5 (-1.5, 0.6) 

     MEHP -0.6 (-1.6, 0.4) -0.6 (-1.7, 0.5) -0.6 (-1.7, 0.4) 

     MEOHP -0.2 (-1.3, 0.9) -0.8 (-2.1, 0.4) -0.5 (-1.6, 0.6) 

     MEP -0.4 (-1.0, 0.2) -0.1 (-0.7, 0.6) -0.3 (-0.9, 0.3) 

     Sum of DEHP -0.3 (-1.3, 0.8) -0.8 (-2.0, 0.5) -0.5 (-1.6, 0.6) 
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PCBs 
   

     Aroclor 0.5 (-0.6, 1.6) 0.5 (-0.8, 1.8) 0.5 (-0.6, 1.7) 

     PCB118 0.4 (-0.9, 1.6) 1.4 (0.0, 2.8) 1.0 (-0.3, 2.2) 

     PCB138 0.4 (-0.7, 1.5) 0.1 (-1.1, 1.4) 0.3 (-0.9, 1.4) 

     PCB153 0.6 (-0.6, 1.7) 0.6 (-0.7, 1.9) 0.6 (-0.5, 1.8) 

     PCB170 0.6 (-0.4, 1.6) 0.9 (-0.3, 2.1) 0.8 (-0.2, 1.9) 

     PCB180 0.9 (-0.1, 1.9) 0.8 (-0.4, 1.9) 0.9 (-0.1, 2.0) 

     PCB187 1.0 (-0.2, 2.1) 0.5 (-0.8, 1.8) 0.8 (-0.3, 2.0) 

     Sum of PCB 0.6 (-0.6, 1.8) 0.7 (-0.6, 2.1) 0.7 (-0.5, 1.9) 

PBDEs 
   

     BDE47 -0.8 (-1.6, 0.0) -0.3 (-1.2, 0.6) -0.6 (-1.4, 0.2) 

Smoking Metabolites 
   

     Cotinine -0.4 (-0.7, -0.1) -0.3 (-0.6, 0.1) -0.4 (-0.7, -0.1) 
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Appendix B. Supplementary Materials for Chapter 2  

Table B.1. Covariate-adjusted linear regression coefficients showing the relationship 
between participant demographic characteristics and mean WPPSI-III 
scores, adjusted for child sex, maternal age, race, and education, marital 
status, household income, and prenatal smoking and alcohol, with 95% 
confidence intervals (n = 517). 
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Table B.2. Covariate-adjusted linear regression coefficients showing the 
associations between individual chemical biomarkers (2-fold increase in 
chemical concentration) and WPPSI-III scores in MIREC participants, 
adjusted for maternal age, race, education, and marital status, household 
income, parity, and prenatal smoking and alcohol, and stratified by child 
sex, with 95% confidence intervals (n = 517). 
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Table B.3. Demographic characteristics for the total study population and for 
participants in each cluster generated by k-means clustering. 
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Table B.4. Covariate-adjusted linear regression coefficients showing the 
associations between membership in k-means clusters and WPPSI-III 
scores, adjusted for maternal age, race, education, marital status, 
household income, parity, and prenatal alcohol, compared to medium 
level Reference class membership. Results shown for all children, and 
then stratified by sex, with 95% confidence intervals (n = 517). 
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Figure B.1. Study sample flow chart. 
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Figure B.2. Directed acyclic graph (DAG) showing confounders and mediators of the 
effects of gestational chemical mixtures on child WPPSI-III scores. 
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Table B.1. 

Covariate-adjusted linear regression coefficients showing the relationship between participant 
demographic characteristics and mean WPPSI-III scores, adjusted for child sex, maternal age, 
race, and education, marital status, household income, and prenatal smoking and alcohol, with 
95% confidence intervals (n = 517). 

 
VIQ (95% CI) PIQ (95% CI) FSIQ (95% CI) 

Intercept 105.4  97.1  101.3 

Child Sex 
   

     Male 0.0 (ref) 0.0 (ref) 0.0 (ref) 

     Female 4.7 (2.6, 6.8) 4.0 (1.4, 6.5) 5.0 (2.8, 7.2) 

Maternal Age 
   

     19-29 0.0 (ref) 0.0 (ref) 0.0 (ref) 

     30-34 -0.7 (-3.8, 2.4) -2.2 (-5.9, 1.4) -1.8 (-5.0, 1.5) 

     35+ 1.5 (-1.7, 4.7) -3.7 (-7.6, 0.1) -1.3 (-4.7, 2.1) 

Maternal Race 
   

     White 0.0 (ref) 0.0 (ref) 0.0 (ref) 

     Other -3.4 (-6.6, -0.2) -1.6 (-5.4, 2.3) -2.8 (-6.1, 0.5) 

Maternal Education 
   

     Undergrad 0.0 (ref) 0.0 (ref) 0.0 (ref) 

     College 0.5 (-4.7, 5.7) 6.3 (0.0, 12.6) 3.5 (-1.9, 9.0) 

     Undergrad 4.6 (-0.6, 9.8) 9.9 (3.6, 16.1) 8.2 (2.7, 13.6) 

     Grad 7.4 (2.0, 12.8) 10.6 (4.1, 17.1) 10.1 (4.5, 15.8) 

Marital Status 
   

     Married 0.0 (ref) 0.0 (ref) 0.0 (ref) 

     Unmarried -2.3 (-4.8, 0.2) 3.2 (0.2, 6.2) 0.4 (-2.3, 3.0) 

Household Income 
   

     <40 000 0.0 (ref) 0.0 (ref) 0.0 (ref) 

     40 000 - 80 000 -1.2 (-5.4, 3.0) -3.7 (-8.7, 1.3) -2.7 (-7.1, 1.7) 

     80 000 - 100 000 0.6 (-3.8, 5.0) -2.6 (-7.9, 2.6) -0.9 (-5.5, 3.7) 

     >100 000 0.6 (-3.7, 4.9) -2.2 (-7.4, 3.0) -0.7 (-5.2, 3.8) 

Parity 
   

     0 0.0 (ref) 0.0 (ref) 0.0 (ref) 
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     1 -2.3 (-4.7, 0.0) -1.2 (-4.0, 1.7) -2.0 (-4.4, 0.5) 

     2 -4.8 (-8.4, -1.3) -2.3 (-6.6, 2.0) -4.1 (-7.9, -0.3) 

     3+ -7.9 (-14.1, -1.8) -1.9 (-9.2, 5.5) -5.8 (-12.2, 0.6) 

Prenatal Smoking 
   

     No 0.0 (ref) 0.0 (ref) 0.0 (ref) 

     Yes -2.3 (-6.2, 1.5) -4.9 (-9.5, -0.2) -3.8 (-7.9, 0.2) 

Prenatal Alcohol 
   

     No 0.0 (ref) 0.0 (ref) 0.0 (ref) 

     Yes 2.1 (-0.8, 4.9) 5.0 (1.6, 8.4) 3.9 (0.9, 6.8) 
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Table B.2. 

Covariate-adjusted linear regression coefficients showing the associations between individual 
chemical biomarkers (2-fold increase in chemical concentration) and WPPSI-III scores in 
MIREC participants, adjusted for maternal age, race, education, marital status, household 
income, parity, and prenatal smoking and alcohol, and stratified by child sex, with 95% 
confidence intervals (n = 517). 

 
VIQ (95% CI) PIQ (95% CI) FSIQ (95% CI) 

Heavy Metals 
   

Arsenic 
   

     All -1.3 (-2.5, -0.2) -0.9 (-2.2, 0.5) -1.3 (-2.5, -0.1) 

     Boys -1.6 (-3.3, 0.1) -0.4 (-2.3, 1.5) -1.2 (-3.0, 0.6) 

     Girls -0.7 (-2.2, 0.9) -0.7 (-2.7, 1.3) -0.8 (-2.4, 0.8) 

Cadmium 
   

     All -1.0 (-2.1, 0.2) -0.8 (-2.2, 0.5) -1.1 (-2.3, 0.1) 

     Boys -1.7 (-3.5, 0.2) -1.6 (-3.8, 0.5) -1.9 (-3.9, 0.0) 

     Girls -0.2 (-1.6, 1.2) -0.1 (-2.0, 1.7) -0.2 (-1.7, 1.3) 

Lead 
   

     All -1.5 (-3.1, 0.2) 0.4 (-1.6, 2.3) -0.6 (-2.4, 1.1) 

     Boys -0.9 (-3.4, 1.6) 0.8 (-2.1, 3.7) 0.1 (-2.6, 2.7) 

     Girls -2.5 (-4.7, -0.3) -0.2 (-3.0, 2.6) -1.6 (-3.9, 0.7) 

Manganese 
   

     All -0.1 (-2.6, 2.4) -0.6 (-3.5, 2.4) -0.4 (-3.0, 2.2) 

     Boys -0.5 (-4.1, 3.1) -0.8 (-5.0, 3.4) -0.8 (-4.6, 3.0) 

     Girls -0.3 (-3.7, 3.1) -1.0 (-5.3, 3.3) -0.8 (-4.4, 2.8) 

Mercury 
   

     All -0.1 (-0.9, 0.7) 0.5 (-0.4, 1.5) 0.2 (-0.6, 1.1) 

     Boys 0.2 (-1.1, 1.4) 0.7 (-0.8, 2.1) 0.4 (-0.9, 1.8) 

     Girls -0.1 (-1.1, 0.9) 0.8 (-0.5, 2.1) 0.3 (-0.7, 1.4) 

OCPs 
   

BBHC 
   

     All -0.4 (-1.2, 0.4) 0.1 (-0.9, 1.1) -0.2 (-1.0, 0.7) 

     Boys -0.5 (-1.8, 0.8) 0.1 (-1.4, 1.6) -0.2 (-1.6, 1.2) 
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     Girls -0.4 (-1.5, 0.7) -0.1 (-1.5, 1.3) -0.3 (-1.4, 0.9) 

DDE 
   

     All -1.0 (-2.1, 0.1) -0.3 (-1.6, 1.1) -0.7 (-1.9, 0.4) 

     Boys -1.5 (-3.2, 0.2) -0.4 (-2.4, 1.6) -1.2 (-3.0, 0.6) 

     Girls -0.4 (-1.9, 1.0) -0.2 (-2.1, 1.7) -0.3 (-1.9, 1.2) 

Oxychlor 
   

     All -0.1 (-1.5, 1.4) 1.2 (-0.5, 2.9) 0.6 (-0.9, 2.1) 

     Boys -0.5 (-3.0, 2.0) 1.9 (-1.0, 4.7) 0.7 (-1.9, 3.3) 

     Girls 0.2 (-1.6, 2.0) 1.2 (-1.1, 3.5) 0.7 (-1.2, 2.6) 

Transnona 
   

     All -0.7 (-2.1, 0.7) 0.6 (-1.1, 2.3) -0.2 (-1.7, 1.3) 

     Boys -1.6 (-3.8, 0.7) 0.0 (-2.6, 2.7) -1.0 (-3.4, 1.4) 

     Girls -0.4 (-2.2, 1.5) 1.2 (-1.1, 3.6) 0.3 (-1.6, 2.3) 

Sum of OCP 
   

     All -0.6 (-2.2, 0.9) 0.9 (-1.0, 2.8) 0.0 (-1.6, 1.7) 

     Boys -1.4 (-4.0, 1.1) 0.7 (-2.2, 3.6) -0.5 (-3.2, 2.1) 

     Girls -0.3 (-2.3, 1.8) 1.5 (-1.1, 4.1) 0.5 (-1.6, 2.7) 

OPPs 
   

DEP 
   

     All -0.3 (-1.1, 0.6) -0.6 (-1.7, 0.4) -0.5 (-1.4, 0.4) 

     Boys -1.3 (-2.8, 0.1) -0.7 (-2.4, 1.0) -1.2 (-2.7, 0.4) 

     Girls 0.4 (-0.6, 1.5) -0.6 (-1.9, 0.8) -0.1 (-1.1, 1.0) 

DETP 
   

     All 0.3 (-0.5, 1.1) 0.5 (-0.5, 1.4) 0.4 (-0.4, 1.3) 

     Boys -0.5 (-1.7, 0.7) -0.2 (-1.6, 1.1) -0.4 (-1.6, 0.9) 

     Girls 1.0 (-0.1, 2.1) 1.3 (-0.1, 2.7) 1.3 (0.1, 2.4) 

DMDTP 
   

     All 0.4 (-0.2, 1.0) 0.1 (-0.6, 0.7) 0.3 (-0.3, 0.9) 

     Boys 0.6 (-0.4, 1.6) -0.2 (-1.3, 0.9) 0.3 (-0.7, 1.3) 

     Girls 0.1 (-0.6, 0.8) 0.1 (-0.8, 1.0) 0.1 (-0.6, 0.9) 

DMP 
   

     All 0.2 (-0.6, 0.9) -0.2 (-1.1, 0.7) 0.0 (-0.8, 0.8) 
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     Boys -0.2 (-1.4, 1.0) -0.1 (-1.4, 1.3) -0.1 (-1.4, 1.1) 

     Girls 0.4 (-0.6, 1.4) -0.5 (-1.8, 0.7) 0.0 (-1.0, 1.1) 

DMTP 
   

     All 0.2 (-0.3, 0.8) -0.2 (-0.9, 0.5) 0.0 (-0.5, 0.6) 

     Boys 0.2 (-0.6, 1.1) -0.1 (-1.2, 0.9) 0.1 (-0.8, 1.0) 

     Girls 0.3 (-0.4, 0.9) -0.2 (-1.1, 0.6) 0.0 (-0.7, 0.7) 

Phthalates 
   

MBP 
   

     All -0.3 (-1.2, 0.6) -1.0 (-2.1, 0.0) -0.8 (-1.7, 0.2) 

     Boys -0.9 (-2.3, 0.5) -1.6 (-3.2, -0.1) -1.4 (-2.9, 0.0) 

     Girls 0.7 (-0.5, 1.9) -0.2 (-1.7, 1.3) 0.3 (-1.0, 1.5) 

MBZP 
   

     All 0.0 (-0.8, 0.8) 0.1 (-0.9, 1.1) 0.0 (-0.8, 0.9) 

     Boys 0.1 (-1.2, 1.4) 0.3 (-1.2, 1.8) 0.2 (-1.1, 1.6) 

     Girls 0.0 (-1.0, 1.1) 0.0 (-1.4, 1.3) -0.1 (-1.2, 1.0) 

MCPP 
   

     All -0.2 (-0.8, 0.4) -0.9 (-1.7, -0.2) -0.6 (-1.3, 0.0) 

     Boys -0.1 (-1.0, 0.8) -0.7 (-1.7, 0.4) -0.4 (-1.3, 0.5) 

     Girls 0.1 (-0.7, 1.0) -0.9 (-2.0, 0.2) -0.4 (-1.3, 0.5) 

MEHHP 
   

     All -0.3 (-1.3, 0.6) -0.9 (-2.0, 0.3) -0.6 (-1.6, 0.4) 

     Boys -0.5 (-1.9, 1.0) -1.0 (-2.7, 0.7) -0.8 (-2.3, 0.8) 

     Girls 0.4 (-0.8, 1.7) -0.3 (-1.9, 1.3) 0.1 (-1.3, 1.4) 

MEHP 
   

     All -0.7 (-1.7, 0.3) -0.8 (-1.9, 0.3) -0.8 (-1.8, 0.2) 

     Boys -0.5 (-1.9, 0.9) -0.6 (-2.3, 1.0) -0.6 (-2.1, 0.9) 

     Girls -0.2 (-1.5, 1.1) -0.6 (-2.2, 1.0) -0.5 (-1.8, 0.9) 

MEOHP 
   

     All -0.4 (-1.4, 0.7) -1.0 (-2.3, 0.2) -0.8 (-1.9, 0.3) 

     Boys -0.3 (-1.9, 1.3) -1.1 (-2.9, 0.7) -0.7 (-2.4, 1.0) 

     Girls 0.3 (-1.1, 1.7) -0.6 (-2.3, 1.2) -0.2 (-1.6, 1.3) 

MEP 
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     All -0.2 (-0.8, 0.3) 0.0 (-0.6, 0.7) -0.1 (-0.7, 0.4) 

     Boys 0.7 (-0.2, 1.6) 0.4 (-0.7, 1.4) 0.7 (-0.3, 1.6) 

     Girls -0.8 (-1.5, -0.2) -0.2 (-1.1, 0.6) -0.6 (-1.3, 0.1) 

Sum of DEHP 
   

     All -0.4 (-1.5, 0.6) -1.0 (-2.2, 0.3) -0.7 (-1.8, 0.3) 

     Boys -0.5 (-2.0, 1.1) -1.1 (-2.8, 0.7) -0.8 (-2.4, 0.8) 

     Girls 0.3 (-1.0, 1.7) -0.4 (-2.2, 1.3) -0.1 (-1.5, 1.4) 

PCBs 
   

Aroclor 
   

     All -0.9 (-2.1, 0.3) 0.5 (-0.9, 1.9) -0.3 (-1.5, 1.0) 

     Boys -1.1 (-2.9, 0.8) 0.5 (-1.6, 2.7) -0.4 (-2.3, 1.6) 

     Girls -1.1 (-2.7, 0.4) 0.3 (-1.7, 2.2) -0.5 (-2.2, 1.1) 

PCB118 
   

     All -1.1 (-2.4, 0.2) 1.0 (-0.5, 2.5) -0.1 (-1.5, 1.2) 

     Boys -1.7 (-3.6, 0.2) 0.4 (-1.8, 2.6) -0.8 (-2.8, 1.2) 

     Girls -0.6 (-2.2, 1.1) 1.5 (-0.6, 3.6) 0.5 (-1.3, 2.2) 

PCB138 
   

     All -1.0 (-2.2, 0.2) 0.0 (-1.4, 1.4) -0.6 (-1.8, 0.6) 

     Boys -1.2 (-3.1, 0.8) 0.2 (-2.0, 2.4) -0.6 (-2.7, 1.4) 

     Girls -1.0 (-2.4, 0.5) -0.3 (-2.1, 1.6) -0.7 (-2.3, 0.8) 

PCB153 
   

     All -0.8 (-2.0, 0.4) 0.6 (-0.8, 2.1) -0.2 (-1.4, 1.1) 

     Boys -0.9 (-2.8, 1.0) 0.5 (-1.7, 2.7) -0.3 (-2.3, 1.7) 

     Girls -1.1 (-2.7, 0.4) 0.5 (-1.4, 2.5) -0.4 (-2.0, 1.2) 

PCB170 
   

     All -0.3 (-1.4, 0.7) 1.1 (-0.2, 2.3) 0.4 (-0.7, 1.5) 

     Boys -0.5 (-2.2, 1.1) 0.7 (-1.2, 2.5) 0.0 (-1.7, 1.8) 

     Girls -0.6 (-2.0, 0.7) 1.1 (-0.7, 2.8) 0.2 (-1.2, 1.6) 

PCB180 
   

     All -0.2 (-1.3, 0.8) 0.9 (-0.3, 2.2) 0.4 (-0.8, 1.5) 

     Boys -0.3 (-2.0, 1.4) 1.1 (-0.9, 3.0) 0.4 (-1.4, 2.2) 

     Girls -0.7 (-2.0, 0.7) 0.5 (-1.2, 2.2) -0.1 (-1.5, 1.3) 
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PCB187 
   

     All 0.2 (-1.0, 1.4) 0.8 (-0.6, 2.2) 0.6 (-0.7, 1.8) 

     Boys 0.3 (-1.6, 2.1) 0.5 (-1.6, 2.7) 0.4 (-1.6, 2.4) 

     Girls -0.2 (-1.7, 1.3) 0.9 (-0.9, 2.8) 0.4 (-1.2, 1.9) 

Sum of PCBs 
   

     All -0.9 (-2.1, 0.4) 0.8 (-0.7, 2.2) -0.1 (-1.4, 1.2) 

     Boys -1.1 (-3.0, 0.9) 0.6 (-1.6, 2.9) -0.3 (-2.4, 1.8) 

     Girls -1.0 (-2.6, 0.5) 0.6 (-1.4, 2.6) -0.3 (-2.0, 1.4) 

PBDEs 
   

BDE47 
   

     All -0.6 (-1.3, 0.2) -0.2 (-1.1, 0.7) -0.4 (-1.2, 0.4) 

     Boys -1.0 (-2.1, 0.2) -0.2 (-1.6, 1.2) -0.6 (-1.9, 0.6) 

     Girls 0.1 (-0.8, 1.1) 0.0 (-1.2, 1.3) 0.1 (-0.9, 1.2) 

Smoking Metabolites 
   

Cotinine 
   

     All -0.1 (-0.5, 0.2) -0.1 (-0.6, 0.3) -0.2 (-0.5, 0.2) 

     Boys -0.1 (-0.7, 0.4) 0.0 (-0.7, 0.6) -0.1 (-0.7, 0.5) 

     Girls -0.1 (-0.6, 0.4) -0.1 (-0.7, 0.5) -0.1 (-0.6, 0.3) 
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Table B.3. 

Demographic characteristics for the total study population and for participants in each cluster 
generated by k-means clustering. 
 
 

Total Ref High Level Low Level High OPPs Smoking 
Chemicals 

 
n = 517 n = 119 n = 111 n = 131 n = 138 n = 18 

Child Sex 
      

     Male 49 46 47 56 46 50 

     Female 51 54 53 44 54 50 

Maternal Age 
      

     19-30 21 13 7 30 27 39 

     30-35 39 41 30 37 47 28 

     35+ 41 46 63 34 26 33 

Maternal Race 
      

     White 86 93 77 85 86 89 

     Other 14 7 23 15 14 11 

Maternal Education 
      

     Highschool 5 3 2 10 4 22 

     College 27 19 23 35 29 39 

     Undergrad 39 45 36 31 43 39 

     Grad 29 34 40 24 24 0 

Marital Status 
      

     Married 72 84 72 69 68 50 

     Unmarried 28 16 28 31 32 50 

Household Income 
      

     < 40 000 10 4 9 13 8 39 

     40 000 - 80 000 29 24 26 37 30 17 

     80 000 - 100 000 21 26 17 18 23 11 

     > 100 000 41 46 48 32 39 33 

Parity 
      

     0 44 34 55 38 47 50 

     1 41 48 37 44 38 33 
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     2 12 14 7 13 12 17 

     3+ 3 4 1 5 4 0 

Prenatal Smoking 
      

     No 91 97 92 93 95 11 

     Yes 9 3 8 7 5 89 

Prenatal Alcohol 
      

     No 83 83 78 90 83 56 

     Yes 17 17 22 10 17 44 

 

  



73 
 

Table B.4. 

Covariate-adjusted linear regression coefficients showing the associations between 
membership in k-means clusters and WPPSI-III scores, adjusted for maternal age, race, 
education, marital status, household income, parity, and prenatal alcohol, compared to medium 
level Reference class membership. Results shown for all children, and then stratified by sex, 
with 95% confidence intervals (n = 517). 

 
VIQ (95% CI) PIQ (95% CI) FSIQ (95% CI) 

Intercept 
   

     All 105.0 99.1 102.4 

     Boys 103.2 99.3 101.5 

     Girls 106.6 98.0 102.4 

High Level 
   

     All -1.3 (-4.6, 2.0) 0.1 (-3.8, 4.0) -0.8 (-4.2, 2.7) 

     Boys -2.2 (-7.3, 3.0) 0.9 (-5.1, 6.8) -0.7 (-6.2, 4.7) 

     Girls -0.3 (-4.5, 3.9) -1.1 (-6.4, 4.2) -0.8 (-5.4, 3.4) 

Low Level 
   

     All 0.3 (-2.9, 3.4) -2.2 (-6.0, 1.5) -1.1 (-4.4, 2.3) 

     Boys 0.6 (-4.2, 5.4) -1.3 (-6.9, 4.2) -0.3 (-5.4, 4.8) 

     Girls 0.7 (-3.5, 4.9) -2.6 (-7.9, 2.8) -1.1 (-5.6, 3.3) 

High OPPs 
   

     All 0.4 (-2.7, 3.5) -1.9 (-5.6, 1.7) -0.7 (-3.9, 2.6) 

     Boys -1.9 (-6.9, 3.1) -3.2 (-9.0, 2.6) -2.7 (-8.1, 2.6) 

     Girls 2.4 (-1.4, 6.3) -0.7 (-5.6, 4.1) -0.7 (-2.9, 5.1) 

Smoking Chemicals 
   

     All -2.6 (-9.0, 3.9) -7.3 (-14.9, 0.3) -5.6 (-12.4, 1.1) 

     Boys -3.5 (-13.4, 6.3) -5.3 (-16.7, 6.0) -5.0 (-15.4, 5.4) 

     Girls -1.6 (-9.9, 6.6) -9.0 (-19.5, 1.6) -5.6 (-14.7, 2.7) 
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Figure B.1. 

Study sample flow chart. 
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Figure B.2. 

Directed acyclic graph (DAG) showing confounders and mediators of the effects of gestational 

chemical mixtures on child WPPSI-III scores. 
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Appendix C. LPA Code 
 
```{r basic prep} 
 
# packages 
library(mclust) 
library(tidyLPA) 
library(dplyr) 
library(plyr) 
library(ggplot2) 
library(pheatmap) 
library(readr) 
library(readxl) 
library(Weighted.Desc.Stat) 
library(ggpubr) 
 
# preparing the data: 
 
all_data <- read_csv("AY_MIREC_Analysis_July22_2020.csv") 
all_data <- filter(all_data, sex2!="NA") 
chem_data <- all_data[,c(2:10, 12:23, 25:31, 33, 38)] 
chem_data <- rename(chem_data, c("log2.arsenic.t1" = "As", "log2.cadmium.t1" 
= "Cd", "log2.lead.t1" =  "Pb", "log2.manganese.t1" =  "Mn", 
"log2.mercury.t1" = "Hg", "log2.bbhc.t1" = "BBHC", "log2.dde.t1" = "DDE", 
"log2.oxychlor.t1" = "Oxy.", "log2.transnona.t1" = "Trans.", "log2.dep.t1" = 
"DEP", "log2.detp.t1" = "DETP", "log2.dmdtp.t1" = "DMDTP", "log2.dmp.t1" = 
"DMP","log2.dmtp.t1" =  "DMTP", "log2.mbp.t1" = "MBP", "log2.mbzp.t1" = 
"MBZP","log2.mcpp.t1" =  "MCPP","log2.mehhp.t1" =  "MEHHP","log2.mehp.t1" = 
"MEHP", "log2.meohp.t1" = "MEOHP","log2.mep.t1" =  "MEP", "log2.aroclor.t1" = 
"Aro.", "log2.pcb118.t1" = "PCB118", "log2.pcb138.t1" = "PCB138", 
"log2.pcb153.t1" = "PCB153", "log2.pcb170.t1" = "PCB170", "log2.pcb180.t1" = 
"PCB180", "log2.pcb187.t1" = "PCB187", "log2.bde47.t1" = "BDE47", 
"log2.cot.t1" = "Cot.")) 
chemicals <- c("As", "Cd", "Pb", "Mn", "Hg", "BBHC", "DDE", "Oxy.", "Trans.", 
"DEP", "DETP", "DMDTP", "DMP", "DMTP", "MBP", "MBZP", "MCPP", "MEHHP", 
"MEHP", "MEOHP", "MEP", "Aro.", "PCB118", "PCB138", "PCB153", "PCB170", 
"PCB180", "PCB187", "BDE47", "Cot.") 
 
``` 
 
```{r choosing number of profiles and assumptions about variance/covariance} 
 
# Model 1 = equal variance and covariance set to zero 
chem_data %>%  
  estimate_profiles(models = 1, n_profiles = c(1:12)) %>%  
  compare_solutions(statistics = c("BIC", "AIC")) 
 
# Model 2 = varying variance and covariance set to zero 
chem_data %>%  
  estimate_profiles(models = 2, n_profiles = c(1:10)) %>%  
  compare_solutions(statistics = c("BIC", "AIC")) 
 
# Model 3 = equal variance and equal covariance 
chem_data %>%  
  estimate_profiles(models = 3, n_profiles = c(1:8)) %>% 
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  compare_solutions(statistics = c("BIC", "AIC")) 
 
# Model 4 = varying variance and varying covariance 
chem_data %>%  
  estimate_profiles(models = 4, n_profiles = c(1:5)) %>%  
  compare_solutions(statistics = c("BIC", "AIC")) 
 
# The BIC chose Model 3 with 5 profiles and Model 4 with 2 profiles. For 
interpretation I'll be using the one with 5 profiles.  
 
``` 
 
```{r estimating profiles and making the dataset} 
 
# Generating profiles (~5 minutes): 
 
profile.estimate <- (chem_data %>%  
           estimate_profiles(models=3, n_profiles = 5)) 
 
# finding the posterior probabilities: 
probabilities <- get_data(profile.estimate) 
probabilities <- data.frame( "class" = probabilities$Class, "prob_ref" = 
probabilities$CPROB2, "prob_high" = probabilities$CPROB1, "prob_low" = 
probabilities$CPROB5, "prob_opp" = probabilities$CPROB4, "prob_smoking" = 
probabilities$CPROB3, "child_sex" = all_data$sex2) 
probabilities <- filter(probabilities, child_sex!="NA") 
 
# making the final dataset: 
final_chem <- data.frame("subject_id" = all_data$subject.id, "class" = 
probabilities$class, "prob_ref" = probabilities$prob_ref, "prob_high" = 
probabilities$prob_high, "prob_low" = probabilities$prob_low, "prob_opp" = 
probabilities$prob_opp, "prob_smoking" = probabilities$prob_smoking, 
"arsenic" = all_data$log2.arsenic.t1, "cadmium" = all_data$log2.cadmium.t1, 
"lead" = all_data$log2.lead.t1,"manganese" = all_data$log2.manganese.t1, 
"mercury" = all_data$log2.mercury.t1, "bbhc" = all_data$log2.bbhc.t1, "dde" = 
all_data$log2.dde.t1, "oxychlor" = all_data$log2.oxychlor.t1, "transnona" = 
all_data$log2.transnona.t1, "dep" = all_data$log2.dep.t1, "detp" = 
all_data$log2.detp.t1, "dmdtp" = all_data$log2.dmdtp.t1, "dmp" = 
all_data$log2.dmp.t1, "dmtp" = all_data$log2.dmtp.t1, "mbp" = 
all_data$log2.mbp.t1, "mbzp" = all_data$log2.mbzp.t1, "mcpp" = 
all_data$log2.mcpp.t1, "mehhp" = all_data$log2.mehhp.t1, "mehp" = 
all_data$log2.mehp.t1, "meohp" = all_data$log2.meohp.t1, "mep" = 
all_data$log2.mep.t1, "aroclor" = all_data$log2.aroclor.t1, "pcb118" = 
all_data$log2.pcb118.t1, "pcb138" = all_data$log2.pcb138.t1, "pcb153" = 
all_data$log2.pcb153.t1, "pcb170" = all_data$log2.pcb170.t1, "pcb180" = 
all_data$log2.pcb180.t1, "pcb187" = all_data$log2.pcb187.t1, "bde47" = 
all_data$log2.bde47.t1, "cot" = all_data$log2.cot.t1, "birth_length" = 
all_data$birth.length, "birth_weight" = all_data$birth.wt, "gest_age" = 
all_data$gest.age, "preterm_birth" = all_data$preterm2, "lbw" = 
imputed_data$lbw2, "lga" = all_data$lga2, "live_birth" = 
all_data$live.birth2, "child_sex" = all_data$sex2, "small_for_ga" = 
all_data$sga2, "alc" = imputed_data$alc2, "city" = all_data$city10, "couple" 
= all_data$couple2, "mom_education" = imputed_data$edu4, "household_income" = 
imputed_data$income4, "living_status" = all_data$living.status2, "married" = 
all_data$married2, "maternal_age" = all_data$mom.age3, "mom_birthplace" = 
all_data$mom.birthplace2, "maternal_obesity" = all_data$obese2, "parity" = 
all_data$parity4, "prepreg_bmi" = all_data$prepreg.bmi4, "race_aboriginal" = 
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all_data$race.aboriginal2, "race_asian2" = all_data$race.asian2, 
"race_black2" = all_data$race.black2, "race_latin2" = all_data$race.latin2, 
"race_other2" = all_data$race.other2, "race_white2" = all_data$race.white2, 
"test_site" = all_data$site11, "smoker" = all_data$smoker2, "wppsi_1" = 
all_data$wppsi.1, "wppsi_2" = all_data$wppsi.2, "wppsi_3" = all_data$wppsi.3, 
"wppsi_4" = all_data$wppsi.4, "wppsi_5" = all_data$wppsi.5, "viq" = 
all_data$viq, "piq" = all_data$piq, "fsiq" = all_data$fsiq, 
"general_language" = all_data$general.language) 
 
final_chem <- filter(final_chem, child_sex!="NA") 
 
``` 
 
```{r weighted mean values for each chemical in each profile} 
 
# Calculating mean biomarker concentrations of each chemical weighted by 
posterior probabilities: 
weighted_mean_high <- weighted_mean_ref <- weighted_mean_smoking <- 
weighted_mean_opp <- weighted_mean_low <- weighted_sd_high <- weighted_sd_ref 
<- weighted_sd_smoking <- weighted_sd_opp <- weighted_sd_low <- rep(0,30) 
 
for(w in 1:30){ 
  weighted_mean_high[w] <- weighted.mean(final_chem[,(7+w)], 
final_chem$prob_high) 
  weighted_sd_high[w] <- w.sd(final_chem[,(7+w)], final_chem$prob_high) 
  weighted_mean_ref[w] <- weighted.mean(final_chem[,(7+w)], 
final_chem$prob_ref) 
  weighted_sd_ref[w] <- w.sd(final_chem[,(7+w)], final_chem$prob_ref) 
  weighted_mean_smoking[w] <- weighted.mean(final_chem[,(7+w)], 
final_chem$prob_smoking) 
  weighted_sd_smoking[w] <- w.sd(final_chem[,(7+w)], final_chem$prob_smoking) 
  weighted_mean_opp[w] <- weighted.mean(final_chem[,(7+w)], 
final_chem$prob_opp) 
  weighted_sd_opp[w] <- w.sd(final_chem[,(7+w)], final_chem$prob_opp) 
  weighted_mean_low[w] <- weighted.mean(final_chem[,(7+w)], 
final_chem$prob_low) 
  weighted_sd_low[w] <- w.sd(final_chem[,(7+w)], final_chem$prob_low) 
} 
 
weighted_means <- data.frame(chemicals, weighted_mean_ref, weighted_sd_ref, 
weighted_mean_high, weighted_sd_high, weighted_mean_low, weighted_sd_low, 
weighted_mean_opp, weighted_sd_opp, weighted_mean_smoking, 
weighted_sd_smoking) 
 
``` 
 
```{r calculating z scores} 
 
# Converting means to z-scores for heat map: 
z_arsenic <- z_cadmium <- z_lead <- z_manganese <- z_mercury <- z_bbhc <- 
z_dde <- z_oxychlor <- z_transnona <- z_dep <- z_detp <- z_dmdtp <- z_dmp <- 
z_dmtp <- z_mbp <- z_mbzp <- z_mcpp <- z_mehhp <- z_mehp <- z_meohp <- z_mep 
<- z_aroclor <- z_pcb118 <- z_pcb138 <- z_pcb153 <- z_pcb170 <- z_pcb180 <- 
z_pcb187 <- z_bde47 <- z_cotinine <- rep(0,517) 
 
for (z in 1:517){ 
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  z_arsenic[z] <- (final_chem$arsenic[z]-
mean(final_chem$arsenic))/sd(final_chem$arsenic) 
  z_cadmium[z] <- (final_chem$cadmium[z]-
mean(final_chem$cadmium))/sd(final_chem$cadmium) 
  z_lead[z] <- (final_chem$lead[z]-mean(final_chem$lead))/sd(final_chem$lead) 
  z_manganese[z] <- (final_chem$manganese[z]-
mean(final_chem$manganese))/sd(final_chem$manganese) 
  z_mercury[z] <- (final_chem$mercury[z]-
mean(final_chem$mercury))/sd(final_chem$mercury) 
  z_bbhc[z] <- (final_chem$bbhc[z]-mean(final_chem$bbhc))/sd(final_chem$bbhc) 
  z_dde[z] <- (final_chem$dde[z]-mean(final_chem$dde))/sd(final_chem$dde) 
  z_oxychlor[z] <- (final_chem$oxychlor[z]-
mean(final_chem$oxychlor))/sd(final_chem$oxychlor) 
  z_transnona[z] <- (final_chem$transnona[z]-
mean(final_chem$transnona))/sd(final_chem$transnona) 
  z_dep[z] <- (final_chem$dep[z]-mean(final_chem$dep))/sd(final_chem$dep) 
  z_detp[z] <- (final_chem$detp[z]-mean(final_chem$detp))/sd(final_chem$detp) 
  z_dmdtp[z] <- (final_chem$dmdtp[z]-
mean(final_chem$dmdtp))/sd(final_chem$dmdtp) 
  z_dmp[z] <- (final_chem$dmp[z]-mean(final_chem$dmp))/sd(final_chem$dmp) 
  z_dmtp[z] <- (final_chem$dmtp[z]-mean(final_chem$dmtp))/sd(final_chem$dmtp) 
  z_mbp[z] <- (final_chem$mbp[z]-mean(final_chem$mbp))/sd(final_chem$mbp) 
  z_mbzp[z] <- (final_chem$mbzp[z]-mean(final_chem$mbzp))/sd(final_chem$mbzp) 
  z_mcpp[z] <- (final_chem$mcpp[z]-mean(final_chem$mcpp))/sd(final_chem$mcpp) 
  z_mehhp[z] <- (final_chem$mehhp[z]-
mean(final_chem$mehhp))/sd(final_chem$mehhp) 
  z_mehp[z] <- (final_chem$mehp[z]-mean(final_chem$mehp))/sd(final_chem$mehp) 
  z_meohp[z] <- (final_chem$meohp[z]-
mean(final_chem$meohp))/sd(final_chem$meohp) 
  z_mep[z] <- (final_chem$mep[z]-mean(final_chem$mep))/sd(final_chem$mep) 
  z_aroclor[z] <- (final_chem$aroclor[z]-
mean(final_chem$aroclor))/sd(final_chem$aroclor) 
  z_pcb118[z] <- (final_chem$pcb118[z]-
mean(final_chem$pcb118))/sd(final_chem$pcb118) 
  z_pcb138[z] <- (final_chem$pcb138[z]-
mean(final_chem$pcb138))/sd(final_chem$pcb138) 
  z_pcb153[z] <- (final_chem$pcb153[z]-
mean(final_chem$pcb153))/sd(final_chem$pcb153) 
  z_pcb170[z] <- (final_chem$pcb170[z]-
mean(final_chem$pcb170))/sd(final_chem$pcb170) 
  z_pcb180[z] <- (final_chem$pcb180[z]-
mean(final_chem$pcb180))/sd(final_chem$pcb180) 
  z_pcb187[z] <- (final_chem$pcb187[z]-
mean(final_chem$pcb187))/sd(final_chem$pcb187) 
  z_bde47[z] <- (final_chem$bde47[z]-
mean(final_chem$bde47))/sd(final_chem$bde47) 
  z_cotinine[z] <- (final_chem$cot[z]-
mean(final_chem$cot))/sd(final_chem$cot) 
} 
 
z_scores <- data.frame(final_chem$subject_id, final_chem$class, 
final_chem$prob_ref, final_chem$prob_high, final_chem$prob_low, 
final_chem$prob_opp, final_chem$prob_smoking, z_arsenic, z_cadmium, z_lead, 
z_manganese, z_mercury, z_bbhc, z_dde, z_oxychlor, z_transnona, z_dep, 
z_detp, z_dmdtp, z_dmp, z_dmtp, z_mbp, z_mbzp, z_mcpp, z_mehhp, z_mehp, 
z_meohp, z_mep, z_aroclor, z_pcb118, z_pcb138, z_pcb153, z_pcb170, z_pcb180, 
z_pcb187, z_bde47, z_cotinine) 
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# Finding the weighted means of the z_scores 
weighted_zmean_high <- weighted_zmean_ref <- weighted_zmean_smoking <- 
weighted_zmean_opp <- weighted_zmean_low <- weighted_zsd_high <- 
weighted_zsd_ref <- weighted_zsd_smoking <- weighted_zsd_opp <- 
weighted_zsd_low <- rep(0,30) 
for(w in 1:30){ 
  weighted_zmean_high[w] <- weighted.mean(z_scores[,(7+w)], 
z_scores$final_chem.prob_high) 
  weighted_zsd_high[w] <- w.sd(z_scores[,(7+w)], 
z_scores$final_chem.prob_high) 
  weighted_zmean_ref[w] <- weighted.mean(z_scores[,(7+w)], 
z_scores$final_chem.prob_ref) 
  weighted_zsd_ref[w] <- w.sd(z_scores[,(7+w)], z_scores$final_chem.prob_ref) 
  weighted_zmean_smoking[w] <- weighted.mean(z_scores[,(7+w)], 
z_scores$final_chem.prob_smoking) 
  weighted_zsd_smoking[w] <- w.sd(z_scores[,(7+w)], 
z_scores$final_chem.prob_smoking) 
  weighted_zmean_opp[w] <- weighted.mean(z_scores[,(7+w)], 
z_scores$final_chem.prob_opp) 
  weighted_zsd_opp[w] <- w.sd(z_scores[,(7+w)], z_scores$final_chem.prob_opp) 
  weighted_zmean_low[w] <- weighted.mean(z_scores[,(7+w)], 
z_scores$final_chem.prob_low) 
  weighted_zsd_low[w] <- w.sd(z_scores[,(7+w)], z_scores$final_chem.prob_low) 
} 
 
weighted_zmeans <- data.frame(chemicals, weighted_zmean_ref, 
weighted_zsd_ref, weighted_zmean_high, weighted_zsd_high, weighted_zmean_low, 
weighted_zsd_low, weighted_zmean_opp, weighted_zsd_opp,  
weighted_zmean_smoking, weighted_zsd_smoking) 
 
``` 
 
```{r heatmap of z scores} 
 
# colour: 
breaksList = seq(-3,3, by = 0.1) 
col <- colorRampPalette(c("navy", "blue", "white", "red", 
"red4"))(length(breaksList)) 
 
#labels: 
x_lab <- c("Ref", "High Level", "Low Level", "High OPPs", "Smoking 
Chemicals") 
 
# using pheatmap because it lets me do a legend and play with the labels, 
which heatmap and heatmap.2 don't let me do: 
 
pheatmap(weighted_zmeans[,-c(1,3,5,7,9,11)], 
        Colv=NA, Rowv=NA, cluster_rows = FALSE, cluster_cols = FALSE, # 
getting rid of the the dendrogram and the clustering 
        cellwidth = 20, # changing the size of the cells 
        color=col, breaks = breaksList, # picking the colours 
        labels_col = x_lab, labels_row = chemicals, angle_col = 45) # row and 
column labels 
        
``` 
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```{r plotting the profiles} 
 
# mean and sd biomarker concentrations in each profile 
 
# heavy metals, cotinine, and bde47: 
 
metals_bde_cot <- c("As", "Cd", "Pb", "Mn", "Hg", "BDE47", "Cot.") 
metals_plot <- plot_profiles(profile.estimate, rawdata=FALSE, ci=NULL, 
variables = metals_bde_cot) + rremove("xlab") + rremove("ylab") + 
rremove("legend") + theme(text = element_text(size=9.75)) 
metals_plot 
 
# OCPs and OPPs: 
 
pesticides <- c( "BBHC", "DDE", "Oxy.", "Trans.", "DEP", "DETP", "DMDTP", 
"DMP", "DMTP") 
pesticides_plot <- plot_profiles(profile.estimate, rawdata=FALSE, ci=NULL, 
variables = pesticides) + rremove("xlab") + rremove("ylab") + 
rremove("legend") + theme(text = element_text(size=9.75)) 
pesticides_plot 
 
# Phthalates: 
 
phthalates <- c("MBP", "MBZP", "MCPP", "MEHHP","MEHP", "MEOHP", "MEP") 
phthalates_plot <- plot_profiles(profile.estimate, rawdata=FALSE, ci=NULL, 
variables = phthalates) + rremove("xlab") + rremove("ylab") + 
rremove("legend") + theme(text = element_text(size=9.75)) 
phthalates_plot 
 
# PCBs: 
 
pcbs <- c("Aro.", "PCB118", "PCB138", "PCB153", "PCB170", "PCB180", "PCB187") 
pcbs_plot <- plot_profiles(profile.estimate, rawdata=FALSE, ci=NULL, 
variables = pcbs) + rremove("xlab") + rremove("ylab") + rremove("legend") + 
theme(text = element_text(size=9.75)) 
pcbs_plot 
 
 
ggarrange(metals_plot, pesticides_plot, phthalates_plot, pcbs_plot, nrow=2, 
ncol=2) 
 
``` 
 
```{r unadjusted probabilistic multiple regression analysis} 
 
# regression analysis with all the probabilistic profiles in one model, 
unadjusted 
 
# VIQ  
lm_unadj_all_viq <- lm(final_chem$viq ~ final_chem$prob_high + 
final_chem$prob_low + final_chem$prob_opp + final_chem$prob_smoking + 
final_chem$prob_ref) 
summary(lm_unadj_all_viq) 
lm_unadj_all_viq$coefficients 
 
# PIQ  
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lm_unadj_all_piq <- lm(final_chem$piq ~ final_chem$prob_high + 
final_chem$prob_low + final_chem$prob_opp + final_chem$prob_smoking + 
final_chem$prob_ref) 
summary(lm_unadj_all_piq) 
 
# FSIQ  
lm_unadj_all_fsiq <- lm(final_chem$fsiq ~ final_chem$prob_high + 
final_chem$prob_low + final_chem$prob_opp + final_chem$prob_smoking + 
final_chem$prob_ref) 
summary(lm_unadj_all_fsiq) 
 
``` 
 
```{r stratifying by sex} 
 
final_boys <- filter(final_chem, child_sex==0) 
final_girls <- filter(final_chem, child_sex==1) 
 
# VIQ for boys: 
  
lm_unadj_all_boys_viq <- lm(final_boys$viq ~ final_boys$prob_high + 
final_boys$prob_low  + final_boys$prob_opp  + final_boys$prob_smoking + 
final_boys$prob_ref) 
summary(lm_unadj_all_boys_viq) 
 
# PIQ for boys: 
lm_unadj_all_boys_piq <- lm(final_boys$piq ~ final_boys$prob_high + 
final_boys$prob_low + final_boys$prob_opp + final_boys$prob_smoking + 
final_boys$prob_ref) 
summary(lm_unadj_all_boys_piq) 
 
# FSIQ for boys:  
lm_unadj_all_boys_fsiq <- lm(final_boys$fsiq ~ final_boys$prob_high + 
final_boys$prob_low + final_boys$prob_opp + final_boys$prob_smoking + 
final_boys$prob_ref) 
summary(lm_unadj_all_boys_fsiq) 
 
# VIQ for girls: 
  
lm_unadj_all_girls_viq <- lm(final_girls$viq ~ final_girls$prob_high + 
final_girls$prob_low + final_girls$prob_opp + final_girls$prob_smoking + 
final_girls$prob_ref) 
summary(lm_unadj_all_girls_viq) 
 
# PIQ for girls: 
lm_unadj_all_girls_piq <- lm(final_girls$piq ~ final_girls$prob_high + 
final_girls$prob_low + final_girls$prob_opp + final_girls$prob_smoking + 
final_girls$prob_ref) 
summary(lm_unadj_all_girls_piq) 
 
# FSIQ for girls:  
lm_unadj_all_girls_fsiq <- lm(final_girls$fsiq ~ final_girls$prob_high + 
final_girls$prob_low + final_girls$prob_opp + final_girls$prob_smoking + 
final_girls$prob_ref) 
summary(lm_unadj_all_girls_fsiq) 
 
``` 
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```{r dummy variables for other demographics} 
 
final_chem <- mutate(final_chem, sex_male = ifelse(child_sex == 0, 1, 0), 
sex_female = ifelse(child_sex == 1, 1, 0), age_nineteen = ifelse(maternal_age 
== 1, 1, 0), age_thirty = ifelse(maternal_age == 2, 1, 0), age_thirtyfive = 
ifelse(maternal_age == 3, 1, 0), maternal_race = ifelse(race_aboriginal == 1 
| race_asian2 == 1 | race_black2 == 1 |race_latin2 == 1 | race_other2 == 1, 
1, 0 ), edu_hs = ifelse(mom_education == 1, 1, 0), edu_college = 
ifelse(mom_education == 2, 1, 0), edu_undergrad = ifelse(mom_education == 3, 
1, 0), edu_grad = ifelse(mom_education == 4, 1, 0), income_under_forty = 
ifelse(household_income == 1, 1, 0), income_forty = ifelse(household_income 
== 2, 1, 0), income_eighty = ifelse(household_income == 3, 1, 0), 
income_hundred = ifelse(household_income == 4, 1, 0), parity_zero = 
ifelse(parity == 1, 1, 0), parity_one = ifelse(parity == 2, 1, 0), parity_two 
= ifelse(parity == 3, 1, 0), parity_three_plus = ifelse(parity == 4, 1, 0), 
non_smoker = ifelse(smoker == 0, 1, 0), smoker = ifelse(smoker == 1, 1, 0), 
no_prenatal_alc = ifelse(alc == 0, 1, 0), prenatal_alc = ifelse(alc == 1, 1, 
0)) 
 
# Updating the stratified dataset: 
 
final_boys <- filter(final_chem, child_sex==0) 
final_girls <- filter(final_chem, child_sex==1) 
 
``` 
 
```{r adjusted linear regression} 
 
# all children: 
 
lm_adj_all_viq <- lm(final_chem$viq ~ final_chem$prob_high + 
final_chem$prob_low + final_chem$prob_opp + final_chem$prob_smoking + 
final_chem$prob_ref + final_chem$age_thirty + final_chem$age_thirtyfive + 
final_chem$race_other2 + final_chem$edu_college + final_chem$edu_undergrad + 
final_chem$edu_grad + final_chem$married + final_chem$income_forty + 
final_chem$income_eighty + final_chem$income_hundred + final_chem$parity_one 
+ final_chem$parity_two + final_chem$parity_three_plus + 
final_chem$prenatal_alc) 
summary(lm_adj_all_viq) 
 
lm_adj_all_piq <- lm(final_chem$piq ~ final_chem$prob_high + 
final_chem$prob_low + final_chem$prob_opp + final_chem$prob_smoking + 
final_chem$prob_ref + final_chem$age_thirty + final_chem$age_thirtyfive + 
final_chem$race_other2 + final_chem$edu_college + final_chem$edu_undergrad + 
final_chem$edu_grad + final_chem$married + final_chem$income_forty + 
final_chem$income_eighty + final_chem$income_hundred + final_chem$parity_one 
+ final_chem$parity_two + final_chem$parity_three_plus + 
final_chem$prenatal_alc) 
summary(lm_adj_all_piq) 
 
lm_adj_all_fsiq <- lm(final_chem$fsiq ~ final_chem$prob_high + 
final_chem$prob_low + final_chem$prob_opp + final_chem$prob_smoking + 
final_chem$prob_ref + final_chem$age_thirty + final_chem$age_thirtyfive + 
final_chem$race_other2 + final_chem$edu_college + final_chem$edu_undergrad + 
final_chem$edu_grad + final_chem$married + final_chem$income_forty + 
final_chem$income_eighty + final_chem$income_hundred + final_chem$parity_one 
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+ final_chem$parity_two + final_chem$parity_three_plus + 
final_chem$prenatal_alc) 
summary(lm_adj_all_fsiq) 
# boys:  
 
lm_adj_boys_viq <- lm(final_boys$viq ~ final_boys$prob_high + 
final_boys$prob_low + final_boys$prob_opp + final_boys$prob_smoking + 
final_boys$prob_ref + final_boys$age_thirty + final_boys$age_thirtyfive + 
final_boys$race_other2 + final_boys$edu_college + final_boys$edu_undergrad + 
final_boys$edu_grad + final_boys$married + final_boys$income_forty + 
final_boys$income_eighty + final_boys$income_hundred + final_boys$parity_one 
+ final_boys$parity_two + final_boys$parity_three_plus + 
final_boys$prenatal_alc) 
summary(lm_adj_boys_viq) 
 
lm_adj_boys_piq <- lm(final_boys$piq ~ final_boys$prob_high + 
final_boys$prob_low + final_boys$prob_opp + final_boys$prob_smoking + 
final_boys$prob_ref + final_boys$age_thirty + final_boys$age_thirtyfive + 
final_boys$race_other2 + final_boys$edu_college + final_boys$edu_undergrad + 
final_boys$edu_grad + final_boys$married + final_boys$income_forty + 
final_boys$income_eighty + final_boys$income_hundred + final_boys$parity_one 
+ final_boys$parity_two + final_boys$parity_three_plus + 
final_boys$prenatal_alc) 
summary(lm_adj_boys_piq) 
 
lm_adj_boys_fsiq <- lm(final_boys$fsiq ~ final_boys$prob_high + 
final_boys$prob_low + final_boys$prob_opp + final_boys$prob_smoking + 
final_boys$prob_ref + final_boys$age_thirty + final_boys$age_thirtyfive + 
final_boys$race_other2 + final_boys$edu_college + final_boys$edu_undergrad + 
final_boys$edu_grad + final_boys$married + final_boys$income_forty + 
final_boys$income_eighty + final_boys$income_hundred + final_boys$parity_one 
+ final_boys$parity_two + final_boys$parity_three_plus + 
final_boys$prenatal_alc) 
summary(lm_adj_boys_fsiq) 
 
#girls: 
 
lm_adj_girls_viq <- lm(final_girls$viq ~ final_girls$prob_high + 
final_girls$prob_low + final_girls$prob_opp + final_girls$prob_smoking + 
final_girls$prob_ref + final_girls$age_thirty + final_girls$age_thirtyfive + 
final_girls$race_other2 + final_girls$edu_college + final_girls$edu_undergrad 
+ final_girls$edu_grad + final_girls$married + final_girls$income_forty + 
final_girls$income_eighty + final_girls$income_hundred + 
final_girls$parity_one + final_girls$parity_two + 
final_girls$parity_three_plus + final_girls$prenatal_alc) 
summary(lm_adj_girls_viq) 
 
lm_adj_girls_piq <- lm(final_girls$piq ~ final_girls$prob_high + 
final_girls$prob_low + final_girls$prob_opp + final_girls$prob_smoking + 
final_girls$prob_ref + final_girls$age_thirty + final_girls$age_thirtyfive + 
final_girls$race_other2 + final_girls$edu_college + final_girls$edu_undergrad 
+ final_girls$edu_grad + final_girls$married + final_girls$income_forty + 
final_girls$income_eighty + final_girls$income_hundred + 
final_girls$parity_one + final_girls$parity_two + 
final_girls$parity_three_plus + final_girls$prenatal_alc) 
summary(lm_adj_girls_piq) 
 



85 
 

lm_adj_girls_fsiq <- lm(final_girls$fsiq ~ final_girls$prob_high + 
final_girls$prob_low + final_girls$prob_opp + final_girls$prob_smoking + 
final_girls$prob_ref + final_girls$age_thirty + final_girls$age_thirtyfive + 
final_girls$race_other2 + final_girls$edu_college + final_girls$edu_undergrad 
+ final_girls$edu_grad + final_girls$married + final_girls$income_forty + 
final_girls$income_eighty + final_girls$income_hundred + 
final_girls$parity_one + final_girls$parity_two + 
final_girls$parity_three_plus + final_girls$prenatal_alc) 
summary(lm_adj_girls_fsiq) 
```   
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Appendix D. K-means Clustering Code 
```{r basic prep} 
 
# loading packages 
library(dplyr) 
library(pheatmap) 
library(readr) 
library(readxl) 
set.seed(314) 
 
# preparing the data: 
all_data <- read_csv("AY_MIREC_Analysis_July22_2020.csv") 
all_data <- filter(all_data, sex2!="NA") 
imputed_data <- read_csv("AY_MIREC_Analysis_Feb_2021.csv") 
chem_data <- all_data[,c(2:10, 12:23, 25:31, 33, 38)] 
 
# renaming the variables: 
chem_data <- dplyr::rename(chem_data, Arsenic = log2.arsenic.t1, Cadmium = 
log2.cadmium.t1, Lead = log2.lead.t1, Manganese = log2.manganese.t1, Mercury 
= log2.mercury.t1, BBHC = log2.bbhc.t1, DDE = log2.dde.t1, Oxychlor = 
log2.oxychlor.t1, Transnona = log2.transnona.t1, DEP = log2.dep.t1, DETP = 
log2.detp.t1, DMDTP = log2.dmdtp.t1, DMP = log2.dmp.t1, DMTP = log2.dmtp.t1, 
MBP = log2.mbp.t1, MBZP = log2.mbzp.t1, MCPP = log2.mcpp.t1, MEHHP = 
log2.mehhp.t1, MEHP = log2.mehp.t1, MEOHP = log2.meohp.t1, MEP = log2.mep.t1, 
Aroclor = log2.aroclor.t1, PCB118 = log2.pcb118.t1, PCB138 = log2.pcb138.t1, 
PCB153 = log2.pcb153.t1, PCB170 = log2.pcb170.t1, PCB180 = log2.pcb180.t1, 
PCB187 = log2.pcb187.t1, BDE47 = log2.bde47.t1, Cotinine = log2.cot.t1) 
 
``` 
 
```{r determining the number of k-clusters} 
 
# 5 clusters would be best, since I had 5 profiles, but first I want to check 
to make sure it's an appropriate number here 
 
# first with the elbow method: 
 
ss_within <- rep(0, 30) 
for(t in 1:30){ 
  ss_within[t] <- (kmeans(as.matrix(chem_data), centers = t, iter.max = 10, 
nstart=30))$tot.withinss 
} 
plot(c(1:30), ss_within) 
 
# It looks like the "crook of the elbow" is between 5 and 8 clusters. This is 
not an exact method so I'll try a second one: minimizing the SS within in the 
cluters but maximizing the SS between them: 
 
ss_within <- ss_between <- ss_ratio <- rep(0,30) 
for(u in 1:30){ 
  ss_within[u] <- (kmeans(as.matrix(chem_data), centers = u, iter.max = 10, 
nstart=30))$tot.withinss 
  ss_between[u] <- (kmeans(as.matrix(chem_data), centers = u, iter.max = 10, 
nstart=30))$betweenss 
  ss_ratio[u] <- ss_between[u]/ss_within[u] 



87 
 

  } 
plot(c(1:30), ss_ratio) 
 
# Still hard to see, but there does seem to be a bit of a hockey stick look 
between clusters 5 and 6 
 
# 5 clusters should be fine 
 
``` 
 
```{r k-means clustering with 5 clusters} 
 
# k-means clustering results if we set the number for clusters to 5 (to match 
LPA): 
 
clusters5 <- kmeans(chem_data, centers=5, iter.max = 10, nstart=30) 
clusters5 
 
``` 
 
```{r calculating z-scores of k-clusters} 
 
z_arsenic <- z_cadmium <- z_lead <- z_manganese <- z_mercury <- z_bbhc <- 
z_dde <- z_oxychlor <- z_transnona <- z_dep <- z_detp <- z_dmdtp <- z_dmp <- 
z_dmtp <- z_mbp <- z_mbzp <- z_mcpp <- z_mehhp <- z_mehp <- z_meohp <- z_mep 
<- z_aroclor <- z_pcb118 <- z_pcb138 <- z_pcb153 <- z_pcb170 <- z_pcb180 <- 
z_pcb187 <- z_bde47 <- z_cotinine <- rep(0,5) 
 
for (z in 1:5){ 
  z_arsenic[z] <- (clusters5$centers[z,1]-
mean(chem_data$Arsenic))/sd(chem_data$Arsenic) 
  z_cadmium[z] <- (clusters5$centers[z,2]-
mean(chem_data$Cadmium))/sd(chem_data$Cadmium) 
  z_lead[z] <- (clusters5$centers[z,3]-
mean(chem_data$Lead))/sd(chem_data$Lead) 
  z_manganese[z] <- (clusters5$centers[z,4]-
mean(chem_data$Manganese))/sd(chem_data$Manganese) 
  z_mercury[z] <- (clusters5$centers[z,5]-
mean(chem_data$Mercury))/sd(chem_data$Mercury) 
  z_bbhc[z] <- (clusters5$centers[z,6]-
mean(chem_data$BBHC))/sd(chem_data$BBHC) 
  z_dde[z] <- (clusters5$centers[z,7]-mean(chem_data$DDE))/sd(chem_data$DDE) 
  z_oxychlor[z] <- (clusters5$centers[z,8]-
mean(chem_data$Oxychlor))/sd(chem_data$Oxychlor) 
  z_transnona[z] <- (clusters5$centers[z,9]-
mean(chem_data$Transnona))/sd(chem_data$Transnona) 
  z_dep[z] <- (clusters5$centers[z,10]-mean(chem_data$DEP))/sd(chem_data$DEP) 
  z_detp[z] <- (clusters5$centers[z,11]-
mean(chem_data$DETP))/sd(chem_data$DETP) 
  z_dmdtp[z] <- (clusters5$centers[z,12]-
mean(chem_data$DMDTP))/sd(chem_data$DMDTP) 
  z_dmp[z] <- (clusters5$centers[z,13]-mean(chem_data$DMP))/sd(chem_data$DMP) 
  z_dmtp[z] <- (clusters5$centers[z,14]-
mean(chem_data$DMTP))/sd(chem_data$DMTP) 
  z_mbp[z] <- (clusters5$centers[z,15]-mean(chem_data$MBP))/sd(chem_data$MBP) 
  z_mbzp[z] <- (clusters5$centers[z,16]-
mean(chem_data$MBZP))/sd(chem_data$MBZP) 



88 
 

  z_mcpp[z] <- (clusters5$centers[z,17]-
mean(chem_data$MCPP))/sd(chem_data$MCPP) 
  z_mehhp[z] <- (clusters5$centers[z,18]-
mean(chem_data$MEHHP))/sd(chem_data$MEHHP) 
  z_mehp[z] <- (clusters5$centers[z,19]-
mean(chem_data$MEHP))/sd(chem_data$MEHP) 
  z_meohp[z] <- (clusters5$centers[z,20]-
mean(chem_data$MEOHP))/sd(chem_data$MEOHP) 
  z_mep[z] <- (clusters5$centers[z,21]-mean(chem_data$MEP))/sd(chem_data$MEP) 
  z_aroclor[z] <- (clusters5$centers[z,22]-
mean(chem_data$Aroclor))/sd(chem_data$Aroclor) 
  z_pcb118[z] <- (clusters5$centers[z,23]-
mean(chem_data$PCB118))/sd(chem_data$PCB118) 
  z_pcb138[z] <- (clusters5$centers[z,24]-
mean(chem_data$PCB138))/sd(chem_data$PCB138) 
  z_pcb153[z] <- (clusters5$centers[z,25]-
mean(chem_data$PCB153))/sd(chem_data$PCB153) 
  z_pcb170[z] <- (clusters5$centers[z,26]-
mean(chem_data$PCB170))/sd(chem_data$PCB170) 
  z_pcb180[z] <- (clusters5$centers[z,27]-
mean(chem_data$PCB180))/sd(chem_data$PCB180) 
  z_pcb187[z] <- (clusters5$centers[z,28]-
mean(chem_data$PCB187))/sd(chem_data$PCB187) 
  z_bde47[z] <- (clusters5$centers[z,29]-
mean(chem_data$BDE47))/sd(chem_data$BDE47) 
  z_cotinine[z] <- (clusters5$centers[z,30]-
mean(chem_data$Cotinine))/sd(chem_data$Cotinine) 
} 
 
z_scores <- data.frame(z_arsenic, z_cadmium, z_lead, z_manganese, z_mercury, 
z_bbhc, z_dde, z_oxychlor, z_transnona, z_dep, z_detp, z_dmdtp, z_dmp, 
z_dmtp, z_mbp, z_mbzp, z_mcpp, z_mehhp, z_mehp, z_meohp, z_mep, z_aroclor, 
z_pcb118, z_pcb138, z_pcb153, z_pcb170, z_pcb180, z_pcb187, z_bde47, 
z_cotinine) 
``` 
 
```{r} 
 
# Making the heat map with z-scores: 
 
# getting the colour ready 
breaksList = seq(-3, 3, by=0.1) 
col <- colorRampPalette(c("navy", "blue", "white", "red", 
"red4"))(length(breaksList)) 
 
#labels: 
x_lab <- c("Low Level", "Ref", "High OPPs", "High Smoking", "High Level") 
chemicals <- c("As", "Cd", "Pb", "Mn", "Hg", "BBHC", "DDE", "Oxy.", "Trans.", 
"DEP", "DETP", "DMDTP", "DMP", "DMTP", "MBP", "MBZP", "MCPP", "MEHHP", 
"MEHP", "MEOHP", "MEP", "Aroclor", "PCB118", "PCB138", "PCB153", "PCB170", 
"PCB180", "PCB187", "BDE47", "Cot.") 
 
# heat map: 
pheatmap(t(z_scores), # the t transposes it (switches rows and columns) so 
that it faces the right way 
        Colv=NA, Rowv=NA, cluster_rows = FALSE, cluster_cols = FALSE, # 
getting rid of the dendrogram and the clustering 
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        cellwidth = 20, # changing the size of the cells 
        color=col, breaks = breaksList, # colouring the chart 
        labels_col = x_lab, labels_row = chemicals, angle_col = 45) # picking 
the colours 
 
``` 
 
```{r} 
# changing the order to better compare: 
 
reorder <- z_scores[c(2,5,1,3,4),] 
 
x_lab <- c("Ref", "High Level", "Low Level", "High OPPs", "Smoking 
Chemicals") 
 
pheatmap(t(reorder), # the t transposes it (switches rows and columns) so 
that it faces the right way 
        Colv=NA, Rowv=NA, cluster_rows = FALSE, cluster_cols = FALSE, # 
getting rid of the the dendrogram and the clustering 
        cellwidth = 20, # changing the size of the cells 
        color=col, breaks = breaksList, # colouring the chart 
        labels_col = x_lab, labels_row = chemicals, angle_col = 45) # picking 
the colours 
 
``` 
 
```{r} 
# making a final dataset with dummy variables for each cluster 
 
x1 <- ifelse(clusters5$cluster == 1, 1, 0) 
x2 <- ifelse(clusters5$cluster == 2, 1, 0) 
x3 <- ifelse(clusters5$cluster == 3, 1, 0) 
x4 <- ifelse(clusters5$cluster == 4, 1, 0) 
x5 <- ifelse(clusters5$cluster == 5, 1, 0) 
 
final_chem <- data.frame("subject_id" = all_data$subject.id, "cluster" = 
clusters5$cluster, "high_cluster" = x5, "ref_cluster" = x2, "low_cluster" = 
x1, "opp_cluster" = x3, "smoking_cluster" = x4, "Arsenic" = 
all_data$log2.arsenic.t1, "Cadmium" = all_data$log2.cadmium.t1, "Lead" = 
all_data$log2.lead.t1,"Manganese" = all_data$log2.manganese.t1, "Mercury" = 
all_data$log2.mercury.t1, "BBHC" = all_data$log2.bbhc.t1, "DDE" = 
all_data$log2.dde.t1, "Oxychlor" = all_data$log2.oxychlor.t1, "Transnona" = 
all_data$log2.transnona.t1, "DEP" = all_data$log2.dep.t1, "DETP" = 
all_data$log2.detp.t1, "DMDTP" = all_data$log2.dmdtp.t1, "DMP" = 
all_data$log2.dmp.t1, "DMTP" = all_data$log2.dmtp.t1, "MBP" = 
all_data$log2.mbp.t1, "MBZP" = all_data$log2.mbzp.t1, "MCPP" = 
all_data$log2.mcpp.t1, "MEHHP" = all_data$log2.mehhp.t1, "MEHP" = 
all_data$log2.mehp.t1, "MEOHP" = all_data$log2.meohp.t1, "MEP" = 
all_data$log2.mep.t1, "Aroclor" = all_data$log2.aroclor.t1, "PCB118" = 
all_data$log2.pcb118.t1, "PCB138" = all_data$log2.pcb138.t1, "PCB153" = 
all_data$log2.pcb153.t1, "PCB170" = all_data$log2.pcb170.t1, "PCB180" = 
all_data$log2.pcb180.t1, "PCB187" = all_data$log2.pcb187.t1, "BDE47" = 
all_data$log2.bde47.t1, "Cotinine" = all_data$log2.cot.t1, "birth_weight" = 
all_data$birth.wt, "gest_age" = all_data$gest.age, "preterm_birth" = 
all_data$preterm2, "lbw" = all_data$lbw2, "lga" = all_data$lga2, "child_sex" 
= all_data$sex2, "small_for_ga" = all_data$sga2, "alc" = imputed_data$alc2, 
"city" = all_data$city10, "mom_education" = imputed_data$edu4, 
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"household_income" = imputed_data$income4, "married" = all_data$married2, 
"maternal_age" = all_data$mom.age3, "parity" = all_data$parity4, 
"race_aboriginal" = all_data$race.aboriginal2, "race_asian2" = 
all_data$race.asian2, "race_black2" = all_data$race.black2, "race_latin2" = 
all_data$race.latin2, "race_other2" = all_data$race.other2, "race_white2" = 
all_data$race.white2, "smoker" = all_data$smoker2, "wppsi_1" = 
all_data$wppsi.1, "wppsi_2" = all_data$wppsi.2, "wppsi_3" = all_data$wppsi.3, 
"wppsi_4" = all_data$wppsi.4, "wppsi_5" = all_data$wppsi.5, "viq" = 
all_data$viq, "piq" = all_data$piq, "fsiq" = all_data$fsiq) 
final_chem 
``` 
 
```{r demographic dummy variables} 
 
final_chem <- mutate(final_chem, sex_male = ifelse(child_sex == 0, 1, 0), 
sex_female = ifelse(child_sex == 1, 1, 0), age_nineteen = ifelse(maternal_age 
== 1, 1, 0), age_thirty = ifelse(maternal_age == 2, 1, 0), age_thirtyfive = 
ifelse(maternal_age == 3, 1, 0), maternal_race = ifelse(race_aboriginal == 1 
| race_asian2 == 1 | race_black2 == 1 |race_latin2 == 1 | race_other2 == 1, 
1, 0 ), edu_hs = ifelse(mom_education == 1, 1, 0), edu_college = 
ifelse(mom_education == 2, 1, 0), edu_undergrad = ifelse(mom_education == 3, 
1, 0), edu_grad = ifelse(mom_education == 4, 1, 0), income_under_forty = 
ifelse(household_income == 1, 1, 0), income_forty = ifelse(household_income 
== 2, 1, 0), income_eighty = ifelse(household_income == 3, 1, 0), 
income_hundred = ifelse(household_income == 4, 1, 0), parity_zero = 
ifelse(parity == 1, 1, 0), parity_one = ifelse(parity == 2, 1, 0), parity_two 
= ifelse(parity == 3, 1, 0), parity_three_plus = ifelse(parity == 4, 1, 0), 
non_smoker = ifelse(smoker == 0, 1, 0), smoker = ifelse(smoker == 1, 1, 0), 
no_prenatal_alc = ifelse(alc == 0, 1, 0), prenatal_alc = ifelse(alc == 1, 1, 
0)) 
``` 
 
```{r unadjusted regression analysis} 
 
# unadjusted regression analysis 
 
# VIQ  
klm_unadj_all_viq <- lm(final_chem$viq ~ final_chem$high_cluster + 
final_chem$low_cluster + final_chem$opp_cluster + final_chem$smoking_cluster 
+ final_chem$ref_cluster) 
summary(klm_unadj_all_viq) 
klm_unadj_all_viq$coefficients 
 
# PIQ  
klm_unadj_all_piq <- lm(final_chem$piq ~ final_chem$high_cluster + 
final_chem$low_cluster + final_chem$opp_cluster + final_chem$smoking_cluster 
+ final_chem$ref_cluster) 
summary(klm_unadj_all_piq) 
 
# FSIQ  
klm_unadj_all_fsiq <- lm(final_chem$fsiq ~final_chem$high_cluster + 
final_chem$low_cluster + final_chem$opp_cluster + final_chem$smoking_cluster 
+ final_chem$ref_cluster) 
summary(klm_unadj_all_fsiq) 
 
``` 
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```{r adjusted regression analysis} 
 
# adjusted regression analysis 
 
# VIQ  
klm_adj_all_viq <- lm(final_chem$viq ~ final_chem$high_cluster + 
final_chem$low_cluster + final_chem$opp_cluster + final_chem$smoking_cluster 
+ final_chem$ref_cluster + final_chem$age_thirty + final_chem$age_thirtyfive 
+ final_chem$race_other2 + final_chem$edu_college + final_chem$edu_undergrad 
+ final_chem$edu_grad + final_chem$married + final_chem$income_forty + 
final_chem$income_eighty + final_chem$income_hundred + final_chem$parity_one 
+ final_chem$parity_two + final_chem$parity_three_plus + 
final_chem$prenatal_alc) 
summary(klm_adj_all_viq) 
klm_adj_all_viq$coefficients 
 
# PIQ  
klm_adj_all_piq <- lm(final_chem$piq ~ final_chem$high_cluster + 
final_chem$low_cluster + final_chem$opp_cluster + final_chem$smoking_cluster 
+ final_chem$ref_cluster + final_chem$age_thirty + final_chem$age_thirtyfive 
+ final_chem$race_other2 + final_chem$edu_college + final_chem$edu_undergrad 
+ final_chem$edu_grad + final_chem$married + final_chem$income_forty + 
final_chem$income_eighty + final_chem$income_hundred + final_chem$parity_one 
+ final_chem$parity_two + final_chem$parity_three_plus + 
final_chem$prenatal_alc) 
summary(klm_adj_all_piq) 
 
# FSIQ  
klm_adj_all_fsiq <- lm(final_chem$fsiq ~ final_chem$high_cluster + 
final_chem$low_cluster + final_chem$opp_cluster + final_chem$smoking_cluster 
+ final_chem$ref_cluster + final_chem$age_thirty + final_chem$age_thirtyfive 
+ final_chem$race_other2 + final_chem$edu_college + final_chem$edu_undergrad 
+ final_chem$edu_grad + final_chem$married + final_chem$income_forty + 
final_chem$income_eighty + final_chem$income_hundred + final_chem$parity_one 
+ final_chem$parity_two + final_chem$parity_three_plus + 
final_chem$prenatal_alc) 
summary(klm_adj_all_fsiq) 
 
``` 
 
```{r unadjusted regression stratified by sex} 
 
# stratifying by sex 
final_boys <- filter(final_chem, child_sex == 0) 
final_girls <- filter(final_chem, child_sex == 1) 
 
# unadjusted regression analysis - boys 
# VIQ  
klm_unadj_boys_viq <- lm(final_boys$viq ~ final_boys$high_cluster + 
final_boys$low_cluster + final_boys$opp_cluster + final_boys$smoking_cluster 
+ final_boys$ref_cluster) 
summary(klm_unadj_boys_viq) 
klm_unadj_boys_viq$coefficients 
 
# PIQ  
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klm_unadj_boys_piq <- lm(final_boys$piq ~ final_boys$high_cluster + 
final_boys$low_cluster + final_boys$opp_cluster + final_boys$smoking_cluster 
+ final_boys$ref_cluster) 
summary(klm_unadj_boys_piq) 
 
# FSIQ  
klm_unadj_boys_fsiq <- lm(final_boys$fsiq ~ final_boys$high_cluster + 
final_boys$low_cluster + final_boys$opp_cluster + final_boys$smoking_cluster 
+ final_boys$ref_cluster) 
summary(klm_unadj_boys_fsiq) 
 
# unadjusted regression analysis - girls 
 
# VIQ  
klm_unadj_girls_viq <- lm(final_girls$viq ~ final_girls$high_cluster + 
final_girls$low_cluster + final_girls$opp_cluster + 
final_girls$smoking_cluster + final_girls$ref_cluster) 
summary(klm_unadj_girls_viq) 
klm_unadj_girls_viq$coefficients 
 
# PIQ  
klm_unadj_girls_piq <- lm(final_girls$piq ~ final_girls$high_cluster + 
final_girls$low_cluster + final_girls$opp_cluster + 
final_girls$smoking_cluster + final_girls$ref_cluster) 
summary(klm_unadj_girls_piq) 
 
# FSIQ  
klm_unadj_girls_fsiq <- lm(final_girls$fsiq ~ final_girls$high_cluster + 
final_girls$low_cluster + final_girls$opp_cluster + 
final_girls$smoking_cluster + final_girls$ref_cluster) 
summary(klm_unadj_girls_fsiq) 
 
``` 
 
```{r} 
 
# adjusted regression analysis - boys 
 
# VIQ  
klm_adj_boys_viq <- lm(final_boys$viq ~ final_boys$high_cluster + 
final_boys$low_cluster + final_boys$opp_cluster + final_boys$smoking_cluster 
+ final_boys$ref_cluster + final_boys$age_thirty + final_boys$age_thirtyfive 
+ final_boys$race_other2 + final_boys$edu_college + final_boys$edu_undergrad 
+ final_boys$edu_grad + final_boys$married + final_boys$income_forty + 
final_boys$income_eighty + final_boys$income_hundred + final_boys$parity_one 
+ final_boys$parity_two + final_boys$parity_three_plus + + 
final_boys$prenatal_alc) 
summary(klm_adj_boys_viq) 
klm_unadj_boys_viq$coefficients 
 
# PIQ  
klm_adj_boys_piq <- lm(final_boys$piq ~ final_boys$high_cluster + 
final_boys$low_cluster + final_boys$opp_cluster + final_boys$smoking_cluster 
+ final_boys$ref_cluster + final_boys$age_thirty + final_boys$age_thirtyfive 
+ final_boys$race_other2 + final_boys$edu_college + final_boys$edu_undergrad 
+ final_boys$edu_grad + final_boys$married + final_boys$income_forty + 
final_boys$income_eighty + final_boys$income_hundred + final_boys$parity_one 
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+ final_boys$parity_two + final_boys$parity_three_plus + 
final_boys$prenatal_alc) 
summary(klm_adj_boys_piq) 
 
# FSIQ  
klm_adj_boys_fsiq <- lm(final_boys$fsiq ~ final_boys$high_cluster + 
final_boys$low_cluster + final_boys$opp_cluster + final_boys$smoking_cluster 
+ final_boys$ref_cluster + final_boys$age_thirty + final_boys$age_thirtyfive 
+ final_boys$race_other2 + final_boys$edu_college + final_boys$edu_undergrad 
+ final_boys$edu_grad + final_boys$married + final_boys$income_forty + 
final_boys$income_eighty + final_boys$income_hundred + final_boys$parity_one 
+ final_boys$parity_two + final_boys$parity_three_plus + 
final_boys$prenatal_alc) 
summary(klm_adj_boys_fsiq) 
 
# adjusted regression analysis - girls 
 
# VIQ  
klm_adj_girls_viq <- lm(final_girls$viq ~ final_girls$high_cluster + 
final_girls$low_cluster + final_girls$opp_cluster + 
final_girls$smoking_cluster + final_girls$ref_cluster + 
final_girls$age_thirty + final_girls$age_thirtyfive + final_girls$race_other2 
+ final_girls$edu_college + final_girls$edu_undergrad + final_girls$edu_grad 
+ final_girls$married + final_girls$income_forty + final_girls$income_eighty 
+ final_girls$income_hundred + final_girls$parity_one + 
final_girls$parity_two + final_girls$parity_three_plus + 
final_girls$prenatal_alc) 
summary(klm_adj_girls_viq) 
klm_unadj_girls_viq$coefficients 
 
# PIQ  
klm_adj_girls_piq <- lm(final_girls$piq ~ final_girls$high_cluster + 
final_girls$low_cluster + final_girls$opp_cluster + 
final_girls$smoking_cluster + final_girls$ref_cluster + 
final_girls$age_thirty + final_girls$age_thirtyfive + final_girls$race_other2 
+ final_girls$edu_college + final_girls$edu_undergrad + final_girls$edu_grad 
+ final_girls$married + final_girls$income_forty + final_girls$income_eighty 
+ final_girls$income_hundred + final_girls$parity_one + 
final_girls$parity_two + final_girls$parity_three_plus + 
final_girls$prenatal_alc) 
summary(klm_adj_girls_piq) 
 
# FSIQ  
klm_adj_girls_fsiq <- lm(final_girls$fsiq ~ final_girls$high_cluster + 
final_girls$low_cluster + final_girls$opp_cluster + 
final_girls$smoking_cluster + final_girls$ref_cluster + 
final_girls$age_thirty + final_girls$age_thirtyfive + final_girls$race_other2 
+ final_girls$edu_college + final_girls$edu_undergrad + final_girls$edu_grad 
+ final_girls$married + final_girls$income_forty + final_girls$income_eighty 
+ final_girls$income_hundred + final_girls$parity_one + 
final_girls$parity_two + final_girls$parity_three_plus + 
final_girls$prenatal_alc) 
summary(klm_adj_girls_fsiq) 
`````` 


