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Abstract 

Mediation analysis examines the exposure-outcome association that acts through an intermediate 

variable. However, mediation analysis becomes challenging when data have missing values. 

Although methods exist to deal with missing data and mediation analysis independently, few 

studies have examined how to combine the approaches, specifically, how to pool the mediation 

analysis results across a series of imputed datasets and compute confidence intervals for target 

parameters. We propose a new technique that combines multiple imputation with maximum 

likelihood estimation. Using computer simulations, we compare the performance of our proposed 

approach with a traditional bootstrap approach. Our method performs well and is more 

computationally efficient than other resampling methods. We apply the new method to 
randomized trial data on the role of cadmium exposure in mediating the effects of an 

environmental health intervention on birth weight.  
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Chapter 1 Introduction 

1.1 Background 

Mediation analysis is a tool that helps researchers examine the underlying association between 

an exposure and an outcome through an intermediate variable, which is called a mediator (Baron 

& Kenny, 1986). For example, if a mediator (M) is the variable in a causal pathway between the 

exposure (A) and the outcome (Y), then A causes M and M causes Y.  

Mediation analysis, which has gained popularity in environmental epidemiology, serves to quantify 

the contribution of environmental factors to the associations between exposures and health 

outcomes (VanderWeele, 2016). More specifically, motivations for evaluating mediation effects 

include strengthening evidence of the main effect hypothesis, understanding the pathway through 

which exposure causes disease, and evaluating and improving interventions (Hafeman & 

Schwartz, 2009).  

In environmental epidemiology, biomarkers are often used to measure the exposure to and/or risk 

from environmental toxicants (Travis, 1993). Examples of biomarkers include chemical (e.g., lead) 

concentrations in human tissues such as blood or urine.  Biomarkers have the advantage that 

they give a precise estimate of exposure from multiple pathways. However, a difficulty with using 
biomarkers in environmental epidemiology is that biomarkers are often not completely recorded 

for all study participants. Little attention and research has addressed the causes of missing data 

(Mfutso-Bengo, Masiye, Molyneux, Ndebele, & Chilungo, 2008). Nonetheless, at the data analysis 

stage, it is common for epidemiologists to simply discard data records with missing information 

and use complete-case (CC) analysis, but this can cause biased estimation and loss of statistical 

power (Graham, 2009). 

An important example of missing biomarkers comes from the Ulaanbaatar Gestation and Air 

Pollution Research (UGAAR) study. The UGAAR study is an ongoing randomized air purifier 

intervention birth cohort study in Ulaanbaatar, Mongolia, focused on the impacts of portable indoor 

high-efficiency particulate air (HEPA) filters during pregnancy on fetal growth and early childhood 

development. In previous work, Barn et al. (2018) reported that HEPA purifier use during 

pregnancy was associated with a 14% (95% CI: 4, 23%) reduction in maternal blood cadmium 
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(Barn, Gombojav, Ochir, Boldbaatar, et al., 2018) and an 85 g (95% CI: 3, 167 g) greater mean 

birth weight among babies born at term (Barn, Gombojav, Ochir, Laagan, et al., 2018). In a more 

recent study, the investigators found that a doubling of blood cadmium was associated with a 95 

g (95% CI:  34, 155 g) and 91 g (95% CI: 32, 150 g) reduction in average birth weight among all 

births and term births, respectively, in adjusted models (Barn et al., 2019).  However, the authors 
reported that almost 20% of participants had missing values in blood cadmium concentration 

(Barn et al., 2019). 

1.2 Challenges and objectives  

1.2.1 Challenge 1: Missing data and multiple imputation  

In their study of the association between gestational cadmium exposure and birth weight, Barn et 

al. (2019) included only data from 374 participants with a blood cadmium measurement from a 

total of 463 live births. In addition, a CC analysis eliminated an additional 64 participants with 

missing data in other adjustment variables, such as parity and household income, leaving only 

310 participants entered the analytic model. Thus, in total, more than 30% of participants were 

excluded from the analysis. The 310 complete cases constitute a subset of the original sample. 

Therefore, in the UGAAR analysis of cadmium exposure and birth weight, the use of CC analysis 

may have reduced statistical power and the precision of effect estimates, and its results may not 

be comparable to and representative of the original cohort. 

Furthermore, participants in the intervention group were more likely to consent to provide 

biomarkers (odds ratio: 1.88, 95% CI: 1.07 - 3.30) (Barn et al., 2019). There were 240 live births 

in the intervention group, of which 203 (84.6%) mothers provided blood samples. In contrast, 174 
out of 223 (78%) participants with live births in the control group provided cadmium 

measurements. This illustrates that the missing data does not occur in a way that is completely 

at random, and instead it depends on participant characteristics, such as assignment to 

intervention or control. 

While the UGAAR study provides one example of missing data, it is a widespread problem in 

epidemiologic research. In an assessment that examined 278 molecular epidemiology studies, 

almost all (95%) either had missing data on one or more variables or used the availability of data 

as the condition for final cohort selection (Desai, Kubo, Esserman, & Terry, 2011). In some studies, 
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biomarker data were missing due not only to limits of detection (LOD) but also incomplete 

collection (M. Lee et al., 2018).  

To evaluate the effect of missing data on the estimated association between cadmium and birth 

weight reported by Barn et al. (2019), the first objective of this MSc thesis was to use the MICE 

algorithm to generate the missing values for cadmium and any remaining variables from the 

UGAAR cohort. We hypothesize that using MICE to handle the missing values and re-analyzing 

the full UGAAR data with imputed values will confirm the association between maternal blood 

cadmium concentrations and birth weight by making the regression coefficient estimates more 

precise, correcting for bias from the CC analysis and lowering the standard errors.  

1.2.2 Challenge 2: Assessing the mediating role of blood cadmium 

Previously, Barn and co-workers found HEPA purifiers reduced average blood cadmium 

concentration (Barn, Gombojav, Ochir, Laagan, et al., 2018), HEPA purifier use increased birth 

weight (Barn, Gombojav, Ochir, Boldbaatar, et al., 2018), and blood cadmium was associated 

with decreased birth weight (Barn et al., 2019). Putting all these findings together, the second 

objective of this MSc thesis was to investigate the potential mediator role of cadmium in the 
relationship between HEPA purifier use and birth weight, for example, to estimate the overall total 

effect of HEPA purifier use on birth weight, the direct effect of HEPA purifier use going straight on 

birth weight, the indirect effect that goes through blood cadmium, and the proportion of this 

mediated effect. The definition of these effects will be described later in this thesis. 

1.2.3 Challenge 3: Incorporating multiple imputation into a mediation analysis 

Furthermore, a crucial challenge is combining mediation analysis with MI. Specifically, it is 

unknown how to conduct a mediation analysis across a series of data imputations (for example, 

how to calculate standard errors for the indirect effects that incorporate imputation uncertainty). 

There is little guidance in the literature about how to combine inferences from mediation analysis 
generated from multiple imputed datasets. Additionally, the function in software designed to 

process mediation analysis on multiple datasets where missing values have been imputed is not 

completely developed yet (Tingley et al., 2019). Therefore, the third objective of this MSc thesis 

was to develop a general approach to mediation analysis with missing values in the dataset that 

is computationally efficient and can be applied to different settings.  
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Chapter 2 Literature review 

2.1 Missing data mechanisms  

The mechanisms of missing data can be classified into three types depending on the probability 

of a value being missing: Missing completely at random (MCAR), missing at random (MAR) and 

missing not at random (MNAR) (Little & Rubin, 2019; Rubin, 1976, 2009). MCAR occurs when 

the probability of missingness is unrelated to either the value of other observed or unobserved 

variables, or the values of the variable itself. MAR occurs if the probability of missingness is 
related to the observed values of other variables in the dataset but not to the variable itself. This 

is the mechanism that is most commonly assumed. MNAR occurs when the probability of 

missingness is related to the values of the missing variable itself. For example, people with very 

high income usually do not want to answer questions to disclose their income.  

The missing data mechanism has an effect on the choice of method(s) for handling missingness. 

CC analysis (also called listwise deletion) is the default in many statistical packages and the most 

commonly used analysis method analysis. Using CC analysis, observations with missing values 

are simply deleted from the dataset. Generally, CC analysis gives unbiased estimates of means 

and variances if the data are MCAR, which means that the complete data are a random sample 
drawn from the study population. The disadvantage of CC analysis lies in the reduction in sample 

size and enlarged standard errors (Bouhlila & Sellaouti, 2013). In reality, the MCAR case rarely 

occurs.  

In contrast, if the data are MAR or MNAR, then CC analysis can produce severely biased results. 

In this case, the complete cases may not be comparable to and representative of the original 

cohort. Thus, CC analysis may lead to invalid association with biased parameter estimates and 

large standard errors. In particular, the bias increases with the proportion of missingness and the 

differences between observed and missing values (Stef van Buuren, 2018). Some studies showed 

that CC analysis may result in a risk of overestimated benefits and underestimated harm (Sterne 

et al., 2009). 

2.2 Multiple imputation (MI), and the MICE method 
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Multiple imputation (MI) has become a popular method to handle missing data in epidemiological 

studies, especially in dealing with more than one variable with missingness (Rubin, 1996). The 

general idea of MI is to create 𝐾 complete datasets by performing 𝐾 independent imputations and 

then to replace the missing values with plausible data values (Johnson & Young, 2011). Two 

general approaches for generating imputed multivariate data are joint modelling (JM) and fully 

conditional specification (FCS). The mechanism of JM will not be discussed here as it is not the 

focus of this paper, and it has seen less widespread use in epidemiology. FCS specifies many 

multivariate imputation models for each incomplete variable by a set of conditional densities on a 

variable-by-variable basis (Stef van Buuren & Groothuis-Oudshoorn, 2011b). 

Imputation analysis is superior to CC analysis because imputation not only utilizes the full dataset 

but also produces smaller standard errors and narrower confidence intervals (CI) (Bouhlila & 

Sellaouti, 2013). It uses more information from the dataset by incorporating the auxiliary variables 

in the imputation model that are not used in the analytical model (Lall, 2016). While CC analysis 

requires missing data to be MCAR, MI is based on the MAR assumption and may lead to unbiased 

results (Graham, 2009). Another merit of MI is that the multiple imputed datasets account for the 

statistical uncertainty in the imputations by calculating the between-imputation variances (Azur, 

Stuart, Frangakis, & Leaf, 2011). 

MI using the basic idea of FCS has been proposed in various names, such as stochastic relaxation 

(Kennickell, 1991), variable-by-variable imputation (J. J. Brand, 1999), regression switching (S. 
van Buuren, Boshuizen, & Knook, 1999), and the chained equations (Van Buuren & Oudshoorn, 

2000). Chained equations, initially released as an S-PLUS library in 2000, has become one 

popular approach to MI, namely Multivariate Imputation by Chained Equations (MICE) (Van 

Buuren & Oudshoorn, 2000). 

MICE is particularly popular because it is very flexible to use. Many of the initially developed MI 

methods are based on the assumption of a large joint model for all the variables, for example, a 

joint normal distribution (Azur et al., 2011). In the MICE procedure, each variable is modeled 

conditional on the other variables, which means that each variable can be modeled according to 

its own distribution. Therefore, MICE can be applied in many different data types (e.g., binary 

variables using logistic regression and continuous variables using linear regression). The 

algorithm of MICE in detail will be introduced in the following section.  
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2.3 The MICE algorithm   

During MICE, each imputed dataset is generated after several iterations of the imputation 
algorithm. The MICE algorithm starts from iteration zero where missing values are filled by a 

random draw from the observed values of each variable (White, Royston, & Wood, 2011).  

There are several steps in iteration one. First, variable 1 with missing values is set back to missing 

and is used as the dependent variable in a regression model. This model is called the imputation 

model, which uses information from all other variables in the model.  Details of the imputation 

model will be discussed in section 2.3.1. In this step the values for the other variables with 

missingness are used from iteration zero. Therefore, no variables have missing values except the 

variable 1. Here, the predicted (imputed) values of variable 1 are obtained.  

In the next step, the same procedure is repeated for the second variable with missing values, 

which is set back to missing and is regressed on the other variables in the imputation model, 

including the variable 1. Variable 1 uses the imputed values in the last step.  

The third step to impute the third variable with missingness is similar to the previous two steps. 

The missing values in variable 1 and variable 2 are replaced by the predicted values imputed in 

the previous two steps. Iteration one finishes when all variables with missing values have been 

cycled through. The number of steps in iteration one is equal to the number of variables with 

missing values. Because each variable is imputed with its own imputation model, MICE has the 

ability to handle different types of variables (e.g. continuous, binary, categorial, etc.) (White et al., 

2011). 

Having completed iteration one, the MICE algorithm moves on to iteration two. Iteration two starts 
with variable 1 with similar procedures as iteration one, but the rest of the variables with 

missingness use the imputed values from the last step of iteration one. Same steps are taken to 

impute the rest of variables with missing values.  

The iteration process is repeated several times. The proper number of iterations is explained in 

section 2.3.2. The imputed values in the final iteration, with the observed data in the original 

dataset, are used as the first imputed dataset.  
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This entire process is repeated for the next imputed dataset. After 𝐾 repetitions, we obtain 𝐾 

imputed datasets. The proper number of imputations (𝐾) will be discussed in section 2.3.3. The 

quantity of scientific interest, for example, the regression coefficient, can be estimated on each of 

the imputed datasets. The 𝐾 estimates and their variances are then pooled into one estimate (Stef 

van Buuren & Groothuis-Oudshoorn, 2011b).  

2.3.1 Imputation models  

Another gain provided by MI over CC analysis is that MI can take advantage of the information 

that is not part of the planned analysis. We use imputation models to fill the missing values with 

random imputations. Then we analyze the full dataset with imputed values using the analytic 

model.  

The imputation model may be different than the analytic model, but should include all of the 

variables in the analytic model, and perhaps some more variables (White et al., 2011). Stuart 

suggests stepwise selection to choose the most predictive variables (Stuart, Azur, Frangakis, & 

Leaf, 2009).  

More commonly, researchers choose to include auxiliary variables in the multiple imputation. They 

are variables in the dataset that are not included in the analytic model (i.e. not predictive of the 

outcome variable), but are either correlated with a missing variable or believed to be associated 

with missingness (von Hippel & Lynch, 2013). For example, researchers may include participants’ 

weight or height to impute missing body mass index (BMI). The inclusion of auxiliary variables 

improves the efficiency of MI estimates obtained from the analytical model because it enables 

precise estimation of the missing information (Enders, 2010). Adding auxiliary variables in the 

imputation models may also make the MAR assumption more plausible and improve the 

imputations. 

The variables in the imputation model are not required to be in a specific order because the 

software imputes variables in order from the one with the least missingness to the one with the 

most missingness, by default (Bouhlila & Sellaouti, 2013).  

2.3.2 Number of iterations 



 8 

The number of iterations in RStudio is set to be 5, by default, but researchers can use a higher 

number as needed. Generally, a low number of 5 to 20 iterations seems to be enough to reach 

convergence and excessive iterations can slow the computational speed (S. van Buuren et al., 

1999). Convergence monitoring can be done by plotting the variance between imputations and 

variance within imputations. van Buuren believes no more than 5 iterations per imputation usually 
produce unbiased estimates and appropriate coverage (Stef van Buuren, 2018). 

2.3.3 Number of multiple imputations 

At first, Rubin suggests that 3 to 5 imputations are enough for multiple imputation (Rubin, 1996). 

Rubin’s suggestion was based on the efficiency of point estimates and did not address imputation 

variability. Researchers nowadays are interested in not only efficiency for point estimates, but 

also standard error estimates, confidence intervals, and p-values.  

From a Monte Carlo simulation (Graham, Olchowski, & Gilreath, 2007), we can see that as the 

number of imputations goes to infinity, the precision of the pooled parameter becomes as large 

as possible and regression coefficients are essentially unbiased. The fewer imputations, the more 

loss of power and precision. 

Many researchers have different recommendations on the grounds of retaining the power for 

testing an association of interest. Graham suggests at least 20 imputations to restrict the loss of 

power (Graham et al., 2007). Bodner considers the fraction of missing information (FMI) and 

concludes the required number of imputed datasets depending on different FMI (Bodner, 2008). 

White, Royston and Wood (2011) quote a rule of thumb from Von Hippel (P. T. von Hippel, 2009) 

that the number of imputed datasets should be at least equal to the percentage of missing cases. 

For example, if 10% of the participants have missing values, then at least 10 imputed datasets 

should be generated. van Buuren commented that theoretically, higher number of imputations 

mean more precise results, but the substantive conclusions will not change as a result of raising 
the number beyond 5 (Stef van Buuren, 2018).  

2.4 Mediation analysis  

To illustrate the main ideas of mediation analysis, Figure 1 is a simple diagram that shows how 

the total effect of A on Y is separated into a direct effect relating A straight to Y and a mediated 

https://paperpile.com/c/gIF5Fi/lZuN
https://paperpile.com/c/gIF5Fi/vzhy


 9 

effect where A has an indirect effect on Y through M. The upper half of this figure represents the 

total effect (through 𝜙) that A can have on Y. The lower half of this figure shows the pathways 

that, A leads to M (through 𝛽) and M lead to Y (through 𝜃2). It also shows the relationship between 

A and Y controlling for M, representing the direct effect, which is denoted by 𝜃1.  

2.4.1 Mediation analysis approaches  

There are two common analytical approaches to conduct the mediation analysis: statistical and 

causal (H. Lee, Herbert, & McAuley, 2019). Statistical mediation analysis commonly uses the 

product/difference methods to test indirect effects. It uses regression models to estimate the 

exposure-mediator and mediator-outcome association. The indirect effect is denoted by either the 

product of 𝛽 and 𝜃2 , or the difference of 𝜙  (i.e., total effect) and 𝜃1  (i.e., direct effect). For 

continuous outcome and mediator, these indirect effects estimated by the difference and product 

methods should be the same (i.e. 𝛽𝜃2 = 𝜑 − 𝜃1) (VanderWeele, 2016). The causal mediation 

analysis, commonly called the Causal Inference approach, is not model specific and it defines 

direct and indirect effect from counterfactuals or a potential outcomes framework (Pearl, 2001).  

The product method has two main limitations. It only works in the special cases where there are 

linear relationships between the exposure, mediator, and outcome and when there is no 

exposure-mediator interaction (MacKinnon, 2012). The causal inference approach was 

developed to address these limitations. It is applicable to nonlinear models with both discrete and 
continuous variables. It also allows exposure-mediator interaction (Pearl, 2001). 

The statistical (product/difference methods) and causal (causal inference approach) mediation 

approaches produce equal estimates when the association between the exposure, mediator, and 

outcome are linear and when there is no exposure-mediator interaction. When mediator or 

outcome variables are binary variables or when interactions are present, statistical mediation can 

produce biased estimates and, causal mediation is preferred (VanderWeele & VanderWeele, 

2015).  

It is important to test the significance of the mediation effect to see whether the mediated effect 

is significantly different from zero. The Sobel test was often used to test the significance of the 

product of 𝛽 and 𝜃2 (Sobel, 1982). The test is given by dividing the estimate of the product by an 

approximate estimate of the standard error of the product derived via the Delta method, and then 
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comparing the ratio with a standard normal distribution. The confidence intervals are also 

calculated based on the critical values from the standard normal distribution (Sobel, 1982). 

However, the power of the Sobel test is questionable due to the non-normality of the distribution 

of the product. The product of two normally distributed variables is usually not normally distributed 

(Springer & Thompson, 1966), and therefore the 95% confidence interval should not be symmetric. 
There is evidence that this traditional method to test indirect effect has imbalanced confidence 

limits and results in low statistical power and type I error rates (Mackinnon, Lockwood, & Williams, 

2004).  

However, this issue can be overcome with bootstrap resampling. This method is a nonparametric 

resampling procedure with replacement and does not rely on the distribution assumption on the 

indirect effect (Mackinnon et al., 2004). With the empirical distribution of 𝛽𝜃2, a confidence interval, 

a 𝑝-value, or a standard error can be determined using percentiles of the distribution. If the 

confidence interval does not contain zero, the researcher can conclude that the indirect effect is 

different from zero. The bias-corrected and accelerated (BCa) intervals by this nonparametric 

bootstrapping serves the optimal result as it offers the most statistical power to detect a mediating 

effect while keeping the Type I error rate within the robustness interval (Mackinnon et al., 2004).  

To use the product method to test the mediation effects, there are some specific assumptions that 

need to be met: 1) No measurement error in variables (Hoyle & Kenny, 1999), 2) The causal 

relations of exposure to mediator to outcome are correctly specified (McDonald, 1997), 3) No 

omitted variables (McDonald, 1997), and 4) No interaction of exposure and mediator (Judd & 

Kenny, 1981). In addition, a mediation analysis should be free of intervention-outcome (AY), 

intervention-mediator (AM), and mediator-outcome (MY) confounding effects to make valid causal 

inferences (VanderWeele & VanderWeele, 2015). This is called the no unmeasured confounding 

assumption.  

In a randomized controlled trial, participants are randomly assigned to the exposure groups 

(intervention or control group). This means that the intervention is statistically independent of the 

outcome, mediator, and all covariates. Therefore, the intervention-outcome (AY) and intervention-

mediator (AM) effects can be assumed to be unconfounded (H. Lee et al., 2019). However, the 

mediator-outcome (MY) effect may be confounded, even in a randomized controlled trial, because 

participants are not randomly assigned to the mediator level. For example, smoking is a 

confounding variable for the association between cadmium levels and birth weight because 
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smoking causes higher cadmium levels (Järup & Åkesson, 2009), and additionally, smoking also 

causes lower birth weight babies (Bernstein et al., 2005). Thus, it is important to adjust for smoking 

in order to estimate the causal effect of cadmium on birth weight. To avoid the potential bias, we 

need to control for all available confounders of the mediator-outcome effect. To assess the 

potential bias caused by unmeasured/unavailable confounders, sensitivity analysis should be 
employed to examine the robustness of mediated effect. 

 2.5 A gap in the biostatistics literature: Combining MI with mediation 
analysis. 

An important concern is how to combine MI with mediation analysis. Specifically, the challenge is 
to combine the mediation analysis results across a series of imputed datasets and test the 

corresponding statistical significance using bootstrap.  

In addition, the software function to process mediation analysis on multiple imputed data sets is 

not completely developed; there are only two published papers exploring this issue through 

simulation studies (Wu & Jia, 2013; Z. Zhang, Wang, & Tong, 2015). Although they shared the 

same idea, the authors of these two articles proposed opposing strategies. Wang et al. (2015) 

propose to make MI nested within bootstrap samples, whereas Wu and Jia (2013) use bootstrap 

nested within MI.  

Wang et al. (2015) started with drawing a bootstrap sample of 𝑁  persons randomly with 

replacement from the original data set (sample size = 𝑁) and this resampling data set would 

include missing data. Then they performed MI (with 𝐾 imputed data sets) on the bootstrap sample 

and obtained the 𝐾  point estimates (e.g., 𝜃) of the mediation effect. No standard error was 

calculated for each point estimate. The 𝐾 point estimates were then pooled into one estimate by 

taking their mean. These steps were repeated for a total of 𝐵  bootstrap samples to get 𝐵 

mediation effect coefficients. The 𝐵  coefficients constituted an empirical distribution, and the 

confidence intervals of the mediation effect were constructed using percentiles of this distribution. 

One of the limitations of this technique is that it is computationally impractical because it requires 

MI possibly hundreds of times (once for each bootstrap sample). This procedure is denoted by 

BOOT(MI). A further limitation is that Wang et al. (2015) only considered multiple imputation of 
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multivariate normally missing data. In theory, one could instead use MICE to do the imputations, 

and this would resolve this limitation. 

In contrast, Wu and Jia (2013) proposed an opposite procedure: First use MI to get 𝐾 imputed 

data sets and then apply the bootstrap (𝐵 bootstrap samples) to each imputed dataset. This 

procedure is more practical and is denoted by MI(BOOT). The 𝐾  times 𝐵  estimates were 

combined into a single large frequency distribution to approximate the mediation effects and the 

bias-corrected confidence interval (BCCI) can then be calculated. Their rationale was grounded 

on that their procedure is more computationally efficient than Wang et al.’s. MI is much more 

computationally costly than bootstrap. Using bootstrap nested within MI, they process, say 1 run 
of MI and 1000 runs of bootstrap, instead of 1000 runs of MI and 1 run of bootstrap by MI nested 

within bootstrap. This will be more computationally efficient and will take significantly less 

computing time when dealing with big data with thousands of variables. Wu and Jia (2013) also 

compared these two procedures using a real dataset and both showed comparable point 

estimates and bias-corrected confidence intervals.  

Apart from these two papers (Wu & Jia, 2013; Z. Zhang et al., 2015), there has been no work 

examining the details of how exactly to combine MI with mediation analysis. Moreover, we stress 

that this topic has never been discussed in the context of missing biomarkers of exposure for 

environmental epidemiology. Consequently, it is an important research direction that needs 

further study.  
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Figure 1: A simple path diagram of mediation model 
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Chapter 3 Manuscript 

3.1 Introduction  

Mediation analysis techniques examine the association between an exposure and outcome that 

acts through an intermediate variable (i.e., the mediator). The total effect of the exposure on the 

outcome can be decomposed as the indirect effect via the mediator and the direct effect relating 

the exposure straight to the outcome (Baron & Kenny, 1986). Mediation analysis is widely used 

in many research fields, including the social sciences (Hoven & Siegrist, 2013; Rucker, Preacher, 
Tormala, & Petty, 2011), epidemiology (Bind et al., 2014; Nasiri, Moodie, & Abenhaim, 2020), and 

behaviour research (Bonnert et al., 2018; Morgan, Mackinnon, & Jorm, 2013). Mediation analysis 

is particularly useful in environmental epidemiology studies that use biomarkers of environmental 

chemical exposures. These measurements take the form of chemical concentrations measured 

in blood, urine or other biospecimens. Biomarkers have the advantage of providing objective 

estimates of chemical exposures from multiple sources. Thus, they help explain the complex 

pathways among environmental exposures, biological processes and health outcomes (Hu, 

Zhuang, Bernardo, & McCandless, 2018). 

However, a limitation of biomarkers in mediation analysis is that they are often not completely 
recorded for all study participants, which leads to missing values in the data. In a recent study 

that examined 278 published molecular epidemiology studies, a total of 66% had missing data for 

at least one biomarker (Desai et al., 2011). Of these studies with missing biomarkers, only 12% 

used some type of missing data methods, and all of these studies used single imputation and/or 

use of missing data indicators. The remaining 88% studies used complete case (CC) analysis to 

deal with the missing data (Desai et al., 2011). CC analysis is the default in many statistical 

packages and the most common practice in epidemiology studies (Bouhlila & Sellaouti, 2013). It 

can produce severely biased results because the complete cases left in the analysis may not be 

representative of the original cohort (Graham, 2009). In addition, CC analysis is cost-inefficient 

because many valuable data are deleted. Single imputation using the predicted mean value is 
also known to have potentially poor performance because it does not incorporate the uncertainty 

of the imputation (J. Brand, van Buuren, le Cessie, & van den Hout, 2019).  
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To deal with missing data, a widely used approach is multiple imputation (MI). MI is automated in 

many statistical software packages (Royston, 2004; SAS Institute, n.d.; Stata, n.d.). The general 

idea of MI is to create 𝑚 complete datasets by performing independent imputations and then to 

replace the missing values with plausible data values (Johnson & Young, 2011). MI is superior to 

CC analysis because imputation not only utilizes the full dataset but also frequently produces 

smaller standard errors and narrower confidence intervals (Bouhlila & Sellaouti, 2013). 

Furthermore, the multiple imputed datasets account for the statistical uncertainty in the 

imputations by incorporating the within- and between-imputation variances (Azur et al., 2011). 

Mediation analysis presents a host of unique challenges to MI. When taking missing values into 

account, a critical challenge is deciding how to combine the mediation analysis results across a 

series of imputed datasets and then compute 95% confidence intervals for target parameters. It 

has been well documented about how to calculate standard errors and 95% confidence intervals 

for the indirect effect with complete data (e.g. Sobel test (Sobel, 1982) and bootstrapping (Bollen 

& Stine, 1990; Shrout & Bolger, 2002)). However, there is little guidance in the literature about 

how to combine inferences from mediation analysis generated from multiple imputed datasets.  

To our knowledge, there are only two published papers that examine mediation analysis in 

multiple imputation settings, including Zhang et al. (Z. Zhang et al., 2015) and Wu and Jia (Wu & 

Jia, 2013). Both papers developed similar approaches that rely on bootstrap resampling to 

combine MI and the mediation analysis (Wu & Jia, 2013; Z. Zhang et al., 2015). Although both 
studies showed good performance in simulation studies, they have some limitations in the 

application. After calculating the indirect effect, both studies described the magnitude of the effect 

sizes simply by categorizing them as small, medium, or large, following Cohen standards (Cohen, 

1988). They did not report any quantitative effect size. Furthermore, both approaches are 

computationally intensive because a large number of bootstrap samples usually takes a long time 

to process. Crucially, both studies of Wu & Jia, 2013 and Z. Zhang et al., 2015 only considered 

multiple imputation settings for multivariate normally missing data. Thus, the methods are less 

well suited to handle the settings where the dataset contains different types of missing data (e.g., 

continuous, binary, categorical data).  

Recently, the amelidiate and mediations functions in the mediation package in RStudio have been 

developed to conduct mediation analysis among multiple imputed datasets (Tingley, Yamamoto, 

Hirose, Keele, & Imai, 2014). These functions share a similar algorithm with the approach 
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proposed by Wu and Jia (Wu & Jia, 2013). With these functions, they impute the missing data 

first, then apply the mediation analysis to the imputed datasets with bootstrapped standard errors, 

and then combine the resulting inferences in order to average over imputations. However, the 

amelidiate function remains under-developed. They do not yield p-values for hypothesis testing, 

and they do not support models with ordered outcome (Tingley et al., 2019). 

Combining mediation analysis results and multiple imputation is an important topic for 

environmental epidemiology, and new methods are needed. Accordingly, the motivation of this 

study is to develop a novel approach to mediation analysis with missing values in the dataset that 

is computationally efficient and can be applied to different missing data settings. To achieve this 

goal, we use Multivariate Imputation by Chained Equations (MICE), combined with Maximum 

Likelihood (ML) estimation using Monte Carlo (MC) simulation. This approach has the advantage 

that it is less computationally intensive than the existing approaches (Tingley et al., 2019; Wu & 

Jia, 2013; Z. Zhang et al., 2015) that use the bootstrap, and additionally, it is easy to implement 

and can accommodate different data types of missing data. 

In the discussion that follows, we introduce a motivating example from the Ulaanbaatar Gestation 
and Air Pollution Research (UGAAR) study, its data description and some preliminary results in 

Section 3.2. Section 3.3 reviews the existing mediation analysis methods, the MICE algorithm, 

and the details of our newly proposed approach that combines MICE with ML. In Section 3.4, we 

apply the mediation analysis to UGAAR study, and we examine the effects of portable air purifier 

use and maternal blood cadmium concentration on infant birth weight. We examine the mediating 

role of blood cadmium. In Section 3.5, we illustrated the results of a simulation study, comparing 

the different approaches to mediation analysis with missing data. Finally, we make conclusions, 

discussion of limitations and future research directions in Section 3.6. 

3.2 Motivating example: Ulaanbaatar Gestation and Air Pollution 
Research (UGAAR) study 

We illustrate the challenges of mediation analysis in environmental epidemiology with missing 

biomarkers using data from the UGAAR study. The UGAAR study is an ongoing randomized air 

purifier intervention birth cohort study in Ulaanbaatar, Mongolia, focused on the impacts of 
portable indoor high-efficiency particulate air (HEPA) purifier use during pregnancy on fetal growth 

and early childhood development. Ulaanbaatar, Mongolia is one of the most polluted cities in the 
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world and it is highly suited to examine the health benefits of HEPA purifiers use (UNICEF, n.d.). 

In the present study, we investigated the effect of the portable HEPA purifiers use during 

pregnancy on infant birth weight, and additionally, we examined the mediating role of blood 

cadmium concentration measured in the blood of study participants.  

3.2.1 Data description  

The UGAAR study population included pregnant women ≥ 18 years old, and ≤ 18 weeks into a 

single-gestation pregnancy. The women were non-smokers, living in an apartment, planning to 

give birth in an Ulaanbaatar maternity hospital, and not using a portable air purifier in the home 

at the time of enrolment. Full details regarding the cohort and the data can be found in the study 

by Barn et al.(Barn, Gombojav, Ochir, Laagan, et al., 2018).  

Figure 2 shows the trial profile, including 540 participants who were randomly allocated to HEPA 

intervention or control group. The intervention group received one or two HEPA purifiers, based 

on apartment size, to use from enrolment to the end of pregnancy. The control group received no 

air purifier. After excluding 28 women who withdrew consent or moved out of study area, there 

were 512 women who were followed until the end of pregnancy. Among the 512 women, there 
were a total of 47 pregnancy losses, 2 chromosomal abnormalities, and 463 participants with live 

births. 6 women were further excluded from the study due to self-report on smoking in late 

pregnancy. In all of the analyses that follow, except Section 4.4.2, we limited our analyses to the 

457 live births.  

Table 1 shows basic descriptive statistics for the 𝑛 = 457 live births. There were a total of 423 

term births (i.e., gestational age ≥ 37 weeks) and 34 preterm births. Participants in control and 

intervention groups had similar demographic characteristics and lifestyles, including age at 

enrolment, household income, and pre-pregnancy BMI (Table 1).  

An important focus of the study was examining biomarkers of cadmium exposure. As illustrated 

in Table 1, out of the 457 live births, a total of 84 (~20%) participants did not provide blood samples, 

and they had missing values in blood cadmium concentrations. Furthermore, some other 

important variables were often missing, including income, pre-pregnancy BMI, and parity, leading 

to less than 70% of the cohort having complete data. 
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3.2.2 Preliminary analysis results and scientific question  

In previous analyses of the UGAAR data, Barn et al. (Barn, Gombojav, Ochir, Boldbaatar, et al., 

2018; Barn, Gombojav, Ochir, Laagan, et al., 2018) reported that air purifier use during pregnancy 

was associated with a 14% (95% CI: 4, 23%) reduction in maternal blood cadmium and, 

additionally, an 85 g (95% CI: 3, 167 g) increase in mean birth weight among babies born at term. 

More recently, Barn et al. (Barn et al., 2019) found that a doubling of blood cadmium concentration 

was associated with a 95 g (95% CI: 34, 155 g) and 91 g (95% CI: 32, 150 g) reduction in average 

birth weight among all births and term births, respectively, in adjusted models. These findings are 

demonstrated in Table 1, where we observe that the intervention group had a 100 g higher median 

birth weight, and additionally, a 0.03 µg/L lower median blood cadmium concentration, compared 

to the control group.  

Putting all these findings together, our scientific questions are as follows: 1) Does cadmium 

mediate the relationship between HEPA purifier use during pregnancy and infant birth weight, 

and, if so, what proportion of the health benefits of HEPA purifier use can be contributed to 

cadmium, and 2) Is our proposed MICE(ML) method, described below, a better approach in 
dealing with missing values in mediation analysis than using CC analysis with bootstrap, in terms 

of producing more precise estimates, with lower computational cost compared to published 

methods (Wu & Jia, 2013; Z. Zhang et al., 2015).  

3.3 Methodology 

3.3.1 Mediation analysis  

3.3.1.1 General definitions of mediation effects  

In this section, we review two common analytical approaches to mediation analysis: statistical 

mediation analysis versus causal mediation analysis (H. Lee et al., 2019; Pearl, 2012; 

Vanderweele, 2015). Statistical mediation analysis uses linear models and it is commonly used 

for continuous outcomes and mediators with linear regression models and no exposure-mediator 

interaction (VanderWeele, 2016). In contrast, causal mediation analysis defines direct and indirect 

effect using the potential outcomes framework. It is often used as the extension of the statistical 
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approach to allow for nonlinearity, exposure-mediator interaction, and categorical data (Pearl, 

2001).  

Statistical mediation analysis expresses the direct and indirect effects in terms of the regression 

coefficients associated with the models for the outcome and the mediator. Let A be the exposure, 

Y the outcome, M the mediator and C the vector of covariates, the two models are regressed as 

follows:  

𝐸[𝑌|𝑎, 𝑚, 𝑐] =  𝜃0 +  𝜃1𝑎 + 𝜃2𝑚 +  𝜃4′𝑐.       [1] 

𝐸[𝑀|𝑎, 𝑐] =  𝛽0 +  𝛽1𝑎 + 𝛽2′𝑐.        [2] 

If the models are correctly specified, the direct effect (DE) is equal to the parameter 𝜃1, and it is 

interpreted as the effect of the exposure on the outcome conditional on mediator level and other 

covariates controlled at a specific value.(MacKinnon, 2012) The indirect effect (IE) is equal to the 

quantity 𝛽1𝜃2, which is the product of the exposure coefficient in Equation [2] and the mediator 

coefficient in Equation [1]. Therefore, this approach is generally referred to as the product method. 

The IE is interpreted as the effect of the exposure on the outcome that passes through the 

mediator, conditional on covariates. The total effect (TE) is composed of the sum of DE (𝜃1) and 

IE (𝛽1𝜃2), representing the overall effect of the exposure on the outcome.  

To describe the causal mediation analysis approach, originally defined by Robin & Greenland 

(Robins & Greenland, 1992) and Pearl (Pearl, 2001), let 𝑌(𝑎, 𝑚)be the potential outcome of Y, 

possibly counterfactual to the fact, if A was set to 𝑎 and M was set to 𝑚. If A is binary, then 𝑎 = 1 

and 𝑎∗ = 0. Let 𝑀(𝑎) be the potential outcome of M that we would see if A was set to 𝑎.  

The controlled direct effect (CDE) comparing the effect of A on Y when A = 𝑎 with A = 𝑎∗ and 

when the mediator is fixed at level 𝑚 is defined by 𝑌(𝑎, 𝑚) − 𝑌(𝑎∗, 𝑚). The average CDE(𝑚) for 

a population, conditional on covariates C = 𝑐, is denoted by 𝔼(𝑌(𝑎, 𝑚) − 𝑌(𝑎∗, 𝑚)|𝑐).  

In contrast, the natural direct effect (NDE) is formally defined by  𝑌(𝑎, 𝑀(𝑎∗)) − 𝑌(𝑎∗, 𝑀(𝑎∗)). It 

expresses the effect of A on Y by changing the exposure from 𝑎∗ to 𝑎, but setting the mediator 

level to 𝑀(𝑎∗), which is what it naturally would have been if exposure had been 𝑎∗. Likely, we 
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define the average NDE for the population conditional on covariates C = 𝑐 , 

𝔼(𝑌(𝑎, 𝑀(𝑎∗)) − 𝑌(𝑎∗, 𝑀(𝑎∗))|𝑐).  

Correspondingly, the natural indirect effect (NIE) expresses how much the outcome would change 

on average when the exposure was fixed at level 𝑎 but the mediator was changed from the level 

it would have been if exposure had been 𝑎∗ to the level it would have been if exposure had been 

𝑎. The average NIE for the population, conditional on covariates C = 𝑐, is formally defined as 

𝔼(𝑌(𝑎, 𝑀(𝑎)) − 𝑌(𝑎, 𝑀(𝑎∗))|𝑐). It is easily to see that the total effect is composed of the sum of 

the NDE and NIE: 𝑌(𝑎) − 𝑌(𝑎∗) = 𝑌(𝑎, 𝑀(𝑎)) − 𝑌(𝑎∗, 𝑀(𝑎∗)) = [𝑌(𝑎, 𝑀(𝑎) − 𝑌(𝑎, 𝑀(𝑎∗))] +

[𝑌(𝑎, 𝑀(𝑎∗)) − 𝑌(𝑎∗, 𝑀(𝑎∗))].  

For valid parameter estimation in causal mediation analysis, several assumptions are required, 

including: 

A1: There is no unmeasured confounder for the exposure-outcome relationship. 

A2: There is no unmeasured confounder for the mediator-outcome relationship. 

A3: There is no unmeasured confounder for the exposure-mediator relationship. 

A4: There is no mediator-outcome confounder is itself affected by the exposure. 

A1 and A2 are required to estimate CDE and A3 and A4 are two additional assumptions for 

estimating NDE and NIE. A1 and A3 would be automatically satisfied when the study is a 

randomized clinical trial (RCT), i.e., the exposure is randomly assigned. Note that even with an 

RCT, A2 is not guaranteed to be satisfied.  

Applying these definitions into practice, we limit our attention to the case of a continuous outcome 

(birth weight) and mediator (log2-transformed cadmium concentration), and binary exposure 
variable (HEPA purifier use) as in the UGAAR study. When the exposure and the mediator interact 

in their effect on the outcome, these counterfactual effects can be estimated from the regression 

models and Equation [1] is replaced by  

𝐸[𝑌|𝑎, 𝑚, 𝑐] =  𝜃0 + 𝜃1𝑎 +  𝜃2𝑚 +  𝜃3𝑎𝑚 +  𝜃4′𝑐.      [3] 
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The causal inference approach also applies to the scenarios in which one or both of the outcome 

and mediator are binary. See VanderWeele (VanderWeele, 2016) for further details. 

If the models are correctly specified and the confounding Assumptions A1–A4 hold, the controlled 

direct effect (CDE), natural direct effect (NDE), and natural indirect effect (NIE) estimates for a 

change in the exposure from level 𝑎 to 𝑎∗ are given as follows: 

 𝐶𝐷𝐸(𝑚) = (𝜃1 + 𝜃3𝑚)(𝑎 − 𝑎∗) 

 𝑁𝐷𝐸 = {𝜃1 + 𝜃3(𝛽0 +  𝛽1𝑎∗ + 𝛽2
′ 𝑐)}(𝑎 − 𝑎∗) 

 𝑁𝐼𝐸 = (𝛽1𝜃2 +  𝛽1𝜃3𝑎)(𝑎 − 𝑎∗)  

Note that in the absence of AM interaction (i.e., 𝜃3 = 0), the CDE and the NDE are equal to the 

DE (i.e., 𝜃1) obtained using statistical approach, and the NIE is equal to the IE (i.e., 𝛽1𝜃2) obtained 

using statistical approach.  

3.3.1.2 Effect size measures 

The majority of mediation analysis studies do not report a quantitative effect size for the mediated 

effect (Klumparendt, Nelson, Barenbrügge, & Ehring, 2019; Murphy, Shevlin, Houston, & 

Adamson, 2012; J. Zhang, Wedel, & Pieters, 2009). Of those which do report the effect size, the 

proportion mediated (PM) is currently the most commonly used measure to assess the relative 

magnitude of the indirect effect (Preacher & Kelley, 2011). It is also the only and the default effect 

size measure in the mediation package in RStudio (Tingley et al., 2019). The PM is calculated by 

dividing the indirect effect by the total effect: 

𝑃𝑀 =  𝛽1𝜃2/(𝛽1𝜃2 + 𝜃1). 

Although the PM has some limitations, such as that its confidence interval is often quite wide, and 

additionally, that it lacks a clear interpretation when the direct and indirect effects are in opposite 

direction, it is nonetheless a helpful summary of how important the mediator is in explaining the 

association of the exposure on the outcome (VanderWeele & VanderWeele, 2015)。 

3.3.2 Review of interval estimation for model parameters in mediation analysis  
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The confidence intervals are calculated based on the critical values from the standard normal 

distribution. Calculating 95% confidence intervals for model parameters can be challenging in 

mediation analysis, particularly for estimating the indirect effect because it is a non-linear function 

of the parameters in Equations [1] and [2] (Mackinnon et al., 2004; Preacher & Hayes, 2004; 

Sobel, 1982). The most commonly used methods include the Sobel test, bootstrapping, and 
Monte Carlo method (Bollen & Stine, 1990; Mackinnon et al., 2004; Shrout & Bolger, 2002; Sobel, 

1982). The Sobel test obtained via the delta method is a conservative but the most commonly 

used estimate. The Sobel standard error of the product 𝛽1𝜃2 is estimated by √𝜃2
2𝑆𝐸𝛽1

2 +  𝛽1
2𝑆𝐸𝜃2

2 . 

However, the power of the Sobel test is questionable because the product of two normally 

distributed variables is usually not normally distributed, especially when the sample size is small, 

and therefore the 95% confidence interval should not be symmetric (Preacher & Hayes, 2004). 

Bootstrapping, as a nonparametric resampling procedure does not rely on the distribution 

assumption on the indirect effect. From each of the bootstrapped samples, the indirect effect is 

computed and an empirical sampling distribution of 𝛽1𝜃2  is derived (Mackinnon et al., 2004; 

Preacher & Hayes, 2004; Shrout & Bolger, 2002). Monte Carlo method uses the estimates of 𝛽1 

and 𝜃2 and their standard errors and generates random normal variables for 𝛽1 and 𝜃2 to create 

an empirical distribution of 𝛽1𝜃2  (Mackinnon et al., 2004). However, the application of these 

methods has been limited to studies with complete data. The presence of missing values has put 

another layer of challenge to handle the nonnormal distribution of 𝛽1𝜃2.  

3.3.3 Multivariate Imputation by Chained Equations 

Before describing our proposed method for mediation analysis with missing data, we briefly review 

MICE for multiple imputation. MICE has become a popular approach to MI because of its flexibility 
to use. MICE, also known as “fully conditional specification”, imputes each variable with missing 

values conditional on all the other variables. Unlike other MI approaches which assume a large 

joint model for all the variables (e.g., a joint normal distribution), MICE models each variable 

according to its own distribution. Therefore, MICE can handle many different data types (e.g., 

binary variables using logistic regression and continuous variables using linear regression) (Stef 

van Buuren & Groothuis-Oudshoorn, 2011a). The implementation of MICE assumes the missing 

data are missing at random (MAR), which means the probability of missingness is related to the 

observed values of other variables in the dataset but not to the variable itself (Rubin, 1976).  
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The algorithm of MICE starts from a random draw from the observed values of each variable to 

replace the missing values (White et al., 2011). Then, the first variable with missing values to be 

imputed will be set back to missingness and this variable will be regressed on all the other 

variables. The missing values are replaced by the predictive values from the posterior predictive 

distribution. This procedure is cycled through each variable with missingness to finish a single 
iteration. Such an iteration will be repeated several times (typically 5 to 10) to stabilize the results 

and to produce a single imputed dataset. The entire process is repeated independently 𝑚 times, 

obtaining 𝑚 imputed datasets, which have identical observed data entries but different imputed 

values. See Section 6 for discussion of the appropriate number of imputations that should be used 

with MICE. Within each imputed dataset, the quantity of interest is estimated, and these estimates 

differ for each imputed dataset because of the different imputed values. The 𝑚 estimates are 

pooled into one single estimate using Rubin’s Rules (Carpenter, 2013) with commensurate 

standard error, thereby combining the variation within and between the 𝑚 imputed datasets.   

3.3.4 Combining MICE and Maximum Likelihood Estimation in a mediation analysis  

In this section, we propose an approach that combines MICE and Maximum Likelihood estimation 

in order to obtain point and interval estimates for target parameters in the mediation analysis. We 

call this method MICE(ML), in contrast to MI(BOOT) and BOOT(MI) methods described by Wu 

and Jia (2013) and Zhang et al. (2015). Our proposed MICE(ML) can be related to the theory of 

the multivariate delta method described by Sobel (Sobel, 1982),` that is used for calculating 

standard errors for estimators (e.g., the indirect effect) that are nonlinear functions of 

asymptotically normal random variables. To illustrate the main idea, note that, the quantities of 

interest in the mediation analysis are 𝜃1 (direct effect), 𝛽1𝜃2 (indirect effect), 𝜃1 + 𝛽1𝜃2 (total effect) 

and 𝛽1𝜃2/(𝜃1 + 𝛽1𝜃2) (the proportion mediated). In finite samples, the resulting estimators will not 

be normally distributed because they are non-linear combinations of asymptotically normally 

distributed estimators for 𝜃1, 𝜃2, and 𝛽1 (Sobel, 1982). 

 Rather than using the bootstrap, we can calculate 95% CIs for the four quantities using Monte 

Carlo simulation by generating from a normal distribution approximation of the maximum 

likelihood estimates (MLE) 𝜃1, 𝜃2, and 𝛽̂1 obtained by the regression models from Equation 1 and 

2.  
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The following is the description of the MICE(ML) procedure for mediation analysis with a partially 

missing mediator. Figure 3 is a visualized presentation of these steps and we used 𝜓 as a general 

parameter for convenience. 

1. MICE step: Apply MICE to the incomplete dataset with missing values to obtain 𝑚 imputed 

datasets, 𝑖𝑚𝑝𝑖, 𝑖 =  1, . . . , 𝑚.  

2. For 𝑖 in 1: 𝑚 

a. Analysis step: Using Equations [1] and [2], estimate 𝜃1, 𝜃2, and 𝛽1 within the 𝑖𝑡ℎ 

imputed dataset and obtain ML estimates 𝜃1𝑙 ,  𝜃2𝑙 , and 𝛽̂1𝑙, and their standard 

errors 𝑠𝑒(𝜃1𝑙), 𝑠𝑒(𝜃2𝑙), and 𝑠𝑒(𝛽̂1𝑙).  

3. For 𝑗 in 1: 𝑛 

a. ML simulation step: From a random normal distribution approximation of the MLE 

for each parameter estimate, simulate 𝑛 random numbers for each parameter, 

denoted 𝜃1𝑖𝑗, 𝜃2𝑖𝑗, and 𝛽̂1𝑖𝑗    

4. Combination step: These 𝑚 × 𝑛  MC simulations of 𝜃1̂ , 𝜃2̂ , and 𝛽1̂  are then used to 

generate the sampling distributions of 𝛽1𝜃2̂ (indirect effect), 𝜃1̂ + 𝛽1𝜃2̂ (total effect) and 

𝛽1𝜃2̂ /(𝜃1̂ + 𝛽1𝜃2̂) (the proportion mediated). The lower and upper confidence limits for 

each quantity are obtained from the corresponding percentiles of the empirical 

distributions.  

The combination step is justified because it is a numerical integration of the target quantities over 

the posterior distribution of the missing data (van de Schoot et al., 2014). 

This proposed approach has several advantages. First, it accounts for the statistical uncertainty 

due to missing data in the imputations. MICE can handle different types of missing data so that it 

can be applied to many different settings. Second, the uncertainty due to random sampling error 

is accounted for by ML. Third, ML is much more computationally efficient than other resampling 

methods, such as bootstrap. This advantage can be further prominent when there are a large 

number of variables or samples in the dataset. Fourth, the 95% confidence intervals constructed 

by taking the quantiles of the empirical distributions is easy to understand, implement and interpret.  
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3.4 Analysis of the UGAAR data: Assessing the mediating role of 
maternal blood cadmium concentration in the relation between air 
purifier use and infant birth weight  

3.4.1 Methodology 

We applied the MICE(ML) method to the UGAAR Study data. To re-iterate, the exposure is HEPA 

purifier use during pregnancy, the outcome is infant birth weight, and the mediator is blood 
cadmium concentration among pregnant women, which is partially missing. We used a log-2 

transformation to handle the skewness blood cadmium concentration and reduce the influence of 

outliers (Romano, Enquobahrie, Simpson, Checkoway, & Williams, 2016; VanderWeele, 2016). 

The base-2 logarithm was used for easy interpretation.  

Following the multi-step procedure described in Section 3.3.4, we first applied MICE to the 

UGAAR data. The primary variable with missingness of interest is the mediator. However, building 

on the analyses of Barn et al. (Barn et al., 2019; Barn, Gombojav, Ochir, Boldbaatar, et al., 2018; 

Barn, Gombojav, Ochir, Laagan, et al., 2018), there were 5 other explanatory variables with 

missingness, including living with a smoker in late pregnancy, pre-pregnancy BMI, parity, income, 

and coal stove density within 5,000 meters. In total, there were more than 30% of subjects had 

missing values in at least one variable. We used the mice package in RStudio (Stef van Buuren 

& Groothuis-Oudshoorn, 2011a) to impute each variable in a model conditional on the outcome, 

exposure, mediator, and all the rest of the covariates. Based on the conclusions by previous 

researchers (Bodner, 2008; Graham et al., 2007; Stef van Buuren, 2018; White et al., 2011), we 

used 5 iterations per imputation and create 20 imputed datasets.   

Following the multi-step procedure, we fit the analytical models in Equations 1 and 2 to the 

imputed datasets. We did not include exposure mediator interactions in the model because no 

significant interaction was detected. When selecting adjustment variables in the analytic models, 

we used a causal directed acyclic graph (DAG) (see Figure 4) to present the relations between 
the exposure, mediator, outcome and a set of covariates. The selected covariates were either 

potential mediator-outcome confounders (e.g., living with a smoker in late pregnancy), or those 

which may have an impact on the mediator or outcome (e.g., coal stove density and sex of baby). 

Because the DAG implies the causal relationships between variables, we adjust for the following 



 26 

covariates: Maternal age at birth (<25, 25-29, 30-34, ≥35 years), pre-pregnancy BMI (kg/m2, 

continuous), monthly household income (<600,000, 600,000 to <1,000,000, ≥1,000,000 Tugriks), 

living with a smoker in late pregnancy (no, yes), anemia (no, yes), parity (0, 1, ≥2), coal stove 

density within 5,000 m (gers/hectare, continuous), and sex of the baby (female, male). Additionally, 

following Barn et al. (Barn, Gombojav, Ochir, Boldbaatar, et al., 2018), when modeling birth weight 
we also adjust for gestational age and gestational age squared (weeks, continuous).  

We conducted the mediation analysis in several different ways. Firstly, we compared MICE(ML) 

with the CC analysis, because the CC method is widely used in the literature. Secondly, in order 

to isolate the effect of the intervention on fetal growth, we presented an analysis of all births, and 

additionally, an analysis that was restricted to term births, which are defined as a birth with 

gestational age that was greater than 37 weeks. With the CC analysis, the 95% CIs for the IE, TE, 

and PM were calculated with 10,000 iterations of bootstrap resampling. With MICE(ML), 10,000 

simulations are generated from the MLEs computed from each of the 20 imputed datasets. 95% 

CIs for the IE, TE, and PM were calculated from the empirical distribution of the 200,000 MLs 

simulations.    

3.4.2 Results  

The results of the mediation analysis are given in Table 2. The results with CC analysis had a 

sample size of 310 (all births) and 297 (term births), which excluded 147 (32%) and 126 (30%) 

participants due to missing values. The subjects with missing values were included in the 

imputation analysis using the mice package in RStudio (Stef van Buuren & Groothuis-Oudshoorn, 

2011a). Thus the sample sizes increased to 457 and 423 for all births and term births, respectively. 

Consequently, when comparing MICE(ML) versus CC in Table 2, we saw an overall pattern where 

the estimates of the regression coefficients 𝜃1, 𝜃2, and 𝛽1 became more precise with narrower 95% 

CIs.  

In Table 2, the symbol 𝜃1 indicates the DE, which is the effect of the air purifier use on the birth 

weight conditional on controlled blood cadmium level and other covariates. For example, keeping 

cadmium level and all the covariates constant, the MICE(ML) analysis suggests that intervention 

was directly associated with a 52 g (95% CI: -24, 129 g) increase in average birth weight in term 

births. The symbol 𝜃2  indicates the effect of cadmium level on the birth weight, whereas the 

symbol 𝛽1 represents the effect of intervention on the cadmium. The estimated parameter values 
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are consistent with the previous findings that air purifier use reduced average blood cadmium 

concentration (Barn, Gombojav, Ochir, Laagan, et al., 2018). The product of 𝛽1 and 𝜃2 is the IE, 

which describes the effect of the HEPA purifier use on the birth weight that passes through the 

blood cadmium concentration. After applying MICE(ML), the estimated IE were large in magnitude 

and precise in both all births (17 g, 95% CI: 3, 39 g) and term births (18 g, 95% CI: 3, 40 g), 

indicating the potential mediating role of the blood cadmium concentration. The PM was 

calculated by dividing the IE by the TE, and it can be interpreted as the proportion of the effect of 

HEPA purifiers use on birth weight mediated by the blood cadmium concentration. The PM was 

31% (95% CI: -368%, 421%) in all births and 25% (95% CI: -65%, 174%) in term births.  

3.4.3 Intention-to-treat analysis of all births  

Thus far, the mediation analysis has examined the role of missing data in the mediator variable. 

However, as indicated in Figure 1, an additional source of missing data in the UGAAR data is the 

pregnancy losses. There were 47 pregnancy losses due to spontaneous abortion or stillbirth, and 

these pregnancies were excluded from the mediation analysis because we did not have data on 

birth weight. However, restricting the analysis to live births can cause selection bias (Chiu et al., 

2020). To preserve the benefits of randomization, we conducted an intention-to-treat (ITT) 

analysis that incorporated the pregnancy losses into the analysis (i.e., incorporated pregnancies 

with missing values in the outcome).  

Given the fact that pregnancy loss shares common causes with preterm birth, such as birth 
defects and maternal stress (Stein, Susser, Warburton, Wittes, & Kline, 1975), we conducted an 

ITT analysis assuming that pregnancy losses would have resulted in preterm births if instead they 

had been born alive. Therefore, preterm status was used as an auxiliary variable in the imputation 

model in the ITT analysis. Using the gestational age variable, we distinguished between later 

preterm (35 to 37 weeks) versus moderate preterm (less than 35 weeks). We pessimistically 

assumed all 47 pregnancy losses would be moderate preterm births.  

The results of the ITT analysis are given in the Table 2. The ITT analysis enlarged the sample 

size to the entire cohort (n = 504) by imputing the birth weight of the 47 pregnancy losses, 

assuming that all pregnancy losses would have resulting a preterm birth. Then we conducted the 

same mediation analysis on this full cohort using CC analysis and MICE(ML). Since all the 
subjects with missing values would be omitted in the CC analysis, the dataset left in the analysis 
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are exactly those who have completed data on all variables (n = 310). Thus, the CC analysis of 

this full cohort ITT analysis is simply a repeat of the CC analysis of all births and therefore, it was 

omitted from the table. With MICE(ML), missing birth weights and all the other missing values 

were imputed.  

The results of the ITT analysis in Table 2 shows a similar pattern as the MICE(ML) analysis in all 

births with slightly wider 95% CIs for target parameters. Including those presumed moderate 

preterm births, we found a significant indirect effect of 19 g (95% CI: 4, 42 g) and it explained 32% 

(95% CI: -349%, 410%) of the total effect of HEPA purifier use on birth weight. Thus, incorporating 

pregnancy losses into the analysis had only a small impact on the results. This may be because 

the pregnancy losses only occupy less than 10% of the total sample size.  

3.5 Simulation study  

We conducted a simulation study to evaluate the performance of the proposed MICE(ML) in 

mediation analysis with missing data, compared with CC analysis, and additionally, compared 

with a gold-standard analysis that uses the full dataset without any missing data. 

3.5.1 Simulation design 

In this simulation, the exposure 𝑥, mediator 𝑚, outcome 𝑦, and covariates 𝑐1, 𝑐2, 𝑐3 were randomly 

generated to mimic a similar but simpler situation than the UGAAR study. The three covariates 

were considered as mothers’ BMI (continuous), child sex (binomial with 𝑝 = 0.5), and mothers’ 

smoking status (binomial with 𝑝 = 0.1), respectively. The quantity 𝑥  was a binomial random 

variable with 𝑝 = 0.5, representing the intervention status. The quantity 𝑚  was a continuous 

mediator (e.g., log-transformed cadmium) that was assumed to depend on the exposure and 

mothers’ smoking status. The quantity 𝑦 was birth weight. The two assumed true underlying 

models for the outcome and mediator were given as:  

𝑦̂ = 3500 + 100𝑥̂ − 50𝑚̂ + 10𝑐̂1  − 100𝑐̂2 − 200𝑐̂3 + 𝜖 

𝑚̂ = −2.5 − 0.2𝑥̂ + 0.1𝑐̂3 + 𝜖. 
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Therefore, the true value of the population parameters 𝜃1, 𝜃2, and 𝛽1 were 100, -50, and -0.2, 

respectively. In this setting, the true direct effect of 𝑥 was 100, indirect effect for 𝑚 was 

(−50) × (−0.2) = 10, total effect is 100 +  10 =  110, and the PM was 10 ÷  110 =  0.09. To 

mimic the missing data in the UGAAR study, we generated 𝑛 = 500 observations independently 

and randomly created some missing cells. To make the missingness closer to the reality, we 
included four different missing patterns: 1) only the mediator has missing values, 2) only 𝑐1 

(BMI) has missing values, 3) only 𝑐3 (smoking) has missing values, and 4) both the mediator 

and 𝑐3 have missing values. In total, 30% of the study participants had missingness in at least 

one variable. The probability of missingness of each variable was related to the observed values 
of other variables in the dataset, making the missing mechanism MAR. For example, 

participants were more reluctant to provide blood sample if they were assigned into the control 

group.  

We randomly generated 1,000 datasets by following the procedures above. We analyzed each 

dataset using 3 different methods: 1) MICE(ML), 2) CC analysis, and 3) a “gold-standard” 

analysis. The gold-standard analysis was mediation analysis from fitting Equation 1 and 2 to the 

entire set of simulated data before generating any missing values. We call it the gold-standard 

analysis because it entails the best possible scenario, namely the total absence of missing data. 

In contrast, the CC analysis only analyzed the observed data after generating missing values, 

whereas the MICE(ML) analyzed the observed data and the imputed data. Thus, the gold-

standard analysis represented a benchmark with which to measure the performance 

improvement of MICE(ML) versus CC analysis. The numbers of bootstrap resampling and MLE 

simulations were set to 5,000. For each method, we report the average bias estimates, 

coverage probabilities, and 95% CI ranges from the analysis of the 1,000 simulated datasets.  

3.5.2 Simulation results 

Table 3 shows the performance of MICE(ML), CC analysis, and gold-standard, and additionally, 

the true parameters that were used to generate the simulated data. The first section shows the 

average amount of bias incurred by the three methods, where smaller bias indicates that the point 

estimates are less biased. Considering the scale of the true parameter, all three methods perform 

well in point estimates. The CC analysis showed surprisingly good performance, and we suspect 

that the bootstrap resampling plays an important role in improving its accuracy. We wish we would 

be able to conduct a simulation study showing more biased estimates in the CC analysis. However, 
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due to the difficulty to run through the simulation codes of the CC analysis, we were not able to 

achieve this goal. Nonetheless, MICE(ML) showed better performance than the CC analysis in 

other parts. 

In Table 3, the coverage probability indicates the proportion of times the 95% confidence interval 

contained the true parameters. All methods showed similarly good coverages close to the nominal 

value of 0.95. Notably, MICE(ML) showed its advantage in the 95% CI width. The 95% CIs were 

smaller (i.e., more precise) in MICE(ML) analysis than CC analysis. As expected, the CC analysis 

produced wider confidence intervals because it utilized smaller sample size that discarded the 

missing data. In contrast, MICE(ML) analysis showed a better performance such that its 95% CIs 

width were comparable to 95% CIs generated from the gold-standard analysis. The gold-standard 

analysis generally showed the best performance because it used the entire dataset with no 

missing data. Overall, we cannot say MICE(ML) is the best approach, but it yields relatively good 

estimates in the event of missing data and shorter 95% CIs to improve the precision of the 

estimates.   

3.6 Discussion  

Mediation analysis has been largely used in health sciences and psychological research. The 

goal of such an analysis is to examine whether the intermediate variable lies in the causal pathway 

between the exposure and outcome. In this paper, we extend the general mediation analysis to 

the context with missing data. We proposed a new approach MICE(ML) that combines ML with 

MICE. Conceptually, our MICE(ML) method is similar to the bootstrapping method of Wu & Jia 

(Wu & Jia, 2013) and the amelidiate function.(Tingley et al., 2019) However, our approach is more 
flexible to handle different missing data types. It is less computationally intensive because it 

incorporates the large sample normal distribution of the ML estimators for parameters in 

Equations [1] and [2] in order to model uncertainty and calculate 95% CIs. Rather than 

bootstrapping the data, MICE(ML) simulates from a normal distribution. The whole procedure, 

including multiple imputation, generating simulations with MLEs and mediation analysis can be 

finished within several minutes. In contrast, the traditional methods with bootstrap resampling can 

take hours. The simulation study further demonstrates the good performance of MICE(ML), which 

was comparable to the gold-standard analysis. With MICE(ML), the mediation output includes 

point and interval estimates of every single regression coefficient so that it can be used to extend 
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from the application in this study, for example, if researchers want to calculate other types of effect 

size measure.  

We applied this approach to data from the UGAAR study, and we explored the mediating role of 

blood cadmium concentration in the relationship between HEPA purifier use during pregnancy 

and infant birth weight in the UGAAR study. We found that MICE(ML) improved the precision of 

the associations in the mediation analysis because it incorporated the missing data. The 95% CIs 

of the mediation parameters were narrowed. For example, in Table 2 in the analysis of live births, 

comparing MICE(ML) with CC analysis, the 95% CI for the direct effect decreased from 37 g (95% 

CI: -56, 126 g) to 52g (95% CI: -24, 129 g), which was a 16% decrease. This is as important as 

enlarging the sample sizes. For example, a 16% narrower interval is equivalent to increasing the 

sample size of the data by 19%. To see why this is the case, note that the standard error of the 

regression coefficient in linear regression decreases at a rate of 1/√𝑛. Therefore, a 16% reduction 

in the standard error is roughly equivalent to multiplying the sample size of the data by a factor of 

1/0.84 = 1.19. Thus, in the UGAAR study, MICE(ML) appeared to recover nearly two thirds of the 

information that was lost through missing data. In the simulation study, MICE(ML) also showed 

an improved performance with shorter 95% CIs than CC analysis. The reductions of CI widths 

ranged from 9% to as large as 42%. The MICE(ML) analysis helped to explain the potential 

important role of blood cadmium concentration. It suggests that the relationship between HEPA 

purifier use and birth weight is in part mediated by a change in blood cadmium concentration. The 

mediated effects explained 31% and 25% of the total effect of the HEPA purifier use during 

pregnancy on infant birth weight in all births and term births, respectively.   

There are some limitations of this study. First, the PM has been criticized as a measure of effect. 
Although the PM can capture the importance of the mediation pathway, it has been shown to be 

a highly variable measure (Preacher & Kelley, 2011). The confidence intervals of PM obtained by 

bootstrapping, maximum likelihood, or other methods can be very wide that exceed ±1.0. Some 

authors recommended to simply use the confidence interval for the indirect effect (Preacher & 

Kelley, 2011). The PM has also been criticized based on its interpretation. The quantity 𝛽1𝜃2/(𝜃1 +

𝛽1𝜃2)  can exceed 1.0 (e.g., when 𝜃1  and 𝛽1𝜃2  are in opposite directions) or it be negative, 

depending on the relation of 𝜃1  to 𝛽1𝜃2 . Given that it is not appropriately interpreted as a 

proportion, it is less useful than its label implies (Preacher & Kelley, 2011). However, it is the most 

widely used effect size measure in the literature (Preacher & Kelley, 2011) and a good 

measurement in the UGAAR study because the point estimates of total effect and the indirect 
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effect are in the same direction. Other available quantitative effect size measures include ratio 

mediated (Freedman, 2001; Mackinnon, Warsi, & Dwyer, 1995), partially or completely 

standardized IE (Cheung, 2009), and R2 measurement (Fairchild, Mackinnon, Taborga, & Taylor, 

2009). 

Second, although we adjusted for confounders in our regression models, there might exist further 

unmeasured mediator-outcome confounders. For example, diet during pregnancy influences both 

blood cadmium concentration (Järup & Åkesson, 2009) and birth weight (Stephenson & Symonds, 

2002). Studies have shown that food consumption is a main source of blood cadmium and foods 

with the highest cadmium content include leafy vegetables, grains, shellfish, and organ meats 

(Järup & Åkesson, 2009; Wing, Wing, Tidehag, Hallmans, & Sjöström, 1992). However, evidence 

suggests that the Mongolian populations have low consumption of vegetables and fruits (Public 

Health Institute, n.d.). Research also shows that the value of cadmium content decreased with 

increasing animal food consumption (Krajčovičová-Kudláčková et al., 2006). In principle, a 

sensitivity analysis could be conducted to assess the robustness of our direct and indirect effects 

to assumptions about unmeasured confounders. 

Third, there might be other unmeasured mediators in the pathway from intervention to birth weight. 

Cadmium may be a marker of sources of environmental toxicants that decrease birth weight. For 

example, we cannot rule out other coal-fired emissions, such as polycyclic aromatic hydrocarbons 

(PAHs), as possible mediators of the observed association between intervention and birth weight. 

Studies have shown that maternal exposure to PAHs have an inverse impact on birth outcomes, 

especially on birth weight (Anand, Taneja, & Others, 2019; W. A. Jedrychowski et al., 2017; W. 

Jedrychowski et al., 2003). Coal smoke as a source of cadmium is also a source of PAHs so that 

the cadmium concentration increase with PAHs concentration (Amster & Levy, 2019; Barn et al., 

2019). Particle-bounded PAHs also would likely be affected by HEPA purifier. As a mediator-
outcome confounder that is also affected by the exposure (i.e., intervention status), PAHs could 

be another unmeasured mediator in the pathway from intervention to birth weight.  

Although MICE(ML) has its advantage over bootstrap resampling that MICE(ML) is more 

computationally efficient, the application of MLE has some parametric assumptions (e.g., the point 

estimates like 𝜃2 have a normal distribution) (Lehmann, 2009), which may limit the spread of 

MICE(ML) in other settings, for example, when variable selection is needed. In contrast, the non-

parametric bootstrap makes fewer assumptions and allows researchers to estimate the sampling 
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distribution of the point estimates (David, 1966; Obremski & Conover, 1981). However, in some 

epidemiology studies where variable selection is not the priority, this limitation would not hinder 

the application of MICE(ML). For example, some demographic variables (e.g., age, gender, 

income) are needed in the model to adjust for confounding regardless of whether they are 

significant or not. MLE would be more suitable than bootstrap in these settings.  

MICE, as one of the most popular approaches to address missing values has limitations. Its 

performance has been criticized that MICE perform poorly when there are interactions in the 

imputation model. Instead, other imputation methods are available to cover this limitation. For 

example, Conditional Gaussian Model (CGM) has been suggested to reduce bias and produce 

robust imputations when interactions exist.  CGM can impute the categorical variables with log-

linear model and impute the continuous outcomes with a conditional JN outcome (Chen, Xie, & 

Qian, 2011). 

We also would have liked to apply MI(BOOT) and BOOT(MI) to the data. However, due to the 

uncertain R code of these two methods, we did not do it. In addition, BOOT(MI) is totally 

impractical because it takes way too long.   

Regarding the interpretation of results, even though some of the 95% CIs in our results include 

zero, we still treat them as important. Recently, more and more scientists have risen up against 

statistical significance and disputed the use of p-values for interpreting results. A recent article by 

Amrhein, Greenland and McShane (Amrhein, Greenland, & McShane, 2019) advised that 

researchers should not dismiss results simply because the p-values is greater than 0.05. Such 

designations might cause genuine effects to be dismissed. For example, in Table 2 , with 

imputation analysis, the results show that the total effect of HEPA purifier use on birth weight was 

an increase of 71 g, with a 95% CI of (-7, 150 g). Traditionally, this effect would be deemed as 

not statistically significant because the CI crosses zero. However, considering the regular birth 

weight of a new-born baby, 7-gram across the zero line is negligible and this effect estimate 

should be considered important.  

Although it is clear that these findings may not be generalizable to other settings, it does not 

impede its overall aim of identifying the role of blood cadmium in the link in the mediation chain. 

Findings in this study will still have important implications for public health and air pollution health 

impact assessment. It should be noted that this approach is not limited to mediation analysis but 
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can also be applied in any studies with missing values to examine the true associations. As future 

research, we will extend this approach to mediation models with multiple mediators.  
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Figure 2: A trial profile corresponding to the randomized UGAAR study 
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Figure 3: Graphic illustration of the MICE(ML) procedure 

𝑚 indicates the number of imputed datasets and 𝑛 indicates the number of simulations. imp = 

imputed dataset. 𝜓 is a point estimate from the analyses. 
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Figure 4: A DAG justifying variable selection in the adjusted models among HEPA 
purifier use, blood cadmium and birth weight 
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Table 1: Summary of baseline characteristics of control and intervention participants 
among live births (n = 457) in the UGAAR Study in 2014-15. 

Variables 

Control (n = 220) Intervention (n = 237) 

Median (25th, 75th 
percentile) or N (%) 

Median (25th, 75th 
percentile) or N (%) 

Birth outcomes    

Birth weight, g 3450 (3150, 3800) 3550 (3200, 3800) 

Preterm birth 10 (5%) 24 (11%) 

Mediator    

Blood cadmium 
concentration, µg/L 0.22 (0.16, 0.31) 0.19 (0.14, 0.27) 

Missing 47 (21%) 36 (15%) 

Covariates    

Gestational age, weeks 39.5 (38.5, 40.0) 39.5 (38.5, 40.0) 

Mother age, years 28 (25, 33) 30 (26, 33) 

Pre-pregnancy BMI, kg/m2 21.6 (19.6, 23.9)  21.4 (19.8, 23.9) 

Missing 21 (10%) 8 (3%) 

Monthly household income, 
Tugriks 

  

< 800,000 77 (35.0%) 90 (38.0%) 

≥ 800,000 134 (60.9%) 138 (58.2%) 

Missing 9 (4.1%) 9 (3.8%) 

Lived with a smoker in late 
pregnancy 92 (42%) 95 (41%) 

Missing 24 (11%) 19 (8%) 

Anemia 34 (15%) 53 (43%) 

Parity   

0 72 (33%) 79 (33%) 
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Variables 

Control (n = 220) Intervention (n = 237) 

Median (25th, 75th 
percentile) or N (%) 

Median (25th, 75th 
percentile) or N (%) 

1 87 (40%) 86 (36%) 

≥ 2 47 (21%) 61 (26%) 

Missing 14 (6%) 11 (5%) 

Coal stove density (within 
5000m buffer of apartment) 4.04 (3.35, 4.85) 4.23 (3.38, 4.92) 

Missing 1 (0%) 3 (1%) 

Sex of baby (Male)  122 (51%) 131 (55%) 
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Table 2: Mediation analysis results comparing CC analysis and MICE(ML) approaches in the UGAAR Study in 2014-15. 

 
Direct effect of 
intervention on 
outcome, 𝜃1 (g) 

(95% CI) 

Mediator’s effect 
on outcome, 𝜃2 (g) 

(95% CI) 

Intervention’s effect 
on mediator, 𝛽1 

(µg/L) 
(95% CI) 

Indirect effect, 

 𝛽1𝜃2 (g) 

(95% CI) 

Total effect, 

 𝜃1 + 𝛽1𝜃2 (g) 

(95% CI) 

 Prop. Mediated, 

 𝛽1𝜃2/(𝜃1 + 𝛽1𝜃2) 

(95% CI) 

Live births analysis 

Term births      

CC analysis 
(N = 297) 

37 
(-56, 126) 

-91 
(-152, -28) 

-0.19 
(-0.38, -0.02) 

18 
(1, 42) 

55 
(-37, 142) 

0.33 
(-2.48, 3.18) 

MICE(ML) 
(N = 423) 

52 
(-24, 129) 

-85 
(-137, -31) 

-0.23 
(-0.39, -0.06) 

18 
(3, 40) 

71 
(-7, 150) 

0.25 
(-0.65, 1.74) 

All births      

CC analysis 
(N = 310) 

27 
(-65, 119) 

-95 
(-157, -31) 

-0.17 
(-0.35, 0.00) 

16 
(0, 40) 

43 
(-47, 134) 

0.37 
(-2.85, 3.75) 

MICE(ML) 
(N = 457) 

22 
(-55, 99) 

-87  
(-139, -31) 

-0.21 
(-0.37, -0.05) 

17 
(3, 39) 

40 
(-38, 119) 

0.31 
(-3.68, 4.21) 

Full cohort ITT analysis 

MICE(ML) 
(N = 504) 

25 
(-58, 110) 

-86 
(-142, -31) 

-0.24 
(-0.40, -0.08) 

19 
(4, 42) 

46 
(-40, 131) 

0.32 
(-3.49, 4.10) 
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Table 3: Bias, coverage probability, and 95% CI width under the simulation study to 
evaluate the performance of MICE(ML) compared with the gold-standard analysis and the 
CC analysis. 

 True values Gold-standard CC MICE(ML) 

 Average bias estimates 

DE, 𝜃1 100 -0.42 -0.06 -0.08 

𝜃2 -50 0.45 -0.43 -1.00 

𝛽1 -0.20 0 0 0 

IE  10 -0.20 0.01 -0.40 

TE 110 -0.62 -0.05 0.11 

PM 0.09 0.01 0.01 0.00 

 Coverage probability 

DE, 𝜃1 100 0.952 0.957 0.948 

𝜃2 -50 0.958 0.952 0.940 

𝛽1 -0.20 0.935 0.938 0.948 

IE  10 0.935 0.940 0.947 

TE 110 0.949 0.956 0.944 

PM 0.09 0.958 0.955 0.946 

 95% CI width 

DE, 𝜃1 100 106 133 107 

𝜃2 -50 66 80 73 

𝛽1 -0.20 0.28 0.35 0.31 

IE 10 20 26 23 

TE 110 106 131 109 

PM 0.09 0.32 0.57 0.33 
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Chapter 4 Conclusion 

In this thesis, we sought to understand the underlying association between the HEPA purifier use 

during pregnancy and infant birth weight through blood cadmium concentration. In the presence 

of missing values, we developed a new approach MICE(ML) to estimate the mediation parameters. 

We implemented the new approach in the UGAAR study, and we compared the results with the 

CC analysis, which is the most commonly used approach in the literature (Bouhlila & Sellaouti, 

2013). We also conducted a simulation study to evaluate the performance of MICE(ML) side-by-

side with gold-standard and CC analysis.  

4.1 Contributions  

The results of this study are mainly relevant to these stakeholders: environmental health 

researchers, maternal health researchers, and biostatisticians. The goal of investigating the 

mediator role of blood cadmium in the association of HEPA purifier use during pregnancy and 

infant birth weight was also achieved. For example, we found that 31% (95% CI: -368%, 421%) 

and 25% (95% CI: -65%, 174%) of the effect of HEPA purifier use on birth weight were mediated 

by the blood cadmium concentration, in all births and term births, respectively. These findings 

should raise awareness of environmental health and maternal health researchers. The findings 
may also encourage relevant policies or regulatory regarding chemicals exposures during 

pregnancy.  

Most importantly, the new approach we developed provides a computationally efficient way for 

biostatisticians to deal with mediation analysis in the presence of missing values. We applied 

MICE(ML) to the UGAAR study which contains more than 30% of participants with uncomplete 

data. With the simulation study, we have illustrated the performance of MICE(ML) by comparing 

its point estimates, coverage probability, and confidence interval width with gold-standard and CC 

analysis. MICE(ML) accounts for not only the statistical uncertainty from missing data in the 

imputations but also the uncertainty from sampling fluctuation. In particular, MICE(ML) is much 

more computationally efficient than existing approaches. This helps the researchers when dealing 
with big datasets with large percentage of missingness or complex missing patterns. Specifically, 

MICE(ML) shows best performance in shortening 95% CIs compared to the CC analysis. 
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MICE(ML) also has its advantage in the flexibility. It can impute missing data in many different 

data types (e.g., continuous or categorical variables).  

4.2 Limitations and future work 

While our findings suggest that blood cadmium mediates the effect of HEPA purifier use on birth 

weight, this study has some limitations. The assumptions of mediation analysis may not be 

satisfied completely. Although we try to utilize as much information as we have, there might exist 

some unmeasured mediator-outcome confounders. For example, diet during pregnancy 

influences both blood cadmium concentration(Järup & Åkesson, 2009) and birth weight 

(Stephenson & Symonds, 2002). In addition, there might be other unmeasured mediators in the 

pathway from intervention to birth weight. Cadmium may be a marker of sources of environmental 

toxicants that decrease birth weight. For example, we cannot rule out other coal-fired emissions, 

such as polycyclic aromatic hydrocarbons (PAHs), as possible mediators of the observed 
association between intervention and birth weight. 

Regardless, this analysis and simulation study was well designed and conducted. Its findings 

illustrated the importance of blood cadmium in the causal pathway between HEPA purifier use 

and infant birth weight. Although it is clear that these findings may not be generalizable to other 

settings, such as other populations with different exposures, it does not impede its overall aim of 

identifying the role of blood cadmium in the link in the mediation chain. Findings in this study will 

still have important implications for public health and air pollution health impact assessment. It 

suggests the need for future investigations of other inverse health impacts by cadmium exposure 

during pregnancy. As well, it should be noted that this approach is not limited to mediation analysis 
but can also be applied in any studies with missing values to examine the true associations. As 

future research, a promising avenue would be extending this approach to mediation models with 

multiple mediators. For example, in the UGAAR study we would examine the mediating role of 

stress on child health outcomes.  
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Appendix A. Supplementary Table 1 for Manuscript Chapter 3 

To test the performance of MICE(ML), we also conducted another simulation study with simpler 

missing pattern: only the mediator (𝑚) has missing values. Other factors remained the same, for 

example, the values of the true parameters, percentage of missingness (i.e., 30%), and 1,000 

randomly generated datasets with 500 observations in each dataset. Likewise, we analyzed each 
dataset using 3 different methods: 1) MICE(ML), 2) CC analysis, and 3) gold-standard analysis. 

Supplementary Table 1 shows the performance of these methods. Similarly, the three approaches 

showed comparable performance in average bias estimates and coverage probability. MICE(ML) 

showed a little bigger but negligible bias than CC analysis in most of the point estimates.  

The difference of the three approaches is evident in the 95% CI width. As shown in the simulation 

study in Section 3.5, MICE(ML) has a distinct advantage that it produces a much shorter 95% CI 

width and this width can be comparable to the 95% CI width generated from the gold-standard 

analysis. This advantage was inherited in this simulation study, as well. The 95% CI width of 𝜃1, 

TE and PM produced by MICE(ML) are apparently shorter than the widths produced by the CC 

analysis (e.g., 108 in MICE(ML) vs. 133 in CC analysis for 𝜃1) and are very close to the widths 

produced by the gold-standard analysis (e.g., 108 in MICE(ML) vs. 107 in gold-standard analysis 

for 𝜃1). We also note that in this simulation study with a simpler missing pattern, this advantage 

of shorter 95% CI width looks not as prominent as the result in Table 3, which is the result of the 

simulation study with more complex missing pattern. It demonstrates that MICE(ML) plays an 
important role in imputing plausible values and address the imputation uncertainty. In the settings 

with more complex missing patterns or a larger missing percentage, this benefit over the CC 

analysis can restore the missing part of the data and increase the significance level of the findings.  
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Supplementary Table 1 Bias, coverage probability, and 95% CI width under the simulation 
study with the simpler missing pattern to evaluate the performance of MICE(ML) compared 
with the gold-standard analysis and the CC analysis. 

 True values Gold-standard CC MICE(ML) 

 Average bias estimates 

DE, 𝜃1 100 -0.73 -1.15 1.66 

𝜃2 -50 0.24 -0.96 -0.66 

𝛽1 -0.20 -0.01 0.00 0.00 

IE  10 0.30 -0.10 -0.63 

TE 110 -0.42 -1.24 1.70 

PM 0.09 0.01 0.01 0.00 

 Coverage probability 

DE, 𝜃1 100 0.958 0.953 0.942 

𝜃2 -50 0.945 0.955 0.948 

𝛽1 -0.20 0.960 0.955 0.946 

IE  10 0.941 0.949 0.954 

TE 110 0.955 0.952 0.951 

PM 0.09 0.940 0.966 0.945 

 95% CI width 

DE, 𝜃1 100 107 133 108 

𝜃2 -50 66 80 79 

𝛽1 -0.20 0.28 0.35 0.35 

IE 10 20 26 26 

TE 110 106 132 109 

PM 0.09 0.30 0.61 0.32 
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Appendix B. R code of the MSc thesis 

R code of the mediation analysis with MICE(ML) in the UGAAR study 
for Manuscript Chapter 3 

Preparation work 

library(dplyr) 
library(mice) 
library(boot) 
 
indirectsaved = function( 
  formula.y,formula.m, 
  dataset, random){ 
  d = dataset[random,] 
  model.y = lm(formula.y, data = d) 
  model.m = lm(formula.m, data = d) 
   
  theta1 = coef(model.y)[2] 
  theta2 = coef(model.y)[3] 
  beta = coef(model.m)[2] 
  IE = theta2*beta 
  TE = IE+theta1 
  PM = IE/TE 
  return(c(theta1, theta2, beta, IE, TE,PM)) 
} 
 
n.imputations = 20 
n.simulations = 10000 
set.seed(13927489) 

Import UGAAR data 

allbirth <-read.csv("~/Documents/MSc/UGAAR/data/bwt457.csv") 
termbirth <- filter(allbirth, allbirth$ga >= 37) 

1. All births 

CC analysis 

result <- boot(data = allbirth, 
               statistic = indirectsaved, 
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               formula.y = bw ~ Intervention + logcd + BMI_prepreg + age4 + i
ncome4 + anemia + parity + ger_den + lws_late + sex + ga + I(ga^2), 
               formula.m = logcd ~ Intervention + BMI_prepreg + age4 + income
4 + anemia + parity + ger_den + lws_late + sex + ga + I(ga^2), 
               R = n.simulations) 
result 
for (i in 1:6) { 
  a <- boot.ci(boot.out=result, conf = 0.95, type = "perc", index = i) 
  print(a) 
} 

MICE(ML) 

mi.all.table <- setNames(data.frame(matrix(data = NA, nrow = 6, ncol = 3)),  
                    c("point","L","R")) 
rownames(mi.all.table) <- c("theta1", "theta2", "beta", "IE", "TE", "PM") 
 
set.seed(13927489) 
  # theta1 
    simulations.theta1 <-  matrix(NA, nrow=n.simulations, ncol=n.imputations)
  
    for (i in 1:n.imputations){  
      theta1.hat <- coef(summary(y.MICE.all$analyses[[i]]))[2,1] 
      theta1.hat.se <- coef(summary(y.MICE.all$analyses[[i]]))[2,2]  
      simulations.theta1[,i] <- rnorm(n.simulations, theta1.hat, theta1.hat.s
e) 
    } 
    mi.all.table[1,1] <- quantile(simulations.theta1, probs=0.5)  
    # 95% confidence interval 
    mi.all.table[1,c(2,3)] <- quantile(simulations.theta1, probs=c(0.025, 0.9
75))  
   
  # theta2 
    simulations.theta2 <-  matrix(NA, nrow=n.simulations, ncol=n.imputations)
  
    for (i in 1:n.imputations){ 
      theta2.hat <- coef(summary(y.MICE.all$analyses[[i]]))[3,1] 
      theta2.hat.se <- coef(summary(y.MICE.all$analyses[[i]]))[3,2]  
      simulations.theta2[,i] <- rnorm(n.simulations, theta2.hat, theta2.hat.s
e) 
    } 
    mi.all.table[2,1] <- quantile(simulations.theta2, probs=0.5)  
    mi.all.table[2,c(2,3)] <- quantile(simulations.theta2, probs=c(0.025, 0.9
75))  
  # beta 
    simulations.beta <-  matrix(NA, nrow=n.simulations, ncol=n.imputations)  
    for (i in 1:n.imputations){  
      beta.hat <- coef(summary(m.MICE.all$analyses[[i]]))[2,1] 
      beta.hat.se <- coef(summary(m.MICE.all$analyses[[i]]))[2,2]  
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      simulations.beta[,i] <- rnorm(n.simulations, beta.hat, beta.hat.se) 
    } 
    mi.all.table[3,1] <- quantile(simulations.beta, probs=0.5)  
    mi.all.table[3,c(2,3)] <- quantile(simulations.beta, probs=c(0.025, 0.975
))  
   
  # IE 
  mi.all.table[4,1] <- quantile(simulations.theta2*simulations.beta, probs=0.
5)  

  mi.all.table[4,c(2,3)] <- quantile(simulations.theta2*simulations.beta, pro
bs=c(0.025, 0.975))   
   
  # TE 
  mi.all.table[5,1] <- quantile(simulations.theta1 + simulations.theta2*simul
ations.beta, probs=0.5)  
  mi.all.table[5,c(2,3)] <- quantile(simulations.theta1 + simulations.theta2*
simulations.beta, probs=c(0.025, 0.975))  
   
  # PM 
  mi.all.table[6,1] <- quantile( (simulations.theta2*simulations.beta)/(simul
ations.theta1 + simulations.theta2*simulations.beta), probs=0.5)  
  mi.all.table[6,c(2,3)] <- quantile( (simulations.theta2*simulations.beta)/(
simulations.theta1 + simulations.theta2*simulations.beta), probs=c(0.025, 0.9
75))  
   
round(mi.all.table,2) 

2. Term births 

CC analysis 

set.seed(13927489) 
 
result <- boot(data = termbirth, 
               statistic = indirectsaved, 
               formula.y = bw ~ Intervention + logcd + BMI_prepreg + age4 + i
ncome4 + anemia + parity + ger_den + lws_late + sex + ga + I(ga^2), 
               formula.m = logcd ~ Intervention + BMI_prepreg + age4 + income
4 + anemia + parity + ger_den + lws_late + sex + ga + I(ga^2), 
               R = n.simulations) 
result 
for (i in 1:6) { 
  a <- boot.ci(boot.out=result, conf = 0.95, type = "perc", index = i) 
  print(a) 
} 
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MICE(ML) 

mi.term.table <- setNames(data.frame(matrix(data = NA, nrow = 6, ncol = 3)),  
                    c("point","L","R")) 
rownames(mi.term.table) <- c("theta1", "theta2", "beta", "IE", "TE", "PM") 
 
MI.term <- mice(termbirth, m = n.imputations, printFlag = F, maxit = 5, seed 
= 123)  
 
y.MICE.term <- with(MI.term, lm(bw ~ Intervention + logcd + age4 + income4 + 
BMI_prepreg + parity + anemia + lws_late + ger_den + sex + ga + I(ga^2))) 
summary(pool(y.MICE.term))[c(2,3),]  
 
m.MICE.term <- with(MI.term, lm(logcd ~ Intervention + age4 + income4 + BMI_p
repreg + parity + anemia + lws_late + ger_den + sex + ga + I(ga^2))) 
 
set.seed(13927489) 
  # theta1 
    simulations.theta1 <-  matrix(NA, nrow=n.simulations, ncol=n.imputations)
  
    for (i in 1:n.imputations){  
      theta1.hat <- coef(summary(y.MICE.term$analyses[[i]]))[2,1] 
      theta1.hat.se <- coef(summary(y.MICE.term$analyses[[i]]))[2,2]  
      simulations.theta1[,i] <- rnorm(n.simulations, theta1.hat, theta1.hat.s
e) 
    } 
    mi.term.table[1,1] <- quantile(simulations.theta1, probs=0.5)  
    # 95% confidence interval 
    mi.term.table[1,c(2,3)] <- quantile(simulations.theta1, probs=c(0.025, 0.
975))  
   
  # theta2 
    simulations.theta2 <-  matrix(NA, nrow=n.simulations, ncol=n.imputations)
  
    for (i in 1:n.imputations){ 
      theta2.hat <- coef(summary(y.MICE.term$analyses[[i]]))[3,1] 
      theta2.hat.se <- coef(summary(y.MICE.term$analyses[[i]]))[3,2]  
      simulations.theta2[,i] <- rnorm(n.simulations, theta2.hat, theta2.hat.s
e) 
    } 
     mi.term.table[2,1] <- quantile(simulations.theta2, probs=0.5)  
     mi.term.table[2,c(2,3)] <- quantile(simulations.theta2, probs=c(0.025, 0
.975))  
  # beta 
    simulations.beta <-  matrix(NA, nrow=n.simulations, ncol=n.imputations)  
    for (i in 1:n.imputations){  
      beta.hat <- coef(summary(m.MICE.term$analyses[[i]]))[2,1] 
      beta.hat.se <- coef(summary(m.MICE.term$analyses[[i]]))[2,2]  
      simulations.beta[,i] <- rnorm(n.simulations, beta.hat, beta.hat.se) 
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    } 
     mi.term.table[3,1] <- quantile(simulations.beta, probs=0.5)  
     mi.term.table[3,c(2,3)] <- quantile(simulations.beta, probs=c(0.025, 0.9
75))  
   
  # IE 
  mi.term.table[4,1] <- quantile(simulations.theta2*simulations.beta, probs=0
.5)  
  mi.term.table[4,c(2,3)] <- quantile(simulations.theta2*simulations.beta, pr
obs=c(0.025, 0.975))   
   
  # TE 
  mi.term.table[5,1] <- quantile(simulations.theta1 + simulations.theta2*simu
lations.beta, probs=0.5)  
  mi.term.table[5,c(2,3)] <- quantile(simulations.theta1 + simulations.theta2
*simulations.beta, probs=c(0.025, 0.975))  
   
  # PM 
  mi.term.table[6,1] <- quantile( (simulations.theta2*simulations.beta)/(simu
lations.theta1 + simulations.theta2*simulations.beta), probs=0.5)   
  mi.term.table[6,c(2,3)] <- quantile( (simulations.theta2*simulations.beta)/
(simulations.theta1 + simulations.theta2*simulations.beta), probs=c(0.025, 0.
975)) 
 
  round(mi.term.table,2) 

3. ITT analysis 

nobw <- read.csv("~/Documents/MSc/UGAAR/data/abortions_stillbirths.csv") 
# combine all births and birth losses 
itt <- rbind(nobw, allbirth)  

CC analysis of ITT is the same as all births 

MICE(ML) 

mi.itt.table <- setNames(data.frame(matrix(data = NA, nrow = 6, ncol = 3)),  
                    c("point","L","R")) 
rownames(mi.itt.table) <- c("theta1", "theta2", "beta", "IE", "TE", "PM") 
 
set.seed(13927489) 
  # theta1 
    simulations.theta1 <-  matrix(NA, nrow=n.simulations, ncol=n.imputations)
  
    for (i in 1:n.imputations){  
      theta1.hat <- coef(summary(y.MICE.itt$analyses[[i]]))[2,1] 
      theta1.hat.se <- coef(summary(y.MICE.itt$analyses[[i]]))[2,2]  
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      simulations.theta1[,i] <- rnorm(n.simulations, theta1.hat, theta1.hat.s
e) 
    } 
    mi.itt.table[1,1] <- quantile(simulations.theta1, probs=0.5)  
    # 95% confidence interval 
    mi.itt.table[1,c(2,3)] <- quantile(simulations.theta1, probs=c(0.025, 0.9
75))  
   
  # theta2 
    simulations.theta2 <-  matrix(NA, nrow=n.simulations, ncol=n.imputations)
  
    for (i in 1:n.imputations){ 
      theta2.hat <- coef(summary(y.MICE.itt$analyses[[i]]))[3,1] 
      theta2.hat.se <- coef(summary(y.MICE.itt$analyses[[i]]))[3,2]  
      simulations.theta2[,i] <- rnorm(n.simulations, theta2.hat, theta2.hat.s
e) 
    } 
    mi.itt.table[2,1] <- quantile(simulations.theta2, probs=0.5)  
    mi.itt.table[2,c(2,3)] <- quantile(simulations.theta2, probs=c(0.025, 0.9
75))  
  # beta 
    simulations.beta <-  matrix(NA, nrow=n.simulations, ncol=n.imputations)  
    for (i in 1:n.imputations){  
      beta.hat <- coef(summary(m.MICE.itt$analyses[[i]]))[2,1] 
      beta.hat.se <- coef(summary(m.MICE.itt$analyses[[i]]))[2,2]  
      simulations.beta[,i] <- rnorm(n.simulations, beta.hat, beta.hat.se) 
    } 
    mi.itt.table[3,1] <- quantile(simulations.beta, probs=0.5)  
    mi.itt.table[3,c(2,3)] <- quantile(simulations.beta, probs=c(0.025, 0.975
))  
   
  # IE 
  mi.itt.table[4,1] <- quantile(simulations.theta2*simulations.beta, probs=0.
5)  
  mi.itt.table[4,c(2,3)] <- quantile(simulations.theta2*simulations.beta, pro
bs=c(0.025, 0.975))   
   
  # TE 
  mi.itt.table[5,1] <- quantile(simulations.theta1 + simulations.theta2*simul
ations.beta, probs=0.5)  
  mi.itt.table[5,c(2,3)] <- quantile(simulations.theta1 + simulations.theta2*
simulations.beta, probs=c(0.025, 0.975))  
   
  # PM 
  mi.itt.table[6,1] <- quantile( (simulations.theta2*simulations.beta)/(simul
ations.theta1 + simulations.theta2*simulations.beta), probs=0.5)  
  mi.itt.table[6,c(2,3)] <- quantile( (simulations.theta2*simulations.beta)/(
simulations.theta1 + simulations.theta2*simulations.beta), probs=c(0.025, 0.9
75))  
round(mi.itt.table,2) 
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R code of the simulation study for Manuscript Chapter 3  

Packages to be installed 

library(mice) 
library(dplyr) 
library(mediation) 

Some numbers in the simulation 

n = 500 # sample size 
nsims = 1000 # number of simulations, replicate the whole process 1000 times  
 
miss.prop = 0.3 
 
# MICE(ML) 
n.imputations = 20 
n.simulations = 5000 
 
set.seed(1837794)  
 
# Self-build functions  
## Average bias  
bias_calculator <- function(values, mean, nsims) { 
  result <- sum(values - mean)/nsims 
  return(result) 
} 
 
## coverage probability 
cov_calculator <- function(flags, nsims) { 
    result <- sum(flags == T)/nsims 
    return(result) 
} 

Tables to store the results 

ind <- c('theta1','theta2','beta','IE','DE','TE','PM') 
ind.bias <- c('theta1','theta2','beta','IE','TE','PM') 
                
bias.table <- setNames(data.frame(matrix(data = NA, nrow = 6, ncol = 3)),  
                    c('Gold','CC','MICE(ML)')) 
    med.bias.table <- setNames(data.frame(matrix(data = NA, nrow = 4, ncol = 
3)),  
                    c('Gold','CC','MICE(ML)')) 
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coverage.table <- setNames(data.frame(matrix(data = NA, nrow = 7, ncol = 3)),
  
                    c('Gold','CC','MICE(ML)'))  
 
power.table <- setNames(data.frame(matrix(data = NA, nrow = 7, ncol = 3)),  
                    c('Gold','CC','MICE(ML)'))  
 
length.table <- setNames(data.frame(matrix(data = NA, nrow = 7, ncol = 3)),  
                    c('Gold','CC','MICE(ML)'))  
 
rownames(bias.table)<- ind.bias 
rownames(coverage.table)<- ind 
rownames(length.table)<- ind 

True population parameters 

𝜃1 = 100, 𝜃2 = -50, 𝛽 = -0.2, 

IE = 10, DE (𝜃1) = 100, TE = 110, PM = 0.09 

1. Gold: (randomly generated) sample statistics - full dataset 

# Tables to store results 
table.gold <- setNames(data.frame(matrix(data = NA, nrow = nsims, ncol = 12))
,  
                    c("theta1", "theta1_L","theta1_R", 
                      "theta2", "theta2_L","theta2_R", 
                      "beta", "beta_L","beta_R", 
                      "IE", "TE","PM"))  
med.table.gold <- setNames(data.frame(matrix(data = NA, nrow = nsims, ncol = 
12)), 
                           c("MIE","MIE_L","MIE_R", 
                             "MDE","MDE_L","MDE_R", 
                             "MTE","MTE_L","MTE_R", 
                             "MPM","MPM_L","MPM_R")) 
 
for (i in 1:nsims){ print(i) 
  # randomly create samples  
  c1 <- rnorm(n, 25, 3)  
  c2 <- rbinom(n, 1, 0.5)  
  c3 <- rbinom(n, 1, 0.1)  
  x <- rbinom(n, 1, 0.5)  
  m <- rnorm(n, mean=-2.5 + -0.2 * x + 0.1 * c3, sd=0.8)  
  y <- rnorm(n, 3500 + 100 * x + -50*m + 10*c1 + -100*c2 + -200*c3, 300)  
  gold.data <- data.frame(y, x, m, c1, c2, c3) 
   



 67 

  # fit 2 models and the mediation  
  y.gold <- lm(y ~ x + m + c1 + c2 + c3, data=gold.data) 
  m.gold <- lm(m ~ x + c1 + c2 + c3, data=gold.data) 
   
  # use mediation package to get the interval  
  gold.ci <- mediate(m.gold, y.gold, sims = nsims, boot = TRUE, boot.ci.type 
= "perc", treat = "x", mediator = "m", conf.level = 0.95) 
  med <- summary(gold.ci) 
 
  # fill the table  
  table.gold[i,"theta1"] <- coef(summary(y.gold))[2,1]  
  table.gold[i,2] <- confint(y.gold, c("x","m"), 0.95)[1,1] # theta1_L 
  table.gold[i,3] <- confint(y.gold, c("x","m"), 0.95)[1,2]  # theta1_R 
   
  table.gold[i,"theta2"] <- coef(summary(y.gold))[3,1] 
  table.gold[i,5] <- confint(y.gold, c("x","m"), 0.95)[2,1] # theta2_L 
  table.gold[i,6] <- confint(y.gold, c("x","m"), 0.95)[2,2] # theta2_R 
   
  table.gold[i,"beta"] <- coef(summary(m.gold))[2,1] 
  table.gold[i,8] <- confint(m.gold, "x", 0.95)[1,1] # beta_L 
  table.gold[i,9] <- confint(m.gold, "x", 0.95)[1,2] # beta_R 
   
    ## These effects are calculated from regression coefficients.  
    ## therefore, it cannot obtain se or CI because of "product" 
  table.gold[i,"IE"] <- table.gold[i,"theta2"]*table.gold[i,"beta"]  
  table.gold[i,"TE"] <- table.gold[i,"IE"] + table.gold[i,"theta1"]  
  table.gold[i,"PM"] <- table.gold[i,"IE"]/table.gold[i,"TE"]  
   
  # fill the med table  
    ## These effects are calculated from mediation package  
    ## we can obtain CI of IE, DE, TE, PM and check if point estimates by two
 methods are same 
  med.table.gold[i,"MIE"] <- med$d0 
  med.table.gold[i,"MIE_L"] <- med$d0.ci[[1]] 
  med.table.gold[i,"MIE_R"] <- med$d0.ci[[2]] 
   
  med.table.gold[i,"MDE"] <- med$z0 
  med.table.gold[i,"MDE_L"] <- med$z0.ci[[1]] 
  med.table.gold[i,"MDE_R"] <- med$z0.ci[[2]] 
   
  med.table.gold[i,"MTE"] <- med$tau.coef 
  med.table.gold[i,"MTE_L"] <- med$tau.ci[[1]] 
  med.table.gold[i,"MTE_R"] <- med$tau.ci[[2]]  
   
  med.table.gold[i,"MPM"] <-  med$n0 
  med.table.gold[i,"MPM_L"] <- med$n0.ci[[1]] 
  med.table.gold[i,"MPM_R"] <- med$n0.ci[[2]]  
} 
 
# table.gold 
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(mean.table.gold <- round(apply(table.gold[,c(1,4,7,10:12)], 2, mean),3)) 
#med.table.gold    
(mean.med.gold<- round(apply(med.table.gold[,c(1,4,7,10)], 2, mean),3)) 

Bias - gold 

gold.bias <- setNames(data.frame(matrix(data = NA, nrow = 1, ncol = 6)),  
                    c("theta1","theta2", "beta","IE","TE","PM")) 
  
gold.bias["theta1"] <- bias_calculator(table.gold[,1], 100, nsims) 
gold.bias["theta2"] <- bias_calculator(table.gold[,4], -50, nsims) 
gold.bias["beta"] <- bias_calculator(table.gold[,7], -0.2, nsims) 
gold.bias["IE"] <- bias_calculator(table.gold[,10], 10, nsims) 
gold.bias["TE"] <- bias_calculator(table.gold[,11], 110, nsims) 
gold.bias["PM"] <- bias_calculator(table.gold[,12], 0.09, nsims) 
 
# just check if they are same 
gold.med.bias <- setNames(data.frame(matrix(data = NA, nrow = 1, ncol = 4)), 
                          c("MIE","MDE","MTE","MPM")) 
gold.med.bias["MIE"] <- bias_calculator(med.table.gold[,1], 10, nsims) 
gold.med.bias["MDE"] <- bias_calculator(med.table.gold[,4], 100, nsims) 
gold.med.bias["MTE"] <- bias_calculator(med.table.gold[,7], 110, nsims) 
gold.med.bias["MPM"] <- bias_calculator(med.table.gold[,10], 0.09, nsims) 
 
 
bias.table[,1] <- t(round(gold.bias,2)) 
bias.table 
med.bias.table[,1] <- t(round(gold.med.bias,2)) 
med.bias.table 
# no difference  

Coverage - gold 

# coverage of parameters (theta1, theta2, beta) 
gold.coverage <- table.gold %>% 
  mutate(theta1_coverage = ifelse(theta1_L <= 100 & theta1_R >= 100, 
                              T, 
                              F)) %>% 
  mutate(theta2_coverage = ifelse(theta2_L <= -50 & theta2_R >= -50, 
                              T, 
                              F)) %>% 
  mutate(beta_coverage = ifelse(beta_L <= -0.2  & beta_R >= -0.2, 
                              T, 
                              F)) 
# coverage of effects (IE, DE, TE, PM) 
med.gold.coverage <- med.table.gold %>% 
  mutate(MIE_coverage = ifelse(MIE_L <= 10 & MIE_R >= 10, 
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                              T, 
                              F)) %>% 
  mutate(MDE_coverage = ifelse(MDE_L <= 100 & MDE_R >= 100, 
                              T, 
                              F)) %>% 
  mutate(MTE_coverage = ifelse(MTE_L <= 110  & MTE_R >= 110, 
                              T, 
                              F)) %>% 
  mutate(MPM_coverage = ifelse(MPM_L <= 0.09  & MPM_R >= 0.09, 
                              T, 
                              F)) 
gold.coverage.table <- setNames(data.frame(matrix(data = NA, nrow = 1, ncol =
 7)), c("theta1", "theta2","beta","MIE","MDE","MTE","MPM")) 
                               
  gold.coverage.table[,1] <- cov_calculator(flags = gold.coverage$theta1_cove
rage, nsims = nsims) 
  gold.coverage.table[,2] <- cov_calculator(flags = gold.coverage$theta2_cove
rage, nsims = nsims) 
  gold.coverage.table[,3] <- cov_calculator(flags = gold.coverage$beta_covera
ge, nsims = nsims) 
                               
  gold.coverage.table[,4] <- cov_calculator(flags = med.gold.coverage$MIE_cov
erage, nsims = nsims) 
  gold.coverage.table[,5] <- cov_calculator(flags = med.gold.coverage$MDE_cov
erage, nsims = nsims) 
  gold.coverage.table[,6] <- cov_calculator(flags = med.gold.coverage$MTE_cov
erage, nsims = nsims) 
  gold.coverage.table[,7] <- cov_calculator(flags = med.gold.coverage$MPM_cov
erage, nsims = nsims) 
 
 
gold.coverage.table 
coverage.table[,1] <- t(gold.coverage.table) 
coverage.table 

Interval Length 

length.gold <- setNames(data.frame(matrix(data = NA, nrow = nsims, ncol = 7))
, 
                    c("theta1","theta2","beta2","IE","DE","TE","PM")) 
length.gold[,1] <- abs(table.gold[,3] - table.gold[,2])  
length.gold[,2] <- abs(table.gold[,6] - table.gold[,5]) 
length.gold[,3] <- abs(table.gold[,9] - table.gold[,8]) 
length.gold[,4] <- abs(med.table.gold[,3] - med.table.gold[,2])  
length.gold[,5] <- abs(med.table.gold[,6] - med.table.gold[,5]) 
length.gold[,6] <- abs(med.table.gold[,9] - med.table.gold[,8]) 
length.gold[,7] <- abs(med.table.gold[,12] - med.table.gold[,11]) 
 
length.gold.table <- round(colMeans(length.gold),2) 
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length.table[,1] <-length.gold.table 
length.table 

2. CC analysis 

table.CC <- setNames(data.frame(matrix(data = NA, nrow = nsims, ncol = 12)),  
                     c("theta1","theta1_L","theta1_R", 
                       "theta2","theta2_L","theta2_R", 
                       "beta","beta_L","beta_R",  
                       "IE", "TE", "PM")) 
med.table.CC <- setNames(data.frame(matrix(data = NA, nrow = nsims, ncol = 12
)), 
                         c("MIE","MIE_L","MIE_R", 
                           "MDE","MDE_L","MDE_R", 
                           "MTE","MTE_L","MTE_R",  
                           "MPM","MPM_L","MPM_R")) 
 
for (i in 1:nsims) { print(i) 
  c1 <- rnorm(n, 25, 3)  
  c2 <- rbinom(n, 1, 0.5)  
  c3 <- rbinom(n, 1, 0.1)  
  x <- rbinom(n, 1, 0.5)  
  m <- rnorm(n, mean=-2.5 + -0.2 * x + 0.1 * c3, sd=0.8)  
  y <- rnorm(n, 3500 + 100 * x + -50*m + 10*c1 + -100*c2 + -200*c3, 300)  
  gold.data <- data.frame(y, x, m, c1, c2, c3) 
   
  # make some missingness 
  mypattern <-  matrix(c(1,1,0,1,1,1, # only m missing 
                         1,1,1,0,1,1, # only c1 missing (BMI) 
                         1,1,1,1,1,0, # only c3 missing (smoke) 
                         1,1,0,1,1,0), 4,6, byrow = T) # m and c3 missing 
  myfreq <- c(0.48, 0.2, 0.2, 0.12) # frequency for each pattern   
  myweights <- matrix(c(0, 1, 0, 0.1, 0, 0.3,  
                        # only m is missing: missingness of m is correlated t
o x, c1, c3 
                        # x is weighted 10 times as heavy as c1, etc. 
                         
                        0, 1, 0, 0, 0, 0, 
                        # only c1 is missing : missingness of BMI is cor to x
  
                         
                        0, 1, 0, 0.5, 0, 0, 
                        # only c3 is missing: missingness of smoke is cor to 
x, BMI 
                         
                        0, 1, 0, 0, 0.4, 0), 4,6,byrow = T) 
                        # m and c3 are missing: missingness of both m & smoke
 are cor to x, BMI 
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  miss <- ampute(gold.data,freq = myfreq , patterns = mypattern, weights = my
weights, prop = miss.prop, mech = "MAR") 
  observed.data <- miss$amp 
   
  # fit 2 models and the mediation  
  y.cc <- lm(y ~ x + m + c1 + c2 + c3, data=observed.data) 
  m.cc <- lm(m ~ x + c1 + c2 + c3, data=observed.data) 
   
  # use mediation package to get the interval  
  CC.ci <- mediate(m.cc, y.cc, sims = nsims, boot = TRUE, boot.ci.type = "per
c", treat = "x", mediator = "m", conf.level = 0.95) 
  med <- summary(CC.ci) 
   
  # fill the table  
  table.CC[i,1] <- coef(summary(y.cc))[2,1] # DE = theta1 
  table.CC[i,2] <- confint(y.cc, c("x","m"), 0.95)[1,1] # theta1_L 
  table.CC[i,3] <- confint(y.cc, c("x","m"), 0.95)[1,2]  # theta1_R 
   
  table.CC[i,4] <- coef(summary(y.cc))[3,1] # theta2 
  table.CC[i,5] <- confint(y.cc, c("x","m"), 0.95)[2,1] # theta2_L 
  table.CC[i,6] <- confint(y.cc, c("x","m"), 0.95)[2,2] # theta2_R 
   
  table.CC[i,7] <- coef(summary(m.cc))[2,1] # beta 
  table.CC[i,8] <- confint(m.cc, "x", 0.95)[1,1] # beta_L 
  table.CC[i,9] <- confint(m.cc, "x", 0.95)[1,2] # beta_R 
   
  table.CC[i,10] <- table.CC[i,4] * table.CC[i,7] # IE 
  table.CC[i,11] <- table.CC[i,1] + table.CC[i,10] # TE 
  table.CC[i,12] <- table.CC[i,10]/table.CC[i,11] # PM 
   
  # fill the med table  
  med.table.CC[i,"MIE"] <- med$d0 
  med.table.CC[i,"MIE_L"] <- med$d0.ci[[1]] 
  med.table.CC[i,"MIE_R"] <- med$d0.ci[[2]] 
   
  med.table.CC[i,"MDE"] <- med$z0 
  med.table.CC[i,"MDE_L"] <- med$z0.ci[[1]] 
  med.table.CC[i,"MDE_R"] <- med$z0.ci[[2]] 
   
  med.table.CC[i,"MTE"] <- med$tau.coef 
  med.table.CC[i,"MTE_L"] <- med$tau.ci[[1]] 
  med.table.CC[i,"MTE_R"] <- med$tau.ci[[2]]  
   
  med.table.CC[i,"MPM"] <-  med$n0 
  med.table.CC[i,"MPM_L"] <- med$n0.ci[[1]] 
  med.table.CC[i,"MPM_R"] <- med$n0.ci[[2]]  
} 
round(colMeans(table.CC[,c(1,4,7,10:12)]),3) 
round(colMeans(med.table.CC[,c(1,4,7,10)]),3) 
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Bias - CC 

CC.bias <- setNames(data.frame(matrix(data = NA, nrow = 1, ncol = 6)),  
                   c("theta1","theta2", "beta","IE","TE","PM")) 
med.CC.bias <- setNames(data.frame(matrix(data = NA, nrow = 1, ncol = 4)), 
                          c("MIE","MDE","MTE","MPM")) 
 
CC.bias[1] <- bias_calculator(table.CC[,1], 100, nsims) 
CC.bias[2] <- bias_calculator(table.CC[,4], -50, nsims) 
CC.bias[3] <- bias_calculator(table.CC[,7], -0.2, nsims) 
CC.bias[4] <- bias_calculator(table.CC[,10], 10, nsims) 
CC.bias[5] <- bias_calculator(table.CC[,11], 110, nsims) 
CC.bias[6] <- bias_calculator(table.CC[,12], 0.09, nsims) 
 
med.CC.bias[1] <- bias_calculator(med.table.CC[,1], 10, nsims) 
med.CC.bias[2] <- bias_calculator(med.table.CC[,4], 100, nsims) 
med.CC.bias[3] <- bias_calculator(med.table.CC[,7], 110, nsims)  
med.CC.bias[4] <- bias_calculator(med.table.CC[,10], 0.09, nsims) 
 
round(CC.bias,2) 
round(med.CC.bias,2) # same 
bias.table[,2] <- t(round(CC.bias,2)) 
bias.table 

Coverage - CC 

CC.coverage <- table.CC %>% 
  mutate(theta1_coverage = ifelse(theta1_L <= 100 & theta1_R >= 100, 
                              T, 
                              F)) %>% 
  mutate(theta2_coverage = ifelse(theta2_L <= -50 & theta2_R >= -50, 
                              T, 
                              F)) %>% 
  mutate(beta_coverage = ifelse(beta_L <= -0.2  & beta_R >= -0.2, 
                              T, 
                              F)) 
med.CC.coverage <- med.table.CC %>% 
  mutate(MIE_coverage = ifelse(MIE_L <= 10 & MIE_R >= 10, 
                              T, 
                              F)) %>% 
  mutate(MDE_coverage = ifelse(MDE_L <= 100 & MDE_R >= 100, 
                              T, 
                              F)) %>% 
  mutate(MTE_coverage = ifelse(MTE_L <= 110  & MTE_R >= 110, 
                              T, 
                              F)) %>% 
  mutate(MPM_coverage = ifelse(MPM_L <= 0.09  & MPM_R >= 0.09, 
                              T, 
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                              F)) 
 
cc.coverage.table <- setNames(data.frame(matrix(data = NA, nrow = 1, ncol = 7
)), c("theta1", "theta2","beta","MIE","MDE","MTE","MPM")) 
 
  cc.coverage.table[,1] <- cov_calculator(flags = CC.coverage$theta1_coverage
, nsims = nsims) 
  cc.coverage.table[,2] <- cov_calculator(flags = CC.coverage$theta2_coverage
, nsims = nsims) 
  cc.coverage.table[,3] <- cov_calculator(flags = CC.coverage$beta_coverage, 
nsims = nsims) 
   
  cc.coverage.table[,4] <- cov_calculator(flags = med.CC.coverage$MIE_coverag
e, nsims = nsims) 
  cc.coverage.table[,5] <- cov_calculator(flags = med.CC.coverage$MDE_coverag
e, nsims = nsims) 
  cc.coverage.table[,6] <- cov_calculator(flags = med.CC.coverage$MTE_coverag
e, nsims = nsims) 
  cc.coverage.table[,7] <- cov_calculator(flags = med.CC.coverage$MPM_coverag
e, nsims = nsims) 
 
coverage.table[,2] <- t(cc.coverage.table) 
coverage.table 

Interval length - CC 

length.CC <- setNames(data.frame(matrix(data = NA, nrow = nsims, ncol = 7)), 
                        c("theta1","theta2","beta","MIE","MDE","MTE","MPM")) 
length.CC[,1] <- abs(table.CC[,3] - table.CC[,2])  
length.CC[,2] <- abs(table.CC[,6] - table.CC[,5]) 
length.CC[,3] <- abs(table.CC[,9] - table.CC[,8]) 
 
length.CC[,4] <- abs(med.table.CC[,3] - med.table.CC[,2])  
length.CC[,5] <- abs(med.table.CC[,6] - med.table.CC[,5]) 
length.CC[,6] <- abs(med.table.CC[,9] - med.table.CC[,8]) 
length.CC[,7] <- abs(med.table.CC[,12] - med.table.CC[,11])  
 
length.CC.table<- round(colMeans(length.CC),3) 
length.table[,2] <- length.CC.table 
length.table 

3. MICE(ML) 

table.miceML <- setNames(data.frame(matrix(data = NA, nrow = nsims, ncol = 18
)), 
                         c("theta1","theta1_L","theta1_R",  
                           "theta2", "theta2_L","theta2_R",  
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                           "beta","beta_L","beta_R",  
                           "IE","IE_L","IE_R",  
                           "TE", "TE_L","TE_R", 
                           "PM","PM_L","PM_R")) 
 
simulations.theta1 <-  matrix(NA, nrow=n.simulations, ncol=n.imputations) #10
00 rows*10 cols 
simulations.theta2 <-  matrix(NA, nrow=n.simulations, ncol=n.imputations) 
simulations.beta <-  matrix(NA, nrow=n.simulations, ncol=n.imputations) 
 
for (i in 1:nsims) { 
  ######################################### 
  c1 <- rnorm(n, 25, 3)  
  c2 <- rbinom(n, 1, 0.5)  
  c3 <- rbinom(n, 1, 0.1)  
  x <- rbinom(n, 1, 0.5)  
  m <- rnorm(n, mean=-2.5 + -0.2 * x + 0.1 * c3, sd=0.8)  
  y <- rnorm(n, 3500 + 100 * x + -50*m + 10*c1 + -100*c2 + -200*c3, 300)  
  gold.data <- data.frame(y, x, m, c1, c2, c3) 
   
   # make some missingness 
  mypattern <-  matrix(c(1,1,0,1,1,1, # only m missing 
                         1,1,1,0,1,1, # only c1 missing (BMI) 
                         1,1,1,1,1,0, # only c3 missing (smoke) 
                         1,1,0,1,1,0), 4,6, byrow = T) # m and c3 missing 
  myfreq <- c(0.48, 0.2, 0.2, 0.12) # for each pattern   
  myweights <- matrix(c(0, 1, 0, 0.1, 0, 0.3,  
                        # missingness of m is correlated to x, c1, c3 
                        # x is weighted 10 times as heavy as c1, etc. 
                        0, 1, 0, 0, 0, 0, 
                        # missingness of BMI is cor to x  
                        0, 1, 0, 0.5, 0, 0, 
                        # missingness of smoke is cor to x, BMI 
                        0, 1, 0, 0, 0.4, 0), 4,6,byrow = T) 
                        # missingness of both m & smoke are cor to x, BMI 
   
  miss <- ampute(gold.data,freq = myfreq , patterns = mypattern, weights = my
weights, prop = miss.prop, mech = "MAR") 
  
  observed.data <- miss$amp 
  # MICE  
  mi.data <- mice(observed.data, m = n.imputations, printFlag = F)  
  y.mice <- with(mi.data, lm(y ~ x + m + c1 + c2 + c3)) 
  m.mice <- with(mi.data, lm(m ~ x + c1 + c2 + c3))   
   ############ so far the same ############ 
 
  # theta1 
  for (a in 1:n.imputations){ # each of the 10 imputed ds 
    theta1.hat <- coef(summary(y.mice$analyses[[a]]))[2,1] 
    theta1.hat.se <- coef(summary(y.mice$analyses[[a]]))[2,2]  
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    simulations.theta1[,a] <- rnorm(n.simulations, theta1.hat, theta1.hat.se) 
  } 
   
    table.miceML[i,1]<- quantile(simulations.theta1, probs=0.5) 
    table.miceML[i,2] <- quantile(simulations.theta1, probs=0.025) # theta1_L 
    table.miceML[i,3] <- quantile(simulations.theta1, probs=0.975) # theta1_R 
 
  # theta2 
  for (b in 1:n.imputations){  
    theta2.hat <- coef(summary(y.mice$analyses[[b]]))[3,1] 
    theta2.hat.se <- coef(summary(y.mice$analyses[[b]]))[3,2]  
    simulations.theta2[,b] <- rnorm(n.simulations, theta2.hat, theta2.hat.se) 
  } 
   
    table.miceML[i,4] <- quantile(simulations.theta2, probs=0.5)  
    table.miceML[i,5] <- quantile(simulations.theta2, probs=0.025) # theta2_L 
    table.miceML[i,6] <- quantile(simulations.theta2, probs=0.975) # theta2_R 
   
  # beta 
  for (c in 1:n.imputations){ 
    beta.hat <- coef(summary(m.mice$analyses[[c]]))[2,1] 
    beta.hat.se <- coef(summary(m.mice$analyses[[c]]))[2,2]  
    simulations.beta[,c] <- rnorm(n.simulations, beta.hat, beta.hat.se) 
  } 
    table.miceML[i,7] <- quantile(simulations.beta, probs=0.5)  
    table.miceML[i,8] <- quantile(simulations.beta, probs=0.025) # beta_L 
    table.miceML[i,9] <- quantile(simulations.beta, probs=0.975) # beta_R 
   
  # IE 
  table.miceML[i,10] <- quantile(simulations.theta2*simulations.beta, probs=0
.5)  
  table.miceML[i,11] <- quantile(simulations.theta2*simulations.beta, probs=0
.025)  #IE_L 
  table.miceML[i,12] <- quantile(simulations.theta2*simulations.beta, probs=0
.975)  #IE_R 
  # TE 
  table.miceML[i,13] <- quantile(simulations.theta1 +  
                              simulations.theta2*simulations.beta,probs=0.5) 
  table.miceML[i,14] <- quantile(simulations.theta1 +  
                              simulations.theta2*simulations.beta,probs=0.025
) # TE_L 
  table.miceML[i,15] <- quantile(simulations.theta1 +  
                              simulations.theta2*simulations.beta, probs=0.97
5)# TE_R 
  # PM 
  table.miceML[i,16] <- quantile(  
    (simulations.theta2*simulations.beta)/ 
    (simulations.theta1 +simulations.theta2*simulations.beta), probs=0.5)  
  table.miceML[i,17] <-quantile( 
    (simulations.theta2*simulations.beta)/ 
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      (simulations.theta1 + simulations.theta2*simulations.beta), probs=0.025
) # PM_L 
  table.miceML[i,18] <-quantile(  
    (simulations.theta2*simulations.beta)/ 
      (simulations.theta1 + simulations.theta2*simulations.beta), probs=0.975
) # PM_R 
} 
 
colMeans(table.miceML[,c(1,4,7,10,13,16)]) 

Bias - MICE(ML) 

miceML.bias <- setNames(data.frame(matrix(data = NA, nrow = 1, ncol = 6)),  
                    c("theta1","theta2", "beta","IE","TE","PM")) 
  
  miceML.bias[1] <- bias_calculator(table.miceML[,1], 100, nsims) 
  miceML.bias[2] <- bias_calculator(table.miceML[,4], -50, nsims) 
  miceML.bias[3] <- bias_calculator(table.miceML[,7], -0.2, nsims) 
  miceML.bias[4] <- bias_calculator(table.miceML[,10], 10, nsims) 
  miceML.bias[5] <- bias_calculator(table.miceML[,13], 110, nsims) 
  miceML.bias[6] <- bias_calculator(table.miceML[,16], 0.09, nsims) 
 
 
bias.table[,3]<- t(round(miceML.bias,2)) 
bias.table 

Coverage - MICE(ML) 

coverage.miceML <- table.miceML   %>% 
  mutate(theta1_coverage = ifelse(theta1_L <= 100 & theta1_R >= 100, 
                              T, 
                              F)) %>% 
  mutate(theta2_coverage = ifelse(theta2_L <= -50 & theta2_R >= -50, 
                              T, 
                              F)) %>% 
  mutate(beta_coverage = ifelse(beta_L <= -0.2  & beta_R >= -0.2, 
                              T, 
                              F)) %>% 
  mutate(IE_coverage = ifelse(IE_L <= 10 & IE_R >= 10, 
                              T, 
                              F)) %>% 
  mutate(TE_coverage = ifelse(TE_L <= 110 & TE_R >= 110, 
                              T, 
                              F)) %>% 
  mutate(PM_coverage = ifelse(PM_L <= 0.09  & PM_R >= 0.09, 
                              T, 
                              F)) 



 77 

 
miceML.cov.table <- setNames(data.frame(matrix(data = NA, nrow = 1, ncol = 7)
), c("theta1", "theta2","beta","IE","DE","TE","PM")) 
 
  miceML.cov.table[,1] <- cov_calculator(flags = coverage.miceML$theta1_cover
age, nsims = nsims) 
  miceML.cov.table[,2] <- cov_calculator(flags = coverage.miceML$theta2_cover
age, nsims = nsims) 
  miceML.cov.table[,3] <- cov_calculator(flags = coverage.miceML$beta_coverag
e, nsims = nsims) 
  miceML.cov.table[,4] <- cov_calculator(flags = coverage.miceML$IE_coverage,
 nsims = nsims) 
  miceML.cov.table[,5] <- cov_calculator(flags = coverage.miceML$theta1_cover
age, nsims = nsims) 
  miceML.cov.table[,6] <- cov_calculator(flags = coverage.miceML$TE_coverage,
 nsims = nsims) 
  miceML.cov.table[,7] <- cov_calculator(flags = coverage.miceML$PM_coverage,
 nsims = nsims) 
 
miceML.cov.table 
 
coverage.table[,3]<- t(round(miceML.cov.table,3)) 
coverage.table 

Interval length 

length.miceML <- setNames(data.frame(matrix(data = NA, nrow = nsims, ncol = 7
)), 
                        c("theta1","theta2","beta","IE","TE","PM")) 
length.miceML[,1] <- abs(table.miceML[,3] - table.miceML[,2])  
length.miceML[,2] <- abs(table.miceML[,6] - table.miceML[,5]) 
length.miceML[,3] <- abs(table.miceML[,9] - table.miceML[,8]) 
length.miceML[,4] <- abs(table.miceML[,12] - table.miceML[,11])  
length.miceML[,5] <- abs(table.miceML[,3] - table.miceML[,2])  
length.miceML[,6] <- abs(table.miceML[,15] - table.miceML[,14]) 
length.miceML[,7] <- abs(table.miceML[,18] - table.miceML[,17]) 
 
length.miceML.table <- round(colMeans(length.miceML),2) 
length.table[,3]<- length.miceML.table 
length.table 

Results 

bias.table 
coverage.table 
length.table 
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