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Abstract 

Machine learning and artificial intelligence tools are on the precipice of becoming a popular 

method for clinical diagnosis and disease prediction. Their ability to solve specific problems 

given sets of constraints are unmatched and they provide novel solutions to a plethora of 

different tasks. This thesis will examine a deep learning image classifiers capability of 

successfully classifying male and female MR images into their respective counterparts. The 

results of these models are visualized using a Grad-Cam to help gain insight on the sexual 

dimorphisms present within the human brain. The models showed sex dimorphisms exist in 

previously known areas like the frontal, temporal and precuneus gyri along with the cerebellum 

and thalamus. But other regions such as the cingulate, postcentral, and fusiform gyri illustrated 

differences not commonly mentioned in literature. This paper deviates away from the traditional 

statistical approaches of neuroimaging and analysis techniques and provides a new method to 

draw conclusions on individual volumes.  
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Chapter 1: Introduction 

1.1 Background 

Sex differences within the brain have historically been a controversial and very debatable area of 

study; with many researchers claiming males and females share no anatomical differences other 

than size [1] [2]. As opposed to psychological disparities across sexes, variations between 

anatomical and physiological organs of the brain are argued to be non-existent or at least not 

significant [2]. However, there are academics that oppose this view and attempt to illustrate 

differences present in the underlying neurological structures [3]. Many go on to claim these 

discrepancies extend past structure influencing many physiological functions such as 

psychology, emotion, memory, vision, and hearing [3].  

The sexual dimorphism of the human brain is a pillar in understanding the medicine and medical 

practices of the future [4]. It is important to gain a detailed picture of these differences to be able 

to assess neurological conditions that differ in their rates of manifestation between the sexes [5]. 

Diseases like Alzheimer’s Dementia (AD) and Major Depressive Disorder (MDD) are more 

prevalent in women whereas males have a higher chance of being diagnosed with autism 

spectrum disorder or schizophrenia [6]. Currently, finding and administering treatment for a 

particular disease is reliant on the assumption that the human brain is identical to its sexual 

counterpart. Granted, this assumption has been accepted and employed in treatments due to the 

limitations in statistical power in generating substantial results [5]. Nevertheless, the ability to 

see the human brain as “two complex mosaics” [3] rather than one identical entity is a 

steppingstone to identifying and understanding complex diseases and their effect on neurological 

physiologies.  

1.2 Related Works 

To this date, some related works and studies have shown there are no existing structural and 

functional differences between male and female brains other than size. This is supported 

extensively in a paper published in 2020 in the Neuroscience & Biobehavioral Reviews journal 

[2]. However, there are others who firmly oppose this view claiming that sex dimorphisms 

within the brain have not been fully discovered [3].   

Larry Cahill was the one of the first researchers to publish an in-depth article debunking the 

“myth” surrounding identical brains [3]. Cahill discusses the common misconceptions 

surrounding sexual dimorphisms and focuses on difference findings [3] in multiple brain organs. 

The article summarizes preliminary results on the disparities between male and female brains 

and urges future work be done by first analyzing areas that differ fundamentally from one 

another.  

Another article published in The Journal of Cerebral Cortex in 2018 provides a larger study on 

the sex differences in the adult human brain. The goal of the study was to present a large and 

comprehensive analysis of sex difference in mean and variance that covered structural, diffusion 

and functional MRI measures [5]. The investigation found several structural and functional 

differences that were previously unnoticed, such as a stronger connectivity in the default mode 

network of females, and stronger connectivity in males between unimodal sensory and motor 
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cortices [5]. The paper also sees large overlaps between both sexes, but its main strength resides 

in the large sample size of the entire study.  

Lastly, an important article was published in 2013 in the Magnetic Resonance Imaging journal 

by J. M. Goldstein et al [7]. The paper also investigates the structural and functional differences 

of the brain. More specifically, it finds sex differences in the white matter microstructure of 

differing organs and uncovers differing neural connectivity in the resting state functions of the 

corpus callosum, the anterior cingulate cortex and orbitofrontal cortex.  

Although these publications have brought forth sexual dimorphisms in the human brain, they 

have not yet provided a methodology for accurate classification of the organs within. The 

development of such classification would not only be beneficial to understanding human 

cognition and behavior but would also aid in the detection and treatment of many 

neurodegenerative diseases [8]. According to a paper published in by Dr Raznahan in 2020 in the 

PNAS journal, categorizing and characterizing sex differences within the brain could provide 

vital information for how we understand biological sex and variations in disease risk and 

prevalence [8]. Knowing this, classification of male and female brains could hold the key, or at 

least the blueprint, to discovering neurological remedies that were previously believed to be non-

existent.   

1.3 Research Objectives 

The main objective of this thesis will be to use explainable AI methods to investigate sex 

differences within the structures of the human brain, while ruling out individual differences in 

overall size, volume, and shape. The goal is to present a new method for finding structural 

differences between the sexes and visualizing their locations in the cranium.  

To accomplish the objective, two specific aims with detailed hypothesis and questions are 

created to help guide the research. First, design a deep-learning-based sex classifier that can 

predict sex based on individual brain MR volumes. This aim hypothesizes that convolutional 

neural networks can correctly classify sex with high precision and accuracy. Given the plethora 

of classification architectures available, the thesis will analyze which models are optimal for the 

binary classification task and if they can predict sex with an accuracy over 80% on the test sets 

provided.  

If the first aim is successful, the second uses explainable AI to explore brain-regions that 

determine sex-based diffeomorphisms. Ideally, the aim hypothesizes that Grad-Cam along with 

saliency maps and deep-learning visualization tools can provide novel information of region-

wise sex-based differences. Additionally, these visualizations will attempt to show that brain 

classification is not only driven by overall size and shape. By looking at raw and affinely 

transformed MR scans, results can be drawn about the location of differences present when size 

and shape are removed as features of interest. From there, the top-ranked brain regions 

responsible for classification can be extracted and compared against previous literature.   

1.4 Thesis Significance and Organization 

The overall purpose of this research is to observe whether machine learning classification models 

can highlight neurological sex differences within healthy human brains. These dimorphisms can 

lead to a better understanding of treatments, diagnosis, and progression of many neurological and 
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psychological diseases. More specifically, sex differences for psychiatric disorders could be 

rooted in sex-specific brain behavior and organization [6]. For example, from an evolutionary 

standpoint, females have an advantage in risk aversion [9] [10] which could explain the 

activation patterns of stress systems like anxiety, major depressive disorder  and post-traumatic 

stress disorder [6]. These activations could have sex-specific structural counterparts that manifest 

themselves in certain brain regions. Conversely, males tend to show better spatial abilities than 

females [11] and a greater affinity for aggressive behaviors and patrolling [12] which could be 

linked to risk-taking and social behavior disorders like autism, schizophrenia and impulsive 

aggression [6]. As with females, these behaviors and disorders could have structural 

manifestations within the brain that have not yet been uncovered. Furthermore, recent literature 

found dissimilarities in brain regions where genes on the sex chromosomes are 

disproportionately expressed [8]. This can help understanding surrounding the manifestation of 

neurological disease symptoms and associated risk levels. By discovering sex-based brain 

differences, we can learn more about our species and transform medical practices to suit every 

patient’s needs rather than using a one-size-fits all approach.  

The project is split into two parts. First, it will analyze a deep-learning classifier’s ability to 

perform sex-based predictions on individual volumes for affined and non-affined MR images. 

Second, it will use explainable AI to visualize, explore and compare the classification decisions 

of these models. This paper will begin in Chapter 2 with a technical overview of the important 

aspects of the research. This section covers classification problems, machine learning models, 

grad-cam visualizations, and MRI registration along with details on the dataset used and 

architectures designed. Chapter 3 provides the methodology, results, and detailed discussion on 

the findings. Chapter 4 concludes with future works and challenges faced.  
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Chapter 2: Classification Problems for Brain MR Images, Network Designs 

and Background Information 

2.1 Overview 

Machine learning and AI is at the precipice of becoming the dominant tool in the software and 

technology industry due to its ever-increasing ability to solve and visualize complex problems. 

More specifically, over the last several years, the integration of machine learning algorithms with 

medicine has resulted in new methods for diagnosing and predicting disease progression. Deep 

learning, a popular sub section of machine learning, is constantly evolving in its predictive 

capabilities due to increases in computational power and access to large datasets.  

In the context of medicine, images are one of the primary forms of confirming diagnosis and 

understanding human anatomy and physiology. For brain imaging, T1 structural MRI’s are used 

to visualize the entire cranium and its contents. These MRI’s can be visualized as a cube of 

voxels where a slice in the sagittal, coronal, or axial plane forms a different image. T1 MRIs 

provide very high-resolution images that can hold a plethora of information invisible to the 

naked eye, but noticeable to machine learning networks.   

2.2 Convolutional Neural Networks and Related Architectures 

Convolutional neural networks are a specific subsection of deep learning models where an image 

is passed through a set of consecutive convolutional layers to extract important features that best 

describe the data. These feature maps are then concatenated and fed to a traditional fully 

connected neural network with some activation applied to the output layer. Figure 2.1 below 

shows a generic convolutional neural network model.  

 

 

Figure 2.1 Generic CNN Architecture [13] 

These types of architectures have become extremely popular for image recognition, 

segmentation, and classification because their powerful generalization and feature extraction 

capabilities. However, as these models become larger and more complex, they become prone to 

suffer from the vanishing gradient problem; an issue where the partial derivatives of the error 

functions become increasingly small, effectively zero, as the network undergoes backpropagation 

hence preventing the subsequent weights from updating correctly.  

As a result, many CNN architectures have been designed over the years to overcome this issue 

and improve performance, such as LeNet-5, AlexNet, and ResNet-18/30/50/150 [14] [15] [16] 

all with great classification and segmentation capabilities. However, one the best is the Residual 
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Neural Network developed in 2016 [16]. The ResNet architecture overcomes the classic 

vanishing gradient problem suffered by classical deep-layered models by implementing skip-

connections shown in figure 2.2 below.  

 

 

Figure 2.2 ResNet Skip Connection [16] 

 

These skip-connections allow an alternate shortcut path for the gradient to flow through [16] 

hence reducing the length the gradient must travel to update the necessary weights.  

The Res-Net models comes in varying depths and forms with Figure 2.3 below showing all the 

generic architectures of the multilayered models.  

 

Figure 2.3 Overview of Res-Net Architectures [16] 
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2.3 Network Construction 

To properly understand and visualize the performance of machine learning models on sex-based 

classification, it is paramount to construct and compare multiple architectures to ensure optimal 

performance and generalizability. As a result, two different CNN architectures are designed 

using a series of three-dimensional convolutions for feature extraction. Three-dimensional image 

convolution is identical to that in two-dimensions, with the kernel sliding over each voxel adding 

the weighted values of all its neighbors over the area it covers. Figure 2.4 below presents an 

example. 

  

 

Figure 2.4 3-D Convolution and T1 Structural MRI Example 

Of the two models the first constructed is a classical sequential CNN model. The details are 

illustrated in Figure 3.1 below.  

 

Figure 2.5 Classical CNN Architecture for MRI Sex Classification 

This architecture is designed in three convolutional blocks to reduce the dimensionality of each 

image to a set of 32 feature maps each with dimensions 5x5x5. These feature maps are then fed 



 

7 
 

to a three layered fully connected network each with a rectified linear unit activation. The 

network is a lightweight and quick solution for feature extraction and model training.  

The second architecture constructed was a ResNet18 model modified using three-dimensional 

convolutions. It is more complex than its sequential CNN counterpart and requires more 

computational time to properly train. The first column in Figure 2.3 above illustrates the design. 

The output of both architectures are fed to a logistic function to produce a probability for 

prediction. Given the binary nature of the problem, a sigmoid with a classification threshold of 

0.5 is reasonable; with anything above the threshold being classified as male and anything 

underneath being female.  

2.4 Grad-Cams and Visualization Methods 

Grad-Cam is a tool developed in 2017 that produces visual explanations for decisions from a 

large-class of CNN based models [17]. As an image is passed through the model, the last 

convolutional layer retains spatial information [17] and is the best for extracting the 

visualizations needed for determining the features which contribute most to the decision of the 

network. These feature maps are combined and backpropagated through the network to create a 

coarse heatmap of features of interest [17]. Figure 2.4 shows the process for a multi-class CNN, 

however the concept is the same for binary classification. 

 

Figure 2.6 Grad-Cam Process [17] 

More specifically for this project, the visualization will be performed via a sensitivity analysis 

[18] introduced by Simonyan et al in 2014. The sensitivity of a pixel, or voxel in this case, 

measures how much small changes in its value contribute to the classification function f of a 

network [19]. This is done by taking the norm over partial derivatives, acquired via 

backpropagation through the network, of a specific color channel c, shown in Formula 2.1 below. 
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Formula 2.1 Sensitivity Analysis Formula [19] 

The sensitivity analysis used in this project is provided by Rieke et al. [20] from their paper 

analyzing four visualization methods for MRI-based convolutional networks. 

2.5 MRI Registration and AAL Atlas 

T1 structural MRIs come in many different shapes and sizes meaning two images taken on the 

same machine a few months apart may not look identical. This is a problem when it comes to 

diagnosing conditions like tumor growth or neurological disease progression [21]. MRIs must be 

registered, or standardized, to a normal space so that images taken months apart or from separate 

machines can be properly compared and analyzed. MRI registration involves performing affine 

and rigid transformations on the original image to fit a standard space. A classic template used is 

the MNI 305 Average Brain, which is an average of 305 T1-weighted MRI scans linearly 

transformed to Talairach space [22] with a dimensionality of 172x220x156. This template is used 

for registration in the project. Figure 2.5 below shows an example of MRI normalization on a set 

of individual images. As seen, the normalization provides a clear way to visualize MR images 

from which more conclusive results can be drawn.  

 

 

Figure 2.7 Example of MRI Normalization [23] 

If MRI registration provides a simple method for normalizing brains to a standard space for 

visualization, then it is also useful to have a tool that can annotate and display which areas of 

interest are being analyzed. The AAL atlas is an automated anatomical parcellation of the 

spatially normalized average from 27 T1 volumes [24]. The parcellation results in 54 3D areas 

within each brain hemisphere where each region is manually drawn every 2mm on the axial 
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slices. The 108 regions are then reconstructed and assigned a label [24]. Each brain region is 

assigned a specific pixel value with all distinct areas sharing a different value. For example, 108 

regions each have a pixel value ranging from 0 to 108 with 0 being the background.  Figure 2.8 

shows several slices taken from the atlas.  

 

Figure 2.8 AAL Atlas Slices taken at Index 75 and 100 from axial, sagittal and coronal planes 

2.6 Dataset Information 

To properly construct the image classifiers, the patient image data must subscribe to a series of 

parameters to remove unwanted features during model training. First, a healthy subject without 

any underlying neurological conditions or diseases is required. Second, subjects must be between 

twenty-five and fifty years old. This ensures all patients had fully developed brains without any 

signs of deterioration. 

The following research used images from two datasets, UKBiobank [25] and OASIS [16]. From 

the UKBiobank set, one thousand 3T brain MR images are chosen to train the image classifiers. 

This training stack consisted of 585 females and 411 males. Additionally, a test set of four 

hundred 3T images are acquired from the UKBiobank set, consisting of 225 female and 175 male 

scans.  

To further test the model performance and generalizability, 81 1.5T MR images are chosen from 

the OASIS dataset. This test set contains 44 female, and 37 male scans that fit the data 

constraints.  
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Chapter 3: Methodology, Results and Discussion 

The following chapter presents the methodology, procedures, results, and discussion of the 

project. Each section begins by stating its hypothesis and specific questions for clarity and 

understanding. 

Part 1: Designing a deep-learning-based sex-classifier  
It is important to restate the hypothesis mentioned in Chapter 1 to better understand the 

methodology of the section. Earlier, the first aim hypothesized that CNNs could correctly 

classify sex with high accuracy, over 80%. This section analyzes and selects the optimal model 

architecture for the binary classification task that gives the best generalizable results on raw and 

affinely transformed MR scans.  

3.1.2 Methods 

The methodology for the chapter is broken into the following three steps. First, acquiring and 

creating the necessary training and test sets for both the raw and affined image stacks. Second, 

model training and k-fold cross validation for optimal parameter selection. Lastly, model 

validation on the corresponding test stacks.  

1. Data Acquisition and Organization 

The training data is acquired from a subset of the UKBiobank dataset. It consists of one-thousand 

MR images of varying shapes and sizes, of which, 411 are male and 585 are female. Using Free 

Surfer pipelines, these images undergo a rigid transformation to the MNI 305 space for centering 

via the regalading pipeline from the nifty reg package. No affined registration is performed. The 

stack is then split into a training and testing set of 950 and 50 images respectively. To test the 

model, two separate datasets are acquired from the OASIS and the UKBiobank databank. The 

OASIS dataset consists of 81 MR images, 44 females and 37 males, which are also registered via 

a rigid transformation to the MNI 305 space. The UKBiobank test set consists of 400 MR 

images, 225 females and 175 males, rigidly transformed to the MNI305 space.  

Now that each training and validation group has been created. A separate training and validation 

stack is formed by performing an affined registration on each image in the UKBiobank and 

OASIS stacks to the MNI 305 space. The regaladin pipeline from the niftyreg package is used to 

perform the affine transformations for each image. The split of training and testing images 

remains the same as before.  

Two stacks of training and testing data are created: one for training and predicting raw images 

and another for training and predicting on affined images.  

2. Model Training  

Two architectures are employed to achieve the objectives listed above: a classical CNN and a 

ResNet18 model. These are described in further detail in Chapter 2. Each model is trained for 50 

epochs and is evaluated using three-fold cross validation, where each fold is trained using either 

the PyTorch SGD or Adam optimizers with a learning rate ranging from 1e-2 to 1e-3. The best 

parameters and hyperparameters are chosen by comparing the average loss and accuracy of all 
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the folds. The optimal model is then chosen with the hyperparameters that result in the lowest of 

these averages. Once the appropriate values are found, the model is trained on the entire training 

stack for 100 epochs and validated on the OASIS and UKB set for proper results. The process is 

repeated for the raw and affined image stack resulting in two models for sex-based prediction.  

3. Model Validation 

With every model being trained on the UKB training set, each is then validated on the OASIS 

and UKBiobank test images respectively, and their performance are analyzed via a confusion 

matrix. Models could not be trained on the OASIS dataset due to a small number of images. The 

accuracy, precision, recall and AUC/ROC metrics are used to gain insight on the model. Finally, 

these metrics are used to compare the classical and ResNet18 architectures to determine the 

optimal model for each image stack.  

3.1.3 Results 

To begin, it is best to visualize the rigid and affined transformation of each training and 

validation set to better understand the data. Figures 3.1 and 3.2 below illustrate the rigid and 

affined transformations of the UKBiobank and OASIS datasets. To help understand information 

about the data used, Table 3.1 displays the breakdown of datasets.  

 Number of 

Males 

Number of 

Females 

Mean Age Standard 

Deviation of Age 

Scanner 

Strength 

UKB Train 411 585 42 8.4 3T 

UKB Test 175 225 37 8.8 3T 

OASIS Test 37 44 36 9.3 1.5T 

Table 3.1 Breakdown of training and testing dataset information 
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Figure 3.1 UKBiobank Raw, Rigid, Affined and MNI 305 Template Image 

 

Figure 3.2 OASIS Rigid, Affined and MNI 305 Template Images 
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Raw Models 

The first several models are trained on the rigid registrations and evaluated using 3-fold cross 

validation to ensure optimal parameters for training. Table 3.1 below illustrates the average 

training and testing losses/accuracies based on varying parameters.  

Model 

Architecture 

Optimizer Learning 

Rate 

Avg 

Training 

Loss 

Avg 

Training 

Acc 

Avg 

Validation 

Loss 

Avg 

Valdiation 

Acc 

Classical SGD 0.01 2.838 98.18 3.262 96.32 

Classical SGD 0.001 10.305 692.43 6.001 90.74 

Classical Adam 0.01 6.840 96.38 9.848 93.87 

Classical Adam 0.001 2.775 98.32 5.178 95.46 

ResNet18 SGD 0.01 3.045 98.23 2.974 96.30 

ResNet18 SGD 0.001 7.854 95.33 4.66 94.27 

ResNet18 Adam 0.01 6.146 96.19 5.227 94.12 

ResNet18 Adam 0.001 3.782 97.72 3.859 95.72 

Table 3.1 K-fold Cross Validation Results for Models Trained on Raw MR Images. Optimal 

parameters for best performing model highlighted in yellow 

The best parameters and models are highlighted in yellow. The corresponding loss and accuracy 

plots are shown below. From the loss plots, there does not seem to be any signs of overfitting for 

either model architecture but there is a greater instability in accuracies for the Resnet18 model 

compared to the sequential CNN.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Classical (Top) and ResNet18(Bottom) Training and Testing Loss/Accuracies 
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Following the training, the models are tested on the OASIS and UKBiobank images. With a 

classification threshold of 0.5. The following result are displayed in Tables 3.2 and 3.3. 

Classical Model, Thresh = 0.5 ResNet18 Model, Thresh = 0.5 

OASIS Test 

Dataset  

Evaluation 

Metrics 

OASIS Test 

Dataset  

Evaluation 

Metrics 

Accuracy 90.1% Accuracy 54.32% 

Precision 96.77% Precision Nan 

Recall 81.08% Recall 0% 

Male Accuracy 

(Sensitivity) 

81.08% Male Accuracy 0% 

Female 

Accuracy 

(Specificity) 

97.72% Female 

Accuracy 

100.0% 

 

 

 

 

*Note 0 is Female, 1 is Male 

Table 3.2 Model Performance Statistics with Classification Threshold at 0.5 on OASIS Dataset 

 

Classical Model, Thresh = 0.5 ResNet18 Model, Thresh = 0.5 

UKB Test 

Dataset  

Evaluation 

Metrics 

UKB Test 

Dataset  

Evaluation 

Metrics 

Accuracy 97.0% Accuracy 56.25% 

Precision 96.05% Precision Nan 

Recall 97.14% Recall 0% 

Male Accuracy 

(Sensitivity) 

97.14% Male Accuracy 0% 

Female 

Accuracy 

(Specificity) 

96.88% Female 

Accuracy 

100.0% 

 

 

 

 

Table 3.3 Model Performance Statistics with Threshold at 0.5 on UKBiobank Testset 

Confusion Matrix Classical 

 0 1 

0 43 1 

1 7 30 

Confusion Matrix ResNet18 

 0 1 

0 44 0 

1 37 0 

Confusion Matrix Classical 

 0 1 

0 218 7 

1 5 170 

Confusion Matrix ResNet18 

 0 1 

0 225 0 

1 175 0 
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Tables 3.2 and 3.3 really show the success of the classical CNN compared to its Resnet 

counterpart. On both test sets, the sequential model averaged extremely high-performance scores. 

On the other hand, Resnet18 suffered with male classification, predicting all volumes to be 

female under the 0.5 threshold. With the performance of both architectures on the test sets, the 

following ROC/AUC curves were generated.  

 

 

 

 

 

 

 

 

 

Figure 3.4 ROC Curves per Model and Testset. Blue represents the Classical Architecture and 

Red shows ResNet18 performance across thresholds. The green dot shows the arbitrary 0.5 

classification threshold chosen. 

The resulting ROC curves for both architectures show very good performance across 

classification thresholds. However, in terms of model generalizability, ResNet18 requires careful 

selection of its threshold to provide accurate results whereas the sequential CNN classifies well 

with the arbitrary 0.5 threshold. In addition, the roc plot of the classical model is more desirable 

for this classification problem.  

The ResNet18 threshold is found to be 0.008 for UKB and 0.0075 for OASIS. These optimal 

thresholds are found by taking a geometric average of the sensitivity and specificity on the test 

set over a range of values. Despite having a good ROC curve, the model’s generalizability is 

lacking.  

 

 

  

OASIS TestSet UKB TestSet 
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Affined Model 

After completing the training and evaluation on the raw, rigidly transformed images, the next 

step involved training and validating models on the affined image stack. Table 3.6 below shows 

the 3-fold cross validation of the models trained on affined MR images.  

Model 

Architecture 

Optimizer Learning 

Rate 

Avg 

Training 

Loss 

Avg 

Training 

Acc 

Avg 

Validation 

Loss 

Avg 

Validation 

Acc 

Classical SGD 0.01 1.997 99.06 3.223 96.72 

Classical SGD 0.001 10.718 96.01 6.792 93.97 

Classical Adam 0.01 2.887 98.40 4.392 96.47 

Classical Adam 0.001 1.699 99.08 3.139 97.32 

ResNet18 SGD 0.01 2.980 98.44 4.277 96.11 

ResNet18 SGD 0.001 6.598 96.85 4.658 95.52 

ResNet18 Adam 0.01 5.737 96.89 5.143 95.61 

ResNet18 Adam 0.001 3.875 97.97 4.161 96.27 

Table 3.4 K-fold Cross Validation Results for Models Trained on Affined MR Images. Optimal 

parameters for best performing model highlighted in yellow 

The respective losses and accuracies of each model architecture are shown below in Figure 3.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Classical (Top) and ResNet18(Bottom) Training and Testing Loss/Accuracies 
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Like the models trained on rigid images, there does not seem to be any signs of overfitting for 

either model architecture but there is a greater instability in testing accuracies for the Resnet18 

model compared to the sequential CNN. 

With the models fully trained, their respective validation scores on the OASIS and UKB test sets 

are shown in Table 3.4 and 3.5. 

Classical Model, Thresh = 0.5 ResNet18 Model, Thresh = 0.5 

OASIS Test 

Dataset  

Evaluation 

Metrics 

OASIS Test 

Dataset  

Evaluation 

Metrics 

Accuracy 91.4% Accuracy 54.32% 

Precision 100.0% Precision Nan 

Recall 81.1% Recall 0% 

Male Accuracy 

(Sensitivity) 

81.1% Male Accuracy 0% 

Female 

Accuracy 

(Specificity) 

100.0% Female 

Accuracy 

100.0% 

 

 

 

*Note 0 is Female, 1 is Male 

Table 3.5 Model Performance Statistics with Threshold at 0.5 on OASIS Dataset 

Classical Model, Thresh = 0.5 ResNet18 Model, Thresh = 0.5 

UKB Test 

Dataset  

Evaluation 

Metrics 

UKB Test 

Dataset  

Evaluation 

Metrics 

Accuracy 98.0% Accuracy 56.25% 

Precision 98.26% Precision Nan 

Recall 97.14% Recall 0% 

Male Accuracy 

(Sensitivity) 

97.14% Male Accuracy 0% 

Female 

Accuracy 

(Specificity) 

98.67% Female 

Accuracy 

100.0% 

 

 

 

Table 3.6 Model Performance Statistics with Threshold at 0.5 on UKBiobank Testset 

Confusion Matrix Classical 

 0 1 

0 44 0 

1 7 30 

Confusion Matrix ResNet18 

 0 1 

0 44 0 

1 37 0 

Confusion Matrix Classical 

 0 1 

0 222 3 

1 5 170 

Confusion Matrix ResNet18 

 0 1 

0 225 0 

1 175 0 
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The same pattern as before follows, with the classical network heavily outperforming Resnet 

with the 0.5 threshold. Resnet suffers from the same issue, classifying all scans as female. 

Furthermore, the sequential CNN outperforms itself on the affined image stack showing higher 

accuracy, precision, recall along with better sensitivity and specificity than its rigid image 

counterpart.  

Using an ROC/AUC curve the threshold for the OASIS dataset classification can be modified. 

Figure 3.6 illustrates the varying threshold levels and the corresponding optimal performance 

statistics.  

 

 

 

 

 

 

 

 

 

Figure 3.6: ROC Curves per Model and Testset. Blue represents the Classical Architecture and 

Red shows ResNet18 performance across thresholds. The green dot shows the arbitrary 0.5 

classification threshold chosen.  

Both architectures show promise in their classification abilities however the Resnet model again 

needs careful selection of its threshold to properly classify each test set. As a result, the classical 

model outperforms Resnet in terms of generalizability across test sets using the arbitrary 0.5 

threshold.  

The ResNet18 threshold is found to be 0.055 for UKB and 0.059 for OASIS. These optimal 

thresholds are found by taking a geometric average of the sensitivity and specificity on the test 

set over a range of values. Despite having a good ROC curve, the model’s generalizability is 

lacking.  

3.1.4 Discussion 

By comparing the 3-fold cross validation performance of different model parameters, it became 

easy to recognize which architecture was optimal for the binary classification task. A 3-fold 

cross validation was used in both cases due to the number of training images. 5-fold would have 

drastically reduced the number of testing images and may not have given a good view on how 

the model performs with each fold.  

For the raw, rigidly transformed images, the SGD optimizer with a learning rate of 0.01 

outperformed the other parameters by having the highest training and testing accuracies while 

OASIS TestSet UKB TestSet 
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maintaining the lowest training and testing loss. The loss and accuracy plots for the sequential 

and ResNet18 model shown in Figure 3.3 demonstrate no overfitting and very high accuracies, 

between 96% and 100% on the testing and training sets. Interestingly, the sequential model 

appears to be more stable in accuracy and loss compared to ResNet18. This is supported further 

by the performance metrics where each model is tested on the OASIS and UKB test sets. Tables 

3.2 and 3.3 illustrate the classification performance with a threshold of 0.5. It becomes clear that 

the sequential architecture outperforms ResNet18 in terms of generalizability given the high 

accuracies for both test sets. In contrast, ResNet18 struggles to classify males in both test sets, 

predicting all images to be female. Each test set has its own ROC/AUC score shown in Figure 

3.4. The sequential model still outperforms ResNet18 with both test sets averaging higher AUC 

scores and better ROC curves. In addition, the classical architecture is more generalizable with a 

classification threshold of 0.5 as opposed to ResNet18 which requires a different threshold based 

on the test set used. The classical model is much more lightweight than its ResNet18 counterpart, 

requiring less computational power and time to train.  

The success of the sequential architecture carries over to the models trained on affined images. 

Table 3.4 displays the optimal parameters for each design highlighted in yellow. The 

corresponding loss and accuracy plots are illustrated in Figure 3.6. As with the raw images, the 

classical model seems more stable in terms of accuracy and loss than ResNet18. The accuracy of 

both models is quite high, again ranging from 96% to 100% and the loss plots show no sign of 

overfitting. When analyzing the performance metrics on the OASIS and UKB affined test sets 

with a classification threshold of 0.5, it becomes clear the classical CNN generalizes much better 

than ResNet18 averaging an accuracy over 90% for both test sets. ResNet18 suffers from the 

same issue as before, in where the classification fails for all male images. The corresponding 

ROC/AUC curves demonstrate good classification capability from both architectures. Like the 

raw image models, the classical CNN outperforms ResNet18 by being more generalizable across 

test sets with a threshold of 0.5. 

Furthermore, the ResNet18 model might not have performed as well since the training images 

were not intensity normalized. This may be why the model acted sporadically and did not have 

such high classification accuracies. With further data preprocessing, the Resnet18 model could 

have very different results. 

Nevertheless, the classical CNN is the optimal performer for both raw and affined images. 

Furthermore, it can extend its classification predictions across MRI field strengths ranging from 

1.5T to 3T without sacrificing performance. Given the complex design of ResNet18, the model 

may be looking for specific features that are not generalizable or relevant to the research 

problem. The simple architecture employed was capable of classifying male and female brains 

with an accuracy of over 90% across test sets and transformations; hence answering the research 

hypothesis and questions proposed at the beginning of the section. 
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Part 2: Explainable AI to explore brain-regions that determine sex-based 

diffeomorphism 
As stated in Chapter 1, given the success of the model classification, the hypothesis is that grad-

cams and saliency maps can provide novel information on region-wise sex-based 

diffeomorphisms while showing that brain classification is not fully driven by size and shape. 

This section explores the visualization of the classification decisions of both Resnet18 and 

classical models. It also shows if the generated saliency maps are different between the raw and 

affined image stacks and lists the features which contribute most to the model classification 

decision.  

3.2.2 Methods 

The methodology for the chapter is broken into the following two steps. First, the construction of 

the grad-cam and related saliency maps for visualization. And second, the explanation of model 

classification decisions based on differentiating features uncovered by the deep-learning 

networks.  

1. Grad-Cam Construction  

To properly visualize the results of the models, a grad-cam is used via a sensitivity analysis [20] 

[18]. This tool highlights relevant areas that contribute to a model’s classification decision as a 

heatmap overlayed on the input image. The sensitivity analysis developed by Rieke [20] for 

MRI-based convolutional networks is used to perform these visualizations. The saliency maps 

generated are then utilized in creating a population-wise grad-cam.  

2. Explanation of model classification decisions 

A single sample grad-cam is not suitable for visualizing sex differences as it is prone to noise as 

the model backpropagates to generate the saliency map [20]. A population wise grad-cam is 

more appropriate for examining differences to determine conclusive results for large subject 

groups. A grad-cam heatmap is created for all images in the OASIS and UKBiobank test set and 

an average is taken among the resulting male and female saliency maps. This averaging removes 

any outliers or noise otherwise present in individual grad-cams. The result is two population-

wise heatmaps, one for males and one for females, which are then overlayed onto a subject for 

visualization.  

These two grad-cams contain information on the existence and location of potential dimorphisms 

within the brain. A rigorous visual inspection is conducted across both heatmaps to pinpoint 

specific areas of interest. This process is then repeated for the models trained on the raw and 

affined image stacks, and the resulting population-wide saliency maps are compared. A 

relevance table is then constructed based on the aal Atlas [24] to list the most important brain 

areas responsible for the sex classification. This provides a numerical method to complement the 

visual inspection for rigor and verification.  

This relevance table is constructed by generating a series of area masks each associated with a 

specific region in the aal atlas. Then the saliency maps generated are multiplied and summed 

with each area mask to create a relevance score. The more overlapping pixels in the area mask 

and saliency map will result in a higher score. These scores are then merged with the 
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corresponding area names and sorted in descending order. The top scoring regions are the most 

relevant to the model classification being the areas where the saliency map overlaps the 

individual masks the most.  

3.2.3 Results 

Raw Model Visualization 

Classical Architecture 

Given the success of the sequential model in correctly predicting sex, it is important to visualize 

where and how the CNN makes its decision. Performing a population grad-cam on the OASIS 

and UKB test image stack, the saliency maps generated for the classical architecture are shown 

in Figures 3.7 to 3.10 below.  

Figure 3.7 Population-wide average female saliency map generated from the rigidly transformed 

OASIS testset using the Classical Model  

Figure 3.8 Population-wide average male saliency map generated from the rigidly transformed 

OASIS testset using the Classical Model 
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Figure 3.9 Population-wide average female saliency map generated from the rigidly transformed 

UKB testset using the Classical Model 

Figure 3.10 Population-wide average male saliency map generated from the rigidly transformed 

UKB testset using the Classical Model 

Both sets of images show similar highlighted regions across test sets. The model seems to look 

for differences towards the center of the brains with some scattering towards the lateral and 

posterior sides. Despite being trained on 3T volumes, the classifier sees similar differences in 

lower resolution images like the 1.5T Oasis MR images. Overlaying the heatmaps with aal atlas 

and creating a sorted table of brain regions most important to the model classification, a 

relevance table is created for both test sets and displayed in Tables 3.7 and 3.8. Out of the 110 

available brain regions in the atlas, the top ten areas that contribute to the classification are 

shown.  
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 Male Relevance Female Relevance 

Relevance Brain Area Brain Area 

1 Middle Temporal 

Gyrus 

Middle Temporal 

Gyrus 

2 Precuneus Precuneus 

3 Cerebellum Crus 1 Cerebelum_Crus1 

4 Inferior Temporal 

Gyrus 

Inferior Temporal 

Gyrus 

5 Postcentral Postcentral 

6 Lingual Lingual 

7 Middle Occipital 

Gyrus 

Middle Occipital 

Gyrus 

8 Fusiform Middle Frontal 

Gyrus 

9 Middle Frontal 

Gyrus 

Fusiform 

10 Precentral Precentral 

Table 3.7 Top 10 brain regions responsible for model classification sorted in order from most to 

least significant based on the aal brain atlas and classical architecture for the rigidly 

transformed OASIS test set.  

 Male Relevance Female Relevance 

Relevance Brain Area Brain Area 

1 Middle Temporal 

Gyrus 

Middle Temporal 

Gyrus 

2 Precuneus Precuneus 

3 Cerebellum Crus 1 Postcentral 

4 Postcentral Cerebellum Crus 1 

5 Inferior Temporal 

Gyrus 

Inferior Temporal 

Gyrus 

6 Mid Occipital Gyrus  Middle Frontal 

Gyrus 

7 Middle Frontal 

Gyrus 

Middle Occipital 

Gyrus 

8 Precentral Precentral 

9 Fusiform Fusiform 

10 Lingual Lingual 

Table 3.8 Top 10 brain regions responsible for model classification sorted in order from most to 

least significant based on the aal brain atlas and classical architecture for the rigidly 

transformed UKB test set. 

As listed above, the top regions of interest with the highest contribution are the temporal gyri, 

cerebellum, and precuneus and postcentral gyri. Despite generating saliency maps for MR 
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images of differing field strengths, both test sets list similar ROI’s that contribute to model 

classification.  

ResNet18 Architecture 

Despite not performing as well as the classical architecture, it is important to visualize the 

decisions of the RestNet18 model to better understand where the model searches for 

discrepancies. The saliency maps illustrating the classification decisions for the ResNet18 

architecture for the raw OASIS and UKB test sets are displayed in Figures 3.11-3.14 below.  

Figure 3.11 Population-wide average female saliency map generated from the rigidly 

transformed OASIS testset using ResNet18 

Figure 3.12 Population-wide average male saliency map generated from the rigidly transformed 

OASIS testset using ResNet18 
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Figure 3.13 Population-wide average female saliency map generated from the rigidly 

transformed UKB testset using ResNet18 

Figure 3.14 Population-wide average male saliency map generated from the rigidly transformed 

UKB testset using ResNet18 

The figures illustrate a wide-ranging grad-cam, highlighting the entire volume as an ROI rather 

than a specific feature. Concentrations of pixels are found around the skull hinting that the model 

is looking at the overall size and shape of the brain itself rather than the brain structures. 

However, the relevance table constructed using the overlay from the aal atlas shows similar areas 

to that of the sequential CNN. The relevance of each area for the classification is shown below in 

Tables 3.9 and 3.10  
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 Male Relevance Female Relevance 

Relevance Brain Area Brain Area 

1 Middle Frontal Gyrus Middle Frontal Gyrus 

2 Middle Temporal Gyrus Middle Temporal Gyrus 

3 Inferior Temporal 

Gyrus 

Inferior Temporal Gyrus 

4 Superior Frontal Gyrus Superior Frontal Gyrus 

5 Cerebellum Crus 1 Middle Occipital Gyrus 

6 Inferior-Frontal Gyrus, 

Triangular 

Inferior-Frontal Gyrus, 

Triangular 

7 Postcentral Precuneus 

8 Fusiform Postcentral 

9 Precuneus Superior Frontal Gyrus, 

Medial 

10 Precentral Cerebellum Crus 1 

Table 3.9 Top 10 brain regions responsible for model classification sorted in order from most to 

least significant based on the aal brain atlas and ResNet18 for the rigidly transformed OASIS 

test set  

 Male Relevance Female Relevance 

Relevance Brain Area Brain Area 

1 Middle-Temporal 

Gyrus 

Middle-Temporal Gyrus 

2 Precuneus Precuneus 

3 Cerebellum Crus 1 Postcentral 

4 Postcentral Cerebellum Crus 1 

5 Inferior-Temporal 

Gyrus 

Inferior-Temporal Gyrus 

6 Middle-Occipital 

Gyrus 

Middle Frontal Gyrus 

7 Middle Frontal Gyrus Middle-Occipital Gyrus 

8 Precentral Precentral 

9 Fusiform Fusiform 

10 Lingual Lingual 

Table 3.10 Top 10 brain regions responsible for model classification sorted in order from most 

to least significant based on the aal brain atlas and ResNet18 for the rigidly transformed UKB 

test set 

The temporal, precuneus and postcentral gyri are at the forefront of the classification, like in the 

previous model. However, this is overshadowed by the conglomeration of red pixels around the 

skull of the volume as shown in the figures above. This leads to question if ResNet18 looks for 

sex specific features or rather just size and shape of the individual volumes.  
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Affined Model Visualization 

Classical Architecture 

Performing a population grad-cam on the affined OASIS and UKB test stack, the saliency maps 

generated for the classical architecture are shown in Figures 3.15 to 3.18 below.  

Figure 3.15 Population-wide average female saliency map generated from the affined OASIS 

testset using the Classical Architecture 

Figure 3.16 Population-wide average male saliency map generated from the affined OASIS 

testset using the Classical Architecture 

The resulting population saliency maps at the 1.5T field strength show highlights similar to those 

of the raw image grad-cams from above. With highlighted regions around the center, posterior 

and lateral sides of the brain. The 3T images from the UKB test set below show similar 

concentrations of red pixels.  
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Figure 3.17 Population-wide average female saliency map generated from the affined UKB 

testset using the Classical Architecture 

Figure 3.18 Population-wide average male saliency map generated from the affined UKB testset 

using the Classical Architecture 

By inspection, similar regions are highlighted in red between the OASIS and UKB test sets, 

around the center of the brain with some spots toward the frontal and parietal lobe. To further 

understand which regions contribute the most, the relevance of each brain area for sex 

classification is constructed and shown below in Table 3.6 and 3.7.  
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 Male Relevance Female Relevance 

Relevance Brain Area Brain Area 

1 Middle Temporal Gyrus Inferior Temporal 

Gyrus 

2 Middle Frontal Gyrus Middle Temporal 

Gyrus 

3 Inferior Temporal Gyrus Middle Frontal Gyrus 

4 Cerebellum Crus 1 Median Cingulate 

Gyrus 

5 Middle Occipital Gyrus Cerebellum Crus 1 

6 Superior Frontal Gyrus Fusiform 

7 Postcentral Postcentral 

8 Median Cingulate Gyrus Middle Occipital 

Gyrus 

9 Precentral Precuneus 

10 Superior Frontal Gyrus, 

Medial 

Calcarine 

Table 3.11 Top 10 brain regions responsible for model classification sorted in order from most 

to least significant based on the aal brain atlas and classical architecture for the affined OASIS 

test set 

 Male Relevance Female Relevance 

Relevance Brain Area Brain Area 

1 Middle Temporal 

Gyrus 

Middle Temporal 

Gyrus 

2 Middle Frontal Gyrus Middle Frontal Gyrus 

3 Inferior Temporal 

Gyrus 

Inferior Temporal 

Gyrus 

4 Superior Frontal 

Gyrus 

Superior Frontal 

Gyrus 

5 Cerebellum Crus 1 Cerebellum Crus 1 

6 Postcentral Postcentral 

7 Middle Occipital 

Gyrus 

Superior Frontal 

Gyrus, Medial 

8 Median Cingulate 

Gyrus 

Middle Occipital 

Gyrus 

9 Precentral Fusiform 

10 Fusiform Median Cingulate 

Gyrus 

Table 3.12 Top 10 brain regions responsible for model classification sorted in order from most 

to least significant based on the aal brain atlas and classical architecture for the affined UKB 

test set 
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At a quick glance, the top areas of interest are similar amongst both test sets, with the temporal 

and frontal gyri holding the most significance. Like the raw images in the previous section, the 

affined grad-cam picks up the same ROI’s; hinting that both models are searching for sex-

specific features similar across affined and rigid transformations.  

ResNet18 Architecture 

Like with the raw image model, it is important to visualize the classification of ResNet18 despite 

its poor performance at the general 0.5 threshold. The resulting saliency maps for the ResNet18 

architecture are displayed in Figures 3.19-3.22 below.  

Figure 3.19 Population-wide average female saliency map generated from the affined OASIS 

testset using ResNet18 

Figure 3.20 Population-wide average male saliency map generated from the affined OASIS 

testset using ResNet18 

ResNet18 highlights the entire volume with concentrations of pixels around the skull indicating 

size and shape as differentiating features. This is further illustrated in the UKB saliency maps 

below.  
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 Figure 3.21 Population-wide average female saliency map generated from the affined UKB 

testset using ResNet18 

 Figure 3.22 Population-wide average male saliency map generated from the affined OASIS 

testset using ResNet18 

Like ResNet18 for raw images, the population wide grad-cam does not emphasize any particular 

set of features as different between male and female brains in any test set. However, the list of 

relevant areas to brain classification shown in Tables 3.13 and 3.14 are quite similar to those of 

the sequential CNN, illustrating similar regions of interest.  
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 Male Relevance Female Relevance 

Relevance Brain Area Brain Area 

1 Middle Frontal Gyrus Middle Frontal Gyrus 

2 Middle Temporal 

Gyrus 

Middle Temporal 

Gyrus 

3 Inferior Temporal 

Gyrus 

Superior Frontal 

Gyrus 

4 Superior Frontal 

Gyrus 

Inferior Frontal 

Gyrus 

5 Postcentral Postcentral 

6 Precuneus Precuneus 

7 Precentral Precentral 

8 Inferior Frontal 

Gyrus, Triangular  

Superior Frontal 

Gyrus, Medial 

9 Superior Temporal 

Gyrus 

Middle Occipital 

Gyrus 

10 Middle Occipital 

Gyrus 

Inferior Frontal 

Gyrus, Triangular 

Table 3.13 Top 10 brain regions responsible for model classification sorted in order from most 

to least significant based on the aal brain atlas and ResNet18 for the affined OASIS test set 

 Male Relevance Female Relevance 

Relevance Brain Area Brain Area 

1 Middle Frontal Gyrus Middle Frontal Gyrus 

2 Middle Temporal 

Gyrus 

Middle Temporal 

Gyrus 

3 Inferior Temporal 

Gyrus 

Inferior Temporal 

Gyrus 

4 Postcentral Superior Frontal 

Gyrus 

5 Superior Frontal 

Gyrus 

Postcentral 

6 Precentral Precentral 

7 Precuneus Precuneus 

8 Cerebellum Crus 1 Middle Occipital 

Gyrus 

9 Middle Occipital 

Gyrus 

Inferior Frontal 

Gyrus, Triangular 

10 Superior Frontal 

Gyrus, Medial 

Superior Frontal 

Gyrus, Medial 

Table 3.14 Top 10 brain regions responsible for model classification sorted in order from most 

to least significant based on the aal brain atlas and ResNet18 for the affined UKB test set 
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As listed in the tables above, the temporal and front gyri hold the biggest significance for the 

model classification along with the precuneus and, precentral and postcentral gyri. Interestingly, 

the ResNet18 model list similar areas to those of the classical CNN, however, due to the poor 

visualization and prediction capabilities, it is difficult to be certain of these results since the grad-

cam hints at size being a key-differentiating feature between the sexes. 

3.2.4 Discussion 

Figures 3.7 to 3.10 illustrate the population wide saliency maps generated by a sensitivity 

analysis for males and females for the OASIS and UKB test sets. The areas highlighted in red are 

regions that contribute most to the model sex classification. These figures are complemented by 

Tables 3.7 and 3.8 where the regions of interest are shown in order of importance to the 

classification task. The top ten most influential areas to the decision are listed for each sex. 

Among the OASIS and UKB test sets, the classical model uncovers similar regions of 

importance to classification. Among the areas listed, the middle temporal gyrus, precuneus, 

cerebellum, postcentral and inferior temporal gyri contribute most to the model’s decision. 

Figures 3.7-3.10 show similar concentrations of pixels in the heatmap between test sets.  

On the other hand, figure 3.11 to 3.14 are more difficult to interpret. By inspection, it seems the 

ResNet18 saliency maps highlight the entire brain volume for both sexes across test sets. The 

area relevance listed in Tables 3.9 and 3.10 list the middle frontal, inferior temporal, and middle 

temporal gyri as most influential to the classification. However, the saliency maps tend to show a 

spread across the entire image. This could be due to the model searching for hyper-specific 

features across the entire volume, rather than focusing on those that contribute to sex differences.  

Comparing the population-wide raw saliency results to those of the affined images, the classical 

model (Figures 3.15 to 3.18) shows similar brain regions highlighted in red. This is further 

supported by the brain area relevance in Tables 3.11 and 3.12. For both test sets, the top 

overlapping areas for model classification are the middle and inferior temporal gyri along with 

the cerebellum, middle frontal gyrus and superior frontal gyrus.  

In contrast to the sequential CNN, ResNet18 highlights the entire volume in both test sets in 

Figures 3.19 to 3.22. As before, due to the complexity of the classifier, it searches for specific 

features that are not general to sex classification but rather to the volume itself. In addition, along 

the axial plane (3rd row of each image), a concentration of red pixels can be seen around the 

skull towards the corners of the image. This indicates, the model is viewing the entire MRI as 

different rather than features within the volume. Nevertheless, tables 3.13 and 3.14 show similar 

areas as those in tables 3.11 and 3.12. Despite highlighting the entire brain, it still sees some 

specific regions as more important than others, indicating a higher concentration of red pixels in 

the same areas as the classical model.  

Table 3.15 below shows a list of related literature and its results on structural sex differences 

within the brain. Comparing the results presented with previous findings helps gauge the validity 

and novelty of the research.  
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Authors Purpose Sample Size 

and 

Characteristics 

Summary of Results 

Julia Sacher 

et. Al. [26] 

(2011) 

A comprehensive summary 

exploring sex dimorphisms 

in the human brain at the 

structural and functional 

level 

Review Article Increases in brain volume in 

temporal and occiput gyri in men. 

Women showed more gray matter in 

cingulate cortices and parietal 

lobules. White matter differences in 

fusiform, hippocampus along with 

frontal and temporal lobes.  

Xi Zhang et. 

Al. [27] 

(2020) 

To show that gender 

differences are encoded 

differently within the 

structure and function of 

the human brain 

290 T1 MRI’s. 

Voxel-wise 

comparison 

performed using 

two t-tests 

Gender differences detected 

structurally in frontal, parietal, 

occipital lobes and cerebellum with 

greater GMV in females 

A. N. 

Ruigrok et. 

Al. [28] 

(2014) 

A meta-analysis of typical 

sex differences on global 

brain volume 

Combination of 

multiple studies 

using a new 

Gaussian-process 

regression 

coordinate-based 

meta-analysis for 

examination 

Regional sex differences in volume 

and tissue density include the 

amygdala, hippocampus and insula, 

areas known to be implicated in sex-

biased neuropsychiatric conditions. 

Jill M 

Goldstein 

et. Al. [7] 

(2001) 

A comprehensive 

evaluation of normal sexual 

dimorphisms of cortical and 

subcortical brain regions, 

using in vivo magnetic 

resonance imaging 

48 T1 Weighted 

1.5T MRI’s. 

Scans analyzed 

and segmented 

via MR 

technicians 

Women had larger volumes in 

particularly in the frontal and medial 

paralimbic cortices with men 

showing larger volumes in the frontal 

medial cortex, amygdala and 

hypothalamus 

Stuart J. 

Ritchie et. 

Al. [5]  

(2018) 

Large single sample study 

of structural and functional 

differences in the human 

brain. 

5216 T1 

weighted 3T 

MRI’s. Analyzed 

via various 

statistical 

methods 

GMV differences present in 

thalamus, amygdala and 

hippocampus with females having 

smaller volumes but more cortical 

thickness across entire brain.  

Xiaohua 

Chen et. Al. 

[29] 

(2007) 

The study examined sex-

related differences in 

regional gray matter (GM) 

in 44-48 year old healthy 

individuals 

411 T1 weighted 

MRI’s. Analyzed 

via voxel based 

morphometry 

Regional sex dimorphism was 

present, with men having more GM 

volume in midbrain, left inferior 

temporal gyrus, right occipital 

lingual gyrus, right middle temporal 

gyrus, and both cerebellar 

hemispheres. Women showed more 

GM in dorsal anterior, posterior and 

ventral cingulate cortices, and right 

inferior parietal lobule 

Table 3.15 List of reviewed studies and their results 
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The differences observed using the classical CNN are of great interest given the model's 

generalizability and high accuracy predictions. Literature surrounding brain sex differences 

shows differences in volume and tissue densities in several areas including the cerebellum, 

precuneus, inferior and middle frontal gyri and the occipital cortex [28]. Other publications also 

show differences in GMV in the frontal regions like the middle and superior frontal gyri along 

with the cerebellum, thalamus, and inferior parietal lobule [27]. Additionally, some research 

present differences in cortical thickness in the frontal, parietal, and temporal lobes and within the 

structural volume of the cerebellum and amygdala [30]. These findings align partially with the 

regions responsible for classification, seeing the similarities across the temporal gyri, cerebellum, 

and frontal regions. These regions are responsible for processing sound, language comprehension 

and processing along with self-awareness and spatial processing [31] [32] [33]. However, the 

classifier sees new areas not frequently mentioned in research like the postcentral and fusiform 

gyri (Tables 3.11 and 3.12). These areas are responsible for object recognition, visual processing 

along with touch sensory receptive areas [34] [35] [36]. Furthermore, the saliency maps show 

intense highlighting in regions surrounding the hippocampus and amygdala; areas known to be 

structurally and functionally dimorphic among brains [3].  

Comparing the saliency maps to known areas of interest for neurological diseases we see 

overlaps in the results. For example, major depressive disorder manifests itself within cortical 

areas such as the dorsal and medial prefrontal cortex, the dorsal and ventral anterior cingulate 

cortex, the orbital frontal cortex, and the insula predominantly [37]. In subcortical-limbic 

regions, structural changes are observed within the amygdala, hippocampus, and dorsomedial 

thalamus [37]. On the other hand, disorders such as autism spectrum disorder tend to manifest 

themselves within the amygdala, orbitofrontal cortex (OFC), temporoparietal cortex (TPC), and 

insula [38]. Overlapping these areas with tables 3.11 and 3.12, we see a connection within areas 

such as the frontal cortex, temporal lobules, and cingulate cortices. These areas are shown to be 

significant in neurological diseases and sex differences hence opening the door for potential 

further research into how and why they are important.  

Despite showing similar regions of interest, the models trained on affined MR images hold more 

information on sex differences than their rigid counterpart. By performing, the affine 

transformations, variations within the individual organ volumes are removed and standardized. 

The results presented differ from standard literature since the ROI's are not found via a voxel-

based morphometry, covariate regression or other traditional statistical methods, but rather by 

visualizing classification decisions of a deep learning model on an individual volume. Pulling all 

the findings together, we see that size and shape are not the only differentiating features between 

male and female brains but rather a fraction of the dimorphisms present.  

Chapter 4: Future Works and Conclusion 

The research presented in this paper opens the door to various new avenues of research. Looking 

into the future, this research could be furthered in several ways. First, more T1 MR images can 

be used for training. The UKBiobank has access to over 41,000 MR images which can be used 

for analysis. Second, the criteria on data selection can be widened in scope. Constricting age 

between 25- and 50-years old accounts for only a small percentage of the population. Increasing 
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the range to be between 25- and 75-years old could show a significant improvement in 

classification accuracy and generalizability. Third, more preprocessing should be done to the 

individual volumes before training. Rigid and affine transformations are good to start but it 

would be beneficial if the images were also skull stripped before training. In this way, the skull is 

removed as a feature and the model only looks for differences within the gray matter volume. 

And lastly, increasing the number of testing datasets and images could provide more profound 

insight on model generalizability and sex differences amongst a large population sample.  

This thesis project examined the use of deep learning models in classifying sex from individual 

MR volumes in hopes to better understand sex dimorphisms present in the human brain. With a 

better understanding of the differences present, treatments for many neurological conditions and 

diseases can be tailored to a patient’s specific needs rather than using a “one size fits all” 

approach. Many researchers oppose the view that these sex differences exist, let alone cause a 

substantial change to the progression and diagnosis of disease [2]. However, there are a group of 

researchers and studies that show these dimorphisms may be crucial in our understanding of 

neuroscience, neuroanatomy, and neurodegenerative disorders [3].  

The research had two core aims. First, to find the optimal deep learning architecture capable of 

correctly predicting sex from T1 structural volumes and second, to visualize the model’s 

classification decision to localize differentiating features of interest. Two architectures were 

compared for performance and predictive capabilities, a Resnet18 model and a simpler 

sequential CNN. Since size and shape are known differentiating features of human brains [2], the 

models were trained on raw and affinely transformed images. The affined transformations to the 

MNI305 space removed size and shape as features within the training set. Having two training 

sets resulted in two models for each architecture. These models were evaluated against 500 test 

images where the simple CNN outperformed the Resnet18 models in both scenarios averaging an 

accuracy over 90%. More interestingly, the classical model was able to generalize across MR 

field strengths, correctly classifying 1.5T and 3T images.  

Visualizing the results of both classical and Resnet18 models, both architectures showed 

differences were present and aligned with previous research. The models showed sex 

dimorphisms exist in previously known areas like the frontal, temporal and precuneus gyri along 

with the cerebellum and thalamus. But other regions such as the cingulate, postcentral, and 

fusiform gyri illustrated differences not commonly mentioned in literature. These areas of the 

brain are responsible for proprioceptive touch and emotion processing indicating that known 

psychological differences manifest themselves in the structures of the brain.   

In summary, this study provides a glimpse into the sexual dimorphisms present in the human 

brain and overall areas where these differences manifest. It analyzed and visualized classification 

results from differing CNN architectures trained on raw and affined MR images and chose the 

optimal model in terms of prediction capabilities and generalizability across datasets. This paper 

set the groundwork for many future studies and has veered away from the traditional statistical 

methods of analysis to a volumetric approach for brain MR exploration.   
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