
EnginuiTech
Simon Fraser University
Burnaby, BC
V5A 1S9
Enginui-Tech@sfu.ca

March 12, 1999

Dr. Andrew Rawicz
School of Engineering Science
Simon Fraser University
Burnaby, BC
V5A 1S9

The attached document, Remote Automated Vending Statistics (RAVS) System Design
Specification, specifies the operation and implementational details of the RAVS system.
The RAVS System is designed to automatically monitor the status of a vending machine
and periodically inform the servicer of its status.

The RAVS design specification outlines the major components of the RAVS system and
then discusses the two major components - the Monitoring Unit (MU) and the Host
system. This design specification includes the theory of operation, schematic diagrams,
mechanical diagrams, and the design process for the RAVS system.

EnginuiTech was founded by Bill Moats, Shane Schneider, Nestor Siu, and Brad Oldham
-four creative and dedicated third year engineering students. We would be happy to
answer any questions or concerns you may have regarding our project proposal. I can be
contacted via e-mail at wmoats@sfu.ca or by phone at 534-1584.

Sincerely,

Bill Moats, Team Manager
EnginuiTech

Enclosure: Design specification

EnginuiTech

Design specification

Submitted by EnginuiTech

Contact Bill Moats
School of Engineering Science
Simon Fraser University
wmoats@sfu.ca

Submitted to Andrew Rawicz
School of Engineering Science
Simon Fraser University

Steve Whitmore
School of Engineering Science
Simon Fraser University

March 12, 1999

Executive Summary
It seems as though everywhere you look there is a vending machine selling everything
from drinks to sandwiches. These pop machines require constant filling and maintenance
and are routinely empty of product for a substantial amount of time causing the machines
to be abused (think how many times you have seen someone hammering on a pop
machine because it ate their quarter or doesn't have the drink they want). Valuable time
and money is also wasted by suppliers by having to routinely check vending machines
although they may not be empty.

To remedy this problem, EnginuiTech is developing the Remote Automated Vending
Statistics (RAVS) System. This device will monitor the status of a single or a group of
pop vending machines and report necessary information to the service personnel. The
system will also generate sales statistics, which can be used to determine peak usage
times and product approval.

This document introduces and defines the design of the RAVS System and its sub-
components.

EnginuiTech Design Specification

Property of EnginuiTech  1999 ii

Table Of Contents
1. Introduction .. 1
2. System Overview.. 2
3. Monitoring Unit.. 3

3.1 System Architecture ... 3
3.1.1 Memory Mapping and Management... 4
3.1.2 PLD Interface Design.. 6
3.1.3 Algorithmic Design.. 7
3.1.4 Instruction Processing .. 9

3.2 Sensor Design .. 11
3.2.1 Quantity Sensors.. 11
3.2.2 Temperature Sensor ... 13
3.2.3 Interlocks / Selection Sensor .. 14

3.3 Component Selection ... 15
3.3.1 Microcontroller .. 15
3.3.2 PLD... 16
3.3.3 Temperature Sensor ... 16
3.3.4 Memory ... 16
3.3.5 Real Time Clock .. 16
3.3.6 RS-232 Driver.. 17

3.4 Power Supply ... 17
3.5 Mechanical Design ... 17
3.6 User Interface... 18

4. Host.. 19
4.1 System Architecture ... 19

4.1.1 The Host Unit .. 20
4.1.2 The Virtual Vending Unit .. 20

4.1.2.1 Maintenance and Monitoring Unit .. 20
4.1.2.2 Configuration and Properties .. 21
4.1.2.3 Event Logs ... 21
4.1.2.4 VIP Interpreter.. 21

4.1.3 Network Manager .. 22
4.1.4 Message Manager .. 22
4.1.5 Low Level Network Protocols.. 23
4.1.6 Internet Network Protocols .. 23
4.1.7 Message Object.. 23

4.2 Data Structure Design... 23
4.2.1 Configuration File.. 23
4.2.2 Log File ... 24

4.3 User Interface... 24
4.3.1 GUI Design.. 24
4.3.2 Report Gereration .. 25

5. Communications... 26
5.1 Vending Information Protocol (VIP) .. 26

EnginuiTech Design Specification

Property of EnginuiTech  1999 iii

Appendix A: Schematics ... 27
Appendix B: Vending Information Protocol (VIP) Instruction Set 29
Appendix C: Mechanical Drawings ... 32
Appendix D: Parts List For the Monitoring Unit.. 33

EnginuiTech Design Specification

Property of EnginuiTech  1999 iv

List of Figures
Figure 1: RAVS System Overview.. 2
Figure 2: Monitoring Unit System Overview... 3
Figure 3: Examples of End Conditions for the FIFO Buffer... 5
Figure 4: Interrupt Logic ... 7
Figure 5: High Level Software Design for the Monitoring Unit 9
Figure 6: Data “Transparency” State Machine for the Instruction Processor 10
Figure 7: Row assembly .. 11
Figure 8: Reflected object ... 12
Figure 9: Sensing Circuit Flow Chart .. 12
Figure 10: IR Sensing Circuit .. 13
Figure 11: Temperature Sensor Circuit .. 14
Figure 12: Selection Sensor and Door Interlock Sensor ... 15
Figure 13: The Host System Architecture .. 19
Figure 14: Program Main Screen GUI ... 25

List of Tables
Table 1: Constants and variables to be used in FIFO buffer ... 6
Table 2: Sensor selection... 11
Table 3: VIP Interpreter Events ... 22
Table 4 : Logged Events.. 24

EnginuiTech Design Specification

Property of EnginuiTech  1999 1

1. Introduction

How many times have you reached to put your money in a vending machine and noticed
that the sold-out light is on for the product you want? Public areas are becoming filled
with vending machines of all descriptions, which require a considerably large amount of
time to constantly monitor and fill.

This document specifies the design of the Remote Automated Vending Statistics (RAVS)
System developed by Enginuitech which will automatically monitor the status of the
vending machine and report information to the service personnel when the machine
requires filling. This system would save time and money for the servicer of many pop
machines by allowing the scheduling of servicing and immediate re-filling of machines –
so fewer customers would be turned away by empty machines.

This primary purpose of this project is to prove the concept is feasible by developing a
prototype system on one pop machine and one host. It is also the intention of EnginuiTech
to develop a proof of concept of a system such that it would be potentially marketable and
flexible enough to be implemented with multiple vending machines in the future.

EnginuiTech Design Specification

Property of EnginuiTech  1999 2

2. System Overview

The Remote Automated Vending Statistics (RAVS) System is intended to automatically
send e-mail messages to a servicer when a pop machine runs low on pop or the internal
temperature rises above a programmed limit. The system is divided into two separate
entities: the Monitoring Unit (MU) and the Host as shown in Figure 1.

Pop Machine

Monitoring
Unit

Host
User

E-mail messageRS-232 Serial Cable

Figure 1: RAVS System Overview

The primary role of the Monitoring Unit (MU) is to record the levels of pop in each bin,
the internal temperature of the pop machine, and the customer selections (including the
time of the selection). The monitoring unit must then buffer this data and report this
information to the host on request or at periodic intervals. The Host computer is
responsible for receiving and logging the information from the monitoring unit and
generating e-mail reports to the user when any pop levels are low or the interior
temperature level rises above a programmable level. The schematic diagrams and other
related technical documents are included in the Appendices.

As this project is intended to prove the concept is feasible, one MU and one host system
are to be connected together by means of a serial cable. The Vending Information Protocol
(VIP) is used for communication between these systems (described in Section 5.1) and
will remain adaptable such that the communications medium between the monitoring unit
and the host could be changed with little or no change to the existing systems.

The following sections outline the design of the monitoring unit and the host.

EnginuiTech Design Specification

Property of EnginuiTech  1999 3

3. Monitoring Unit

3.1 System Architecture
The high-level system diagram for the Monitoring Unit is shown in Figure 2.

Figure 2: Monitoring Unit System Overview

To accomplish the tasks defined in the RAVS system functional specification, the
Monitoring Unit (MU) design consists of a microcontroller, an EEPROM, an RS-232
serial interface, a real time clock (RTC), a Programmable Logic Device (PLD), a door
interlock, a temperature sensor, pop selection sensors, and pop-level sensors.

EnginuiTech Design Specification

Property of EnginuiTech  1999 4

The internal operations of the monitoring unit are performed by the microcontroller -
which is selected to be the PIC 16C74A (made by Microchip, http://ww.microchip.com).
This microcontroller has an internal Universal Synchronous/Asynchronous Receiver
Transmitter (USART) which is used to communicate with the host system via serial cable.
An RS-232 driver/ receiver is present to convert the voltage levels from the +5V and 0V
signals produced by the microcontroller to those present in serial communications with the
computer.

In order to store the necessary configuration parameters and the sensor logs in a non-
volatile fashion (the data is not lost over power downs), an EEPROM module is connected
to the microcontroller. A size of 512 bytes was selected to allow enough space for the data
buffer and the configuration parameters maintained by the microcontroller. See Section
3.1.1 for the details of this data structure, as well as memory management and mapping.

A real time clock is included in the design to allow the microcontroller to be able to store
the time of day when a customer purchases a product. The real time clock can also be
programmed to generate interrupt signals at periodic intervals during a day which will be
used by the microcontroller to control when the sensors are read and when the data log is
downloaded to the host system.

The Programmable Logic Device (PLD) is included in the design to easily interface the
microcontroller to the sensors and to generate interrupt signals. By using a PLD to
implement the sensor interface, the number of sensor inputs can be changed easily with
only minor changes to the microcontroller software and other components in the system.

3.1.1 Memory Mapping and Management

For every sale, a sales record containing the bin number and time of sale will be generated
and temporary stored on the MU until the buffer reaches a watermark or the host requests
a download. Each record will be composed of four bytes: bin number, day of month,
hour, and minute. These sales records will be stored in a circular First In First Out (FIFO)
list and have a limit of 15 records. Any sales above the 15 records will be lost, but will be
indicated by an overflow flag. A watermark will be set at 8 records, after which time the
MU will attempt to establish communications with the host. This low watermark will
allow the freedom to add seven more records in the buffer without causing the overflow in
case communications can not be established immediately. Once a record has been
successfully downloaded to the host, it will be deleted from the buffer.

The FIFO buffer will be able to hold a maximum of 15 records, but because of the nature
of a circular FIFO buffer, an extra blank record must be used to indicate if the buffer is
full. This means 64 bytes will be allocated from the non-volatile RAM to implement the
buffer. In addition, a copy of the head and tail index pointers, as well as the overflow flag
must also be stored on the non-volatile RAM, each consisting of a byte.

EnginuiTech Design Specification

Property of EnginuiTech  1999 5

The FIFO buffer has the benefit of keeping the sales records in order and also allows the
removal and addition of records at the same time. As the pointers approach the top of the
memory buffer allocated to the FIFO, they will rollover and reset to the bottom of the
buffer ready to move up again. To make use of a natural rollover with binary numbers,
sixteen record slots will be used. Since the index pointers are 8 bits long (1 byte) and 16
positions is only represented by 4 bits, a mask map will be used to keep the 4 least
significant bits and remove the overflow bits that result from incrementing the pointers.
This allows the index pointers to always contain a value between 0 and 15.
Figure 3 gives examples of the FIFO buffer.

• •
• •
• •

minute
hour
date
bin

minute
hour
date
bin ← tail

← head ← head, tail
minute
hour
date
bin
• •
• •
• •

Full List Empty List
(15 records) (0 records)
tail = head + 1 tail = head

↑addresses
increasing

addresses
increasing ↑

Figure 3: Examples of End Conditions for the FIFO Buffer

The variables and constants outlined in Table 1 will be used to implement the FIFO
buffer.

EnginuiTech Design Specification

Property of EnginuiTech  1999 6

Table 1: Constants and variables used by the FIFO buffer

Constant Value Purpose

Base_address To be
determined

Base address of the FIFO
buffer in which the index
head and tail pointers will
be added to find the
individual records.

cp_head to be
determined

Address of saved copy of the
head pointer in non-volatile
RAM.

cp_tail to be
determined

Address of saved copy of the
tail pointer in non-volatile
RAM.

buff_overflow to be
determined

Address of overflow flag in
non-volitale RAM.

index_map b’00111100 Mask map to remove the
overflow bits and to make
use of pointer rollovers.

index_inc b’00000100 Used to increment the index
pointers by four bytes (the
size of 1 record).

Local Variable Purpose

head Local (PIC) copy of the head pointer to be
used in address manipulation.

tail Local (PIC) copy of the tail pointer to be
used in address manipulation.

3.1.2 PLD Interface Design
A Programmable Logic Device (PLD) will be used to integrate the various chips and
sensors of the MU with the microcontroller. The PLD will also be responsible for
managing all the incoming interrupt signals from various sources and generate a single
interrupt and vector for the microcontroller.

The microcontroller will communicate with the various chips and sensors by sending a
specific address to the PLD using an address bus. The three most significant bits will
represent which chip or set of sensors the microcontroller wants to communicate with,
while the four least significant will represent either an address or operand to be
implemented. Given a complete address, the PLD will set the appropriate chip selects for
the chips, implement the desired operand, or return the requested data via a data bus to the
microcontroller. There will be three components the PLD will interface with for the
microcontroller: the real time clock, the quantity sensors, and the selection switch
interrupts.

EnginuiTech Design Specification

Property of EnginuiTech  1999 7

After receiving an interrupt signal, the microcontroller will request the interrupt vector
from the PLD and determine the source of the interrupt. Figure 4 gives a logic circuit for
implementing the single interrupt signal.

Single
Interupt
Signal for
Micro-
controller

Real Time
Clock

Interrupt

Se
le

ct
io

n
Sw

itc
h

In
te

rr
up

ts

…

 Figure 4: Interrupt Logic

3.1.3 Algorithmic Design

The software in the PIC microcontroller performs many event-driven tasks that must be
able to be performed simultaneously. These tasks include:

• Receiving and processing instructions from the host over the serial port
connection

• Processing purchases made by the customer and logging this data in memory
in accordance with the data structure defined in Section 3.1.1.

• Downloading information to the host system

EnginuiTech Design Specification

Property of EnginuiTech  1999 8

• Measuring and comparing the quantities of product in the pop machine at
periodic intervals

• Monitoring the internal temperature of the pop machine

To make efficient use of the microcontroller’s processing ability, an interrupt driven
system will be utilized where most processing performed by the micro is initiated by an
interrupt (from the PLD or an internal interrupt).

The real-time clock will generate a periodic (programmable) interrupt signal to indicate
when the information in the data log must be downloaded and when the sensors must be
read. The selection sensors will also generate an interrupt signal used to add a purchase to
the data log. When a new character has been read from the host serial port an interrupt will
be generated in order to read the character into the processing routine.

 The high-level software design for the monitoring unit is shown in Figure 3.

EnginuiTech Design Specification

Property of EnginuiTech  1999 9

Figure 5: High Level Software Design for the Monitoring Unit

The software is separated into the event driven (time critical) functions and the
background processing functions. The background processing tasks perform the majority
of the processing required by the monitoring unit, such as the processing of new
instructions, reading the quantity and temperature sensors, logging new data, and
downloading information to the host. The interrupt routines set status flags to activated the
appropriate background task and perform some low level processing such as the character
processing (delimiter removal routine) which are required by the Vending Information
Protocol (see Section 5.1).

3.1.4 Instruction Processing

The software must process instructions from the host in an efficient manner and be
compliant with the Vending Information Protocol (VIP) (see Section 5.1).
This protocol uses variable length character delimited instructions, which are fomatted as
follows:

<open delimiter> <opcode> <operands> <close delimiter>

EnginuiTech Design Specification

Property of EnginuiTech  1999 10

The instruction processing software will provide data “transparency” routines to reduce
the number of processing cycles performed by the background processing. This
“transparency” routine will buffer every incoming character from the host and allow only
properly delimited instructions of the correct length to pass to the processing routine. This
method of instruction processing reduces the chances of random input data being
interpreted as an instruction code and allows this communications system to be easily
upgraded to a larger network with multiple vending machines. The name transparency is
used to indicate the fact that the end system routines are not aware of the implementation
of the delimiters and thus the protocol is transparent.

Once a proper instruction has been detected, a processing flag is set to allow the
background routine to process the new instruction. To avoid overwriting a new instruction
before it has been processed the character interrupt will be disabled while the new
instruction is being processed. The data “transparency” state machine is shown in Figure
6.

Figure 6: Data “Transparency” State Machine for the Instruction Processor

Once the instruction processing flag has been set, the background processing task will
process the new instruction.

EnginuiTech Design Specification

Property of EnginuiTech  1999 11

3.2 Sensor Design

3.2.1 Quantity Sensors
The quantity sensors measure the volume of pop in a given bin by detecting the presence
of a pop can at discrete levels. For the implementation of this project there will be 3
sensors per bin. The sensors are placed at positions shown in Figure 7.

Sensor

Sensor

Sensor

Pop

Pop

Pop

Pop

Pop

Pop

Pop

Pop

Figure 7: Row assembly

The sensors will measure the pop level in a quantized fashion (nearly empty, part full,
fairly full). The sensors we considered for sensing pop are shown in Table 2.

Table 2: Sensor selection

Sensor Pro’s Con’s
Latches,
Mechanical

Limited electronic worries Interferes with machine loading

Break Sensors,
Mechanical

Limited electronic worries Interferes with machine loading

Break Sensors,
Electronic

No mechanical break down Long distance required, lot of
electronic hardware, high noise
pickup do to distance

Ultrasonic Sensors,
Electronic

Measure absolute quantity,
easy to install

Echoes caused by confined
space

EnginuiTech Design Specification

Property of EnginuiTech  1999 12

Reflective Sensors,
Electronic

No mechanical break down,
Low noise

Electronic hardware, noise
rejection

The reflective sensors will be implemented do to the minimal amount of installation into
the pop machine as well as the limited noise pick-up. The ultrasonic sensors would have
been preferred but the echoes in the pop machine would cause too much interference and
cross talk. The cost of the reflective sensors was lower then long distance optic sensors,
which lead to choice of reflective sensors over break sensors (electronic). The
interference of the mechanical sensors with the loading of the pop machine lead to there
dismissal.
The pop cans will be sensed using the OP8706A Infrared Reflective Object Sensors (made
by OPTEK http://www.optekinc.com). The sensors emit infrared light (IR), via an light
emitting diode (LED), towards the pop in the bin. If there is a pop can in the bin the light
is reflected back to a phototransistor where the signal is converted to current. The
reflective object sensor is shown in Figure 8.

Figure 8: Reflected object1

To increase the range of the sensor, the voltage waveform into the LED is a square wave
with frequency of approximately 1 kHz. This small signal is amplified by an very high
gain amplifier and then smoothed into a DC signal by means of an envelope follower.
This DC signal is then compared to a reference voltage by means of an analog comparator
to convert the sensor output to a 1-bit digital value (refer to Figure 9).

Reflective
Sensor

Signal
Conditioner

Signal
Amplifier

Envelope
Follower Comparator

Figure 9: Sensing Circuit Flow Chart

The circuit diagram for the sensor circuit is shown in Figure 10.

1 Taken from page 2 of the OPB706A data sheet, OPTEK Inc. (www.optekinc.com)

EnginuiTech Design Specification

Property of EnginuiTech  1999 13

Vin R1

LED1

Q1

U1

R2

R3

R4

R5

R6

R7

R8

R9 R10

U2

D1

C2

C1

Vout

Figure 10: IR Sensing Circuit

The capacitor C1 is used to remove the DC signal from the output of the reflective object
sensor. This signal is then amplified with an Op Amp with very high gain - calculated by

the formula 410
3
4 ≈

R
R . The envelope follower smooths the sinusoidal output of the

amplifier to a relativly constant DC value. The envelope follower consists of a diode,

resistor and a capacitor with a time constant of
25

1
CR ×

. The comparator is used to

convert this DC voltage to TTl digital signal by comparing to the reference voltage (Vref)

of Vcc
RR

R
87

7
+

 and the %hysterisis is
9
6

R
R .

3.2.2 Temperature Sensor
One temperature sensor will be installed inside the pop machine to measure the internal
temperature of where the pop is stored.

The temperature sensor will be a single voltage supply centigrade temperature sensor that
converts the current temperature into a low voltage signal. This low voltage signal will
then be amplified to allow a voltage swing between 0V and ~5V using a non-inverting op-
amp configuration. This voltage signal is converted to a digital number using the A/D
converter in the microcontroller. Figure 11 show the temperature sensor circuit.

EnginuiTech Design Specification

Property of EnginuiTech  1999 14

Vref

Vref

Figure 11: Temperature Sensor Circuit

This temperature sensor will be able to sense temperatures from -10°C to +50°C. The
reference voltage, Vref, is used to eliminate the DC offset the generated by the
temperature sensor, which would waste bits in the converter reducing resolution. Both the
reference voltage and the gain of the amplifier can be calibrated using the two trim pots Rt
and R2.

3.2.3 Interlocks / Selection Sensor

When the door of the pop machine is open, external light can enter the system which could
potentially interfere with the operation of the infrared quantity sensors. Also the internal
temperature would change quite dramatically. To avoid producing invalid results due to
the door of the pop machine being open, a switch will be mounted on the door fixture such
that the microcontroller can detect when the door is open. When the door is sensed to be
open, the microcontroller will suspend all sensor measurements.

In order to sense what product a customer has purchased, a series of switches are to be
mounted inside the vending mechanism such that the switch is closed when a purchase is
made. An alternative would be to connect these switches to the selection switches on the
front of the vending machine.

Both the door interlock and the selection switches will produce “digital” signals by
utilizing the circuit shown in Figure 12. These signals will be routed into the PLD where
the internal logic will perform all the necessary de-bouncing and interrupt generation.

EnginuiTech Design Specification

Property of EnginuiTech  1999 15

When the switch is open, the output will be pulled up to +5V through the pull-up resistor.
When the switch is closed, the output will be shunted to ground (0V).

Vout

+Vcc

Figure 12: Selection Sensor and Door Interlock Sensor

3.3 Component Selection

3.3.1 Microcontroller

Because of the cost consideration and the low resolution sensor data required to be
processed, the monitoring unit will utilize an 8-bit microcontroller. The Enginuitech
design team investigated the use of Microchip’s PIC 16C7x series microcontroller, and the
Motorola’s HC11 microcontroller.
The features that we desired for the microcontroller were

• USART module on board
• Large number of I/O pins
• Non-Volatile Program Memory
• Internal A/D converter
• Multiple Interrupt Sources (external and internal)
• Simple Instruction Set
• Serial Peripheral Interface (SPI) compatible
• Excellent Development Environment (MACRO assembler)
• Simple Packaging (DIP)

These features will allow a large number of the Monitoring Unit’s features to be easily
implemented the development of the software easier. Both the HC11 and the PIC have the
majority of the necessary features. We selected the Microchip PIC16C74A
microcontroller over the HC11 because of the large number of I/O pins (33) in a DIP
package, the RISC architecture which includes 25 instructions, and the excellent MPLAB4
development which provides a free macro assembler and linker. Another advantage was

EnginuiTech Design Specification

Property of EnginuiTech  1999 16

that Enginuitech already possessed the necessary tools to program and erase the PIC series
microcontroller. An advantage of the PIC microcontroller is that many of the chips in the
PIC series are code and pin compatible which means that if more resources are needed
later in the development, a larger chip can be substituted.

3.3.2 PLD
The Altera MAX7000S EPM7128SLC84-7 will be used as the PLD interface chip because
of its cost, availability, and the familiarity EnguiTech has with its design environment.
The one drawback this chip does have, it lacks a large number of I/O pins. This required
the number of bins to be monitored from 16 bins to 8 bins.

3.3.3 Temperature Sensor
The temperature sensor circuit is shown in Figure 11. The LM50B temperature sensor was
selected because of its single supply capability and its sensitivity range (-40°C to 125°C).
This sensor was also selected because of its low price.

3.3.4 Memory

To store all the configuration parameters and the data log generated by the microcontroller
we investigated several different methods of data storage.
We considered the use of

• Static RAM
• Electrically Erasable Programmable Read Only Memory (EEPROM)
• FLASH memory

We found that the use of static RAM would result in the loss of the data log and
configuration parameters every time the power was cycled. The Xicor X25043 serial
EEPROM was selected over several other devices due to its small package (DIP8), its low
pin requirement (4 pins as opposed to 11 pins in some FLASH devices), and its other
features such as built in watchdog timer and brown-out reset capability. It also does not
loose any data over power cycles

3.3.5 Real Time Clock

We considered several different real-time-clocks for use in the monitoring unit. We
narrowed the selection to the DALLAS DS12887 and the National Semiconductor
DP8573A. The DALLA DS12887 was selected because it is a complete modular design
(everything necessary to run including oscillators is included in the package), it has an
internal battery backup that can last for ten years without external power, and it uses a
multiplexed data/address bus. These features limit the number of clock updates to a
minimum and make the device easy to integrate into the design.

EnginuiTech Design Specification

Property of EnginuiTech  1999 17

3.3.6 RS-232 Driver

To convert between the standard +5V and 0V signals present in the monitoring unit to the
higher voltages used in the RS-232 serial port we selected the Analog Devices ADM232 -
an “off-the shelf” RS-232 driver/receiver able to generate the necessary voltages from
only a+5V DC supply. An advantage is its compatability with the MAX232
driver/receiver.

3.4 Power Supply

In accordance with CSA regulations, the power requirements of the monitoring unit have
been changed from 110VAC to +9VDC – which also prevents any unnecessary shock
hazard the system could pose.

Thus, the system’s power supply consists of a voltage regulator and associated filter
capacitors. The power supply circuit is shown in Figure 13.

Figure 13 Power Supply Circuit

3.5 Mechanical Design

In accordance with the RAVS functional specification, the case of the monitoring unit is
an aluminum box with dimensions 15cm by 10 cm by 8 cm. The aluminum will provide
some shielding against Electro-Magnetic Interference (EMI) which could be generated by
the cooling system and the many motors present in a pop machine.

The monitoring unit uses a DB-9 Male for RS232 communication, a DB-9 Female
connector for the selection sensors and a DB-25 Female connector for the quantity
sensors. These connectors were selected because of their high availability and the ability
to group all of the sensor signals through one common connector.

EnginuiTech Design Specification

Property of EnginuiTech  1999 18

3.6 User Interface

On the exterior of the monitoring unit case there is a power switch and several status
LEDs. These LEDs indicate

• The status of the transmit line to the host (TX)
• The status of the receive line from the host (RX)
• The status of the power to the unit

Several LEDs will be present on the interior of the case for the purposes of debugging.
The mechanical drawings for the monitoring unit case are included in Appendix

EnginuiTech Design Specification

Property of EnginuiTech  1999 19

4. Host
The host is responsible for handling alarms or events generated by the MU. It is also
responsible for downloading and storing any data logs that the MU buffers. Furthermore,
the host is responsible for setting the MU configuration parameters. The host logs all data
logs and events generated by the MU so that a status report may be generated from them.

For the purpose of this project, we will be developing our program on the Windows 95
platform. This operating system has a very large established user base, giving us access to
many pre-developed software libraries, as well as many sophisticated software
development tools to aid us in the software development process.

The C++ programming language will be used because it is a language familiar to the
members of EnginuiTech.

4.1 System Architecture
The architecture of the Host is depicted in Figure 14:

Figure 14: The Host System Architecture

Below is a description of each of the components of the architecture:

Internet
protocols

Maintenace and Monitoring Unit

VIP Interpreter

Message ManagerNetwork Manager

RS-232 TCP/IP
Low level
network
protocols

SMTP HTTP

Host Unit

GUI

Virtual Vending Unit

Configuration and
Properties

Event Logs

Message Object

EnginuiTech Design Specification

Property of EnginuiTech  1999 20

4.1.1 The Host Unit
This object acts as the main program of the system, incharge of instanciating all the major
objects/components in the system which includes the Graphical User Interface (GUI),
Virtual Vending Unit (VVU), Network Manager (NM), Message Manager (MM),
and any low level network and Internet objects. It is also responsible for interconnecting
all the objects together. For example, for each vending machine that needs to be
controlled, the main program will create Virtual Vending Unit and register it to all the
major permanent object dynamically setup the event handlers.

As a result, the Host Unit will be responsible for storing the following information:

• List of vending machines to be managed
• List of low level network objects to instantiate
• List of internet protocol modules to instantiate

4.1.2 The Virtual Vending Unit
 The Virtual Vending Unit (VVU) represents a single vending machine that needs to be
controlled. This self-contained unit will be responsible for handling and logging any
events or alarms that may arrive, as well as perform maintenance tasks such as
downloading sales data. Below is a list of internal objects that are controlled by the
Virtual Vending Unit:

4.1.2.1 Maintenance and Monitoring Unit

 The Maintenance and Monitoring Unit (MMU)is responsible for the execution of
scheduled tasks. At the moment, this task includes the periodic update of the following
MU status:

• Current Pop Levels
• Machine Temperature
• Sales Logs

 The Maintenance and Monitoring Unit is also responsible for handling any alarms or
events generated by the VIP Interpreter (see Table 3). Note that an alarm/event is only
processed after the Monitoring Unit has established a session to the host, sent its requests,
and closed the session. The MMU will then download all sales logs and status from the
Monitoring Unit so that it can form the proper status messages to e-mail or page the
vending machine personnel with. The messages are then sent, and the alarm/event will be
logged. Except for the ConnInd, DiscInd, and LogBufferLowInd events, all events will
be logged.

EnginuiTech Design Specification

Property of EnginuiTech  1999 21

4.1.2.2 Configuration and Properties

 The Configuration and Properties object is responsible for storing all the configuration
and status information pertaining to the vending machine being monitored. The object is
responsible for generating a ChangeNotify event to signal other objects such as the GUI
which need to monitor the status of the vending machine. The following configuration
information of the vending machine are stored:

• Vending Machine name
• Vending Machine ID
• Status update interval
• Valid temperature range
• Temperature out of range message (address, subject, message)
• Low pop level
• Low pop level message (address, subject, message)
• Log buffer overflow message (address, subject, message)
• Global alarm enable for all alarms

 The following Pop machine status are stored:

• Door status
• Current pop levels
• Machine temperature

4.1.2.3 Event Logs

 The Event Logs object is responsible for logging any events generated by the Monitoring
Unit inside the vending machine. It is also responsibe for generating a ChangeNotify
event to notify other objects that a log has been added. The following types of events will
be logged:

• Pop Sale
• Temperature out of range
• Pop level low
• Monitoring Unit power up
• Log buffer full
• Log buffer overflow

4.1.2.4 VIP Interpreter

The VIP Interpreter is a network object requested from the Network Manager which is
responsible for interpreting the Vending Information Protocol and generating
appropriate events to handle a protocol session. Table 3 is a list of all the events generated
by the VIP Interpreter:

EnginuiTech Design Specification

Property of EnginuiTech  1999 22

Table 3: VIP Interpreter Events

MUI Event Event Description
ConnInd MU is opening a session to the host.
DiscInd MU is closing its session to the host.
PowerUpInd MU has just been powered up.
TempAlarmInd Temperature in vending machine is out of valid range.
LevelLowInd A bin quantity is getting low (or is below the minimum

quantity level).
LogBufferLowInd The sales log buffer is more the half full and should be

downloaded.
LogBufferOverflowInd The log buffer has overflown and lost the most reset

sales log entry.

Except for the ConnInd and DiscInd events, all events are generated only after the
Monitoring Unit has established a network session with the host, sent its requests, and
closed the session.

4.1.3 Network Manager
The Network Manager (NM) is used to provide an abstract, high level interface to the
different network resourses used to create a network session between the Host and the
Monitoring Unit. This allows the host to support Monitoring Units connected to a variety
of different network mediums and protocols such as RS-232 and TCP/IP.

The Network Manager is used to obtain a VIP Interpreter object which is used to
communicate with a single Monitoring Unit using the Vending Information Protocol .
When a packet of information arrives, the Network Manager is incharge of determining
which Monitoring Unit sent the packet, and it then routes the data packet only to the VIP
Interpreter that is supposed to receive it.

The Host Unit will be responsible for registering the low level network objects which the
Network Manager will have access to.

4.1.4 Message Manager
The Message Manager is used to provide an abstract interface to different Internet
protocols such as SMTP and HTTP which will be used to send out messages to alert
vending machine personnel that a vending machine needs maintenance. Objects which
need to send out message typically requests a Message Object from the Message
Manager to perform the actual sending of the message.

Again, the Host Unit is incharge of creating the Message Manager as well as register any
Internet protocol objects to the manager.

EnginuiTech Design Specification

Property of EnginuiTech  1999 23

4.1.5 Low Level Network Protocols
The Low Level Network Protocol objects are used to provide access to different network
or communication mediums such as RS-232 and TCP/IP. These objects will provide a
simplified interface which will be used to integrate with the Network Manager. The
interface will allow the Network Manager to intialize and close the network resource
using an init() and close() method. Data can then be send using write() method, and it is
received through a DataInd event. For the purpose of this project, we will only be
implementing the RS-232 interface.

4.1.6 Internet Network Protocols
The Internet Network Protocols objects are used to provide access to Internet protocols
such as SMTP and HTTP which can be used to send out e-mail messages as well as
communicate with web based interfaces to pagers and digital cell phones. These objects
will be used to provide an intance of a Message Object which is used to send out
messages. For the purpose of this project, we’ll be supporting the HTTP and SMTP
protocols.

4.1.7 Message Object
The Message Object provides an interface into a specific Internet Protocol. This object is
used to send out a message to alert the vending machine personnel of vending machine
problems or status.

4.2 Data Structure Design
This section describes the configuration file used by the host and the format of the log
files.

4.2.1 Configuration File
The configuration file will employ the format of .INI files originally used with Windows
3.1. This text based file format allows us to easily store all configuration parameters inside
a single file while keeping configuration paramters for each different object in serparate
sections. Also, the file format allows the user to modify the configuration manually when
such a need arises. Using text characters also allow us to manually interpret configuration
settings for debugging purposes.

The basic structure of the file consists of sections which are marked by a section header.
The format of a section header is

[<Section Identifier>]

EnginuiTech Design Specification

Property of EnginuiTech  1999 24

where <Section Identifier> is a text string used to identify the header. Inside
each section, individual parameters can be stored using the following format:

<field identifier>=<value>

where <field identifier> is a text string used to identify the parameter, and
<value> is the value of the parameter. Each field is separated by a new-line character.
Blank lines are ignored. Lines which begin with a “;” character are treated as comments
and ignored.

Each object that is instanciated by the Host Unit will be given its own section in the
configuration file. Each time the object is instantiated, an object representing the
configuration file, as well as a unique identifier string to identify the object will be passed
into the parameter list. The object will then extract its parameters from the section
designated by the indetifier for initialization.

4.2.2 Log File
A log file will be generated for each vending machine monitored. The log file will contain
all major events and alarms generated by the Monitoring Unit. This file can later be used
to generate status reports or sales reports which can be easily imported into third party
programs like Excel. The format of each log entry is as follows:

<yyyy>/<mm>/<dd> <hh>:<mm> <entry type> <parameters … >

The types of events and alarms logged are listed in Table 4:

Table 4: Logged Events

Log Entry Type Parameter
Bin_level_low Bin number
Log_buffer_overflow None
Temperature_out_of_range Temperature
Power_up None
Sale Bin number

4.3 User Interface

4.3.1 GUI Design
For the purpose of this project, we will design the interface so that it can configure and
monitor one vending machine. However, in future implementations, we will expand the

EnginuiTech Design Specification

Property of EnginuiTech  1999 25

interface so that it can configure multiple vending machines. A screen shot of how the
main program screen looks like is depicted in :
:

Figure 15: Program Main Screen GUI

This screen will allow the user to view the pop level and their minimum pop-levels. It
will also allow them to view the current temperature inside the pop machine. An update
button can be used used to force an uncheduled update of the status. Buttons are also
provided to bring up the configuration screens to configure alarm settings, generate
reports, configure the RS-232 port, configure the HTTP protocol, and configure the SMTP
protocol.

4.3.2 Report Gereration
A user will be able to generate a comma delimited report file to be imported into Excel or
another data base program. The user will be able to specify the date range, date format,
and file name, the delimited file will be saved with. The delimited file will use the comma
delimited format, with a carriage return between entries. Each record will have the
following defaulted format:

<mm>/<dd>/<yyyy>,<hh>:<mm>,<bin #>

For now, this will be the only file format that will be available for the user.

EnginuiTech Design Specification

Property of EnginuiTech  1999 26

5. Communications
Communications between the Host and the monitoring unit will take place over an RS-232
serial port connection. Using this medium in conjunction with the Vending Information
Protocol (defined in the next section) allows the system to be easily converted to a
different communications medium such as radio or standard computer network.

5.1 Vending Information Protocol (VIP)
The vending information protocol defines the set of instructions that can be used to
communicate between the host and the monitoring unit as well as the procedures
(protocol) used in the communications.

The vending information protocol utilizes variable length character delimited instruction
set in the following format:

 ‘{‘ <Op-code> < operands> < close delimiter> ‘}’

where ‘{‘ is the open delimiter and ‘}’ is the close delimiter. Refer to Appendix B for a
complete instruction set. The instructions can be of variable length up to a maximum of 8
characters. Any instruction exceeding this length will be ignored. The receiving units on
either end of the communications link will be responsible for checking the validity of each
instruction before allowing it to be processed by the application software. This validity
check will:

• Insure the instruction contains one open and close delimiter in the positions
specified above

• Insure the instruction has at least one character
• Insure the instruction contains no more than eight characters

This helps to insure that any other noise or information being transmitted over the serial
link will not be interpreted as an instruction.

Each sent command must be acknowledged with the {A} command before additional
commands may be sent. If no response is received within 10 seconds, the command can be
considered lost and may be re-sent.

All communications between the host and the monitoring unit are contained within
sessions. When an entity has an instruction to send to the other it must first obtain a
session by using the {O} command. Once the session has been obtained by means of the
{AO} acknowledgment, the unit that opened the session becomes the “master” of the
session. In this relationship the associated “slave” can only respond to instructions sent by
the “master”. All sessions should be closed by the “master” using the {C} command. The
VIP instruction set is listed in Appendix B.

EnginuiTech Design Specification

Property of EnginuiTech  1999 27

Appendix A: Schematics

Monitoring Unit Schematics – See Next Page

EnginuiTech Design Specification

Property of EnginuiTech  1999 28

EnginuiTech Design Specification

Property of EnginuiTech  1999 29

Appendix B: Vending Information Protocol (VIP)
Instruction Set

Op-
Code

Operand Data
Operands

Range Description

A Last Opcode successfully
executed

None Acknowledgment indicating that the
last opcode sent was executed
correctly: A reply must be received
from the Monitoring Unit before any
further instructions can be sent

E Error
Code

None Error General error has occurred
corresponding to the error number
returned. See Error code definition

O None None Open Session This command is used
to open a new communications
session. A new session must be
opened between the Host and MU
before any otther instructions will be
executed. The entity that initiates this
command will retain command over
the session (see Protocol Definition)

C None None Close Session This Closes the
current communications session (see
Protocol Definition)

R t time (hours, minutes) None Request Data Instruction sent by
Host to request data from a
Monitoring Unit

None
d selection data log None
I time interval between

reports
None

a alarm settings
(on/off)

None

p pop level alarm
setting

None

c temperature limits None
y date (year, month,

day)
None

EnginuiTech Design Specification

Property of EnginuiTech  1999 30

S t time (hours, minutes) hours 0x00-0x17 Set Data Field Instruction sent by
Host to MU to set configuratble
paramters

minutes 0x00-0x3B
I time interval between

reports
hours alarm 0x00-0x17 or 0xC0--0xFF

minutes alarm 0x00-0x3B or 0xC0-0xFF

a alarm settings
(on/off)

alarm byte see alarm byte definition

p pop level alarm
setting

pop alarm level 0x00-0x1F

c temperature limits high temp limit 0x00-0x70
low temp limit 0x00-0x70

y date (year, month,
day)

year 0x00-0x63

month 0x01-0x1F
day 0x01-0x07 Sunday =1

Y t time (hours, minutes) hours 0x00-0x17 Reply with Data This instruction is
used by the MU to transfer requested
data to the Host System

minutes 0x00-0x3B This instruction also serves as an
acknowledgment to the R command

I time interval between
reports

hours alarm 0x00-0x17
or 0xC0— 0xFF

minutes alarm 0x00-0x3B
or 0xC0-0xFF

a alarm settings
(on/off)

alarm byte see alarm byte definition

p pop alarm level pop alarm level 0x00-0x03
c temperature limits high temp limit 0x00-0x70

low temp limit 0x00-0x70
y date (year, month,

day)
year 0x00-0x63

month 0x01-0x1F
day 0x01-0x07

EnginuiTech Design Specification

Property of EnginuiTech  1999 31

D None Bin Number 0x00-0x0F Data Log Download This instruction
is used to transport a single selection
data record from the Monitoring unit to
the host. It must be acknowledged
with AD before successive
instructions can be sent.

month 0x01-0x1F
day 0x01-0x07 Sunday =1
hours 0x00-0x17
minutes 0x00-0x3B

P MU ID Monitoring Unit ID 0x00 - 0x7A Ping Used to detect if a Monitoring
unit with the specified ID is online
This Command should be responded
to only by the unit with the matching
ID by the instruction {AP}

X MU ID None None Reset MU This instruction will cause
a software reset in the MU with the
specified ID

Z MU ID None None MU Booted This instruction is sent by
an MU when it is first booted. It can
be used by the Host to keep track of
what Mus are online

L t temp out of range temp 0x00-0x50 Alarm Condition An alarm condition
has occurred which must be
immediately reported to the host

p pop out of range Bin Number 0x00-0x0F
Pop Level 0x00-0x03

EnginuiTech Design Specification

Property of EnginuiTech  1999 32

Appendix C: Mechanical Drawings

EnginuiTech Design Specification

Property of EnginuiTech  1999 33

Appendix D: Parts List For the Monitoring Unit

Description Value Quantity
Carbon Film Resistor, 5% 1k 96
Resistor SIP array, 9 pin 10k 1
PIC 16C74A microcontroller 1
DS12887 Real Time Clock 1
ADM232 RS-232 Driver/Receiver 1
X25043 512x8 serial EEPROM 1
MC7805CT 5V positive voltage reg. 1
Capacitor, Tantalum 0.1uF 7
Capacitor, Tantalum 0.1uF 5
Capacitor, Electrolytic 0.47uF 1
LED Red 3
LED Yellow 2
LED Green 1
Altera EPM7128SLC84-7 EPLD 1
Panel mount power connector 1
DB-25 female connector 1
DB-9 male connector 1
DB-9 female connector 1
3-pin panel mount connector 2
Aluminum Box 18.5cmx11.5cmx5cm 1
LM50B temperature sensor 1
Single supply dual op-amp 1
Potentiometer (trim pot) 10k 10
Metal Film Resistor , 1% 10k 1
Metal Film Resistor, 1% 120k 1
Metal Film Resistor, 1% 56k 1
Normally open Single Pole Single
Throw reed switches

9

OPB706A IR reflective object sensor 24
Single Supply High Gain Quad Op-Amp 8
LM339 Single Supply High Speed Quad
Analog Comparator

8

1n4148 signal diode 24
Capacitor, 100nF 24
Capacitor, 100uF 24
Carbon Film Resistor, 5% 10M 24
Carbon Film Resistor, 5% 2k2 48
Carbon Film Resistor, 5% 100k 24

