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Abstract

Supersingular isogeny graphs, which encode supersingular elliptic curves and their isogenies, have
recently formed the basis for a number of post-quantum cryptographic protocols. The study of
supersingular elliptic curves and their endomorphism rings has a long history and is intimately
related to the study of quaternion algebras and their maximal orders.

In this thesis, we give a treatment of the theory of quaternion algebras and elliptic curves over finite
fields as these relate to supersingular isogeny graphs and computational problems on such graphs,
in particular, consolidating and surveying results in the research literature.

We also perform some numerical experiments on supersingular isogeny graphs and establish a num-
ber of refined upper bounds on supersingular elliptic curves with small non-integer endomorphisms.
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Figure 5.8 Ḡ(p, `) for p = 97 and ` = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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Chapter 1

Introduction

1.1 Overview

The rise of quantum computers and their capability to break conventional cryptosystems draw
attention to the need of alternative cryptosystems. In search of post-quantum cryptosystems that
are not breakable by quantum computers, supersingular isogeny graphs (SIG) systems were first
introduced by Charles, Goren, and Lauter in 2006 [8]. The SIG systems rely on the computational
difficulty of finding isogenies between supersingular elliptic curves. They constructed cryptographic
hash functions using paths in the `-isogeny graph of supersingular elliptic cures over Fp2 . Since
then, a public key exchange based on SIG called SIKE was proposed by De Feo, Jao, and Plût in
[14].

There are related problems to this path finding problem, namely computing the endomorphism
ring of a supersingular elliptic curve and computing a maximal order in a quaterinon algebra iso-
morphic to the endomorphism ring of a supersingular elliptic curve. A fundamental result relating
these problems is the one-to-one correspondence between the endomorphism rings of supersingu-
lar elliptic curves and maximal orders in quaternion algebras given by Deuring [16]. Under some
heuristic assumptions, these three problems are believed to be equivalent. These problems are more
precisely defined and algorithms for efficient reductions from one problem to another are discussed
in [17]. There are no known algorithms for these problems with sub-exponential complexity. The
first one who studied the endomorphism ring problem is Kohel [23]. He used cycles in the supersin-
gular isogeny graph to compute endomorphisms linearly independent over Z. The running time of
the probabilistic alroghthm was O(p1+ε). In [15], Delfs and Galbraith gave an algorithm for find-
ing isogenies between supersingular curves over Fp with complexity Õ(p1/4), and then used it to
give a general algorithm for finding isogenies between supersingular elliptic curves with complexity
Õ(p1/2).

In this thesis, we review preliminaries on quaternion algebras and elliptic curves to build up
towards the proof of Deuring’s correspondence, and provide a comprehensive review on the prob-
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lem of finding paths in the supersingular isogeny graph, computing the endomorphism ring, and
computing maximal orders in Deuring’s correspondence, with reductions between them.

In Chapter 2, we introduce preliminary material on the arithmetic of quaternion algebras from
Voight [33]. For every quaternion algebra B over Q, there are only finitely many places in Q
where B is ramified. This finite set of places uniquely determines a quaternion algebra over Q up to
isomorphism. A few important algebraic structures such as lattices, orders, and ideals in quaternion
orders, are essential to describe relations among the three problems of supersingular elliptic curves.

In Chapter 3, we present basic theory of elliptic curves and isogenies between them from [31],
Vélu’s formula for constructing isogenies between elliptic curves [18, 22], and elliptic curves with
complex multiplication [12]. The endomorphism ring of elliptic curves is one of the following types of
rings; either it is the ring of rational integers, an order in an imaginary quadratic field, or an order
in a quaternion algebra, where the last case gives the definition of supersingular elliptic curve.
There are equivalent conditions for an elliptic curve to be supersingular. Vélu’s formula gives a
way to explicitly evaluate an isogeny, given a specification of the kernel as a set of points in it or
polynomial defining them. The j-invariant of an elliptic curve over C whose endomorphism ring
is isomorphic to the maximal order in an imaginary quadratic field K generates the Hilbert class
field of K. Then the Deuring Lifting Theorem shows that there is a way to obtain a supersingular
elliptic curves as a reduction of an elliptic curve over a number field.

In Chapter 4, we follow a proof of Deuring’s correspondence from [33], using the theory of
elliptic curves and quaternion algebras presented in the previous chapters. For each prime p, there
is a bijection from the set of supersingular elliptic curves up to Galois conjugacy to maximal orders
in the quaterinon algebra ramified exactly at p and infinity up to isomorphism. Then we introduce
a constructive algorithm computing a supersingular j-invariant such that the endomorphism ring
is isomorphic to a given special order [7, 17].

In Chapter 5, we define the supersingular `-isogeny graph using the classical modular poly-
nomial and review its basic properties introduced in [3, 23, 9]. Supersingular isogeny graphs are
connected regular directed multi-graphs, and it is a Ramanujan graph. We introduce the notion of
M -small [27], (M, `)-small, and (M,S)-small elliptic curves, and bound these, in order to describe
the computational hardness of finding short cycles in supersingular isogeny graphs. We provide
numerical data showing how hard it is to get a cycle in supersingular isogeny graphs from breadth
first search.

In Chapter 6, we introduce a precise definition of three problems on SIG and algorithms in [17].
These algorithms provide reductions between the problems and show they are heuristically equiva-
lent. This includes finding explicit versions of Deuring’s correspondence and efficient algorithms to
translate j-invariants into maximal orders in the quaternion algebra and conversely.
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1.2 Notation and Terminology

1. We say that f(x) = O(g(x)) if there is a real constant M such that |f(x)| ≤ Mg(x) for
sufficiently large x.

2. Õ(g(x)) means O(g(x)) up to factors in log g(x).

3. We say that f(x) = Ω(g(x)) if there is a real constant M such that f(x) ≥ Mg(x) for
sufficiently large x.

4. If K is a number field, then OK denotes its ring of integers.

5. If L is a finite extension of a field K, then [L : K] := dimK L denotes the degree of L over K,
namely the dimension of L over K.

3



Chapter 2

Quaternion Algebras

2.1 Overview

Definition 2.1.1. Let F be a field with charF 6= 2 and let a, b ∈ F×. A quaternion algebra
B over F is an F -algebra with a basis 1, i, j, k such that i2 = a, j2 = b, and k = ij = −ji. We
denote this algebra by (a, b | F ). The elements i, j are called standard generators for B (or we
say {1, i, j, k} is a quaternionic basis of B).

The following multiplication rules hold in B and can be F -linearly extended:

i2 = a, j2 = b, k2 = −ab, ij = k, ji = −k, jk = −bi, kj = bi, ki = −aj, ik = aj.

Example 2.1.2. The quaternion algebra H := (−1,−1 | R) is called the ring of Hamilton’s
quaternions.

We have a notion of quaternion algebra when the base field F has characteristic 2, but often
statements about quaternion algebra require an alternative proof to the case where charF 6= 2. For
the generality, we provide the definition of quaternion algebra over field of characteristic 2, but we
will only give proofs for the case where charF 6= 2.

Definition 2.1.3. An algebra B over a field F with charF = 2 is called a quaternion algebra
if there exists an F -basis 1, i, j, k for B such that

i2 + i = a, j2 = b, and k = ij = j(i+ 1)

with a ∈ F and b ∈ F×.

Throughout the rest of this section, suppose that charF 6= 2. See [33, Chapter 6] for the case
charF = 2.
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Lemma 2.1.4. An F -algebra B is a quaternion algebra if and only if there exists nonzero elements
i, j ∈ B that generate B as an F -algebra and satisfy

i2 = a, j2 = b, and ij = −ji (2.1)

with a, b ∈ F×. In other words, once the relations (2.1) are satisfied for generators i, j, then
automatically B has dimension 4 as an F -vector space, with F -basis 1, i, j, ij.

Proof. See [33, Lemma 2.2.5].

Next, we discuss some standard isomorphisms between quaternion algebras.

Lemma 2.1.5. Let B = (a, b | F ) be a quaternion algebra. Then we have the following isomor-
phisms between quaternion algebras:

(i) (a, b | F ) ' (b, a | F ).

(ii) (a, b | F ) ' (a,−ab | F ).

(iii) (a, b | F ) ' (b,−ab | F ).

(iv) (a, b | F ) ' (ac2, bd2 | F ) for all c, d ∈ F×.

Proof. Different choices of standard generators give the isomorphisms. Let i, j ∈ B be standard
generators of B.

To prove (i), consider a canonical map obtained by F -linearly extending the map

B → B′

i, j 7→ i′ := j, j′ := i.

The map preserves the relations of standard generators in (2.1) since i′2 = j2 = b and j′2 = i2 = a.
Hence B′ = (b, a | F ) is the quaternion algebra with standard generators i′, j′ and B ' B′.

For (ii), the map i, j 7→ i, ij gives the isomorphism (a, b | F ) ' (a,−ab | F ) since i2 = a, (ij)2 =
−ab, and i(ij) = −(ij)i. (iii) is Similar to (ii).

Lastly, we prove (iv). For c, d ∈ F×, the map i, j 7→ ci, dj gives the last isomorphism since
(ci)2 = ac2, (dj)2 = bd2, and (ci)(dj) = −(dj)(ci).

Given a quaternion algebra over F , a field extension K ⊇ F gives a new quaternion algebra by
extending scalars. Hence, there is a canonical isomorphism

(a, b | F )⊗F K ' (a, b | K).

.
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Proposition 2.1.6. Let B = (a, b | F ) and let F (
√
a) be a splitting field over F for the polynomial

x2 − a, with root
√
a ∈ F (

√
a). Then the map

m : B ↪→ M2(F (
√
a))

i, j 7→
(√

a 0
0 −

√
a

)
,

(
0 b

1 0

)

t+ xi+ yj + zij 7→
(
t+ x

√
a b(y + z

√
a)

y − z
√
a t− x

√
a

)

is an injective F -algebra homomorphism.

Proof. See [33, Proposition 2.3.1].

Corollary 2.1.7. The multiplication in a quaternion algebra B is associative.

Proof. The map m in Proposition 2.1.6 gives an embedding such that m(α+β) = m(α)+m(β) and
m(αβ) = m(α)m(β). It follows that the multiplication in B is associative since the multiplication
in a matrix ring is so.

Definition 2.1.8. A quaternion algebra B over F is called split if B ' M2(F ). Otherwise, we say
B is non-split.

Corollary 2.1.9. Let F be a field of charF 6= 2. For all a, c ∈ F×,

(a, 1 | F ) ' (a, c2 | F ) ' (a,−a | F ) ' M2(F ).

Proof. We follow the proof in [33, Corollary 2.3.6].
The isomorphisms between quaternion algebras are given in Lemma 2.1.5. The map

m : (a, 1 | F )→ M2(F )

i, j 7→
(

0 1
a 0

)
,

(
1 0
0 −1

)

gives an isomorphsim (a, 1 | F ) ' M2(F ) of F -algebras.

Corollary 2.1.10. If B = (a, b | R) is a quaternion algebra over R, then

B '

H if a < 0 and b < 0,

M2(R) otherwise.

Also, the only quaternion algebra over C is M2(C).
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Proof. If a, b < 0, then B = (−(
√
−a)2,−(

√
−b)2 | R) ' H by Lemma 2.1.5. Otheriwse, B ' M2(R)

by Corollary 2.1.9. Similarly, the only quaternion algebra over C is (1, 1 | C) ' M2(C).

Definition 2.1.11. Let B be an algebra over a field F . An involution : B → B is an F -linear
map which satisfies

(i) 1 = 1.

(ii) α = α for all α ∈ B.

(iii) αβ = βα for all α, β ∈ B (the map is an anti-automorphism).

An involution is called standard if αα ∈ F for all α ∈ B.

Let be a standard involution on B. For any α ∈ B,

α+ α = (α+ 1)(α+ 1)− αα− 1 ∈ F

since is standard. It follows that αα = αα, since

(α+ α)α = α(α+ α).

Example 2.1.12. Let B = (a, b | F ) be a quaternion algebra over F with charF 6= 2. The map

: B → B

α = t+ xi+ yj + zij 7→ α = t− (xi+ yi+ zij)

defines a standard involution since

αα = αα = t2 − ax2 − by2 + abz2 ∈ F.

Also we have α = 2t− α.

From now on, when we use a standard involution , we mean the conjugation map in Example
2.1.12.

Definition 2.1.13. Let : B → B be a standard involution on an F -algebra B. We define the
reduced trace on B by

trd : B → F

α 7→ α+ α,

7



and similarly the reduced norm

nrd : B → F

α 7→ αα.

We will write

B0 := {α ∈ B : trd(α) = 0}

B1 := {α ∈ B× : nrd(α) = 1}.

for the F -subspace B0 of elements of reduced trace 0 and for the subgroup B1 of elements of reduced
norm 1.

Definition 2.1.14. An element α = t + xi + yj + zij ∈ (a, b | F ) is called pure if t = 0, i.e.,
trd(α) = 0.

Example 2.1.15. For B = M2(F ), the reduced trace is the usual matrix trace and the reduced
norm is the determinant.

Theorem 2.1.16. An element α ∈ (a, b | F ) is invertible if and only if nrd(α) 6= 0.

Proof. Suppose α is invertible so that αα′ = 1 for some α′ ∈ (a, b | F ). Taking reduced norm on
both sides gives

nrd(α) nrd(α′) = 1,

so nrd(α) ∈ F×. Conversely, suppose nrd(α) 6= 0. Then

α · α

nrd(α) = α

nrd(α) · α = 1.

The reduced trace trd is an F -linear map, since this is true for the standard involution:

trd(α+ β) = (α+ β) + (α+ β) = (α+ α) + (β + β) = trd(α) + trd(β)

for all α, β ∈ B. The reduced norm nrd is multiplicative, since

nrd(αβ) = (αβ)(αβ) = αββα = α nrd(β)α = nrd(α) nrd(β)

for all α, β ∈ B.

Definition 2.1.17. Let B be an F -algebra. For any α ∈ B, the polynomial

x2 − trd(α)x+ nrd(α) ∈ F [x]

8



is called the reduced characteristic polynomial of α.

By the definition,
α2 − (α+ α)α+ αα = 0 (2.2)

identically for any α ∈ B. Hence α ∈ B is a root of its reduced polynomial. When α 6∈ F , the
reduced characteristic polynomial of α is its minimal polynomial, since if α satisfies a polynomial
of degree 1 then α ∈ F .

Definition 2.1.18. An F -algebra K of dimF K = 2 is called a quadratic algebra.

Lemma 2.1.19. Let K be a quadratic F -algebra. Then K is commutative and has a unique
standard involution.

Proof. We follow the proof in [33, Lemma 3.4.2].
Since K has dimension 2, we can write K = F ⊕ Fα = F [α] for any α ∈ K \ F , which is

commutative. Furthermore, α2 = tα − n for unique t, n ∈ F since 1, α is a basis for K. Then
K = F [α] admits a standard involution : K → K given by

x+ yα := (x+ ty)− yα.

This is a standard involution since for any x+ yα, x′ + y′α ∈ K with x, x′y, y′ ∈ F ,

1 = 1,

x+ yα = (x+ ty)− yα = (x+ ty − ty) + yα = x+ yα,

(x+ yα)(x′ + y′α) = xx′ − nyy′ + txy′ + tx′y + t2yy′ − (xy′ + x′y + tyy′)α = x+ yαx′ + y′α

(x+ yα)x+ yα = x2 + txy + ny2 ∈ F.

Note that this is the unique standard involution with the property that α = t − α since if i is
another standard involution with the property, then

i(x+ yα) = x+ yi(α) = x+ ty − yα.

If : K → K is any standard inovlution, then from

α2 = (α+ α)α− αα

we must have t = α+α by the uniqueness of t. Hence any standard involution must have α = t−α.
It follows that standard involution on K is unique.

Corollary 2.1.20. If an F -algebra B has a standard involution, then this involution is unique.

Proof. See [33, Corollary 3.4.4].

9



Definition 2.1.21. A ring is called a division ring if every nonzero element is a unit. A division
algebra is an algebra that is a division ring.

Definition 2.1.22. Let B be an F -algebra. We say B is central if F is the center of B, and we
say B is simple if B has no nontrivial two-sided ideals.

Let Z(R) denote the center of a ring R. A quaternion algebra B over F is noncommutative and
Z(B) = F . Indeed B can be characterized as a central simple algebra. Let F al denote a choice of
algebraic closure of F .

Corollary 2.1.23. Let B be an algebra over a field F . Then the following are equivalent:

(i) B is a quaternion algebra.

(ii) B ⊗F F al ' M2(F al).

(iii) B is a central simple algebra of dimension dimF B = 4.

Moreover, a quaternion algebra B is either a division algebra or B ' M2(F ) is split.

Proof. See [33, Corollary 7.1.2].

Since division rings are simple (as any nonzero two-sided ideals contain 1), Corollary 2.1.23
implies that a division algebra B over F is a quaternion algebra over F if and only if it is central
of dimension dimF B = 4.

Definition 2.1.24. Let B be a commutative finite-dimensional algebra over a field F . We say B
is separable if

B ⊗F F al ' F al × · · · × F al;

otherwise, we say B is inseparable.

Remark 2.1.25. If B ' F [x]/(f(x)) with f(x) ∈ F [x], then B is separable if and only if f has
distinct roots in F al. If charF 6= 2, and K is a quadratic F -algebra, then after completing the
square, we see that the following are equivalent [33, 6.1.3]:

(i) K is separable.

(ii) K ' F [x]/(x2 − a) with a 6= 0.

(iii) K is reduced (K has no nonzero nilpotent elements).

(iv) K is a field or K ' F × F .

10



Remark 2.1.26. [33, 6.1.4] If charF = 2, then a quadratic F -algebra K is separable if and only if

K ' F [x]/(x2 + x+ a)

for some a ∈ F . A quadratic algebra of the form K = F [x]/(x2 + a) with a ∈ F is inseparable.

Now we introduce a more general notation that gives a characteristic-independent way to define
quaternion algebras. Let K be a separable quadratic F -algebra, and let b ∈ F×. We denote by

(K, b | F ) := K ⊕Kj

the F -algebra with basis 1, j as a left K-vector space and with the multiplication rules j2 = b and
jα = αj for α ∈ K, where is the standard involution on K (the nontrivial element of Gal(K/F )
if K is a field). If charF 6= 2 then writing K = F [x]/(x2 − a) we see that

(K, b | F ) ' (a, b | F )

is a quaternion algebra over F .

2.2 Ramification

In this section, we give the classification of quaternion algebras; first over local fields and then
over global fields. In particular, we will show that there exists a unique quaternion algebra over Q,
which is ramified exactly at a prime p and ∞.

Definition 2.2.1. A local field is a Hausdorff, locally compact topological field with a nondiscrete
topology.

Definition 2.2.2. An absolute value on a field F is nonarchimedean if the ultrametric in-
equality

|x+ y| ≤ sup{|x| , |y|}

is satisfied for all x, y ∈ F , and archimedean otherwise.

A field with absolute value is archimedean if and only if it satisfies the archimedean property:
for all x ∈ F×, there exists n ∈ Z such that |nx| > 1. In particular, a field F equipped with an
archimedean absolute value has charF = 0.

Example 2.2.3. Let p be a prime. The set of p-adic numbers Qp is the completion of Q with
respect to the p-adic absolute value |·|p on Q defined by |0|p = 0 and

|c|p = p−νp(c) for c ∈ Q×,
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where νp : Q → R ∪ {∞} is the p-adic valuation defined by vp(c) = k if c = pkm
n , where m,n ∈ Z

are relatively prime and p - mn, and vp(0) =∞. Qp is a local field with the valuation ring

Zp : =
{
x = (xn)n ∈

∞∏
n=1

Z/pnZ : xn+1 ≡ xn (mod pn) for all n ≥ 1
}

= {x ∈ Qp : |x|p ≤ 1}

= {x ∈ Qp : νp(x) ≥ 0} ,

the p-adic integers.

Theorem 2.2.4. A field F with absolute value is a local field if and only if F is one of the following:

(i) F is archimedean, and F ' R or F ' C.

(ii) F is nonarchimedean with charF = 0, and F is a finite extension of Qp for some prime p.

(iii) F is nonarchimedean with charF = p, and F is a finite extension of the Laurent series field
Fp((t)) for some prime p; in this case, there is a (non-canonical) isomorphism F ' Fq((t))
where q is a power of p.

A field F with absolute value |·| is a nonarchimedean local field if and only if F is complete with
respect to |·|, and |·| is equivalent to the absolute value associated to a nontrivial discrete valuation
ν : F → R ∪ {∞} with finite residue field.

Proof. See [33, Theorem 12.2.15].

Now we give the classification of quaternion algebras B over local fields F . First, suppose F
is archimedean. The only quaternion algebra over C up to isomorphism is B ' M2(C), and H is
the unique division quaternion algebra over R by Corollary 2.1.10. We will give the classification
of quaternion algebras over nonarchimedean local fields via extensions of valuations.

Let R be a complete discrete valuation ring (DVR) with valuation ν : R→ Z≥0∪{∞} and field
of fractions F , maximal ideal p = πR with a uniformizer π, and residue field k := R/p. Let K ⊇ F
be a finite separable extension of degree n := [K : F ]. Then K is also a nonarchimedean local field
as follows

Lemma 2.2.5. There exists a unique valuation w on K such that w |F= ν, defined by

w(x) :=
ν(NmK/F (x))

[K : F ] .

The integral closure of R in K is the valuation ring

S := {x ∈ K : w(x) ≥ 0}.

12



When w |F= ν, we say that w extends ν.

Proof. See [33, Lemma 13.2.1].

Definition 2.2.6. Let K ⊇ F be fields defined as in Lemma 2.2.5. We say K ⊇ F is unramified
if a uniformizer π for F is also a uniformizer for K. We say K ⊇ F is totally ramified if a
uniformizer πK of K has the property that πnK is a uniformizer for F .

In general, there is a (unique) maximal unramified subextension Kun ⊆ K, and the extension
K ⊇ Kun is totally ramified. We say that e = [K : Kun] is the ramification degree and f =
[Kun : F ] the inertial degree, and the fundamental equality

n = [K : F ] = ef

holds.

We can generalize this to the noncommutative case. Let D be a central (simple) division algebra
over F with dimF D = [D : F ] = n2. We extend the valutation ν to a map

w : D → R ∪ {∞}

α 7→
ν(NmD/F (α))

[D : F ] = ν(nrd(α))
n

,
(2.3)

where the equality follows from the fact that NmD/F (α) = nrd(α)n (see [33, Section 7.8] for the
reduced norm on D).

Lemma 2.2.7. The map w in (2.3) is the unique valuation on D extending ν i.e., the following
hold:

(i) w(α) =∞ if and only if α = 0.

(ii) w(αβ) = w(α) + w(β) = w(βα) for all α, β ∈ D.

(iii) w(α+ β) ≥ min(w(α), w(β)) for all α, β ∈ D.

(iv) w(D×) is discrete in R.

Proof. See [33, Lemma 13.3.2].

From Lemma 2.2.7, we say that w is a discrete valuation on D since it satisfies the same
axioms as for a field. It follows from the Lemma 2.2.7 that the set

O := {α ∈ D : w(α) ≥ 0} (2.4)

is a ring, called the valuation ring of D.
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Proposition 2.2.8. The ring O in (2.4) is the unique maximal R-order in D, consisting of all
elements of D that are integral over R.

Proof. See [33, Proposition 13.3.4].

Theorem 2.2.9. Let F be a nonarchimedean local field. Then the following statements hold.

(a) There is a unique division quaternion algebra B over F , up to F -algebra isomorphism given
by

B ' (K,π | F ) = K ⊕Kj,

where K is the unique quadratic unramified (separable) extension of F .

(b) Let B be as in (a). Then the valuation ring of B is O ' S⊕Sj, where S is the integral closure
of R in K. Moreover, the ideal P = Oj is the unique maximal ideal; we have P 2 = πO, and
O/P ⊇ R/p is a quadratic extension of finite fields.

Proof. See [33, Theorem 13.3.11].

Example 2.2.10. Let p be a prime number and let q = p2. When F = Qp,

B ' (Qq, p | Qp)

is the unique quaternion algebra over F up to isomorphism, where Qq is the unique quadratic
unramified (separable) extension of Qp. The valuation ring of B is O ' Zq ⊕Zqj, and the maximal
ideal P = Oj has P 2 = pO and O/P ' Zq/pZq ' Fq. This is the special case of Theorem 2.2.9
(see [33, Theorem 13.1.6]).

Corollary 2.2.11. Let F be a nonarchimedean local field with valuation ν, let K be a separable,
unramified quadratic F -algebra, and let B = (K, b | F ) with b ∈ F×. If ν(b) = 0, then B ' M2(F ).

Proof. See [33, Corollary 13.4.1].

Let F be a nonarchimedean local field and let B be a division quaternion algebra over F . In
analogy with the case of local field extensions, we define the ramification index of B over F as
e(B | F ) = 2 since P 2 = πO, and the inertial degree of B over F as f(B | F ) = 2 since B
contains the unramified quadratic extension K of F , and we have the equality

e(B | F )f(B | F ) = 4 = [B : F ],

as in the commutative case.

We have the complete classification of quaternion algebras over local fields. In particular, there
is a unique division quaternion algebra over a local field F 6= C up to F -algebra isomorphism. We
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now give the classification of quaternion algebras over Q. See [33, Chapter 14.6] for more general
results over any global fields.

Definition 2.2.12. A global field is either a number field or a finite extension of Fp(t) (a function
field) for a prime p.

Global fields are strongly governed by their completions with respect to nontrivial absolute
values, which are local fields.

Definition 2.2.13. Let F be a global field. A place of F is an equivalence of embeddings ι : F → Fν

where Fν is a local field and ι(F ) is dense in Fν ; two embeddibgs ι′ : F → Fν and ι′ : F → F ′ν

are said to be equivalent if there is an isomorphism of topological fields φ : Fν → F ′ν such that
ι′ = φ ◦ ι. The set of places of F is denoted by PlF .

Every valuation ν : F → R∪{∞} on a global field F , up to scaling, defines a place ιν : F → Fν

where Fν is the completion of F with respect to the absolute value induced by ν. We call such a
place nonarchimedean, and using this identification we will write ν for both the place of F and
the corresponding valuation. If F is a function field, then all places of F are nonarchimedean. If
F is a number field, a place F ↪→ R is called a real place and a place F ↪→ C (equivalent to its
complex conjugate) is called a complex place. A real or complex place is called archimedean.

Example 2.2.14. The set of places PlQ of Q consists of the archimedean real place, induced by
the embedding Q ↪→ R and the usual absolute value |x|∞, and the set of nonarchimedean places
indexed by the primes p given by the embeddings Q ↪→ Qp, with the p-adic absolute value

|x|p = p−νp(x).

Definition 2.2.15. A set S ⊆ PlF is eligible if S is finite, nonempty, and contains all archimedean
places of F .

Definition 2.2.16. Let S be an eligible set of places. The ring of S-integers in F is the set

R(S) := {x ∈ F : ν(x) ≥ 0 for all ν /∈ S} .

A global ring is a ring of S-integers in a global field for an associated eligible set S.

Definition 2.2.17. Let B = (a, b | F ) be a quaternion algebra over a global field F and let ν ∈ PlF .
We say that B is ramified at ν if the completion Bν := B ⊗F Fν ' (a, b | Fν) is a division ring.
Otherwise we say that B is split (or unramified) at ν. If ν ∈ PlF is a nonarchimedean place,
corresponding to a prime p of R, we will also say that B is ramified at p when B is ramified at ν.

Let RamB denote the set of ramified places of a quaternion algebra B over a global field F .
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Let R = R(S) be a global ring, with S ⊂ PlF eligible. Let B be a quaternion algebra over F .
The set RamB of ramified places of B is finite [33, Lemma 14.5.3], and we make the following
definition.

Definition 2.2.18. The R-discriminant of B is the R-ideal

discR(B) :=
∏

p∈RamB
p/∈S

p ⊆ R

obtained as the product of all primes p of R = R(S) ramified in B.

Remark 2.2.19. When F is a number field and S consists of archimeadean places only, so that R
is the ring of integers of F , we abbreviate discR(B) = discB.

From now on, we restrict our attention to the case when F = Q.

Lemma 2.2.20. Let B be a quaternion algebra over Q. The set RamB of ramified places of B is
finite.

Proof. See [33, Lemma 14.2.3].

Not every finite subset Σ of places can occur as RamB for a quaternion algebra B. It turns out
that the parity condition here is that we must have #Σ even.

Definition 2.2.21. Let B be a quaternion algebra over Q. We define the discriminant of B to
be the product discB of primes that ramify in B, so discB is a squarefree positive integer.

Proposition 2.2.22. Let Σ be a finite set of places of Q of even cardinality. Then there exists a
quaternion algebra B over Q with RamB = Σ.

Proof. See [33, Proposition 14.2.7].

Example 2.2.23. Let B = (a, b | Q) be a quaternion algebra of prime discriminant D = p over Q.
Then:

(i) For D = p = 2, we take a = b = −1.

(ii) For D = p = 3 (mod 4), we take b = −p and a = −1.

(iii) For D = p ≡ 1 (mod 4), we take b = −p and a = −q where q ≡ 3 (mod 4) is prime and(
q
p

)
= −1.

[33, Example 14.2.13]

Proposition 2.2.24. Let B,B′ be quaternion algebras over Q. The followings are equivalent.
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(i) B ' B′.

(ii) RamB = RamB′.

(iii) Bv ' B′v for all places of Q.

(iv) Bv ' B′v for all but one place of Q.

Proof. See [33, Theorem 14.3.1].

Let B be a quaternion algebra over Q. Proposition 2.2.22 shows that every allowable set of
ramified places of B can be obtained, and Proposition 2.2.24 shows that the map B 7→ RamB is
injective on isomorphism classes. Hence, we have the following classification of quaternion algebras
over Q.

Theorem 2.2.25. (Local-global principle) The maps

B 7→ Ram(B)∏
p∈Σ

p←[ Σ

gives a bijection {
Quaternion algebras over Q

up to isomorphism

}
↔
{

Finite subsets of places of Q of
even cardinality

}
(2.5)

The composition of these maps is B 7→
∏
p∈RamB p = discB [33, Theorem 14.1.3].

Corollary 2.2.26. Let B be a quaternion algebra over Q. Then B ' M2(Q) if and only if Bp '
M2(Qp) for all primes p.

Proof. See [33, Corollary 14.3.2].

Definition 2.2.27. Let B be a quaternion algebra over Q. We say that B is definite if∞ ∈ RamB

and B is indefinite otherwise

By definition, B is definite if and only if B∞ := B ⊗Q R = (a, b | R) ' H if and only if a, b < 0
by Corollary 2.1.10.

Definition 2.2.28. Let B be a quaternion algebra over a number field F . We say that B is totally
definite if all archimedean places of F are ramified in B. Otherwise, we say B is indefinite.

If ν is a complex place, then ν is necessarily split since the only quaternion algebra over C is
M2(C) by Corollary 2.1.10. Therefore, if B is totally definite quaternion algebra over a number field
F , then F is totally real, i.e., for each embedding of F into C the image lies inside R.
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2.3 Lattices and orders

Let R be a domain with field of fractions F := FracR.

Definition 2.3.1. Let V be a n-dimensional vector space over F . An R-lattice in V is finitely
generated R-submodule M ⊂ V with MF = V , i.e., it contains a F -basis of V .

Definition 2.3.2. Let B be a finite dimensional F -algebra. An R-order O ⊆ B is a R-lattice that
is also a ring. If O is not properly contained in any other order, we call it a maximal order.

Remark 2.3.3. For a quaternion algebra B over Q, by a lattice in B, we mean a Z-lattice of the
form

Zx1 + · · ·+ Zx4

for some basis {x1, · · · , x4} of B and similarly for an order in B.

Example 2.3.4. One can easily check the lattice

O := Z + Zi+ Zj + Zk

is closed under multiplication, and so defines an order, but it is not maximal.

Lemma 2.3.5. The center of an R-order O in a quaternion algebra B over F is R.

Proof. Since O contains a F -basis of B, every element in Z(O) commutes with B, so Z(O) ⊆
Z(B) = F . Then

R = Z(R) = Z(O ∩ F ) = Z(O) ∩ F = Z(O).

Definition 2.3.6. Let I be an R-lattice in F -algebra B. The left order of I is the set

OL(I) := {α ∈ B : αI ⊆ I} .

We similarly define the right order OR(I) of I.

The left or right orders are R-orders, so writing a lattice from a basis of F -algebra and then
taking its right order is an immediate way to give an R-order.

Lemma 2.3.7. The left order (or the right order) of an R-lattice is an R-order.

Proof. See [33, Lemma 10.2.7].

The order has a few local properties as follows.
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Lemma 2.3.8. Let B be a finite-dimensional F -algebra and let I ⊆ B an R-lattice. Then the
following are equivalent:

(i) I is an R-order.

(ii) I(p) is an R(p)-order for all prime ideals p of R.

(iii) I(m) is an R(m)-order for all maximal ideals m of R.

Proof. See [33, Lemma 10.2.10].

Lemma 2.3.9. Let R be a Dedekind domain. An R-order O ⊆ B is maximal if and only if O(p) is
a maximal R(p)-order for all primes p of R.

Proof. See [33, Lemma 10.4.3].

Lemma 2.3.10. Let R be a Dedekind domain and let O ⊆ B be an R-order. Then for all but
finitely many primes p of R, we have O(p) = O ⊗R R(p) is maximal.

Proof. See [33, Lemma 10.4.4].

An important quantity characterizing the order is the discriminant. Recall that the discriminant
of a quaternion algebra B overQ is the square-free product of primes ramified in B. The discriminant
of the order in B is defined as follows.

Definition 2.3.11. Let B be a quaternion algebra over Q and let O ⊆ B be an order. We define
the discriminant of O to be

disc(O) := |det(trd(αiαj))i,j | ∈ Z>0

where α1, · · · , α4 is a Z-basis for O.

If O′ ⊇ O, then we have
disc(O) =

[
O′ : O

]2 disc(O′).

This implies O′ = O if and only if disc(O′) = disc(O). Moreover, the discriminant of an order
is always a square, so we define the reduced discriminant discrd(O) to be the square root of
disc(O). One can also show that O is a maximal order if and only if discrd(O) = disc(B). We will
generalize these notions to R-lattices and also prove their properties mentioned before.

Let R be a noetherian domain with F = FracR and let B be a semisimple algebra over F with
dimF B = n.

Definition 2.3.12. For elements α1, · · · , αn ∈ B, we define

d(α1, · · · , αn) := det(trd(αiαj))i,j=1,··· ,n.
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Let I ⊆ B be an R-lattice.

Definition 2.3.13. The discriminant of I is the R-submodule disc(I) ⊆ F generated by the set

{d(α1, · · · , αn) : α, · · · , αn ∈ I} .

Lemma 2.3.14. Let α1, · · · , αn ∈ B and suppose β1, · · · , βn ∈ B are of the form βi =
∑n
j=1mijαj

with mij ∈ F . Let M = (mij)i,j=1··· ,n. Then

d(β1, · · · , βn) = det(M)2d(α1, · · · , αn).

Proof. [33, Lemma 15.2.5].

Corollary 2.3.15. If I is free as an R-module, and α1, · · · , αn is an R-basis for I, then

disc(I) = d(α1, · · · , αn)R.

Proof. See [33, Corollary 15.2.7]

If I = O is an R-order (so closed under multiplication), then for α1, · · · , αn ∈ O we have
trd(αiαj) ∈ R for all i, j. Thus d(α1, · · · , αn) ∈ R and therefore disc(O) ⊆ R is a principal R-ideal.
When working over Z, it is common to take the discriminant instead to be the positive generator
of the discriminant as an ideal as we did in Definition 2.3.11.

The discriminant is well-behaved under automorphisms because the reduced trace is so.

Corollary 2.3.16. If φ : B '→ B is an F -algebra automorphism, then disc(φ(I)) = disc(I).

Proof. [33, Corollary 15.2.9].

Example 2.3.17. Suppose charF 6= 2. Let B := (a, b | F ) with a, b ∈ R. Let O := 〈1, i, j, k〉 ⊆
B, called the standard order, which is clearly an order. Then disc(O) is the principal R-ideal
generated by

d(1, i, j, ij) = det


2 0 0 0
0 2a 0 0
0 0 2b 0
0 0 0 −2ab

 = −(4ab)2.

Proposition 2.3.18. For any prime ideal p of R,

disc(I(p)) = disc(I)(p)

on localizations and
disc(Ip) = disc(I)p
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on completions. Then we can write

disc(I) =
⋂
p

disc(I(p)).

Proof. See [33, 15.2.13].

Lemma 2.3.19. If B is separable as an F -algebra and I is projective as an R-module then disc(I)
is a nonzero projective fractional ideal of R.

Proof. See [33, Lemma 15.2.14].

Lemma 2.3.20. Let I, J ⊆ B be projective R-lattices. Then

disc(I) = [J : I]2R disc(J).

Moreover, if I ⊆ J , then disc(I) = disc(J) if and only if I = J .

Proof. [33, Lemma 15.2.15].

Now, we show that the discriminant of every R-order is the square of an R-ideal and define this
square root directly.

Definition 2.3.21. We define the form m : B ×B ×B → F

m(α1, α2, α3) := trd((α1α2 − α2α1)α3)

= αα2α3 − α2α1α3 − α3α2 α1 + α3α1 α2

The form m is an alternating trilinear form which is well-defined as a form on B/F [33, Lemma
15.4.3].

Definition 2.3.22. Let I ⊆ B be an R-lattice. The reduced discriminant of I is the R-
submodule discrd(I) of F generated by

{m(α1, α2, α3) : α1, α2, α3 ∈ I}.

Similar to the discriminant, the reduced discriminant have the following properties; if αi, β ∈ B
with βi = Mαi for some M ∈ M3(F ), then

m(β1, β2, β3) = det(M)m(α1, α2, α3)

and if I ⊆ J are projective R-lattices in B, then

discrd(I) = [J : I] discrd(J).
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Lemma 2.3.23. If I is a projective R-lattice in B, then disc(I) = discrd(I)2.

Proof. See [33, Lemma 15.4.7].

From now, let R be a Dedekind domain.

Lemma 2.3.24. Let O ⊆ O′ be R-orders. Then O = O′ if and only if discO = discO′.

Proof. See [33, Lemma 15.5.1].

Proposition 2.3.25. There exists a maximal R-order in B, and every order O is contained in a
maximal R-order O′ ⊆ B.

Proof. See [33, Proposition 15.5.2].

Lemma 2.3.26. Suppose that R is a DVR, and let O ⊆ B := Mn(F ) be an R-order. Then O is
maximal if and only if discO = R.

Proof. See [33, Lemma 15.5.3].

Lemma 2.3.27. Let F be a nonarchimedean local field with valuation ring R and let B be a
division quaternion algebra over F . The valuation ring O ⊂ B is the unique maximal order with
discO = p2 and discrdO = p. It follows that an R-order in B is maximal if and only if it has
reduced discriminant p.

Proof. See [33, Example 15.5.4].

Theorem 2.3.28. Let R be a global ring with field of fractions F , let B be a quaternion algebra
over F , and let O ⊆ B be an R-order. Then O is maximal if and only if discrd(O) = discR(B).

Let R be a Dedekind domain with field of fractions F , let B be a quaternion algebra over F .

Definition 2.3.29. An R-order O ⊆ B is called an Eichler order if it is the intersection of two
maximal orders.

Definition 2.3.30. Suppose R is local. The standard Eichler order of level pe in M2(F ) is the
order

O0(pe) :=
(
R R

pe R

)
.

Remark 2.3.31. [33, 23.4.19] Suppose that R is a global ring. Let discRB = D and let O be an
Eichler order with discrdO = R. If p | D, then Bp has a unique maximal order, so Op is necessarily
the maximal order. If p - D, and ordpR = e ≥ 0, then Op is isomorphic to the standard Eichler
order of level pe. We have R = DM with M ⊆ R and M is coprime to D. We call M the level of
the Eichler order O.
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2.4 Quaternion ideals and invertibility

Throughout this section, let R be a Dedekind domain with field of fractions F , let B be a
finite-dimensional F -algebra, and let I ⊆ B be an R-lattice.

Let O ⊆ B be an R-order. We study its ring structure via ideals.

Definition 2.4.1. I is principal if there exists α ∈ B such that

I = OL(I)α = αOR(I);

We say that I is generated by α

If α ∈ B generates an R-lattice, then α ∈ B× since

B = IF = OL(I)Fα = Bα = B.

Moreover, I = OL(I)α if and only if I = αOR(I) [33, 16.2.3], so it is sufficient to check for a
one-sided generator.

The notion of principality extends locally as follows.

Definition 2.4.2. An R-lattice I is locally principal if I(p) = I⊗RR(p) is a principal R(p)-lattice
for all primes p of R.

Definition 2.4.3. The product IJ of two R-lattices I and J in a F -algebra B is the R-lattice
generated by

{αβ : α ∈ I, β ∈ J} ,

as an R-submodule.

Definition 2.4.4. We say I is compatible with J if the right order of I is equal to the left order
of J . If this is the case, we call IJ a compatible product.

The relation ‘is compatible with’ is in general neither symmetric nor transitive.

Definition 2.4.5. We say an R-lattice is integral if I2 ⊆ I (the product need not be compatible).

Lemma 2.4.6. Let I be an R-lattice. Then the following are equivalent:

(i) I is integral.

(ii) For all α, β ∈ I, we have αβ ∈ I.

(iii) I ⊆ OL(I), so I is a left ideal of OL(I) in the usual sense.

(iii’) I ⊆ OR(I).
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(iv) I ⊆ OL(I) ∩ OR(I).

If I is integral, then every element of I is integral over R.

Proof. See [33, Lemma 16.2.8].

By Lemma 2.4.6, R-lattice I is integral if and only if I ⊆ OL(I). Hence, there exists nonzero
d ∈ R such that dI is integral, so every R-lattice I = (dI)/d is fractional in the sense that it is
obtained from an integral lattice with denominator.

Definition 2.4.7. Let O ⊂ B be an R-order. A left fractional O-ideal is a lattice I ⊆ B such
that O ⊆ OL(I) (so OI ⊆ I); similarly on the right.

If O,O′ ⊆ B are R-orders, then a fractional O,O′-ideal is a lattice I that is a left fractional
O-ideal and a right fractional O′-ideal.

Proposition 2.4.8. A left ideal I ⊆ O in the usual sense is an integral left O-ideal in the sense
of Definition 2.4.7 if and only if IF = B, i.e., I is a (full) R-lattice. (Same for right and two-sided
ideals.)

Proof. See [33, 16.2.10].

Definition 2.4.9. Let I be a left fractional O-ideal. We say that I is sated as a left fractional
O-ideal if O = OL(I). We make a similar definition on the right and for two-sided ideals.

Suppose, for a moment, B is semisimple.

Definition 2.4.10. The reduced norm nrd(I) of I is the R-submodule of F generated by the
set {nrd(α) : α ∈ I}.

Example 2.4.11. When B is a quaternion algebra over Q, we can define

nrd(I) := gcd({nrd(α) : α ∈ I}),

i.e., we can take nrd(I) to be a positive generator of the finitely generated subgroup of Q generated
by nrd(α) for α ∈ I.

Definition 2.4.12. Let I ⊆ B be a locally principal R-lattice. We define the absolute norm of
I to be

N(I) := [OL(I) : I]Z = [OR(I) : I]Z.

If I is integral then
N(I) = #(OL(I)/I) = #(OR(I))/I.

If B is simple with dimF B = n2 then

N(I) = N(nrd(I))n.
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See [33, Chapter 16.4] for full details of the absolute norm.

Now, we drop the condition that B is semisimple and proceed.

Definition 2.4.13. An R-lattice I is right invertible if there exists an R-lattice I ′ in B such
that II ′ = OL(I) is a compatible product and similarly I is left invertible if I ′I = OR(I) is a
compatible product. An R-lattice I is (two-sided) invertible if I is left and right invertible by the
same I ′.

Definition 2.4.14. We define the quasi-inverse of I as

I−1 = {α ∈ B : IαI ⊆ I}.

If I has a two-sided inverse, then this inverse is uniquely given by I−1.

Lemma 2.4.15. The following statements hold.

(a) The quasi-inverse I−1 is an R-lattice and II−1I ⊆ I.

(b) If O is an R-order, then O−1 = O.

Proof. See [33, Lemma 16.5.7].

Proposition 2.4.16. The following are equivalent:

(i) I−1 is a (two-sided) inverse for I.

(ii) I−1I = OR(I) and II−1 = OL(I).

(iii) I is invertible.

(iv) There is a compatible product II−1I = I and both 1 ∈ II−1 and 1 ∈ I−1I.

Proof. See [33, Proposition 16.5.8].

Proposition 2.4.17. An R-lattice I is an R-order if and only if 1 ∈ I, every element of I is
integral, and I is invertible.

Proof. See [33, 16.6.12].

Proposition 2.4.18. Let I, J are R-lattices. If I is compatible with J and J is invertible, then
OL(IJ) = OL(I).

Proof. See [33, Lemma 16.5.11].

Proposition 2.4.19. If I, J are R-lattices and I is compatible with J , then IJ is invertible with
(IJ)−1= J−1I−1 if and only if both I, J are invertible.
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Proof. See [33, Exercise 16.10].

Proposition 2.4.20. Let O be a maximal order in a quaternion algebra B over Q. Then a left or
right fractional O-ideal is invertible.

Proof. See [33, 16.1.2].

We can generalize this to any quaternion algebras, let B be a quaternion algebra over F and let
I ⊂ B be an R-lattice. If either OL(I) or OR(I) is maximal, then I is invertible, and both OL(I)
and OR(I) are maximal [33, Proposition 16.6.15(b)].

Definition 2.4.21. Let O,O′ ⊆ B be R-orders and let I be a fractional O,O′-ideal. We say I is
invertible if I is invertible as a lattice and I is sated (i.e., O = OL(I) and O′ = OR(I)).

Remark 2.4.22. The condition that I is sated in Definition 2.4.21 is important: we must be
careful to work over left and right orders and not some smaller order. Indeed, if I is invertible as
an R-lattice then it is invertible as a fractional OL(I),OR(I)-ideal, but not for any strictly smaller
order. If I ′ is an R-lattice and II ′ = O for some O ⊆ OL(I), then multiplying on both sides on the
left by OL(I) gives

O = II ′ = OL(I)II ′ = OL(I)O = OL(I)

and the same on the right. In other words, if we are going to call out an invertible fractional ideal
by labelling actions on left and right, then we require these labels to be the actual orders that make
the inverse work [33, 16.5.18].

We similarly define one-sided invertibility. Recall that R is a Dedekind domain with field of
fractions F and B is a finite-dimensional algebra over F with I ⊆ B an R-lattice.

Definition 2.4.23. A right fractional O-ideal I is right invertible if I is right invertible as a
lattice and I is sated (i.e., O = OL(I)). We similarly define left invertible.

Proposition 2.4.24. The following are equivalent:

(i) I−1 is a right inverse for I.

(ii) I is right invertible.

(iii) There is a compatible product II−1I = I and 1 ∈ II−1.

Similar equivalences hold on the left.

Proof. See [33, Proposition 16.7.4].

Lemma 2.4.25. Suppose B has a standard involution. Then an R-lattice I is left invertible if and
only if I is right invertible if and only if I is invertible.
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Proof. See [33, Lemma 16.7.5].

Corollary 2.4.26. Suppose R is a Dedekind domain and that B has a standard inovlution. Then
an R-lattice I is right invertible with II ′ = OL(I) if and only if I ′ = I−1. A similar statement holds
for the left inverse; in particular, this shows that a right inverse is necessarily unique.

Proof. See [33, Corollary 16.7.6].

Theorem 2.4.27. Let B be a quaternion algebra over F and let I ⊆ B be an R-lattice. Then the
following are equivalent.

(i) I is locally principal.

(ii) I is invertible.

(iii) I is right invertible.

(iii’) I is left invertible.

(iv) nrd(I)2 = [OR(I) : I].

(iv’) nrd(I)2 = [OL(I) : I].

Proof. See [33, Theorem 16.7.7].

2.5 Classes of quaterion ideals

Throughout this section, let R be a Dedekind domain with field of fractions F = FracR, and
let B be a simple F -algebra.

Definition 2.5.1. Let I, J ⊆ B be R-lattices, we define the equivalent classes as follows: we say
I, J are in the same right class, and we write I ∼R J , if there exists α ∈ B× such that αI = J .
The class of a R-lattice I is denoted [I]. Analogous definitions can be made on the left.

When B has a standard involution, the map I 7→ I interchanges left and right.

Lemma 2.5.2. Let I, J ⊆ be R-lattices. Then I, J are in the same right class if and only if I is
isomorphic to J as a right module over OR(I) = OR(J).

Proof. See [33, Lemma 17.3.3].

Definition 2.5.3. Let O ⊂ B be an order. The right class set of O is

ClRO := {[I]R : I an invertible right fractional O-ideal}.
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Recall that, by definition of fractional O-ideal, a representative I in the right class set of O
satisfies OR(I) = O.

Note that the (right) class set of O does not have the structure of a group under multiplication
since we have [αJ ]R = [J ]R for α ∈ B×, but we do not have [IαJ ]R = [IJ ] in general.

Definition 2.5.4. We say R-orders O,O′ are of the same type if there exists α ∈ B× such that
O′ = α−1Oα.

Lemma 2.5.5. The R-orders O,O′ are of the same type if and only if they are isomorphic as
R-algebras.

Proof. See [33, Lemma 17.4.2].

Remark 2.5.6. [33, 17.4.3] If O,O′ are of the same type, then an isomorphism O '→ O′ induces
a bijection ClO '→ ClO′ of pointed sets. Such an isomorphism is provided by conjugation O′ =
α−1Oα for some α ∈ B×. The principal lattice I = Oα = αO′ has OL(I) = O and OR(I) = O′.

Generalizing this, the class sets of two orders are in bijection if they are connected, in the
following sense.

Definition 2.5.7. O is connected to O′ if there exists a locally principal fractional O,O′-ideal
J ⊆ B, called a connecting ideal.

If B is a quaternion algebra, connecting ideals are invertible fractional O,O-ideals by definition.
The relation of being connected is an equivalence relation on the set of R-orders. If two R-orders

O,O′ are of the same type, then they are connected by a principal connecting ideal by Remark
2.5.6.

Definition 2.5.8. We say O,O′ are locally of the same type or locally isomorphic if Op and
O′p are of the same type (i.e., Op ' O′p) for all primes p of R.

Lemma 2.5.9. The R-orders O,O′ are connected if and only if O,O′ are locally isomorphic.

Proof. See [33, Lemma 17.4.6].

Lemma 2.5.10. If O,O′ ⊆ B are maximal R-orders, then OO′ is a O,O′-connecting ideal.

Proof. See [33, Lemma 17.4.7].

Definition 2.5.11. Let O ⊂ B be an R-order. The genus of O is the set of R-orders in B locally
isomorphic to O. The type set TypO of O is the set of isomorphism classes of orders in the genus
of O.
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Lemma 2.5.12. Let O,O′ be connected R-orders, and let J be a connecting O,O′-ideal. Then
maps

ClRO
∼→ ClRO′

[I]R 7→ [IJ ]R
[I ′J−1]R ←[ [I ′]R

(2.6)

are mutually inverse bijections. In particular, if O′ is in the genus set of O then # ClRO = # ClRO′.

Proof. See [33, 17.4.11].

Lemma 2.5.13. The map

ClRO → TypO

[I]R 7→ class of OL(I)

is a surjective map of sets.

Proof. We follow the proof in [33, Lemma 17.4.13].
If O′ is connected to O, then there is a connecting O′,O-ideal I, and [I]R ∈ ClRO has OL(I) '

O′.

Lemma 2.5.14. Let B be a definite quaternion algebra over Q and let O ⊆ B be an order. Then
the group of units of reduced norm 1

O1 = {α ∈ O : nrd(α) = 1}

is a finite group and O× = O1.

Proof. See [33, Lemma 17.7.13].

Proposition 2.5.15. Let B be a definite quaternion algebra over Q and let O ⊂ B be an order.
Then O× = O1 is a finite group, and every right ideal class in ClRO is represented by an

integral right O-ideal with the absolute norm

N(I) ≤ 8
π2 discrd(O),

and the right class set of O is finite.

Proof. See [33, Lemma 17.7.13] and [33, Proposition 17.5.6].
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Theorem 2.5.16. Let R be a Dedekind domain with field of fractions F = FracR, let B be a simple
F -algebra and let O ⊆ B be a maximal R-order. If I ⊆ B is an R-lattice such that OL(I) = O or
OR(I) = O, then I is invertible and both OL(I) and OR(I) are maximal R-orders.

Proof. See [33, Theorem 18.1.2].

For the rest of this section, let B be a simple finite-dimensional F -algebra. Let O ⊆ B be an
R-order.

Definition 2.5.17. A two-sided ideal P ⊆ O is prime if P 6= O and for all two-sided ideals
I, J ⊆ O we have

IJ ⊆ P ⇒ I ⊆ P or J ⊂ P.

Let Idl(O) be the set of invertible two-sided fractional O-ideals.

Lemma 2.5.18. The set Idl(O) is a group under multiplication with identity element O.

Proof. Suppose I, J ∈ Idl(O). IJ is invertible as a lattice if and only if I, J are invertible by
Proposition 2.4.19. IJ is sated since we have OL(IJ) = OL(I) = O and OR(IJ) = OR(I) = O by
Proposition 2.4.18.

Let PIdl(O) ≤ Idl(O) be the subgroup of principal two-sided fractional O-ideals. Recall that
the map

ClRO → TypO

[I]R 7→ class of OL(I)

is surjective by Lemma 2.5.13. The fiber of this map over the isomorphism class of O is given by
the quotient group Idl(O)/PIdl(O) as follows.

Proposition 2.5.19. Let B be a central simple F -algebra and let O ⊂ B an R-order. There is a
bijection

Idl(O)/PIdl(O)↔ {[I]R ∈ ClRO : OL(I) ' O}

given by I → [I]R.

Proof. See [33, Proposition 18.5.10].

Definition 2.5.20. Let O,O′ ⊂ B be R-orders. A O,O′-bimodule over R is an abelian group M
with a left O-module and a right O′-module structure with the same action by R on the left and
right (i.e, acting centrally, so rm = mr for all r ∈ R and m ∈M).

The R-lattice I ⊆ B is an OL(I),OR(I)-bimodule over R.
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Definition 2.5.21. The Picard group of O over R is the group PicR(O) of isomorphism classes
of invertible O-bimodules over R under tensor product.

When R = Z, we denote Pic(O) := PicR(O).

Remark 2.5.22. If I ⊆ B is an R-lattice that is a fractional two-sided O-ideal, then I is a O-
bimodule over R. Conversely, if I is a O-bimodule over R then I ⊗R F ' B as B-bimodules, and
choosing such an isomorphism gives an embedding I ↪→ B as an R-lattice [33, 18.4.3].

Lemma 2.5.23. Let I, J ⊆ B be R-lattices that are fractional two-sided O-ideals. Then I is
isomorphic to J as O-bimodules over R if and only if there exists a ∈ F× such that J = aI.

Proof. See [33, Lemma 18.4.4].

Let NB×(O) := {α ∈ B×αO = Oα} be the normalizer of O in B.

Theorem 2.5.24. Let B be a quaternion algebra over Q of discriminant D := discB, and let O ⊂
be a maximal order. Then

PicO '
∏
p|D

Z/2Z

generated by (unique) prime two-sided O-ideals with reduced norm p | D, and there is an exact
sequece

0→ NB×(O)/(Q×O×)→ PicO → Idl(O)/PIdl(O)→ 0

α(Q×O×) 7→ [OαO].

Proof. See [33, Proposition 18.5.3].

2.6 Special maximal orders

The following gives explicit descriptions of the quaternion algebra over Q ramified precisely at
p and ∞ and some explicit maximal orders.

Proposition 2.6.1. Let p be a prime. Then the (unique) quaternion algebra Bp,∞ over Q ramified
precisely at p and ∞ is given by:

Bp,∞ =



(−1,−1) if p = 2,

(−1,−p) if p ≡ 3 mod 4,

(−2,−p) if p ≡ 5 mod 8,

(−p,−q) if p ≡ 1 mod 8
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where q is a prime with q ≡ 3 mod 4 and (p/q) = −1.

Proof. See [29, Proposition 5.1].

Proposition 2.6.2. Let p be a prime and let Bp,∞ = (a, b | Q) be the quaternion algebra given by
Proposition 2.6.1 above. Then a maximal order O0 of Bp,∞ is given by the Z-basis:

p (a, b) O0 [17]
p = 2 (−1,−1) 〈1+i+j+k

2 , i, j, k〉
3 mod 4 (−p,−1) 〈1, j, 1+k

2 , i+j2 〉
5 mod 8 (−p,−2) 〈1, j, 2−j+k

4 , −1+i+j
2 〉

1 mod 8 (−p,−q) 〈1+j
2 , i+k2 , j+ckq , k〉

Here 1, i, j, k is the standard basis of Bp,∞, q ≡ 3 mod 4 is an integer such that (p/q) = −1, and c
is an integer such that q | c2p + 1. Assuming the generalized Riemann hypothesis (GRH) is true,
there exists q = O((log p)2) satisfying these conditions [2] (as (q/p) = (p/q) = −1)), and all Z-bases
have polynomial representation size in terms of 1, i, j, ij.

We can compute the discriminant of O0 to check it is maximal. For example, when p ≡ 3
(mod 4), the discriminant of O0 = 〈1, j, 1+k

2 , i+j2 〉 is

discO0 =

∣∣∣∣∣∣∣∣∣∣∣

2 0 1 0
0 −2 0 −1
1 0 1−p

2 0
0 −1 0 p+1

2

∣∣∣∣∣∣∣∣∣∣∣
= −p2.

Hence discrdO0 = p = discB and O0 is maximal.
In all cases the maximal order O0 given by Proposition 2.6.2 contains 〈1, i, j, k〉 as a small index

subring.
We will now prove that every conjugacy class of maximal orders has a representative whose basis

has representation size O(log p) when written in terms of the standard basis 1, i, j, ij for Bp,∞. The
following arguments are taken from [22].

Note that Bp,∞⊗R is isomorphic to H, the Hamiltonian quaternions. Let 1, i′, j, i′j′ be the basis
of H with i′2 = j

′2 = −1. Let f : Bp,∞⊗R→ H be the isomorphism given by i, j 7→ √qi′, pj′. Then
the norm on H, which is the square of the standard Euclidean norm on R4, is just the reduced norm
on the image of Bp,∞ in H under the isomorphism. Let Λ ⊆ Rn be a lattice. Define its covolume,
denoted Covol(Λ), to be

√
det(LTL) for any matrix L consisting of a basis for Λ. If O ⊆ Bp,∞ is a

lattice, define its covolume to be Covol(f(O)).

Proposition 2.6.3. Let O be a lattice in Bp,∞. Then Covol(O)2 = 1
16 disc(O).

Proof. See [17, Proposition 2].
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Let ‖·‖2 denote the Euclidean norm.

Definition 2.6.4. A basis {v1, · · · , vn} of a lattice Λ ⊆ Rn is Minkowski-reduced if for 1 ≤ k ≤
n, the element vk satisfies

‖vk‖2 ≤
∥∥v′k∥∥2 ,

for any v′k such that the sequence v1, . . . , vk−1, v
′
k can be completed to a basis for Λ.

Definition 2.6.5. Let Λ be a lattice in Rn. We define the ith successive minimum of Λ, denoted
λi(Λ), to be the smallest nonnegative, real number r such that there are i linearly independent
lattice vectors of Λ contained in the closed ball of radius r centered at the origin. So λ1(Λ) is the
length of a shortest nonzero vector of Λ.

For n ≤ 4, there is a basis v1, · · · , vn of Λ such that ‖vi‖2 = λi(Λ) [28], which implies such a
basis is Minkowski-reduced. When we refer to a Minkowski-reduced basis, we will always assume
we choose such a basis.

Theorem 2.6.6. Every conjugacy class of maximal orders in Bp,∞ has a Z-basis x1, · · · , x4 with
nrd(xi) ∈ O(p2). If we express xr ( for 1 ≤ r ≤ 4) as a coefficient vector in terms of 1, i, j, ij, then
the rational numbers appearing have numerators and denominators whose representation size are
polynomial in log p.

Proof. See [17, Theorem 2].
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Chapter 3

Elliptic Curves

3.1 Overview

Let K be a field of charK 6= 2, 3 with an algebraic closure Kal.

Definition 3.1.1. An elliptic curve E ⊂ P2 := P2(Kal) defined over K, denoted E/K, is a
nonsingular projective curve of genus one whose points satisfy a Weierstrass equation

E : Y 2Z = X3 +AXZ2 +BZ3,

where A,B ∈ K with the discriminant ∆ := 4A3 + 27B2 6= 0.

We often write E using the dehomogenization of its Weierstrass equation

E : y2 = x3 +Ax+B,

where x = X/Z and y = Y/Z. Note that E has a special point O = [0, 1, 0], the point at infinity.
The points of E form an abelian group with identity O. Any projective lines in P2 intersect E

at exactly three points, where the three points may not be distinct if the line is tangent to E. This
gives the geometric composition law on E as follows; let P,Q ∈ E, let L be the line through P and
Q, and let R is the third point of intersection of L with E. If L′ is the line through R and O, then
L′ intersects E at R,O, and a third point. We denote the third point by P +Q.

Definition 3.1.2. The set of K-rational points of E is the subgroup

E(K) =
{

(x, y) ∈ K2 : y2 = x3 +Ax+B
}
∪ {O} .

Definition 3.1.3. For an elliptic curve E, the constant

j(E) := 256 · 27 ·A3

4A3 + 27B2
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is called the j-invariant of E.

An elliptic curve E can be identified with its j-invariant. The only change of variables fixing
[0, 1, 0] and preserving the Weierstrass form of the equation is

x = u2x′ and y = u3y′

for some nonzero u ∈ Kal. After change of varaibles, new constants for the Weierstrass equation
are given by

u4A′ = A and u6B′ = B.

These change of variables fix j-invariant as well. Indeed, two elliptic curves E′, E are isomorphic
over Kal if and only if j(E) = j(E′) [31, Proposition 1.4]. Moreover, if j ∈ Kal then there exists an
elliptic curve defined over K(j) whose j-invariant is equal to j; let E(j) be an elliptic curve given
by

E(j) :=


E : y2 + xy = x3 − 36

j−1728x−
1

j−1728 if j 6= 0, 1728,

E : y2 = x3 + 1 if j = 0,

E : y2 = x3 + x if j = 1728.

Then the j-invariant of E is j.

Recall that a curve is a variety of dimension one. Now we review some aspects of it as a variety.
Then some of definition will naturally follow.

The Galois group Gal(Kal/K) acts on Pn by acting on homogeneous coordinates; for σ ∈
Gal (Kal/K) and P = [x0, · · · , xn] ∈ Pn,

P σ := [σ(x0), · · · , σ(xn)].

This action is well-defined, independent of choice of homogeneous coordinates.
Let V ⊆ Pn be a projective variety and let Kal[X] = Kal[X0, · · · , Xn] be a polynomial ring. If

f ∈ Kal[X] is a homogeneous polynomial, then Gal (Kal/K) acts on f by acting on its coefficients
so that

f(P )σ = f(P σ),

for any P ∈ Pn and σ ∈ Gal (Kal/K).
Suppose V is defined overK. The action of Gal (Kal/K) on Pn induces an action on V . Moreover,

Gal (Kal/K) fixes the ideal I(V ) of V , so we obtain an action of Gal (Kal/K) on the coordinate
ring Kal[V ] and the function field Kal(V ). If we denote the action of σ ∈ Gal (Kal/K) on f by fσ,
then for all points P ∈ V ,

(f(P ))σ = fσ(P σ).
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Let φ : V1 → V2 be a rational map between varieties. If V1 and V2 are defined over K, then
Gal (Kal/K) acts on φ; if φ(P ) = [f0(P ), · · · , fn(P )] ∈ E2 where f0, · · · , fn ∈ Kal(E1), then

φσ(P ) = [fσ0 (P ), · · · , fσn (P )].

Notice that we have the formula
φ(P )σ = φσ(P σ)

for all σ ∈ Gal (Kal/K) and P ∈ E1. Hence, φ is defined over K if and only if φ = φσ for all
σ ∈ Gal (Kal/K).

Definition 3.1.4. A rational map φ is defined over K if it commutes with the action of
Gal (Kal/K), i.e., φ(P )σ = φ(P σ).

Let C1/K and C2/K be curves and let φ : C1 → C2 be a nonconstant rational map defined over
K. Then composition with φ induces an injection of function fields fixing K,

φ∗ : K(C2)→ K(C1), φ∗f = f ◦ φ

called the pullback of φ. Note that if φ is a nonconstant map defined over K, then K(C1) is a
finite extension of φ∗(K(C2)).

Theorem 3.1.5. Let φ : C1,→ C2 be a morphism of curves. Then φ is either constant or surjective.

Proof. See [31, Theorem II.2.3].

Definition 3.1.6. Let φ : C1 → C2 be a map of curves defined over K. If φ is constant, we define
the degree of φ to be 0. Otherwise we say that φ is a finite map and we define its degree to be

deg φ = [K(C1) : φ∗K(C2)].

We say that φ is separable, inseparable, or purely inseparable if the field extensionK(C1)/φ∗K(C2)
has the corresponding property, and we denote the separable and inseparable degrees of the exten-
sion by degs φ and degi φ respectively.

Definition 3.1.7. Let E1 and E2 be elliptic curves. An isogeny from E1 to E2 is a morphism

φ : E1 → E2

which sends O to O. Two elliptic curves are isogenous if there is a nonzero isogeny between them.

Since a morphism between curves is either constant or surjective by Theorem 3.1.5, we have
either φ(E1) = {O} or φ(E1) = E2. Then for a nonzero isogeny φ : E1/K

al → E2/K
al, we can
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define the pullback φ∗ and the degrees deg φ, degi φ, and degs φ as a rational map as in Definition
3.1.6. We set deg[0] = 0 so that for chain of isogenies φ : E1 → E2 and ψ : E2 → E3, we have

deg(ψφ) = deg(ψ) deg(φ),

where ψφ := ψ ◦ φ.
Next, we look at the algebraic structures on the set of isogenies Hom(E1, E2) from E1 to E2.

Elliptic curves are abelian groups, so Hom(E1, E2) form a group, where the sum of two isogenies is
defined by

(φ+ ψ)(P ) = φ(P ) + ψ(P )

(see [31, Theorem III.4.8]). If E1 = E2, then we can also compose isogenies. Thus if E is an
elliptic curve, the set of endomorphisms End(E) = Hom(E,E) is a ring whose multiplication is
composition.

Definition 3.1.8. Let m ∈ Z. Denote

mP := P + · · ·+ P (m times)

if m > 0, and let mP := (−m)(−P ) if m < 0 and let 0P = O. The multiplication-by-m map,
denoted [m], on an elliptic curve E is an endomorphism on E that sends P to mP . In particular,
[0] is the zero isogeny.

Proposition 3.1.9. The following statements hold.

(a) Let E/K be an elliptic curve and let m ∈ Z with m 6= 0. Then the multiplication-by-m map
[m] : E → E is nonconstant.

(b) Let E1 and E2 be elliptic curves. Then the group of isogenies

Hom(E1, E2)

is a torsion-free Z-module.

(c) Let E be an elliptic curve. Then the endomorphism ring End(E) is a ring of characteristic 0
with no zero divisors.

Proof. See [31, Proposition III.4.2].

Definition 3.1.10. Let E be an elliptic curve and let m ∈ Z with m ≥ 1. The m-torsion
subgroup of E, denoted by E[m], is the set of points of E of order dividing m.

An important fact about the multiplication-by-m map is that it has degree m2, from which one
can deduce the structure of the finite group E[m].
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Definition 3.1.11. Let φ : E1 → E2 be a nonconstant isogeny of degree m. As shown in Theorem
[31, Corollary III.6.1(a)], there exists a unique isogeny φ̂ : E2 → E1 satisfying φ̂ ◦ φ = [m]. Such an
isogeny is called the dual isogeny to φ.

The following theorem summarizes the properties of the dual isogeny.

Theorem 3.1.12. Let φ : E1,→ E2 be an isogeny with deg φ = m. Then

(a) φ̂ ◦ φ = [m] on E1 and φ ◦ φ̂ = [m] on E2.

(b) Let λ : E2 → E3 be another isogeny. Then λ̂ ◦ φ = φ̂ ◦ λ̂.

(c) Let ψ : E1 → E2 be another isogeny. Then φ̂+ ψ = φ̂+ ψ̂.

(d) For all m ∈ Z, [̂m] = [m] and deg[m] = m2.

(e) deg φ̂ = deg φ.

(f) ˆ̂
φ = φ.

Proof. See [31, Theorem III.6.2].

Definition 3.1.13. Let A be an abelian group. A map

d : A→ R

is a quadratic form if it satisfies the following conditions:

(i) d(α) = d(−α) for all α ∈ A.

(ii) The pairing

A×A→ R

(α, β) 7→ d(α+ β)− d(α)− d(β),

is bilinear.

A quadratic form d is positive definite if it further satisfies:

(iii) d(α) ≥ 0 for all α ∈ A.

(iv) d(α) = 0 if and only if α = 0.

Remark 3.1.14. Note that the dual ̂ is a standard involution (2.1.11) on End(E) with the
induced norm nrd(φ) := φφ̂, which is positive by the following corollary.
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Corollary 3.1.15. Let E1 and E2 be elliptic curves. The degree map

deg : Hom(E1, E2)→ Z

is a positive definite quadratic form.

Proof. See [31, Corollary III.6.3].

Definition 3.1.16. Let K be a field of characteristic p > 0, let q = pr, and let E/K be an elliptic
curve. The curve E(q)/K is defined by raising the coefficients of the equation for E to the qth
power, and the qth power Frobenius morphism π is defined by

π : E → E(q)

(x, y) 7→ (xq, yq).

By working on Weierstrass coefficients, one can show that j(E(q)) = j(E)q.

Remark 3.1.17. Suppose E/Fq is an elliptic curve. Since the qth power map on Fq is the identity,
E(q) = E and π is an endomorphism of E, called the Frobenius endomorphism. Also, since the
Galois group Gal(Fal

q )/Fq is (topologically) generated by the qth power map on Fal
q , we see that for

any point P ∈ E(Fal
q ),

P ∈ E(Fq) if and only if π(P ) = P

[31, Example III.4.6].

Proposition 3.1.18. Let π be the qth power Frobenius endomorphism. Then π is purely insepa-
rable and deg π = q.

Proof. See [31, Proposition II.2.11].

Proposition 3.1.19. Let φ : E1 → E2 be an isogeny between elliptic curves over a field of
characteristic p > 0 and let q = degi(φ). Then φ factors through π, the qth power Frobenius map,

E1
π−→ E

(q)
1

ψ−→ E2,

where the map ψ is separable.

Proof. See [31, Corollary II.2.12].

Remark 3.1.20. Proposition 3.1.19 implies that degi φ is a power of p.

Corollary 3.1.21. Let E1, E2 be elliptic curves over a field of characteristic p and let φ be a degree
`-isogeny where ` is coprime to p. Then φ is separable.
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Proof. Suppose φ is not separable. φ factors through qth power Frobenius map π for some q =
pr, r > 0. Since ` = deg φ = degs φ deg π = (degs φ)q and ` is coprime to p, we have a contradiction
and φ must be separable.

Theorem 3.1.22. Let φ : E1 → E2 be a nonzero isogeny.

(a) For every Q ∈ E2,
#φ−1(Q) = degs φ.

Further, for every P ∈ E1,
eφ(P ) = degi φ.

(b) Suppose that φ is separable. Then φ is unramified,

# kerφ = deg φ,

and Kal(E1) is a Galois extension of φ∗Kal(E2).

(see [31, II.2] for the ramification index eφ(P ) of φ at P and unramified map of smooth curves)

Proof. See [31, Theorem III.4.10].

Corollary 3.1.23. Let φ : E1 → E2 and ψ : E1 → E3 be nonconstant isogenies, and assume that
φ is separable. If kerφ ⊂ kerψ, then there is a unique isogeny λ : E2 → E3 such that ψ = λ ◦ φ.

Proof. See [31, Corollary III.4.11].

Proposition 3.1.24. Let E be an elliptic curve and let G ⊆ E be a finite subgroup. There are a
unique elliptic curve E′ and a separable isogeny φ : E → E′ such that kerφ = G.

Proof. See [31, Proposition III.4.12].

We will discuss how to explicitly write down equations for the curve E′ = E/G and isogeny
φ : E → E′ in the next section.

Corollary 3.1.25. Let E/K be an elliptic curve, let m ∈ Z with m 6= 0, and let π be the pth
power Frobenius map.

(a) deg[m] = m2.

(b) If either charK = 0 or p = charK and p - m, then E[m] = Z/mZ× Z/mZ.

(c) Suppose char(K) = p > 0 and m = pe for some integer e ≥ 1. Then

E[m] =

{O} if π̂ is inseparable,

Z/mZ if π̂ is separable.
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Proof. See [31, Corollary III.6.4].

Corollary 3.1.26. Let E/K be an elliptic curve with charK = p and let m ∈ Z with m 6= 0. The
multiplication-by-m map [m] is separable if and only if p - m.

Proof. If [m] is separable, then

#E[m] = # ker[m] = deg[m] = m2

by Theorem 3.1.22. It follows that we must have p - m by Corollary 3.1.25.
Conversely, suppose p - m. Then deg[m] = m2 is coprime to p, so [m] is separable by Corollary

3.1.21.

Now, we give a characterization of the endomorphism ring End(E).

Corollary 3.1.27. Let E1 and E2 be elliptic curves. Then

Hom(E1, E2)

is a free Z-module of rank at most 4.

Proof. See [31, Corollary III.7.5].

Theorem 3.1.28. Let R be a ring of characteristic 0 having no zero divisors, and assume that R
has the following properties:

(i) R has rank at most 4 as Z-module.

(ii) R has an anti-involution α 7→ α̂ satisfying

α̂+ β = α̂+ β̂, α̂β = β̂α̂, ˆ̂α = α, â = a for a ∈ Z ⊂ R.

(iii) For α ∈ R, the product αα̂ is a nonnegative integer, and αα̂ = 0 if and only if α = 0.

Then R is one of the following types of rings:

(a) R ' Z.

(b) R is an order in an imaginary quadratic extension of Q.

(c) R is an order in a definite quaternion algebra over Q.

Proof. See [31, Theorem III.9.3].

Corollary 3.1.29. Let E/K be an elliptic curve. Then one of the following hold:

41



(i) End(E) = Z.

(ii) End(E) is an order in an imaginary quadratic field.

(iii) End(E) is an order in a definite quaternion algebra over Q.

In particular, if char(K) = 0, then End(E) is either Z or an order in an imaginary quadratic field.
[31, Corollary III.9.4].

Proof. We show that the ring End(E) satisfies all three conditions in Theorem 3.1.28. End(E) is of
characteristic 0 and it has no zero divisors by Proposition 3.1.9, and it is a Z-module with rank at
most 4 by Corollary 3.1.27. End(E) has an anti-involution given by φ 7→ φ̂ by Theorem 3.1.12bcf.
Lastly, the product φφ̂ is a non-negative integer by Theorem 3.1.12a, and for an isogeny φ ∈ End(E)
with deg φ = m,

φφ̂ = 0⇐⇒ deg(φφ̂) = deg([m]) = 0 ∵ Corollary 3.1.15

⇐⇒ φ = 0.

When char(K) = 0, then End(E) is a commutative ring [31, Corollary III.5.6c], so it can’t be an
order in a quaternion algebra.

Remark 3.1.30. From Corollary 3.1.29, if we are given the rank of End(E) as a Z-module, then we
can determine which of the three cases holds for End(E); End(E) = Z if it is of rank 1, End(E) = O
is an order in an imaginary quadratic field K if it is of rank 2 = [K : Q], and End(E) = O′ is an
order in a definite quaternion algebra B over Q if it is of rank 4 = [B : Q].

Let E/K be an elliptic curve with charK = p. Recall that E[p] is either cyclic of order p or
trivial by Corollary 3.1.25. The terms ordinary and supersingular distinguish these two cases.

Theorem 3.1.31. Let K be a field of characteristic p, and let E/K be an elliptic curve. For each
integer r ≥ 1, let φr be the pr-power Frobenius map. The following are equivalent.

(i) E[pr] = 0 for one (all) r ≥ 1.

(ii) φ̂r is (purely) inseparable for one (all) r ≥ 1.

(iii) The map [p] : E → E is purely inseparable and j(E) ∈ Fp2 .

(iv) End(E) is an order in a quaternion algebra.

(v) The formal group Ê/K associated to E has height 2.

Furthermore, if the equivalent conditions do not hold, then

E[pr] = Z/prZ
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for all r ≥ 1, and the formal group Ê/K has height 1. If further j(E) ∈ Fp, then End(E) is an
order of a quadratic imaginary field.

Proof. See [31, Theorem V.3.1].

Definition 3.1.32. If E satisfies the equivalent conditions in Theorem 3.1.31, then we say E is
supersingular. Otherwise we say that E is ordinary.

Let E be a supersingular elliptic curve over Kal with charK = p. By Theorem 3.1.31, the curve
has a representative defined over Fp2 , so we will assume that K = Fp2 .

Example 3.1.33. Since a supersingular curve has j-invariant in Fp2 , one can easily check that the
only supersingular curve over Fal

2 is
E : y2 + y = x3.

Definition 3.1.34. Let E be an elliptic curve and let ` ∈ Z be a prime. The `-adic Tate module
of E is the group

T`(E) = lim←−n
E[`n],

the inverse limit being taken with respect to the natural maps

E[`n+1] [`]−→ E[`n].

The Tate module is a Z`-module since E[`n] is a Z/`nZ-module for each `.

Let E/K be an elliptic curve and let m ≥ 2 be an integer, prime to char(K) if char(K) > 0.
Note that σ ∈ Gal (Kal/K) acts on E[m]; if P ∈ E[m], then

[m](P σ) = ([m]P )σ = Oσ = O.

We thus obtain a representation

Gal (Kal/K)→ Aut(E[m]).

The action of Gal (Kal/K) on each E[`n] commutes with the multiplication-by-` map, so
Gal (Kal/K) also acts on T`[E].

Definition 3.1.35. The `-adic representation (of Gal (Kal/K) associtated to E) is the homo-
morphism

ρ` : Gal (Kal/K)→ Aut(T`(E))

induced by the action of Gal (Kal/K) on the `n-torsion points of E.

Proposition 3.1.36. The Tate module has the following structure:
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(a) T`(E) ' Z` × Z` as a Z`-module if ` 6= char(K).

(b) Tp(E) ' {0} or Zp as a Zp-module if p = char(K) > 0. [31, Proposition III.7.1]

Proof. This is an immediate consequence of Corollary 3.1.25.

Let φ : E1 → E2 be an isogeny of elliptic curves over Kal. Let ` 6= charK be a prime. Then φ
induces maps

φ : E1[`n]→ E2[`n],

and hence it induces a Z`-linear map

φ` : T`(E1)→ T`(E2).

We thus obtain a natural homomorphism

Hom(E1, E2)→ Hom(T`(E1), T`(E2)).

This map is injective, but much stronger result about the structure of Hom(E1, E2) can be shown.

Theorem 3.1.37. Let E1 and E2 be elliptic curves and let ` 6= char(K) be a prime. Then the
natural map

Hom(E1, E2)⊗ Z` → Hom(T`(E1), T`(E2)), φ 7→ φ`

is injective.

Proof. See [31, Theorem III.7.4].

Definition 3.1.38. Recall that an isogeny is defined over K if it commutes with the action of
Gal (Kal/K). We similarly define HomK(T`(E1), T`(E2)) to be the group of Z`-linear maps from
T`(E1) to T`(E2) that commute with the action of Gal (Kal/K) as given by the `-adic representation.

Theorem 3.1.39. (Tate’s Isogeny Theorem)
Let ` 6= char(K) be a prime. The natural map

HomK(E1, E2)⊗ Z` → HomK(T`(E1), T`(E2))

is an isomorphism in the following two situations:

(a) K is a finite field.

(b) K is a number field.

Proof. See [31, Theorem III.7.7].
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Corollary 3.1.40. Let E/K,E′/K be elliptic curves over a finite field K. Then E,E′ are isogenous
over K if and only if #E(K) = #E′(K). It follows that any two supersingular elliptic curves over
a finite field are isogenous. [31, Exercise V.5.4]

Proof. See [32] and note the Tate modules of two elliptic curves over a finite field are isomorphic if
and only if they have the same number of points.

Proposition 3.1.41. Let E,E′ be elliptic curves over K that are isogenous. Then E is supersin-
gular if and only if E′ is supersingular.

Proof. This was shown in the proof of Theorem 3.1.31. Let [p], [p]′ are multiplication-by-p on E,E′

respectively. Suppose φ : E → E′ be a nonconstant isogeny. Since φ ◦ [p] = [p]′ ◦ φ, we have
deg[p] = deg[p]′ by comparing degrees and cancelling deg φ. Also, by comparing inseparable degree,
deg[p] = degi[p] = degi[p]′ since [p] : E → E is purely inseparable. It follows that [p]′ is purely
inseparable. Hence #E′[p] = degs[p]′ = 1 by Theorem 3.1.22, i.e., E[p] = 0, so by Theorem 3.1.31,
[p]′ is supersingular.

The following result from [3] provides information about the fields of definition of endomor-
phisms of supersingular elliptic curves.

Proposition 3.1.42. Let E be a supersingular elliptic curve over Fp2 . Then EndF
p2d (E) = End(E)

where d = 1 if j(E) 6= 0, 1728, d = 1, 3 if j(E) = 0, and d = 1, 2 if j(E) = 1728.

Proof. See [3, Proposition 2.4].

See [3, Corollary 2.5] for a similar result for homomorphisms.

3.2 Vélu’s formula

Recall that for a given finite subgroup G of an elliptic curve E, there exists a unique elliptic
curve E′ and a separable isogeny φ : E → E′ whose kernel is G by Proposition 3.1.24. We now give
an explicit formulation of E′ and φ due to Vélu.

Theorem 3.2.1. Let E be an elliptic curve over a field K defined by

F (x, y) = x3 +Ax+B − y2 = 0

in Weierstrass form. Let G ⊂ E(Kal) be a finite subgroup. Let G2 be the set of points in G of order
2 and let G1 ⊆ G be a subset such that

#G = 1 + #G2 + 2#G1 and G = {OE} ∪G2 ∪G1 ∪ {−Q : Q ∈ G1} .
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Write
Fx = ∂F

∂x
= 3x2 +A and Fy = ∂F

∂y
= −2y.

For a point Q = (xQ, yQ) ∈ G1 ∪G2 define the quantities

u(Q) = (Fy(Q))2 = (−2yQ)2

and

t(Q) =

Fx(Q) if Q ∈ G2,

2Fx(Q)− a1Fy(Q) if Q ∈ G1.

Note that if Q ∈ G2 then Fy(Q) = 0 and so u(Q) = 0.
Define

t(G) =
∑

Q∈G1∪G2

t(Q) and w(G) =
∑

Q∈G1∪G2

(u(Q) + xQt(Q))

and set
C = A− 5t(G) and D = B − 7w(G).

Then the map φ : (x, y) 7→ (X,Y ) where

X = x+
∑

Q∈G1∪G2

t(Q)
x− xQ

+ u(Q)
(x− xQ)2

and
Y = y −

∑
Q∈G1∪G2

u(Q) 2y
(x− xQ)3 + t(Q) y − yQ

(x− xQ)2 −
Fx(Q)Fy(Q)

(x− xQ)2

is a separable isogeny from E to

E′ : Y 2 = X3 + CX +D

with kernel G.

Proof. See [18, Theorem 25.1.6].

Definition 3.2.2. We say that two separable isogenies φ1, φ2 : E → E′ are equivalent isogenies
if ker(φ1) = ker(φ2).

Theorem 3.2.3. Let E,G, and φ be defined as in Theorem 3.2.1. Let ψ : E → E′ be another
isogeny over K such that ker(ψ) = G. Then

ψ = λ ◦ φ
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for an automorphism λ of E′. Similarly, if ψ : E → E′′ is an isogeny over K with ker(ψ) = G then

ψ = λ ◦ φ

where λ : E′ → E′′ is an isomorphism over K of elliptic curves. [18, Exercise 9.6.20].

Remark 3.2.4. Equivalent isogenies define an equivalence class of isogenies. The isogeny in Propo-
sition 3.1.24 given by the finite subgroup G may not be unique, but Theorem 3.2.3 says that it is
unqiue in a sense that all such isogenies would be in the same class. Furthermore, Velu’s formula
gives a fixed choice of representative of the class.

Theorem 3.2.5. Let φ : E → E′ be a separable isogeny. If λ ∈ Aut(E′) then λ ◦ φ is equivalent to
φ. Note that φ ◦ λ is not necessarily equivalent to φ for λ ∈ Aut(E). [18, Exercise 25.1.1].

Kohel [23, Chapter 2.4] gave formulae for the Vélu isogeny in terms of the coefficients of the
polynomial defining the kernel, rather than in terms of the points in the kernel.

Let E be an elliptic curve over a field K given by

E : y2 = x3 +Ax+B.

Assume that the degree of the isogeny determined by the equation ψ(x) for the kenel is odd. A
general isogeny over K can be docomposed over K into a composite of isogenies of degree 2 or 4
and isogenies of odd degree. We will treat decomposition of G in the sequel.

The isogeny is described in terms of the coefficients of ψ(x) as follows.

(x, y) 7→ (X,Y ) =
(
φ(x)
ψ(x)2 ,

ω(x, y)
ψ(x)3

)
,

where φ(x) is given by

φ(x) = 4(x3 +Ax+B)(ψ′(x)2 − ψ′′(x)ψ(x))

− 2(3x2 +A)ψ′(x)ψ(x) + (dx− 2s1)ψ(x)2,

where the degree of the isogeny is d = 2n + 1, and si is the ith elementary symmetric function in
the roots of ψ(x), so that ψ(x) = xn− s1x

n−1 + · · ·+ (−1)nsn. If char(K) 6= 2, then ω(x, y) can be
defined as follows.

ω(x, y) = y(φ′(x)ψ(x)− 2φ(x)ψ′(x)).

The functions xG and yG then satisfy the following equation of Velu.

Y 2 = X3 + (A− 5t)X + (B − 7w) (3.1)
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where, in terms of the coefficients of ψ(x),

t = 6(s2
1 − 2s2) + 2nA,

w = 10(s3
1 − 3s1s2 + 3s3) + 6As1 + 4nB.

Now suppose that the subgroup G defined by ψ(x) has elements of order 2. We will first
determine the isogeny corresponding to the subgroup H of degree 2 or degree 4 defined by ψH(x) =
gcd(ψ(x), 4(x3 +Ax+B)). If ψH(x) = x− x0 is linear, the degree two isogeny of E to a curve EH
determined by ψH(x) as

xH = x+ 3x2
0 +A

x− x0

yH = y − (3x2
0 +A)y

(x− x0)2

If ψH(x) has degree three, corresponding to the subgroup H = E[2] ⊂ G, then the resulting
isogeny is given as follows.

(x, y) 7→ (xH , yH) =
(
φ(x)
ψ(x)2 ,

ω(x, y)
ψ(x)3

)
,

where ψ(x) = ψH(x) and φ(x) is given by

φ(x) = ψ′(x)2 − 2ψ′′(x)ψ(x) + (4x− s1)ψ(x)2

and ω(x, y) by
ω(x, y) = y(φ′(x)ψ(x)− φ(x)ψ′(x)).

Since ψH(x) determines a separable isogeny, the characteristic is necessarily different form 2 and
the equation for ω(x, y) is well-defined.

In each case, the equation for the image curve is determined as above by (3.1), with the following
values of t and w. If ψH(x) = x− x0, then t = 3x2

0 +A, and w = x0t. Otherwise set

t = 3(s2
1 − 2s2) + 3A,

w = 3(s3
1 − 3s1s2 + 3s3) +As1.

3.3 Complex multiplication

Recall that the endomorphism ring of an elliptic curve defined over a field of characteristic 0
is either Z or imaginary quadratic order by Corollary 3.1.29. Accordingly, we have the following
definition.
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Definition 3.3.1. Let E be an elliptic curve over a field of characteristic 0. If End(E) is strictly
larger than Z, in which case End(E) ' O for some imaginary quadratic order O, then we say that
E has complex multiplication (CM) by O.

Definition 3.3.2. An abelian extension of a field is an Galois extension with the abelian Galois
group.

Definition 3.3.3. Given a number field K, there exists a unique maximal unramified Abelian
extension of K, which contains all other unramified Abelian extensions of K [12, Theorem 5.18].
This finite extension, denoted HK , is called the Hilbert class field of K.

Let K be an imaginary quadratic field with the ring of integers OK . For an order O in K, let

Ell(O) := {j(E) : E/C with End(E) ' O}

be the set of j-invariants of elliptic curves E/C with CM by O. If E/C has CM by O, then its
j-invariant generates abelian extensions of K as follows.

Corollary 3.3.4. Let O be an order in an imaginary quadratic field. Then there is a one-to-one
correspondence between the ideal class group Cl(O) and the Ell(O).

Proof. See [12, Corollary 10.20].

Theorem 3.3.5. Let K be an imaginary quadratic field with ring of integers OK , and let E/C be
an elliptic curve with End(E) ' OK . Then j(E) is an algebraic integer and K(j(E)) is the Hilbert
class field HK of K.

Proof. See [12, Theorem 11.1].

Definition 3.3.6. Suppose j ∈ Ell(O). The class polynomial, denoted HO, is the minimal poly-
nomial of j over Q. If O = OK is a maximal order, then it’s called the Hilbert class polynomial.

Proposition 3.3.7. Suppose O is an imaginary quadratic order with discriminant D = disc(O).
Then

HD(x) := HO(x) =
∏

j∈Ell(O)
(x− j) ∈ Z[x].

Proof. See [12, Proposition 13.2].

The fact that HD ∈ Z[x] implies that the j-invariant of any elliptic curve E/C with complex
multiplication must be an algebraic integer, meaning that E can actually be defined over a number
field. It implies that of the uncountably many isomorphism classes of elliptic curves over C, only
countably many have complex multiplication.

We now recall the notion of reduction of an elliptic curve [30, VII.2].
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Definition 3.3.8. Let E be an elliptic curve defined over K. A Weierstrass equation y2 = x3 +
Ax+B for E is called minimal with respect to a discrete valuation of K if ν(A), ν(B) ≥ 0 and
ν(∆) is minimal subject to that condition.

For each discrete valuation of K, there exists a minimal equation for E. This equation is unique
up to isomorphism of curves over K.

For a discrete valuation ν of K, let R be the valuation ring, p be the unique maximal ideal of
R, k = R/p be the residue class field, π ∈ p be a prime so that ν(π) = 1. Let Γ be a minimal
equation for E/K with respect to ν. Reducing the coefficients A and B of Γ modulo p = πR, one
obtains an equation Γ̃ for a plane cubic curve Ẽ defined over k, which is unique up to isomor-
phism of curves over k. If Γ̃ is non-singular (over kal) then Ẽ is an elliptic curve over k and Γ̃ is a
Weierstrass equation for Γ over k. In that case, the discriminant ∆̃ := ∆ mod p, or equivalently
ν(∆) = 0, and we say that E has good (or non-degenerate) reduction at ν. In case ∆̃ = 0, i.e.
ν(∆) > 0, then Ẽ is a rational curve and we say that E has bad (or degenerate) reduction at ν.

The following theorems due to Deuring will be useful to construct supersingular j-invariants.

Theorem 3.3.9. Let p be a prime number. Let E be an elliptic curve over a number field L, with
End(E) ' O, where O is an order in an imaginary quadratic field K. Let p | p be a prime of L
where E has good reduction (non-degenerate). Then E mod p is supersingular if and only if p does
not split in K (either p ramifies or p remains prime in K).

Proof. See [25, Theorem 13.12].

Remark 3.3.10. For an imaginary quadratic order O, a general procedure to find an elliptic curve
E with End(E) ' O and the base number field L in Theorem 3.3.9 would be to compute the class
polynomial HO(x). The root j of HO(x) is the j-invariant in Ell(O) by Proposition 3.3.7, and Q(j)
is the minimal field of definition for E(j) [30, Proposition 4.5]. Hence, we can take E = E(j) and
L = Q(j).

Theorem 3.3.11. (Deuring Lifting Theorem) Let E0 be an elliptic curve over a finite field of
characteristic p, with a nontrivial endomorphism φ0. Then there exists an elliptic curve E defined
over a number field, an endomorphism φ of E, and a non-degenerate reduction of E at a place
p lying above p, such that E0 is isomorphic to E mod p, and φ0 corresponds to φ mod p under
isomorphism.

Proof. See [25, Theorem 13.14].
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Chapter 4

Deuring’s Correspondence

4.1 Overview

Theorem 4.1.1. Let E/K be an elliptic curve with rankZ End(E) = 4. Then B = EndE ⊗Q is a
quaternion algebra over Q ramified at p = charK and ∞, and End(E) is a maximal order in B.

Proof. We follow the proof in [33, Theorem 42.1.9]. Let O = EndE ⊆ B. For any n > 0 coprime
to p,

E[n] ' Z/nZ× Z/nZ

is a (simple) Z-module by Corollary 3.1.25. Then the endomorphism ring of E[n] is

EndZE[n] ' M2(EndZ(Z/nZ)) ' M2(Z/nZ) (4.1)

since Mn(End(A)) = End(An) for any abelian group A and the endomorphism ring of Z/nZ is
isomorphic to itself as an abelian group.

Next, we show that the structure map O/nO → EndE[n] is an isomorphism. The structure map
is injective since if φ ∈ O annihilates E[n] = ker[n], then the isogeny will factor as the composition
[n] ◦ ψ of the separable isogeny [n] and some isogeny ψ ∈ O by Corollary 3.1.23 so φ = 0 ∈ O/nO.
But further, since #O/nO = # EndE[n] = n4, the structure map is an isomorphism.

Since O is a free Z-module by Corollary 3.1.27, we have

O` := O ⊗Z Z` = O ⊗Z lim
←−
n

Z/`nZ ' lim
←−
n

O/`nO.

The structure isomorphisms in the previous paragraph are compatible with respect to powers of `,
so with the isomorphism in (4.1) they provide an isomorphism

O`
∼−→ lim
←−
n

EndZ/nZE[`n] = EndZ` E[`∞] ' M2(Z`)
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of Z`-algebras, which is maximal in M2(Q`) and B` ' M2(Q`). Hence B is split at all prime ` 6= p.
Since End(E) is of rank 4 as a Z-module, B is definite by (3.1.30). It follows that Ram(B) =

{p,∞} by Theorem 2.2.25, so Bp is a division algebra over Qp.
For an isogeny φ ∈ O, degi φ is a power of p and it is divisible by q = pr if and only if φ factors

via the qth power Frobenius map π : E → E(q) by Corollary 3.1.19. The map

ν : EndE ⊗Q→ Q ∪ {∞}

ν(aφ) = ordp(a) + 1
2 ordp(degi φ)

for a ∈ Q and φ ∈ End(E) is well-defined since degi[p] = deg[p] = p2 (by Theorem 3.1.31, [p] is
purely inseparable since E is supersingular). Recall that the dual defines a standard involution on
End(E) (3.1.14). Factoring an isogeny into its separable and inseparable parts shows that

ordp(degi φ) = ordp(deg φ) = ordp(nrdφ)

so ν is precisely the valuation (2.3) on B = EndE ⊗Q extending the p-adic valuation on Q.
To conclude, we show that O(p) is the valuation ring (2.4) of B and is therefore maximal by

Proposition 2.2.8. If α ∈ O(p) = O ⊗Z Z(p), then degα ∈ Z(p) so α is in the valuation ring.
Conversely, let α ∈ B be a rational isogeny with ν(α) ≥ 0, and α = aφ where φ is an (actual)
isogeny not divisible by any integer. Then ν(α) = ordp(a) +ν(φ) ≥ 0 and 0 ≤ ν(φ) ≤ 1/2, since the
multiplication-by-p map is purely inseparable; so ordp(a) ≥ −1

2 and therefore a ∈ Z(p), and hence
α ∈ O(p).

Finally, since an order is maximal if and only if it is locally maximal by Lemma 2.3.9, O itself
is a maximal order in the quaternion algebra B.

So far we saw the Z-module structure of End(E). More generally, we have shown that Hom(E1, E2)
is a Z-module of rank at most 4. Now we will discuss what we can say more about Hom(E1, E2)
when E1, E2 are supersingular.

Lemma 4.1.2. Let E,E′ be supersingular elliptic curves over Fal
p . Then Hom(E,E′) is a Z-module

of rank 4 that is invertible as a right End(E)-module under precomposition and a left End(E′)-
module under postcomposition. In particular, there exists a separable isogeny from E to E′.

Proof. We follow the proof in [33, Lemma 42.1.11].
We may suppose E is defined over Fq for some q = pr such that all of its endomorphisms defined

over Fq. Let O := End(E) so that B := O⊗Q is a quaternion algebra over Q and let π ∈ O be the
qth power Frobenius map. Since each α ∈ O is defined over Fq, for any P ∈ E

π ◦ α(P ) = α ◦ π(P ).
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Hence π commutes with every isogeny in O, and so π lies in the center of O. Since Z(B) = Q, we
have π ∈ Z(O) = Z by Lemma 2.3.5. For each prime ` 6= p, we have an isomorphism

HomFq(E,E′)⊗ Z`
∼→ HomFq(T`(E), T`(E′))

by Theorem 3.1.39, where HomFq(T`(E), T`(E′)) is the group of Z`-linear maps that commute with
the action of qth-power Frobenius Galois automorphism. We showed that this Frobenius action is
in Z so commuting is automatic, and

HomFq(T`(E), T`(E′)) = Hom(Z2
` ,Z2

` ) ' M2(Z`)

by Proposition 3.1.36, and HomFq(E,E′) = Hom(E,E′) has rank 4 as a Z-module. Finally, we
can precompose by endomorphisms of E so Hom(E,E′) is a torsion free Z-module (by Proposition
3.1.9) with a right action by O. Let ψ ∈ Hom(E,E′) be nonzero and let ψ̂ be the dual isogeny. Then
I := ψ̂Hom(E,E′) ⊆ O is an integral right O-ideal; since O is maximal order by Theorem 4.1.1,
the right O-ideal I is invertible by Theorem 2.5.16, and the same then holds for Hom(E,E′) as a
right O-module. The same is true as a left End(E′)-module, and these two actions commute.

We now investigate the quaternionic endomorphism rings of supersingular elliptic curves in more
detail. Let E be a supersingular elliptic curve over F := Fal

p , let O = End(E), and let B = O ⊗Q.
By Theorem 4.1.1, we have B = Bp,∞, and O ⊂ B is a maximal order. Thus, discB = p = discrdO.

Let I ⊆ O be a nonzero integral left O-ideal. Since O is maximal, I is locally principal (in
particular, invertible) by Proposition 2.4.20.

We define E[I] ⊆ E to be the scheme-theoretic intersection

E[I] :=
⋂
α∈I

E[α]

where E[α] = kerα as a group scheme over F . 1 Accordingly, there exists an isogeny φI : E → EI

where EI = E/E[I]. The scheme language is useful to carry out the required proofs without
considering the separable and purely inseparable cases separately as E[n] always has rank n2 as a
group scheme regardless of the characteristic of the base field.

The image of Hom(EI , E) under composition by φI lands in End(E) = O and factors through
φI , so in fact lands in I, as φ ∈ End(E) lies in I if and only if E[I] ⊆ kerφ by [33, Proposition
42.2.16(b)].

1The scheme-theoretic intersection of two closed immersions is given by the fiber product of the two closed
immersions.
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Lemma 4.1.3. The pullback map

φ∗I : Hom(EI , E)→ I

ψ 7→ ψφI

is an isomorphism of left O-modules.

Proof. See [33, Lemma 42.2.7]

Corollary 4.1.4. For every isogeny φ : E → E′, there exists a left O-ideal I and an isomorphism
ρ : EI → E′ such that φ = ρφI . Moreover, for every maximal order O′ ⊂ B, there exists E′′ such
that O′ ' End(E′′).

Proof. See [33, Corollary 42.2.21].

Lemma 4.1.5. Let I, I ′ ⊆ O be nonzero integral left O-ideals. Then the natural map

Hom(EI , E) Hom(EI′ , EI)→ Hom(EI′ , E)

is bijective, giving a further bijection

Hom(EI′ , EI)→ I−1I ′

ψ 7→ φ−1
I ψφI′ .

Proof. See [33, Lemma 42.2.22].

Theorem 4.1.6. Let E0 be a supersingular elliptic curve over F := Fal
p . Let O0 := End(E0) and

B0 := O0 ⊗Q. The association E 7→ Hom(E,E0) is functorial and defines an equivalence between
the category of

{supersingular elliptic curves over F , under isogenies}

and
{invertible left O0-modules, under nonzero left O0-module homomorphisms} .

Proof. We follow the proof in [33, Theorem 42.3.2].
First we show that Hom(−, E0) is a (contravariant) functor. F := Hom(E,E0) is an invertible

left End(E0)-module under postcomposition by Lemma 4.1.2, so the functor F maps objects from
the first category to the second category. Furthermore, if we have an isogeny φ : E → E′ between
two supersingular elliptic curves, F associates φ to its pullback map

φ∗ : Hom(E′, E0)→ Hom(E,E0)

ψ 7→ ψφ.
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with the properties
F(g ◦ f) = F(f) ◦ F(g)

and
F([1]) = idF(E),

where f : E → E′, g : E′ → E′′ are isogenies between supersingular elliptic curves, [1] is the identity
in End(E), and idF(E) : Hom(E,E0) → Hom(E,E0), ψ 7→ ψ[1] is the identity. The map φ∗ is a
homomorphism of left O0-modules since it is compatible with postcomposition with O0 = End(E0).
Hence F = Hom(−, E0) is functorial and it is contravariant.

Next, we claim that Hom(−, E0) is surjective. Let I be an invertible left O0-module. Tensoring
with Q we get an embedding I ↪→ I ⊗ Q ' B0, so up to isomorphism of left O0-modues, we may
suppose I ⊆ B0. Scaling by an integer, we may suppose I ⊆ O0 is a left O0-ideal. By Lemma 4.1.3,
we have Hom(EI , E0) ' I as left O0-modules, where EI = E/E[I].

Finally, we show that Hom(−, E0) is fully faithful, i.e., the map

Hom(E,E′)→ Hom(Hom(E′, E0),Hom(E,E0))

φ 7→ φ∗

is bijective. By Corollary 4.1.4, there exists a left O0-ideal I such that E ' E0,I . Applying this
isomorphism, we map suppose without loss of generality that E = E0,I . Then by Lemma 4.1.3, we
have I = Hom(E0,I , E0)φ0,I . Repeat with E′ and I ′. After these identifications, we are reduced to
the setting of Lemma 4.1.5 with the location of the prime swapped. The map

Hom(E0,I , E0,I′)→ I ′−1I

ψ 7→ φ−1
0,Iψφ0,I

is bijective.

Note that we can similarly show that Hom(E0,−) is a covariant functor to right O0-modules.

Corollary 4.1.7. There is a bijection between isomorphism classes of supersingular elliptic curves
over F = Fal

p and left class set ClLO0. Under this bijection, if E ↔ [I], then End(E) ' OR(I) and
Aut(E) ' OR(I)×. [33, Corollary 42.3.7]

Proof. Note that in the equivalence of categories in Theorem 4.1.6, every isomorphism class of
(invertible) left O0-modules was represented by a left O0-ideal. Hence we can take isomorphism
classes on both sides of the equivalence in Theorem 4.1.6 and compare endomorphism rings and
automorphism groups.
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Lemma 4.1.8. Let O ⊆ Bp,∞ be a maximal order. Then there exist one or two supersingular
elliptic curves E up to isomorphism over F = Fal

p such that End(E) ' O. There exist two such
elliptic curves if and only if j(E) ∈ Fp2 \ Fp.

Proof. We follow the proof in [33, Lemma 42.4.1]. By Corollary 4.1.4, there is always at least one
supersingular elliptic curve E with End(E) ' O using a connecting ideal.

By Corollary 4.1.7, the isomorphism classes of supersingular elliptic curves are in bijection with
the left class set ClLO0, where O0 was the endomorphism ring of a supersingular elliptic curve E0

over F = Fal
p . Their endomorphism rings are then given by End(E) ' OR(I) for [I] ∈ ClLO0. By

Lemma 2.5.13 (interchanging left for right), the map

ClLO0 → TypO0

[I]L 7→ class of OR(I)

is a surjective map of sets. The connecting ideals are precisely the fibers of this map, and by the
bijection of Corollary 4.1.7, there is a bijection between the set of supersingular elliptic curves E
with End(E) ' O and the fiber of this map over the isomorphism class of O.

We now count these fibers. We recall Proposition 2.5.24 with D = p and Proposition 2.5.19:
the fibers are given by the quotient group PIdlO \ IdlO of the invertible fractional two-sided O-
ideals by the subgroup of principal such ideals. There is a surjection Pic(O)→ PIdlO \ IdlO and
Pic(O) ' Z/2Z is generated by the unique maximal two-sided ideal P of reduced norm P . The
class of P in the quotient is trivial if and only if P = Oπ is principal.

To conclude recall [33, 42.2.4]: the Frobenius map is the map E → EP ' E(p). So P is principal
if and only if E(p) ' E if and only if j(E) = j(E(p)) = j(E)p if and only if j(E) ∈ Fp.

Theorem 4.1.1 and Lemma 4.1.8 prove the following classic result due to Deuring.

Theorem 4.1.9. (Deuring’s Correspondence)
For each prime p, there is a bijection from the set of supersingular elliptic curves up to Galois
conjugacy to maximal orders in Bp,∞ up to isomorphism.

{maximal orders O ⊆ Bp,∞} / ' ←→
{
supersingular j ∈ Fp2

}
/Gal (Fp2/Fp)

that sends End(E) ' O to j(E).

Remark 4.1.10. Here we neglect to write the base field of supersingular elliptic curves since every
supersingular elliptic curve has j-invariant in Fp2 , so it has a Weierstrass model defined over Fp2 .
The supersingular j-invariant in Fp2 is unique up to Galois conjugation. The maximal order is
unique up to conjugation by Remark 2.5.6. By choosing a Hermite basis of the maximal order,
which are four vectors forming Z-basis, we get a unique representation in the quaterinon side of
this correspondence.
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Let E be an elliptic curve with End(E) ' O. There is a one-to-one correspondence between
isogenies φ : E → E′ and left O-ideals I, where I is a connecting ideal of O and O′ ' End(E′) (I
is a left O-ideal and a right O′-ideal), and deg φ = nrd(I). This follows from Theorem 4.1.6 since
under the association E′ 7→ Hom(E′, E), each isogeny φ : E → E′ corresponds to the pullback
φ∗ : Hom(E′, E) ∼→ I := Hom(E′, E)φ ⊆ O given in Lemma 4.1.3.

4.2 Constructive algorithms

In this section, we discuss Bröker’s algorithm in [7] to construct a supersingular elliptic curve
over a given prime field.

Lemma 4.2.1. Let K be an imaginary quadratic field with class number hk. Then hk is odd if
and only if

(i) K = Q(
√
−1), or

(ii) K = Q(
√

2), or

(iii) K = Q(
√
−q) with q prime and congruent to 3 mod 4.

Proof. We follow the proof in [7, Lemma 2.3].
Let D be the discriminant of K, and let p1, · · · , pn be the odd prime factors of D. The genus

field
G = K(

√
p∗1, · · · ,

√
p∗n)

with p∗i = (−1)(pi−1)/2pi is the maximal unramified abelian extension of K that is abelian over Q
[12, Theorem 6.1], and Galois group Gal(G/K) is isomorphic to the 2-Sylow group of Cl(OK). We
see that hk is odd if and only if we have an equality G = K. This yields the lemma.

Proposition 4.2.2. Given a prime p, Algorithm 1 computes a supersingular j-invariant in Fp.

Proof. We follow the proof in [7].
Let K be an imaginary quadratic field. Recall that the Hilbert class field of K is HK =

K[x]/(PK) by Theorem 3.3.5, where PK is the Hilbert class polynomial of K. Since K is a number
field of degree [K : Q] = 2, there are only three possible factorization of prime p in OK ;

(a) (p) = p2 : (p) ramifies, or

(b) (p) = p : (p) is inert, or

(c) (p) = p1p2 : (p) splits.
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Hence, if we take K such that p is inert in OK , then the roots of PK ∈ Fp[x] are supersingular
j-invariants by Theorem 3.3.9 and the discussion in Remark 3.3.10. Since the j-invariant of a
supersingular curve is contained in Fp2 , the polynomial PK splits over Fp2 .

Next, we show that PK ∈ Fp[x] has a root in Fp if hK is odd. Write

PK(x) =
∏

j∈Ell(OK)
fj(x)ej ∈ Fp[x],

and let S be the splitting field of PK . Every finite extension of Fp is Galois, so we have

[S : Fp] = lcm(deg(fj)).

Note that S ⊆ Fp2 since PK splits over Fp2 . This implies that deg(fj) ≤ 2 for all j. If deg(PK) is
odd, then not all deg(fj) is even, i.e. some deg(fi) = 1 and PK has a root in PK .

Hence, Lemma 4.2.1 gives a sufficient condition for PK ∈ Fp[x] to have a root in Fp.
If the quadratic field K has class number hk = 1, then there exists a curve E/Q with End(E) '

OK (Primes inert in quadratic field of class number one). In particular, for K = Q(i), the reduction
of E : y2 = x3−x modulo prime p ≡ 3 (mod 4) yields a supersingular curve modulo p and similarly,
E′ : y2 = x3 + 1 is supersingular for all primes p ≡ 2 (mod 3).

Algorithm 1: Bröker’s algorithm to compute a supersingular j-invariant
input : A prime p.
output: A supersingular curve over Fp.
1. If p = 2, return y2 + y = x3.
2. If p ≡ 3 mod 4, return y2 = x3 − x.
3. Let q be the smallest prime congruent to 3 mod 4 with

(
−q
p

)
= −1.

4. Compute PK ∈ Z[x] for K = Q(
√
−q).

5. Compute a root j ∈ Fp of PK ∈ Fp[x].
6. If q = 3, return y2 = x3 + 1. Else, put a← 27j/(4(1728− j)) ∈ Fp and return
y2 = x3 + ax− a.

Remark 4.2.3. Under GRH, the expected running time of Algorithm 1 is Õ((log p)3) [7, Lemma
2.5].

Let π : (x, y)→ (xp, yp) be the pth power Frobenius map.

Proposition 4.2.4. Given a prime p, Algorithm 2 computes a supersingular j-invariant j0 ∈ Fp
such that End(E(j0)) ' O0, where O0 is as given by Proposition 2.6.2, together with a map
φ ∈ End(E(j0))) such that θ : Bp,∞ → End(E(j0))⊗Q : (1, i, j, k)→ (1, φ, π, πφ) is an isomorphism
of quaternion algebras.
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Proof. We follow the proof in [17, Proposition 3].
The case p = 2 is trivial. There is only one supersingular j-invariant in Fp2 , so Bp,∞ has a

unique maximal order (up to isomorphism) by Theorem 4.1.9.
The case p ≡ 3 (mod 4) is treated in [17]. We will detail the case p ≡ 1 (mod 8). The case

p ≡ 5 (mod 8) is similar.
Let q ≡ 3 mod 4 and (p/q) = −1 be chosen as in Proposition 2.6.2. Let OK be the ring of

integers of the number field K = Q(
√
−q). Consider Algorithm 2 below.

Step 1 is a modification of Algorithm 1. We first show that the cardinality of

J =
{
supersingular j ∈ Fp2 : OK ⊆ End(E(j))

}
is equal to the class number hK of K, which is bounded by q. Note that OK = 〈1, 1+j

2 〉 ⊆ O0 since
j2 = −q ≡ 1 (mod 4). We will show that for each j ∈ J , there exists a unique j′ ∈ Ell(OK) such
that E(j) = E(j′) mod p for a fixed prime p of OK .

Suppose j ∈ J is a supersingular j-invariant such that OK ⊆ End(E(j)). Then if OK = Z[α],
by Theorem 3.3.11 applied to E(j) and α, there is an elliptic curve Ẽ/C such that End(Ẽ) ' OK
(since we assumed OK ⊆ End(E(j))) and a prime p of OK dividing p such that Ẽ mod p = E(j).
Since Ẽ has complex multiplication by OK , j(Ẽ) is a root of the Hilbert class polynomial of K.
Since p ≡ 1 mod 4, we have

(
−q
p

)
=
(
p
q

)
= −1 by quadratic reciprocity. This implies p is inert in

OK , i.e., p = pOK is the unique prime ideal of OK lying over p. Hence #J ≤ # Ell(OK) = hk.
Conversely, an elliptic curve E/C representing an isomorphism class in Ell(OK) has a reduction

modulo p whose j-invariant is in J by Theorem 3.3.9. Principal prime ideals of OK split completely
in the Hilbert class field of K by [12, Corollary 5.25], so the Hilbert class polynomial will have hK
distinct roots modulo p. Hence, #J ≥ hk.

To compute φ in Step 2 one can compute all isogenies of degree q using Vélu’s formulae and
identify the one corresponding to an endomorphism. Using map φ allows us to construct an iso-
morphism of quaternion algebras over Q,

θ : Bp,∞ → End(E(j0))⊗Q

(1, i, j, k) 7→ (1, π, φ, φπ).

Let α = θ(j) = π. Then α + ᾱ = 0 and αᾱ = p. Since α2 + (α + ᾱ)α + αᾱ = α2 + p = 0, we
deduce that α2 = −p. Similarly, β = θ(i) satisfies β2 = φ2 = −q. Hence, the linear map θ defines a
well defined ring homomorphism.

To perform the check in Step 3, one applies θ to the numerators of the basis elements for O0,
and then check whether the resulting maps annihilate the D-torsion, where D is the denominator
of the basis elements for O0.
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As p ≡ 1 (mod 8) then 1+j
2 , i+k2 , j+ckq , k is a basis for O0. Assuming E[2] ⊆ ker(θ (1 + j)) there

exists a (unique) map f : E/E[2] ' E → E such that θ (1 + j) = f ◦ [2] by Corollary 3.1.23. Write
1+φ

2 := f so we have f ∈ End(E(j0)).
Similarly, we can define π+φ

2 and φ+cφπ
q so that the images of 1, i, j, k under θ are contained in

End(E(j0)). The order generated by these images corresponds to O0 so it is maximal. Hence, we
deduce that End(E(j0)) ' O0.

Algorithm 2: Constructive Deuring correspondence, from special maximal orders to j-
invariants.
input : A prime p.
output: A supersingular j-invariant j0 ∈ Fp such that End(E(j0)) ' O0, and an

endomorphism φ ∈ End(E(j0)) such that nrd(φ) = q and trd(φ) = 0.

1. Compute J :=
{
supersingular j ∈ Fp2 : OK ⊆ End(E(j))

}
, where OK is the integer ring of

K = Q(
√
−q).

2. For a choice of j ∈ J , compute all φ, an endomorphism of degree q of E(j).

3. Check if End(E(j)) ' O0 by using the map φ to construct an isomorphism of quaternion
algebras θ : Bp,∞ → End(E(j))⊗Q : (1, i, j, k)→ (1, φ, π, πφ).

4. If step 3 fails, then go back to step 2 for a different choice of j ∈ J . Return j and φ.
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Chapter 5

Supersingular Isogeny Graphs

5.1 Overview

The classical modular polynomial Φn(X,Y ) ∈ Z[X,Y ] is initially constructed as a relation
between the modular functions j(τ) and j(nτ) [12] and has the following modular interpretation:

Theorem 5.1.1. Given a j ∈ Fal
p , the roots of Φn(j, Y ) give the j-invariants of elliptic curves over

Fal
p which are n-isogenous over Fal

p to an elliptic curve with j-invariant j.

Proof. See [25, Theorem 5.5].

We now summarize some basic definitions and results from [3] concerning supersingular isogeny
graphs.

Definition 5.1.2. Let ` be a prime different from the prime p. The supersingular `-isogeny
graph in characteristic p is the multigraph G(p, `) whose vertices are j-invariants of supersingular
elliptic curves over Fp2 and the number of directed edges from j to j′ is equal to the multiplicity of
j′ as a root of Φ`(j, Y ).

Note that vertices in G(p, `) are isomorphism classes of elliptic curves. By the discussion in Re-
mark 3.2.4, an edge in G(p, `) is represented by a unique (separable) `-isogeny up to isomorphism,
i.e., if φ : E → E′ is an `-isogeny and α ∈ Aut(E′), then φ and α ◦ φ correspond to the same edge
in G(p, `). By Theorem 3.1.22, the representation size of the isogeny is deg φ = # kerφ.

From the following statement, we see that any two supersingular elliptic curves over Fp2 are
connected by an isogeny of degree `m, where we can take m to be polynomial size in log p.

Theorem 5.1.3. The graph G(p, `) of `-isogenies of supersingular elliptic curve is connected. The
diameter of the graph is O(log p), where the constant in the bound is independent of `.

Proof. See [23, Corollary 78 and Theorem 79].
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In the next chapter, we will show that any `-isogeny connecting supersingular elliptic curves
have representation size polynomial in log p.

Definition 5.1.4. Two edges e and e′ in G(p, `) are called dual if the corresponding `-isogenies
φ : E → E′ and φ′ : E′ → E are equal to the dual of the other up to isomorphism, i.e., φ′ = αφ̂ for
some α ∈ Aut(E). We say a path (e1, · · · , ek) has no backtracking if ei+1 is not dual to ei for
i = 1, . . . , k − 1.

Definition 5.1.5. By trimming a path in G(p, `), we mean removing all adjacent dual edges in
the path.

Definition 5.1.6. An isogeny φ : E → E′ is primitive if it does not factor through [n] : E → E′

for any n > 1.

Remark 5.1.7. Two non-equivalent isogenies E1 → E2 can have equivalent duals if #Aut(E2) > 2
(see [18, Remark 25.3.2]). If p ≡ 1 (mod 12), then this phenomenon does not occur and we may
uniquely identify pairs of dual edges and consider G(p, `) as an undirected graph without any
modification [11].

Given a path in G(p, `) of length e between j and j′, there is an isogeny φ : E(j) → E(j′)
of degree `e obtained by composing the isogenies corresponding to the edges in the path. If this
path has no backtracking, the kernel of φ is a cyclic subgroup of order `e. Conversely, we have the
following proposition.

Proposition 5.1.8. Suppose φ : E(j) → E(j′) is an isogeny with cyclic kernel of order `e. Then
there is a unique path in G(p, `) such that the factorization of φ into a chain of `-isogenies corre-
sponds to the edges in the path, and the path has no backtracking.

Proof. See [3, Proposition 4.5]

Corollary 5.1.9. Suppose φ ∈ End(E) is an endomorphism with cyclic kernel of order `e. Then
there is a unique path in G(p, `) such that the factorization of φ into a chain of `-isogenies corre-
sponds to the edges in a cycle through j(E), and the cycle has no backtracking.

Cycles through E with no backtracking exactly correspond to primitive endomorphisms of E
with `-power degree.

Lemma 5.1.10. Let {e1, . . . , ee} be a cycle in G(p, `) through the vertex E(j) with corresponding
endomorphism φ ∈ End(E(j)). If the cycle has no backtracking, then the corresponding endormor-
phism φ is primitive. Conversely, if φ ∈ End(E(j)) is primitive and deg(φ) = `e for e ∈ N, then the
cycle in G(p, `) corresponding to φ has no backtracking.

Proof. See [3, Lemma 4.6]
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It is a fact that Φn(X,Y ) = Φn(Y,X) so that we may collapse any pair of dual edges in G(p, `)
into a single undirected edge, furthermore, any multiple undirected edge into a single undirected
edge, to obtain a modified undirected version of G(p, `), which we denote by Ḡ(p, `). By construction,
cycles in Ḡ(p, `) do not have backtracking.

Remark 5.1.11. In collapsing edges to obtain Ḡ(p, `), we may fail to detect cycles through E

such that #Aut(E) > 2 if we use the graphs Ḡ(p, `). However, since there are at most two such
vertices corresponding to j(E) = 0, 1728, so this is a mild loss of information. Another type of cycle
which would not be detected are those formed by multiple undirected edges between two different
vertices, after collapsing all pairs of dual edges.

The following properties are taken from [3] [9].

Theorem 5.1.12. Let G = G(p, `) be the supersingular `-isogeny graph in characteristic p. Then

(i) G is connected

(ii) G is (`+ 1)-regular as a directed multi-graph, with the exception of the vertices j = 0, 1728

(iii) #V (G) =
[ p

12
]

+ εp, where V (G) is the vertex set of G and

εp =



0 if p ≡ 1 (mod 12),

1 if p = 3,

1 if p ≡ 5, 7 (mod 12),

2 if p ≡ 11 (mod 12).

(iv) G is Ramanujan, i.e., they are optimal expander graphs, with the consequence that random
walks on the graph quickly reach the uniform distribution (after O(log(N)) steps for an
expander graph with N vertices).

For applications of expander graphs, see [20].
The fastest known algorithm for finding an isogeny between two supersingular elliptic curves

defined over Fq of characteristic p runs in Õ(p1/2) time [15].

5.2 M-small elliptic curves

Fix a prime p ≥ 5. Let k be a finite field of characteristic p and size q.
The proof of Theorem 3.1.28 proceeds by supposing the existence of an element not in the

Q-span of the previous case, until no such element can be found. For instance, to separate the case
of End(E) = Z from the later cases, we need to find a non-integer endomorphism.

Following [27] and motivated by the above, we make the next definition.
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Definition 5.2.1. Given M ∈ N, an elliptic curve E over k is M -small if there exists a α ∈
End(E)− Z with degα ≤M .

Definition 5.2.2. Given M ∈ N, an elliptic curve E over k is M -big if there does not exist a
α ∈ End(E)− Z with degα ≤M .

Proposition 5.2.3. The supersingular elliptic curves found by Algorithm 1 are q+1
4 -small. Assum-

ing GRH, they are M -small for M = O((log p)2).

Proof. We follow the proof in [27, Proposition 2.2].
The output of the algorithm is a curve E over Fp with the following property: there exists a

curve Ẽ over the Hilbert class field of K = Q(
√
−q) such that End(Ẽ) ' OK and E is the reduction

of Ẽ modulo a prime of OL above p. In particular, 1+
√
−q

2 ∈ OK is a non-integer endomorphism
of Ẽ with norm q+1

4 . The reduction map End(Ẽ) → End(E) is a degree-preserving injection [30,
Proposition II.4.4], so End(E) also contains a non-integer endomorphism of norm q+1

4 , proving that
E is q+1

4 -small. As discussed in the proof of [6, Lemma 2.5], under GRH we can find q = O((log p)2)
with the desired properties.

It is shown in [27] that M -small elliptic curves over k can be efficiently enumerated for small
M and they are partitioned into pieces which are far apart.

Proposition 5.2.4. Let 3 ≤ M < p, let E be an elliptic curve over a finite field of characteristic
p, and let j be the j-invariant of E. Then E is M -small if and only if HO(j) = 0 (mod p) for some
quadratic order O with discriminant −4M ≤ discO < 0. Further, E is supersingular if and only if
p does not split in the field of fractions of O.

Proof. See [27, Proposition 2.3].

By Deuring’s Lifting Theorem, there is an elliptic curve Ẽ defined over a number field L, an
endomorphism α̃ of Ẽ, and a prime p of L, such that Ẽ has good reduction at p, the reduction of
Ẽ at p is isomorphic over Fal

p to E, and that the endomorphism on E induced by α̃ is equal to α.
For some quadratic order O in an imaginary quadratic field K, we will have End(Ẽ) ' O.

Proposition 5.2.5. Let O be a quadratic order with discriminant −4M ≤ discO < 0. Let CO
denote the set of isomorphism classes of elliptic curves over k such that O embeds into End(E).
Then

|CO| ≤ degHO(x) = |Cl(O)| = O(M1/2+ε)

Proof. See [27, Proposition B.1].

Remark 5.2.6. In the above proposition and what follows, we count elliptic curves over k up to
isomorphism over the algebraic closure of k.
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The following proposition [27, Proposition B.3] implies, for M � p, the M -small elliptic curves
over k are sparse among all supersingular elliptic curves over k.

Proposition 5.2.7. The number of M -small elliptic curves over k is bounded above by

2√
3

(2M + 1)M
1
2 = O(M

3
2 ). (5.1)

Proof. If E is an M -small elliptic curve over k, let α ∈ End(E), α /∈ Z have nrd(α) ≤M . Suppose
α satisfies the polynomial x2 + bαx + cα where bα, cα ∈ Z. Then nrd(α) = cα and α lies in the
quadratic order O of discriminant ∆α = b2α − 4cα. We thus have the inequalities

|∆α|/4 ≤ nrd(α) ≤M. (5.2)

There are at most h(O) = |Cl(O)| isomorphism classes of elliptic curves E over k such that
O embeds into End(E) by Proposition 5.2.5. A quadratic order O is uniquely determined by its
discriminant, and there is a bijection between Cl(O) and the set of reduced primitive positive-
definite binary quadratic forms of discriminant discO. Thus, it suffices to bound the number of
triples (a, b, c) ∈ Z3 with −a < b ≤ a ≤ c and b ≥ 0 if a = c, gcd(a, b, c) = 1, and −4M ≤ ∆α =
b2 − 4ac < 0. From |b| ≤ a ≤ c, we have −4M ≤ b2 − 4ac ≤ −3a2, so a ≤

√
4M/3. Likewise

−4M ≤ b2 − 4ac ≤ a2 − 4ac implies a ≤ c ≤ a
4 + M

a . Together with −a < b ≤ a we conclude that
there are at most (

a

4 + M

a
− a+ 1

)
(2a) ≤ 2M + 1

valid pairs (b, c) for a given a; summing over the
√

4M/3 options for a gives the upper bound.

Proposition 5.2.8. Every supersingular elliptic curve over k is
(

1
2p

2/3 + 1
4

)
-small.

Proof. See [27, Proposition A.5]

Corollary 5.2.9. The proportion of qθ-big elliptic curves over k is bounded below by

1− 2√
3

(2qθ + 1)q
θ
2

q
.

Proof. The total number of elliptic curves over k is q. The number of qθ-small elliptic curves over
k is bounded above by

2√
3

(2qθ + 1)q
θ
2 .
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5.3 (M, `)-small and (M, S)-small elliptic curves

We now consider the bounds obtained in the previous section, but restricting the degree of the
isogenies allowed.

Definition 5.3.1. Given M ∈ N and ` a prime, an elliptic curve E over k is (M, `)-small if there
exists a α ∈ End(E)− Z with degα = `n ≤M for some n ∈ N.

Definition 5.3.2. Given M ∈ N and ` a prime, an elliptic curve E over k is (M, `)-big if there
does not exist a α ∈ End(E)− Z with degα = `n ≤M for some n ∈ N.

By Corollary 5.1.9, finding φ ∈ End(E) with cyclic kernel of order `e corresponds to finding a
cycle through j(E) in the `-supersingular isogeny graph G(p, `). The property that E is (M, `)-big
translates into the fact any cycle through j(E) has length ≥ log`M .

If M = Ω(p) and E is (M, `)-big, then searching for such a cycle through j(E) using breadth
first search is expensive. In the next paragraphs, we give upper bounds for the number of (M, `)-
small elliptic curves over k. The motivation is to give a lower bound for the number of (M, `)-big
elliptic curves over k.

Lemma 5.3.3. For f ≥ 2, we have the bound

∏
p|f

(
1 + 1

p

)
≤ 4(1 + log log f).

Proof. See [24, Lemme 2].

For any prime `, the set of (M, `)-big elliptic curves over k contains the set of M -big elliptic
curves over k. Proposition 5.2.7 thus also gives an upper bound on the number of (M, `)-small
elliptic curves over k. However, we can refine the proof to give a sharper bound below.

Proposition 5.3.4. The number of (M, `)-small elliptic curves over k is bounded above by

O (M logM) . (5.3)

Proof. By adding the constraint that cα = `n ≤M for some n, we see that n = log`M = O(logM).
For ∆α = b2α − 4cα to be negative, b2α ≤ 4cα = 4`n so |bα| ≤ 2`n/2. Hence, there are at most

log`M∑
n=0

2`n/2 = 2`
1
2 `

log` M
2 − 1

`
1
2 − 1

= O(M1/2)

choices for ∆α.
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Let K = Q(∆1/2) and OK the ring of integers of K of discriminant ∆K . Then by the class
number formula

h(OK) = wK
2π |∆K |1/2L(1, χK), (5.4)

where χK is the character associated to the quadratic field K, wK is the number of units in OK ,
and L(s, χ) =

∑∞
n=1

χ(n)
ns is a Dirichlet L-function [13, p. 49]. We have from [26, p. 214] that

|L(1, χK)| ≤ log |∆K |1/2 + 1

so that
hK ≤ O(|∆K |1/2 log |∆K |1/2)

Suppose O has discriminant ∆ = ∆Kf
2 and conductor f . Then

h(O) = h(OK)f
[O×K : O×]

∏
p|f

(
1−

(∆K

p

) 1
p

)
(5.5)

by [12, Corollary 7.28], and we can bound

h(O) ≤ h(OK)f
∏
p|f

(
1 + 1

p

)
= O(|∆K |1/2f log |∆K |1/2 log f)

= O(|∆|1/2 log |∆|1/2).

where the logarithmic terms are simplified using the fact that a+ b ≤ ab+ 1 ≤ 2ab if a, b ≥ 2.
In total, we get O (M logM) number of (M, `)-small elliptic curves over k using (5.2).

Let S be a finite subset of rational primes. For n 6= 0,±1 ∈ Z, we say n is S-smooth if all its
prime factors lie in S.

Definition 5.3.5. Given M ∈ N and ` a prime, an elliptic curve E over k is (M,S)-small if there
exists a α ∈ End(E)− Z such that degα is S-smooth.

Definition 5.3.6. Given M ∈ N and ` a prime, an elliptic curve E over k is (M,S)-big if there
does not exist a α ∈ End(E)− Z such that degα is S-smooth.

Proposition 5.3.7. Let S be a finite subset of rational primes with |S| = t. Then the number of
(M,S)-small elliptic curves over k is bounded above by

O
(
M(logM)t+1

)
, (5.6)

where the constant depends on S.
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Proof. Let S = {`1, . . . , `t}. The inequalities

2e1+...+et ≤ `e1
1 · · · `

et
t = cα ≤M, (5.7)

show that e1 + . . .+ et = O(logM), hence there are O((logM)t) choices for cα, and for each, there
are O(M1/2) choices for bα. The rest of the proof is similar to that of Proposition 5.3.4.

It is remarked in [27, Remark A.4] that when M � p, roughly half of all M -small elliptic curves
are supersingular based on heuristic reasons and computational experiments.

5.4 Numerical data

Definition 5.4.1. Let T be a tree. A cycle formed identifying two leaf vertices has furthest depth
n if n is the distance from the root to the identified vertices.

In this section, we gather statistics on the following quantities:

1. The minimal length cycle through a random vertex in Ḡ(p, `).

2. The minimal depth of a cycle through a descendant of a random vertex in Ḡ(p, `).

Here, by the depth of a cycle (with respect to a vertex v ∈ Ḡ(p, `)), we mean the depth of a
farthest vertex in the cycle from the root. The motivation for considering these quantities is the
following:

1. If for most vertices j(E) in Ḡ(p, `), the minimal length cycle is Ω(log p), then a breadth first
search to find a cycle through j(E) will be expensive.

2. If the minimal depth of a cycle through a descendant of most vertices j(E) in Ḡ(p, `) is
Ω(log p), then a breadth first search to find a cycle through a descendant of j(E) will be
expensive.

Remark 5.4.2. If one finds a cycle through a descendant j(E′) of j(E), it can be used to obtain
a non-scalar endomorphism of E: The cycle through j(E′) corresponds to a non-integer endomor-
phism of E′. The path from E to E′ gives an isogeny between E and E′, hence the non-integer
endomorphism of E′ corresponds to a non-scalar endomorphism of E.
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Algorithm 3: Finding the length of a minimal cycle through a vertex.
input : An undirected multigraph G and a vertex v ∈ V (G).
output: Length of a minimal length cycle through v.

If v has a self loop, then return 1.
// Each vertex s visited is labelled with a child of v which we refer to as

the component.

Parents← Children of v
V isited← {v} ∪ Parents
n← 1
while #V isited < #V (G) do

for s 6= t ∈ Parents do
Check if there is an edge between s and t and they have different components.
In that case, we have detected a minimal length cycle through v of length 2n+ 1.

end
for s 6= t ∈ Parents do

Check if any child a of s is equal to any child of t and they have different
components.
In that case, we have detected a minimal length cycle through v of length 2n+ 2.

end
Parents← Children of vertices in Parents where the component is inherited
V isited← V isited ∪ Parents
n← n+ 1

end
If we reach this point in the algorithm, then there is no cycle in the multigraph G.

aWe do not consider a parent to be its own child.

Theorem 5.4.3. Given an undirected multigraph G and a vertex v ∈ V (G), Algorithm 3 computes
the length of a minimal cycle through v, if there exists a cycle in G.

Proof. As we enter the while loop the nth time, the subgraph induced by the vertices in Visited
has the property that any cycle through v in this subgraph has length ≥ 2n+ 1.

If a collision in the same component occurs in the first for loop, then we have detected a cycle
of length 2n+ 1.

If no collision in the same component occurs in the first for loop, then the subgraph induced by
the vertices in Visited now has the property that any cycle through v in this subgraph has length
≥ 2n+ 2.

If a collision in the same component occurs in the second for loop, then we have detected a
cycle of length 2n+ 2.
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Below we analyze a sample of vertices in Ḡ(p, 3) and compute the minimal length of cycles
through them. We randomly choose 50000 primes of length less than 20 bits. For each prime p
chosen, we pick a vertex v in Ḡ(p, 3) by taking a random walk of length blog pc from j = 0. Then
we compute the relative length of a minimal length cycle through v

the length of a minimal length cycle through v
log p . (5.8)

Then we used a histogram to display the data of the samples. The data suggests that for most of
vertices taken randomly from Ḡ(p, 3) for different primes, the minimal length cycle is Ω(log p).

Figure 5.1: A histogram (with 12 bins) of the quantity (5.8) for v in G(p, 3), p > 3 varies over 50000
random primes of length less than 20 bits and v is picked randomly by taking a random walk of
length blog pc.
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Algorithm 4: Finding a minimal depth cycle through a descendant of a vertex.
input : An undirected multigraph G and a vertex v ∈ V (G).
output: The minimal depth of cycles through descendants of v

If v has a self loop, then return 0.
Parents← Children of v
V isited← {v} ∪ Parents
n← 1
while #V isited < #V (G) do

for s, t ∈ Parents do
Check if there is an edge between s and t.
In that case, we have detected a cycle through a descendant of v of minimal depth n

end
for s 6= t ∈ Parents do

Check if any child a of s is equal to any child of t.
In that case, we have detected a cycle through a descendant of v of minimal depth
n+ 1

end
Parents← Children of vertices in Parents and the component is inherited
V isited← V isited ∪ Parents
n← n+ 1

end
If we reach this point in the algorithm, then there is no cycle in the multigraph G.

aWe do not consider a parent to be its own child.

Theorem 5.4.4. Given an undirected multigraph G and a vertex v ∈ V (G), Algorithm 4 computes
a minimal depth cycle through a descendant of v, if there exists a cycle in G.

Proof. As we enter the while loop the nth time, the subgraph induced by the vertices in Visited
has the property that any cycle in this subgraph has depth ≥ n.

If a collision in the first for loop, then we have detected a cycle of minimal depth n.
If no collision in the first for loop, then the subgraph induced by the vertices in Visited now has

the property that any cycle in this subgraph has depth n+ 1
If a collision in the second for loop, then we have detected a cycle of minimal depth n+ 1.

Below we analyze a sample of vertices in Ḡ(p, 3) and compute the minimal depth of cycles
through descendants of them. We randomly choose 50000 primes of length less than 20 bits. For
each prime p chosen, we pick a vertex v in Ḡ(p, 3) by taking a random walk of length blog pc from
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j = 0. Then we compute the relative depth of a minimal depth cycle through descendants of v

the minimal depth of cycles through descendants of v
log p . (5.9)

Figure 5.2: A histogram (with 9 bins) of the quantity (5.9) for v in G(p, 3), p > 3 varies over 50000
random primes of length less than 20 bits and v is picked randomly by taking a random walk of
length blog pc.

5.5 Examples

A further in depth study of some of the structural features of supersingular isogeny graphs can
be found in [1]. Below we give a number of small examples for p in each congruence class modulo
12, l = 2, 3, and where we have colored the vertices in Fp green and the labels of the vertices are
the discrete logarithm with respect to a primitive root, with the label p2 if the vertex is j = 0.

Figure 5.3: Ḡ(p, `) for p = 79 and ` = 2
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Figure 5.4: Ḡ(p, `) for p = 79 and ` = 3

Figure 5.5: Ḡ(p, `) for p = 83 and ` = 2

Figure 5.6: Ḡ(p, `) for p = 83 and ` = 3
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Figure 5.7: Ḡ(p, `) for p = 97 and ` = 2

Figure 5.8: Ḡ(p, `) for p = 97 and ` = 3

Figure 5.9: Ḡ(p, `) for p = 101 and ` = 2
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Figure 5.10: Ḡ(p, `) for p = 101 and ` = 3

Figure 5.11: Ḡ(p, `) for p = 997 and ` = 2

Figure 5.12: Ḡ(p, `) for p = 997 and ` = 3
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Chapter 6

Computationally Hard Problems

6.1 Overview

In cryptography, the security of hash functions can be measured by checking how difficult the
inversion is, which leads to the following standard problems:

Suppose f : X → Y is a hash function for some finite sets X and Y .

1. Preimage problem: Given y ∈ Y , find x ∈ X such that f(x) = y.

2. Second Preimage problem: Given x1 ∈ X, find x2 6= x1 ∈ X such that f(x1) = f(x2).

3. Collision problem: Find x1, x2 ∈ X such that f(x1) = f(x2).

In practice, the domain X is taken to be a set of bit strings of arbitrary finite length and the
codomain Y is the set of bit strings of fixed finite length n, where the size of Y is relatively smaller
than X. The running time of algorithms solving the three problems is measured in terms of n. If
there are only exponential time algorithms to solve one of the problems, we say the hash function
is resistant to that problem.

Charles, Goren, and Lauter [9] introduced the hardness of finding paths in Supersingular Isogeny
Graphs G(p, `) into cryptography and used it for constructing cryptographic hash functions. In the
CGL hash function, the input is used as directions for walking around a graph without backtracking
and the output is the ending vertex of the walk. For a fixed hash function, the walk starts at a fixed
vertex in the given graph. A family of hash functions can be defined by allowing the starting vertex
to vary. Explicitly finding a collision in this hash function is equivalent to finding two isogenies of
`-power degrees between a pair of supersingular elliptic curves. Detecting a collision in CGL hash
function can be rephrased to the following problem.

Problem 1. (Path Finding Problem) For a pair of elliptic curves E,E′ in a supersingular isogeny
graph G(p, `), find a path from E to E′, which is represented by a chain of m = O(log p) isogenies
of degree `.
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Recall that such a path from E to E′ exists by Theorem 5.1.3. If the graph does not have small
cycles then this problem is very hard, since constructing isogenies of large degree between elliptic
curves is a well-known computationally hard problem.

If we can get two distinct paths from E to E′ forming a cycle, then that cycle corresponds
to a nonscalar endomorphism on E. By doing this multiple times, we can obtain four linearly
independent endomorphisms on E with respect to scalar multiplication, which will form a Z-basis
of End(E). Hence, finding a path in a supersingular isogeny graph is related to computation of the
endomorphism ring.

Problem 2. (Endomorphism Ring Problem) Given a prime p and a supersigular j-invariant j ∈
Fp2 , compute End(E(j)) by returning four rational maps that form a Z-basis of End(E(j)).

The maps themselves can usually not be returned in their canonical expression as rational maps,
as in general this representation will require a space larger than the degree, and the degrees can be
as big as p. Meanwhile we want an algorithm of running time polynomial in log p that computes
endomorphism rings, we also want the endomorphism rings to have polynomial representation size.
For this, we will introduce the notion of a compact representation of an endomorphism introduced
in [17] and use it to define Compact Endomorphism Ring Problem.

Four isogenies representing End(E) can be given by points in its kernel using Vélu’s formula.
Hence, we want to avoid having an endomorphism of exponential degree or endomorphism that has
the kernel with exponentially many points in the basis for efficient computation of endomorphism
ring. To do this we will define compact representation of endomorphisms of polynomial size and show
that the endomorphism ring of supersingular elliptic curve has a basis with such a representation.

Let O0 ⊆ Bp,∞ be chosen as in Proposition 2.6.2 and b1, . . . , b4 the chosen ordered basis for O0

taken in this proposition. Let E0 = E(j0) be a supersingular elliptic curve with End(E0) ' O0. We
showed that there is an isomorphism Bp,∞ ' End(E0)⊗Q given by 1, i, j, k 7→ 1, φ, π, πφ, where π
is the pth power Frobenius map and φ is the output of Algorithm 2. In particular, this isomorphism
maps the basis of O0 given in Proposition 2.6.2 to a basis β1, · · · , β4 for End(E0). We will use
β1, · · · , β4 to define compact representation for endomorphisms of any supersingular elliptic curves.

Definition 6.1.1. (Compact Representation of an Endomorphism)
Let E0 be the supersingular elliptic curve and β1, · · · , β4 be the endomorphisms of E0 as above. Let
E/Fp2 be another supersingular elliptic curve, and let ρ ∈ End(E). Define a compact representation
of ρ to be a list [

d, [c1, · · · , c4] , [φ1, · · · , φm] ,
[
φ̂1, · · · , φ̂m

]]
,

where c1, · · · , c4, d ∈ Z, φi are isogenies on a path from E0 to E, the total size of the list

log(|d|) + log(|c1|) + · · ·+ log(|c4|) +
m∑
i=1

log(deg(φm))
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is at most polynomial in log p, and

ρ = 1
d

(
φm ◦ · · · ◦ φ1 ◦

( 4∑
i=1

ciβi

)
◦ φ̂1 ◦ · · · ◦ φ̂m

)
.

Recall that the existence of the chain of isogenies φi’s was shown in Theorem 5.1.3. In particular,
m = O(log p).

Theorem 6.1.2. Assume GRH holds. Let E/Fp2 be a supersingular elliptic curve. Then there exist
two lists of four compact representatives of endomorphisms of E, such that each list represents a
Z-basis of End(E). Moreover, assume ρ ∈ End(E) is a linear combination of the endomorphisms
corresponding to one such basis, and assume that its coefficient vector in terms of this basis is of
size polynomial in log p. Using the two lists we can evaluate ρ at arbitrary points of E in time
polynomial in log p and the size of the point P .

Proof. We follow the proof in [17, Theorem 15] for p ≡ 3 (mod 4), noting the general case follows
under GRH because of Proposition 2.6.2.

Let O0 be the maximal order in Bp,∞ with basis {b1, · · · , b4}. Then O0 ' End(E0) and b1, · · · , b4
correspond to β1, · · · , β4 under an isomorphism. There exist chains of isogenies φ1, · · · , φm and
ψ1, · · · , ψn from E0 to E with deg(φk) = 2 and deg(ψk) = 3, and with m,n = O(log p). Set
φ = φm ◦ · · · ◦φ1 and ψ = ψn ◦ · · · ◦ψ1. Let I ⊆ O0 and J ⊆ O0 be the left O0-ideals corresponding
to φ and ψ respectively.

There exist rational numbers cIrs whose denominators are divisors of 2 nrd(I) such that

γIr :=
∑
s

cIrsbs, 1 ≤ r ≤ 4

is a Minkowski-reduced basis of OR(I), and rational numbers cJrs whose denominators are divisors
of 2 nrd(J) such that

γJr :=
∑
s

cJrsbs, 1 ≤ r ≤ 4

is a Minkowski-reduced basis of OR(J). Furthermore, γIr and γJr have polynomial representation
size in terms of 1, i, j, ij, and hence polynomial representation size in terms of b1, . . . , b4 because of
the last part of Proposition 2.6.2 (hence the need for GRH). This follows from Theorem 2.6.6 and
its proof since OR(I) and OR(J) are maximal orders by Corollary 4.1.7.

Then ρJr := 1
2mφγ

I
r φ̂ and ρIr := 1

3nψγ
J
r ψ̂, r = 1, · · · , 4 each form a basis for End(E). Thus, for

r = 1, · · · , 4,
[nrd(I), cIr1, · · · , cIr4, [φ1, · · · , φm], [φ̂1, · · · , φ̂m]],

[nrd(J), cIr1, · · · , cIr4, [ψ1, · · · , ψn], [ψ̂1, · · · , ψ̂n]]

satisfy the conditions to be a compact representation of an endomorphism.
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Observe that we can efficiently evaluate ρJr at any point P of E whose order is coprime to 2.
This is because [2m]ρIr can be evaluated at P as it is a composition of the φ̂k, an integer linear
combination of the βk and then φk, all of which we can efficiently evaluate in terms of the size of
P . Set Q = [2m]ρIr(P ). Let N be the inverse of 2m modulo the order of P . Then [N ]Q = ρIr(P ).

Note that we can efficiently find v ∈ Bp,∞ such that vOR(I)v−1 = OR(J) [21]. If we want
to evaluate ρIr at a point P with P ∈ E[2f ], we will instead express vρIrv−1 as an integral linear
combination of ρJ1 , · · · , ρJ4 . We can evaluate each ρJ1 , · · · , ρJ4 at any point of order coprime to 3 by
the same argument.

Thus we can evaluate at arbitrary points P : if P has order 2fM with (2,M) = 1, then we can
write P as a sum of a point P2 of order 2f and PM of order M . We can then evaluate at P by
evaluating it at each summand with the two above strategies.

Now by computing the endomorphism ring of a supersingular elliptic curve with compact rep-
resentations, we mean the following problem.

Problem 3. (Compact Endomorphism Ring Problem) Given a prime p and a supersingular el-
liptic curve E/Fp2 , find a list of total length bounded by O(log p) of compact representations of
endomorphisms of E such that using this list, we can evaluate the corresponding endomorphisms
at points of E, and such that the corresponding endomorphism generate End(E) as a Z-module.

By Deuring’s correspondence (Theorem 4.1.9) between maximal orders in a quaternion algebra
and supersingular elliptic curves, an alternative way to compute the endomorphism ring is to find
the corresponding maximal order. However, this requires to construct such a maximal order with
a Z-basis. Hence, we also consider the following problem.

Problem 4. (Maximal Order Problem) Given a prime p, the standard basis for Bp,∞, and a
supersingular elliptic curve E/Fp2 , output vectors β1, β2, β3, β4 ∈ Bp,∞ that form a Z-basis of a
maximal order O in Bp,∞ such that End(E) ∼= O. In addition, the output basis is required to have
representation size polynomial in log p.

Indeed, we already discussed the other direction in the correspondence. Under GRH, Algorithm
5 solves the following problem.

Problem 5. (Constructive Deuring Correspondence) Given a maximal order O ⊂ Bp,∞, return a
supersingular j-invariant such that End(E(j)) ' O.

Note that the authors in [17] also refer to Maximal Order Problem as the “Inverse Deuring
Correspondence.”

6.2 Known reductions between the problems

Now, we give an overview of the reductions in [17] between the hard problems of supersingular
`-isogeny graphs. Let O0 be chosen as in Proposition 2.6.2. The reductions use the algorithms
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in [22, 19] to compute a representative of a class of left O0-ideals with a given norm N , where
N ≈ p7/2. The heuristics used in [22] can be summarized as saying that the distribution of outputs
of quadratic forms arising from the norm form of a maximal order in Bp,∞ is approximately like
the uniform distribution on numbers of the same size.

Lemma 6.2.1. There exists a probabilistic algorithm, for a given left O0-ideal I, which returns
another left O0-ideal in the same class as I of norm `e ≈ p7/2 for some integer e and some small
prime `. Under heuristic assumptions on randomness of representations of integers by quadratic
forms and uniform distributions of primes, the complexity of this algorithm is polynomial in log p.

Proof. See [22].

Recall that a number N =
∏
peii is S-powersmooth if peii < S for all i. The algorithm in Lemma

6.2.1 has a modification to construct representatives of powersmooth norms under similar heuristic
assumptions.

Lemma 6.2.2. There is a probabilistic algorithm, for a given left O0-ideal I, which returns another
left O0-ideal in the same class as I of norm

∏
peii ≈ p7/2 with peii < log p. Under heuristic assump-

tions on randomness of representations of integers by quadratic forms and uniform distributions of
primes, the complexity of this algorithm is polynomial in log p.

Proof. See [19].

The reductions in [17] would make the same heuristic assumptions depending on which algo-
rithms in Lemma 6.2.1 and Lemma 6.2.2 they use.

The reductions in [17] also require several other algorithms. To compute a random connecting
ideal of two given maximal orders in Bp,∞ of size polynomial in log p, we need the following.

Proposition 6.2.3. There is a algorithm, for given Eichler orders O,O′ of the same level, computes
a connecting ideal I with OR(I) = O and OL(I) = O′.

Proof. See [21, Algorithm 3.5].

We also need an algorithm translating O0-ideals to corresponding isogenies given by Deuring’s
correspondence.

Proposition 6.2.4. There exists an algorithm an algorithm which, given an left O0-ideal I of norm
N =

∏
peii with N = O(log p) and peii = O(log p), returns an isogeny corresponding to I through

Deuring’s correspondence. The complexity of this algorithm is polynomial in log p.

Proof. See [19, Lemma 5].

80



Proposition 6.2.5. There is an algorithm giving a reduction from Endomorphism Ring Problem
to Maximal Order Problem, which can be implemented to run in time polynomial in log p under
plausible heuristic assumptions.

Proof. We summarize the proof in [17].
Suppose we have an efficient algorithm for Maximal Order Problem. Given a supersingular j-

invariant j, Algorithm 4 in [17] returns four maps generating End(E(j)) of the form
∑4

i=1 cijφβiφ̂

N ,
where cij ∈ Z, φ : E0 → E(j) is an isogeny of powersmooth degree N , and βi are four maps
generating End(E0). Note that φ was obtained by computing a connecting ideal of maximal orders
O0 ' End(E0) and O ' End(E(j)) with powersmooth norm N using Proposition 6.2.2, and
then constructing φ using Proposition 6.2.4. Under heuristic assumptions as in Proposition 6.2.2,
Algorithm 4 runs in time polynomial in log p [17, Proposition 5].

Unlike the compact representation we defined in Definition 6.1.1, the four maps don’t have
`-power norm. However, we can still efficiently evaluate them at arbitrary points in E(j) using
Algorithm 5 in [17]. For the complexity analysis and the validation of Algorithm 5, see [17, Lemma
3].

The authors in [17] also presented an algorithm returning compact representations of four maps
forming a basis of the endomorphism ring of a given supersingular elliptic curve E in terms of
`-power isogenies. To give such compact representations, we need to know additional information
other than the solution to Maximal Order Problem, namely the actions of the maps on E[`] for
some small primes `, which can be summarized as follows.

Problem 6. (Action-on-`-Torsion) Given a prime p, a supersingular elliptic curve E/Fp2 , and
four elements {β1, β2, β3, β4} in a maximal order O ⊆ Bp,∞ such that there exists an isomorphism
θ : End(E)→ O, output eight pairs of points on E, (P1, Q1r), (P2, Q2r), r = 1, · · · , 4 such that P1, P2

form a basis for the `-torsion E[`] of E, and such that Q1r = θ−1(βr)(P1) and Q2r = θ−1(βr)(P2)
for r = 1, · · · , 4.

Proposition 6.2.6. There is an algorithm giving reductions from each of Path Finding Problem
and Endomorphism Ring Problem to Maximal Order Problem together with Action-on-`-Torsion.
Assuming ` = O(log p) and plausible heuristic assumptions, the algorithm runs in time polynomial
in log p and makes O(log p) queries of Maximal Order Problem and Action-on-`-Torsion

Proof. We summarize the proof in [17].
Suppose we have an efficient algorithm for Maximal Order Problem and Action-on-`-Torsion.

Algorithm 9 in [17] takes supersingular elliptic curves E,E′ over Fp2 with a prime ` 6= p as inputs
and return a chain of `-isogenies connecting E and E′.

Note that Algorithm 9, for two supersingular elliptic curves E and E′, first computes a con-
necting ideal I of O ' End(E) and O′ ' End(E′), whose norm is `e for some e = O(log p) using

81



Proposition 6.2.1. Suppose this ideal corresponds to an isogeny φ : E → E′ of degree `e under
Deuring Correspondence. To find a factorization φ = ψe ◦ · · · ◦ ψ1 into `-isogenies which are of
polynomial representation size, we find a factorization of the ideal I

I = Ie ⊆ Ie−1 ⊆ · · · ⊆ I1 ⊆ I0 = O

so that the isogeny corresponding to Ik is a map φk from E to some intermediate curve Ek of
degree `k and φk = ψk ◦ · · · ◦ ψ1. Indeed, we can take Ik = I + O`k. The ideal connecting the
maximal orders OR(IK) to OR(Ik+1) is Jk := I−1

k−1Ik, and this will correspond to ψk. We compute
ψk iteratively as follows; Suppose we have computed ψk, the curve Ek, and Jk+1 as above. We use
the oracle for Maximal Order Problem to find generators of Jk+1 as identified with endomorphisms
of Ek. On the other hand, Jk+1 corresponds to the isogeny ψk+1, whose kernel we compute using
the information from the oracle Action-on-`-Torsion. Then we can compute ψk+1 from its kernel
using Vélu’s formula. For full details of the algorithm with complexity analysis, see [17, Theorem
10].

To get a reduction from Endomorphism Ring Problem to Maximal Order Problem and Action-
on-`-Torsion, fix E = E0 so that End(E0) ' O0 as in Proposition 2.6.2 and use Algorithm 9 for
` = 2, 3. By Theorem 6.1.2, we have all necessary information to give compact representations of
generators of End(E′).

Since this algorithm uses Proposition 6.2.1, it has the same heuristic assumptions.

Proposition 6.2.7. Algorithm 6 in [17] gives a reduction from Maximal Order Problem to Endo-
morphism Ring Problem. Under plausible heuristic assumptions, the reduction can be implemented
to run in polynomial time.

Proof. For full details of the proof, see [17, Lemma 4, Lemma 5, Lemma 6, Lemma 7, and Propo-
sition 6].

Suppose we have an efficient algorithm that, for a given supersingular elliptic curve E, returns
four maps 1, α, β, γ generating End(E), in some format that allows efficient evaluation of the maps
at arbitrary points. Algorithm 6 constructs a sequence of linear transformations that map 1, α, β, γ
to four orthogonal maps 1, ι, λ, ιλ corresponding to 1, i, j, k ∈ Bp,∞. In Steps 4 and 7, the algorithm
requires easy factorization of the numerators and denominators of the reduced norm of the maps,
and applies a random invertible linear transformation to the four maps to find new maps satisfying
such conditions. It was heuristically assumed that the process of randomization ceases after a
number of steps that is polynomial in log p. Also, Step 5 requires an algorithm to solve some
diophantine equations, which heuristically runs in polynomial time. At the end, inverting and
composing all linear transformations to express 1, α, β, γ in the basis (1, ι, λ, ιλ) gives a basis of
O ⊆ Bp,∞.
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Proposition 6.2.8. Algorithm 7 in [17] gives a reduction from Path Finding Problem to Endo-
morphism Ring Problem. Under plausible heuristic assumptions, the reduction can be implemented
to run in polynomial time.

Proof. We summarize the proof in [17, Proposition 7].
We use the similar method used in Proposition 6.2.6. Suppose we have an efficient algorithm

computing the endomorphism ring of supersingular elliptic curves. For each of two given supersin-
gular j-invariants j, j′, we do the following; compute the endomorphism ring End(E(j)), and then
using Proposition 6.2.7, compute the maximal order O ' End(E(j)). Apply Proposition 6.2.1 to
compute an ideal J = O0α +O0`

e with norm `e. We find the filtration of ideals Ji = O0αi +O0`
i

for i = 0, · · · , e, compute an ideal Ki with powersmooth norm in the same class as Ji using
Proposition 6.2.2, and translate Ki into an isogeny φi : E0 → Ei. Then we get a sequence
(j0, j(E1), j(E2), · · · , j(Ee) = j(E)), which gives a path from E0 to j(E). Repeating this process
for another curve E(j′), and then concatenating two paths gives a path from E(j) to E(j′).

For the algorithm to run in polynomial time, it requires heuristic assumptions used in Propo-
sition 6.2.1 and Proposition 6.2.2.

Proposition 6.2.9. Algorithm 8 in [17] gives a reduction from Endomorphism Ring Problem to
Path Finding Problem. Under plausible heuristic assumptions, the reduction can be implemented
to run in polynomial time.

Proof. We summarize the proof in [17, Proposition 8].
Algorithm 8 requires the following heuristic assumption to randomly introduce endomorphisms

into the subring R in the loop in Step 2; given a suborder O′ of maximal order O such that O′ is
generated by loops in an `-isogeny graph, the probability that a randomly generated loop in the
graph is in O′ is inversely proportional to [O : O′].

Suppose the subring R has index N after adding some endomorphisms. Then any new randomly
generated endomorphism would lie in this subring with probability 1/N . Moreover when it does
not lie in the subring, the element will decrease the index by a non-trivial integer factor of N .

Note that we can generalize Algorithm 2 so that it will return a supersingular j-invariant whose
endomorphism ring is isomorphic to a general order O ⊆ Bp,∞ by using the connecting ideal of O0

and O.

Proposition 6.2.10. Given a prime p and a maximal order O ⊆ Bp,∞, Algorithm 5 computes a
supersingular j-invariant j such that End(E(j)) ' O.

Proof. See [17, Proposition 13].

We remark the problems considered in this last chapter are well studied for ordinary elliptic
curves as first treated by Kohel in [23]. Childs, Jao, and Soukharev [10] gave a quantum algorithm
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Algorithm 5: Constructive Deuring correspondence, from general maximal orders to j-
invariants.
input : Maximal order O ⊂ Bp,∞
output: Supersingular j-invariant j such that End(E(j)) ' O

1. Compute an ideal I that is a left ideal of O0 and a right ideal of O.

2. Compute an ideal J in the same class as I but with powersmooth norm.

3. Compute an isogeny φ : E0 → EI that corresponds to J via Deuring’s correspondence.

4. Return j(EI).

for constructing isogenies between ordinary elliptic curves, which is subexponential assuming GRH.
It was shown that their method yields a subexponential algorithm for computing endomorphism
rings of ordinary elliptic curves under GRH by Bisson [4]. Also, Bisson and Sutherland [5] gave
two algorithms for computing the endomorphism ring of ordinary elliptic curves which are subex-
ponential under suitable heuristic assumptions.
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