
December 11, 2002

Dr. Andrew Rawicz
School of Engineering Science
Simon Fraser University
Burnaby, British Columbia
V5A 1S6

Subject: Post Mortem for ENSC 340: Wireless EMG Electrodes

Dear Dr. Rawicz:

The document enclosed with this letter, Post Mortem for a Wireless EMG System, is an
outline of the technical and interpersonal experiences during ENSC 340. The goal of our
project was to develop a system to sense, acquire and wirelessly transmit muscle activity
data from a patient to a computer. Without wires limiting the patient’s freedom of
motion, this novel technology could revolutionize many aspects of rehabilitation,
diagnosis and research.

In this document we present the current state of the device, deviations from the original
specifications, and our future plans for the device. In addition, there is discussion on our
budget, time management and personal experiences.

Wireless Medical Devices was formed in June of 2002 by four highly skilled and
motivated Engineering Science students: Eric Chow, Aaron Ridinger, David Press, and
Andrew Pruszynski. We look forward to hearing your comments on our proposal. Please
feel free to contact us at wireless-medicaldevices@sfu.ca.

Sincerely,

Jedrzej (Andrew) Pruszynski
Chief Executive Officer
Wireless Medical Devices
Enclosure: Proposal for Wireless EMG Electrodes



Process Report for a Wireless EMG System
Project Team: Eric Chow
Dave Press
Andrew Pruszynski
Aaron Ridinger

Submitted To: Dr. Andrew Rawicz
Mr. Steve Whitmore

Revision Number: 1.0

Revision Date: December 13, 2002



1

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

Table of Contents
1.0 - INTRODUCTION ................................................................................................................................ 3

2.0 - CURRENT DEVICE............................................................................................................................ 4

2.1 – EMG Pad...................................................................................................................................... 4
2.2 – TGE Module ................................................................................................................................. 5
2.3 – Receiver Station............................................................................................................................ 6
2.4 – PC Software.................................................................................................................................. 8

3.0 – FUTURE PLANS................................................................................................................................. 9

3.1 – More TGEs ................................................................................................................................... 9
3.2 – New Chipcon Transceiver ............................................................................................................ 9
3.3 – Miniaturization............................................................................................................................. 9
3.4 – Acquire Other Biological Signals............................................................................................... 10
3.5 – Increased Battery Life ................................................................................................................ 10
3.6 – Fully Independent Wireless EMG............................................................................................... 10

4.0 – PERSONAL EXPERIENCE............................................................................................................. 10

4.1 – Andrew Pruszynski ..................................................................................................................... 10
4.2 – Eric Chow................................................................................................................................... 11
4.3 – David Press ................................................................................................................................ 11
4.4 – Aaron Ridinger........................................................................................................................... 12

5.0 – TIMELINE......................................................................................................................................... 13

6.0 – BUDGET............................................................................................................................................. 14

7.0 – CONCLUSION .................................................................................................................................. 15

APPENDIX.................................................................................................................................................. 16

Transmitter Microcontroller Code (Assembly) ................................................................................... 16
Receiver Microcontroller Code (Assembly) ........................................................................................ 23
PC Software (C) .................................................................................................................................. 32
PC Software (Matlab) ......................................................................................................................... 39



2

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

Acronyms

CMNR Common Mode Noise Rejection
DAQ Data Acquisition
ECG Electrocardiogram
EEG Electroencephalogram
EMG Electromyograph
GUI Graphical User Interface
iEMG Independent Electromyograph
ISM Industrial, Scientific, and Medical
I/O Input/Output
MUX Multiplexer
NRZ Non-Return to Zero
PC Personal Computer
PCB Printed Circuit Board
PCI Peripheral Card Interface
RSSI Received Signal Strength Indicator
TGE Transmitter and Ground Electrode
WMD Wireless Medical Devices



3

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

1.0 - Introduction

An Electromyograph is a recording of muscle activity used for rehabilitation, injury
prevention and performance enhancement. Unfortunately, current systems rely on the use
of restrictive wires and equipment that result in inaccurate and inconvenient diagnosis.
Applying wireless communications principles to Electromyography (EMG) will lead
directly to better diagnosis, research and rehabilitation. These advances have far-reaching
implications for corporations, insurance agencies, athletes and patients.

Over the past 15 weeks, our group has been dedicated to producing a wireless EMG
system that is capable of eliminating the restriction associated with current EMG
products. Our product, iEMG, is shown in Figure 1.1.

Figure 1.1 – Our Wireless EMG System

We have faced an enormous challenge to design, implement and document an extremely
complex system within tight budgetary and time constraints. Despite many long nights
with difficult trials and tribulations, we have been able to present a system that meets
every major technical objective we have set forth. It has been an exciting and very
rewarding project, one that makes each of our team members extremely proud.



4

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

2.0 - Current Device

Figure 2.1 presents a block diagram of the system that we have produced in fulfillment of
Engineering Science 340. We have produced a system that is capable of wirelessly
acquiring muscle activity from four EMG pads simultaneously. Dr. Ted Milner, an expert
EMG user, has confirmed these results.

Two EMG pads are associated with each TGE, which is responsible for providing ground
and power to each system component, sampling the muscle activity data from the pads
and transmitting the acquired data to the RS. The RS then receives the information,
formulates the data word, and passes it to the PC. The software on the PC is then capable
of displaying and recording the signals.

The following sections outline the current state of each sub-component in more detail.
 

Figure 2.1 – Block Diagram of Wireless EMG System

2.1 – EMG Pad
Dr. Ted Milner of Kinesiology who has been manufacturing the devices for his research
for several years provided the EMG pads. These pads are capable of acquiring the EMG
data, amplifying to useful amplitudes and proving the signal at the output. We had
initially stated in our Design Spec that we planned to run the pads off a +/- 3V supply,
which we hoped to produce using a stack of four hearing aid batteries.  We also knew that
they needed a ground referenced to elsewhere on the subject’s body to yield correct
operation.  However, we discovered that these pads required an input of +/-5V (even
though all the components in the pad should have been able to run off lower voltages,
which we were never able to explain).



5

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

2.2 – TGE Module
Each TGE module is capable of sampling and transmitting the muscle activity signal
from two EMG pads at a rate high enough to ensure that no data significant data is lost. A
block diagram of the TGE is presented in Figure 2.2.

Figure 2.2 – Block Diagram of the TGE Module

TGE Hardware

As mentioned, we initially planned on using a stack of hearing aid batteries to power the
TGE.  However, after discovering our need a total of 10V, we decided that would simply
require too many hearing aid batteries.  Thus we decided to use a DC-DC voltage
converter and a lower voltage battery.  We decided on a 3V lithium cell, which could
source enough current to run the EMG pads at over triple its own voltage, while still
having sufficient voltage to run the Chipcon transmitter and PIC microcontroller (which
require 2.7-3.3 Volts).

When we ran the power supply system as described above, we found that the voltage
converter drew enormous current spikes from the battery, which caused a voltage swing
of about 0.2 Volts in the battery’s output.  This proved to be too much variation for the
PIC to run properly.  Thus, we decided to draw the power for the PIC and Chipcon from
the 10V supply through a 3.3V regulator.  This was extremely power inefficient since the
Chipcon draws more current than all of the EMG hardware combined, but we faced no
other options short of purchasing more DC-DC converters to step the voltage down from
10V to 3.3V.

This method now allowed us to use batteries that supplied less than 3V (since the Maxim
DC-DC converters we used accepted supply voltages as low as 1.8V).  We then decided
to produce one TGE running off the 3V lithium cells we had already bought, and another
off of a pair of rechargeable AAA Ni-MH batteries.  The complete TGE including two
EMG pads drew 225 mA at a supply voltage of 2.8V, and this current requirement
increased as the input voltage to the DC-DC converter decreased.  We found that a single
lithium cell could run the TGE for 6 hours continuously, while the 2 AAA’s ran in for
slightly over 2.5 hours.

EMG Voltage 
Divider Buffer

EMG Voltage 
Divider Buffer

PIC Chipcon

microcontroller transmitter

EMG Voltage 
Divider Buffer

EMG Voltage 
Divider Buffer

PIC Chipcon

microcontroller transmitter



6

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

Several hardware components were designed to adjust the EMG signal before sending it
to the PIC Microcontroller for A/D conversion. The EMG signal varied between +10 and
0 volts, whereas the input to the PIC A/D converter needed to be between 3.3 and 0 volts.
A simple 2-resistor voltage divider was added to vary the EMG signal between 3.3 and 0
volts, and a buffer was added before the PIC A/D input to prevent the converter from
loading the circuit. The buffer was constructed using an OP-AMP in a negative feedback
configuration. Initially a generic TLO72 opamp chip was used, but we found that the
negative rail wasn’t close enough to 0 volts, the negative power supply. To ensure the
complete range down to zero volts, a rail-to-rail opamp was used.

We also faced some choices with regards to the transmitter antenna.  After experimenting
with various loops of wire, as well as integrated helical and loop antennas from Antenna
Factor, we decided on a small helical antenna called the Antenna Factor JJB.

TGE Firmware

The firmware running on the TGE PIC is much the same as we had initially planned.
Essentially, it samples the two A/D channels once per millisecond, and sends the samples
to the Receiver Station.

We initially had hoped to use NRZ format data encoding, which allowed a maximum
data rate of 76.8 kB/s.  This allowed us to send every data sample twice, with a
checksum, to reduce data errors.  We also needed to send an identifier byte every
millisecond before sending a set of data samples so the receiver would be able to
synchronize to the incoming data stream.  We found that errors in this start byte were
much more catastrophic than in the data itself.  Thus, the redundant data did little to help
the overall sample error rate.  The data rate wasn’t high enough to send the samples twice
in two separate packets with separate identifier bytes.

Thus, we decided to switch to Manchester encoding, which offered a lower data rate of
38.4 kB/s, but higher receiver sensitivity and thus fewer bit errors.  Since each data
sample was only sent once, there was no need for checksums, so we could just barely fit
each packet into the allotted 1 millisecond time slot.

2.3 – Receiver Station

The RS is capable of receiving data from up two TGE modules, formulating the correct
data structure and communicating this to the PC. A block diagram of the RS is presented
in Figure 2.3.



7

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

Figure 2.3 – Block Diagram of the Receiver Station

Receiver Firmware

The receiver station firmware is very similar to that described in the Design
Specification.  It syncronizes its USART to the incoming data by looking for the packet
identifier byte.  It then simply reads the incoming data, reads the A/D conversion from
the Chipcon’s RSSI pin, and forms the two output words (one for each sample. Each of
these 20-bit data words is then latched into a set of D flip-flops. These latches ensure that
the data is kept constant while the microcontroller switches between the two EMG
Channels

One minor deviation from our original plans was the format of the output word, which is
shown below in Figure 2.4.  The incrementing ID bits are simply incremented by the PIC
every time it updates the output word.  This was necessary since the PC oversamples
these output words, so it can simply compare the top nibble of every word it reads, and
disregard the word if the incrementing ID is the same as the previous one from that
particular EMG channel.

PIC 20
20

20

Latches

PIC 20
20

20

MUX
20

C1 C2

Select Lines 
From PC

PICPIC 20
20

20

Latches

PICPIC 20
20

20

MUX
20

C1 C2

Select Lines 
From PC



8

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

20-Bit Data
4 Bits 12 Bits 4 Bits

Incrementing ID EMG Data Signal Strength
Figure 2.4 – Format of Output Word

The output of the latches is connected to multiplexing circuitry that is controlled by the
PC DIO Card for use by the software.

We chose to build the RS using spaghetti board rather than design a PCB to save time
and money.  We felt that a multi-layer PCB would be more difficult to fix if we
discovered problems, and when we change the design of the receiver station to handle
more TGEs the PCB would have to be redesigned anyways.

The receive side microcontroller source code is presented in the Appendix.

2.4 – PC Software

The PC software serves three major purposes. First, it allows the user to graphically
observe the incoming data in real-time. Secondly, the incoming data can be recorded for
future analysis. Lastly, some Matlab code was written to allow the import and
observation of the acquired data signal.

Real-time graphical observation allows the user to correctly setup the EMG electrodes by
ensuring correct pad placement and amplification. In addition, the user is shown the
signal strength indicator (via RSSI) from each of the transmitting TGEs. This visual
representation of receive signal strength lets the operator decide if the incoming signal
strength is enough to ensure data consistency.

After the system has been verified graphically and the user is satisfied with the
experimental setup, the data acquisition feature can be used to save muscle activity data.
When the user begins data acquisition, the system will record the data from each EMG
pad into an individual binary data file. The code has been written in such a way that
ensures that no data points are lost and that no data points are saved twice.

The Matlab code was written to take advantage of the pre-fabricated GUI interface. More
importantly, the ability to import our data files into Matlab is extremely important for the
end users who will most likely be performing their data analysis within this software
environment. Since our sampling at the TGE is very synchronous, we can provide the
user with an accurate time-scale for the data stream. In addition, we can guarantee that
this time scale applies to all the EMG signals recorded in each trial. These are very
important features for the user.

We initially planned on a windows based GUI application for our PC software but after
looking into the requirements and talking with people who have done similar programs,
we decided that for this project a windows based GUI would not work.  One of the main



9

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

reasons was to have a fast enough sampling time, we had to run the program in DOS
because there was too much overhead for the API in windows.  To be able to operate in
windows, it is estimated that it would take an entire semester of work to write the
appropriate device drivers and other software.

The source code for the C-based application software and the Matlab file for data analysis
are included in the Appendix.

3.0 – Future Plans

The future for this product is extremely bright. It is ahead of the competition in terms of
technology and could be produced for a much lower product price. In order to improve
our market position and increase our technological advantage, there are several
developments we are planning to make. The following sections outline these changes.

3.1 – More TGEs
Our most pressing issue is to expand the number of TGEs we currently have built. This
does not require a redesign of our system, it simply requires manual labour and money to
assemble more units. We would also have to expand the receiver station to handle the
additional incoming data. The software is already designed to handle more TGE units. By
making all the additional hardware, we will be capable of operating a maximum of 8
TGEs supporting up to 16 EMG pads without any significant system design changes.

3.2 – New Chipcon Transceiver
Chipcon, our supplier of wireless ISM band transceivers has just announced the release of
a new transceiver. This product will be able to handle a higher data rate which would
allow us to connect more EMG pads to a single TGE or send each sample twice for
redundancy and error checking. The new transceiver is also designed specifically for
narrow-band operation. This would allow us to fit more TGEs onto the 915MHz ISM
band.

3.3 – Miniaturization
A critical body of work remains to place the design onto a PCB. We decided to avoid this
for the purpose of this project to maximize our ability to debug the product and save time
and money. Designing a PCB would have many significant effects on the product. Most
importantly it would reduce the size and weight of the product. We estimate that a final
PCB of the TGE would create a final size of 1.5” by 1.5”. A design for the RS would also
create a more compact and reliable package. Product miniaturization is critical to creating
an unobtrusive and high quality product.



10

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

3.4 – Acquire Other Biological Signals
There are many other biological signals that fall within the same characteristics as EMG
in terms of frequency range. Our product has been designed from the very beginning to
be capable of handling these other biological signals.  We can transmit any signal from
DC to 500 Hz, and both ECG and EEG are much lower than this limit.  We have yet to
test this feature and it would be extremely interesting and important to develop our ability
to transmit ECG, EEG, and other patient monitoring signals via the same hardware setup.

3.5 – Increased Battery Life
Our current battery life of 2.5 hours on two rechargeable NiMH batteries and 6 hours on
one non-rechargeable lithium is appropriate for EMG data acquisition applications.
However, as our system is adapted to other signals, we need to investigate increasing this
battery life to 24 hours on rechargeable batteries. There are several options that must be
investigated. First, a different hardware solution on the TGE could eliminate waste due to
heat by eliminating voltage regulators.  We could use two separate DC-DC converters,
one to produce 10V and the other to produce 3.3V.  This would cut the current
consumption of the TGE by a factor of two, more than doubling our battery lifetime.
Secondly, there exist proprietary battery technologies that may be better suited in terms
of power, size and weight to deliver power to the system.

3.6 – Fully Independent Wireless EMG
The initial goal of our system was to have absolutely no wires on the body.
Unfortunately, the pads that were provided by Dr. Ted Milner required an external
ground to work properly because of the internal operation of a differential amplifier.
Therefore, one major goal is to redesign the EMG pad such that it can be used without the
TGE. In this setup the transmitting would be done from each EMG pad directly,
eliminating all the wires on the system. Currently, Aaron Ridinger is investigating the
opportunity to develop such an EMG pad as his undergraduate thesis.

4.0 – Personal Experience

4.1 – Andrew Pruszynski
Developing this project has been one of the most rewarding, enjoyable and often
frustrating experiences of my education. I have learned many technical and interpersonal
skills that I will undoubtedly use for the rest of my life.

From a technical point of view, I have combined all the knowledge that I have gathered
from my coursework and coop experience. We have been able to create something from
only an idea. I developed the C based software which built on my experiences while
working in the Biomechanics Laboratory and Ballard. I designed and manufactured the
mother of all spaghetti boards that required digital design knowledge and all the soldering
skills and patience that have been developed over the past four years. More important



11

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

then any single discreet contribution to the project was the endless debugging to figure
out what was wrong and how to fix it. This has taught me that what is wrong is often the
most simple thing, so simple that hours may be spent rejecting it as a possibility.

We have completed a large and difficult task and I am extremely happy with the final
outcome, the personal experience associated with getting there and the technical
knowledge that I have gained.

4.2 – Eric Chow
This project has shown me that many hours of research and development must go into a
product in order to ensure a high quality end result. The project required us to work on all
aspects of a product design, including research, hardware/software design, assembly and
testing, purchasing and finances, and documentation.

The technical skills I have learned from other courses and jobs enabled me to contribute
to the technical design of our project. Notable skills included hardware design, radio
frequency communications, and basic electronics laboratory skills.

My contribution to the team was primarily focused on the research of a suitable RF
transmitter/receiver pair and the TGE hardware design. In addition, I worked on building
the prototype and assisted in the microcontroller firmware development.

In working with Andrew, Dave, and Aaron, I have realized the importance of good
communication within a group to ensure good team dynamics. Our weekly meetings
helped keep the group on track, and although tasks were divided among us we made sure
to that everyone was kept up to date on the status of the project.

I see our product as having great market potential as well as research potential, and I
hope to continue work with this product and this group in the future.

4.3 – David Press
I found this project both incredibly frustrating and incredibly rewarding. I have gained
many skills and experiences that will aid me throughout my career.

Perhaps the most valuable single thing I learned is that when working on a project of this
magnitude, not everything can be perfect. There were many times near the beginning
when I would spend many hours perfecting a small aspect of the project. Towards the
end, I learned that sometimes ‘good enough is good enough’, which is a huge step for me
as I am known as a bit of a perfectionist.

My main contribution to this project was the firmware and transmission protocols for
transmitting the data wirelessly. This was the first time I had picked up the manual for a
completely unfamiliar microcontroller, and needed to learn every minute detail and quirk
of its operation. I feel much more comfortable that I could do the same again if need be. I



12

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

also gained a lot of experience in haggling and hounding parts suppliers for lower prices
and rushed shipping. I had to communicate frequently with design engineers at Chipcon
in Norway, which proved to be an interesting cultural and logistical challenge.
Overall, I am very pleased that the enormous effort we put into this project early on
allowed us to accomplish our ambitious goals with time left to spare at the end of the
semester.

4.4 – Aaron Ridinger
By working on this project I have further developed my technical, problem solving and
interpersonal skills.  I enjoyed both the technical aspects and team dynamics of this
project.

New the beginning of this project I learned the many different possibilities of interfacing
a PC with external devices such as USB, PCI, ISA, Firewire, and made a decision on
which would work best for our project based on function and price. By working on the
PC software I re-familiarized myself with programming in C, and utilized the Matlab
skills I gained through past course work.  Near the completion of the project I designed
the TGE hardware and assembled it, which required me to recall my soldering skills I
learned in high school.

Through this project and other course work this semester, I have discovered that I really
don’t want to design IC chips, as I initially planned on when I started studying
engineering, but rather work in an area developing products to meet certain needs and
solve specific solutions. After completing this project I now have an interest in bio-
medical engineering.  In the future I plan on doing a directed studies course in the area of
EMG and mostly likely a thesis on the redesign of the EMG pad to eliminate the ground
reference strap.  



13

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

5.0 – Timeline

Figure 5.1 presents the original timeline as included in the project proposal.

Figure 5.1 – Original Gantt Chart

It is very interesting to note that we met each of our target milestone dates. We made a
significant effort to be ahead of schedule because we feared a large drain on our exam
performance if too much ENSC340 work was left into the final weeks as originally
planned. Thus, most of the difficult work was done very early in November, with a
functioning prototype existing three weeks earlier then predicted. This allowed us several
weeks to debug the system and focus our attention on assembly and testing.

ID Task Name Start End
Sep 2002 Oct 2002 Nov 2002 Dec 2002

8/25 9/1 9/8 9/15 9/22 9/29 10/6 10/13 10/20 10/27 11/3 11/10 11/17 11/24 12/1 12/8

1 13/09/200226/08/2002Proposal

3 30/09/200226/08/2002Research

6 14/10/200216/09/2002Functional Specification

4 25/10/200202/09/2002Material Collection

11 01/11/200211/10/2002Design Specification

10 14/11/200204/10/2002Initial Prototype Build

13 25/11/200206/11/2002Prototype Testing

15 04/12/200221/11/2002Prototype Revision

19 13/12/200226/08/2002Document and Website Maintanance

17 16/12/200229/11/2002Post Mortem Report

8 10/10/200220/09/2002Initial Design Specification

5 08/10/200208/10/20021st Progress Report Completed

7 14/10/200214/10/2002Functional Specification Completed

12 01/11/200201/11/2002Design Specification Completed

14 29/11/200229/11/20022nd Progress Report Completed

16 04/12/200204/12/2002Product Prototype Completed

18 13/12/200213/12/2002Final Documentation Completed

2 13/09/200213/09/2002Proposal Completed

9 21/10/200221/10/2002Design Specifications Finalized



14

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

6.0 – Budget

We applied and received a total of $1500 of funding from the Wighton Fund and the
ESSEF. A condensed spreadsheet outlining our expenses over the course of the semester
is presented in Table 6.1.

Date Description Cost ($CDN)
12/07/2002Batteries $20.13
12/07/2002Batteries $11.43
11/28/2002Antennas $50.03
11/30/2002Op-amps, Voltage Regulators $16.00
11/27/2002EMG connectors $3.37
11/19/2002DC-DC converter, voltage step up $128.00
10/14/2002Transceivers $329.60
11/06/2002Chipcon shipping $177.14
10/21/2002PCI I/O card $176.55
10/01/2002PICs, Lynx Transmitter, Receiver $181.47
11/06/2002Oscillators, PICs, transmitter, receiver, UV Eraser $266.97
10/17/2002Chipcon initial shipping $17.79
11/08/2002Oscillators, multiplexers, Flip-Flops, PICs, PC board $127.02
09/30/2002Phone card $5.00
11/13/2002Phone card $5.00
11/16/2002PC Board, switches $17.14
11/07/2002Batteries $37.02

 Total Expenses $1,569.66
Table 6.1 – Simplified Table of All Expenses

It should be noted that we would be well within out budget if not for an unnecessary
shipping charge due to miscommunication with the Engineering Science Office Staff.
This mistake cost us $177 as our ordered product made several trips across the Atlantic
Ocean. In addition, we compared competing transmitter technologies for a cost of $200.
We will also be able to return approximately $300 worth of components back to the
School of Engineering Science for future use. With these notes in mind, Table 6.2
presents the cost of producing the final prototype for the course.

Item Unit Cost Units Total cost
Batteries $15.77 1 $15.77
Batteries $7.86 1 $7.86
Batteries $9.97 1 $9.97
PC Board $5.99 2 $11.98
Switches $2.99 1 $2.99
PCI-I/O Card $142.00 1 $142.00
20MHz Oscillator $1.94 4 $7.76
Dual 4 input multiplexer $1.19 12 $14.28
D Flip-Flop $1.39 12 $16.68
28 pin PIC16C773 $18.99 2 $37.98
40 pin PIC16C774 $23.48 2 $46.96



15

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

PC Board $10.53 1 $10.53
8MHz Oscillator $1.94 4 $7.76
Transceivers CC1000PP 868MHz $64.00 4 $256.00
DC-DC converter, voltage step up $56.00 2 $112.00
EMG female connectors $1.27 1 $1.27
EMG male connectors $1.67 1 $1.67
Op-amp 7805UC?? $4.99 1 $4.99
Voltage Regulator LMC660CN??? $4.49 2 $8.98
Antenna 916MHz 1/4 wave $10.18 2 $20.36
Antenna mini 7mm, 916MHz $3.16 2 $6.32
Battery Holder $2.75 2 $5.50
Batteries $9.98 1 $9.98
Batteries $2.59 1 $2.59
Batteries $14.99 1 $14.99

Total Component Expenses $777.17
Table 6.2 – Single Prototype Cost

We were able to produce a very complicated system without going significantly over
budget. In fact, if not for an unexpected shipping cost and an extended evaluation of
competing technologies, we would be well within our budgetary constraints.

7.0 – Conclusion

The past semester has been difficult, frustrating, tiring and most importantly rewarding
for all the members of WMD. We have faced an enormous challenge to design,
implement and document an extremely complex system within tight budgetary and time
constraints. Despite many long nights with difficult trials and tribulations, we have
succeeded. We now look into the future to see how to further improve our device and
transform it from a project to a product.



16

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

Appendix

Transmitter Microcontroller Code (Assembly)

list p=16c773 ; list directive to define processor
#include <p16c773.inc> ; processor specific variable definitions

__CONFIG _CP_OFF & _WDT_ON & _BODEN_ON & _PWRTE_ON & _RC_OSC & _VBOR_25

; '__CONFIG' directive is used to embed configuration data within .asm file.
; The lables following the directive are located in the respective .inc file.
; See respective data sheet for additional information on configuration word.

;***** VARIABLE DEFINITIONS
w_temp EQU 0x70 ; variable used for context saving
status_temp EQU 0x71 ; variable used for context saving
LAST_RES_0L EQU 0x72
LAST_RES_0H EQU 0x73
LAST_RES_1L EQU 0x74
LAST_RES_1H EQU 0x75
OUR_STAT EQU 0x76 ; bit0 = done A/D, bit1 = last timer type, bit2 = calc
bytes out

w_prog_status EQU 0x77
byte_to_write EQU 0x78
num_bytes_written EQU 0x79
next_byte_out EQU 0x7A

dummy EQU 0x20
dummy2 EQU 0x21
byte0 EQU 0x22
byte1 EQU 0x23
byte2 EQU 0x24
byte3 EQU 0x25
checksum EQU 0x26

out0 EQU 0x27
out1 EQU 0x28
out2 EQU 0x29
out3 EQU 0x2A

num_bytes_written_2 EQU 0x2B

w_temp_2 EQU 0x2C
status_temp_2 EQU 0x2D

DONE_AD EQU 0
LAST_TIMER_TYPE EQU 1
CALC_BYTES_OUT EQU 2
PREAMBLE_MODE EQU 3
SEND_BYTE EQU 4
IS_ZERO EQU 5
SEND_FILLER EQU 6
t70us EQU 0
t930us EQU 1

;**********************************************************************
ORG 0x000 ; processor reset vector
clrf PCLATH ; ensure page bits are cleared
goto main ; go to beginning of program

ORG 0x004 ; interrupt vector location
movwf w_temp ; save off current W register contents
movf STATUS,w ; move status register into W register



17

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

movwf status_temp ; save off contents of STATUS register

; isr code can go here or be located as a call subroutine elsewhere
;;;;;;; BEGIN ISR ;;;;;;;;;;;;;;;
isr

bsf STATUS, RP0 ; page 1

btfss INTCON, T0IF
goto int_was_USART

;;; int for timer

btfss OUR_STAT, LAST_TIMER_TYPE
goto was_70us

; last timer was 930 us

bcf STATUS, RP0 ; page 0
movlw 0xEE
movwf TMR0 ; set timer to overflow in 70 us

bsf PORTA, 2

bsf ADCON0, CHS0 ; set next A/D to ch1

movf ADRESH, W ; get ch0 result
movwf LAST_RES_0H
bsf STATUS, RP0 ; page 1
movf ADRESL, W
movwf LAST_RES_0L
bcf OUR_STAT, LAST_TIMER_TYPE ; last timer now was 70!

goto finish_timer_isr

was_70us bcf STATUS, RP0 ; page 0
movlw 0x24
movwf TMR0 ; set timer to overflow in 930 us
bcf ADCON0, CHS0 ; set next A/D to ch0

movf ADRESH, W ; get ch1 result
movwf LAST_RES_1H
bsf STATUS, RP0 ; page 1
movf ADRESL, W
movwf LAST_RES_1L

bsf OUR_STAT, LAST_TIMER_TYPE ; last timer was 930
bsf OUR_STAT, CALC_BYTES_OUT

finish_timer_isr
bcf INTCON, T0IF ; reset the timer0 interupt flag

bcf STATUS, RP0 ; page 0
bsf ADCON0, GO_DONE ; start A/D conversion

btfsc OUR_STAT, LAST_TIMER_TYPE
goto end_isr

; last timer was 930 us, update the out0..out3
movf byte0,W
movwf out0
movf byte1,W
movwf out1
movf byte2,W
movwf out2

bcf PORTA, 2

btfsc OUR_STAT, PREAMBLE_MODE
goto end_isr



18

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

movlw 0x01
movwf num_bytes_written

goto end_isr

int_was_USART

bcf STATUS, RP0 ; page 0
btfss OUR_STAT, PREAMBLE_MODE
goto send_data

send_out_preamble

incf num_bytes_written, F
movf num_bytes_written, W

sublw 0xFF
btfsc STATUS, Z
goto end_preamble
movlw 0x55
movwf TXREG
goto end_isr

end_preamble
bcf OUR_STAT, PREAMBLE_MODE
movlw 0x55
movwf TXREG
movlw 0x00
movwf num_bytes_written
bsf OUR_STAT, SEND_FILLER
clrf num_bytes_written
goto end_isr

send_data

movlw 0x80

btfsc num_bytes_written, 1
movf out0, W
btfsc num_bytes_written, 2
movf out1, W
btfsc num_bytes_written, 3
movf out2, W
btfsc num_bytes_written, 4
movlw 0x55

write_to_txreg
movwf TXREG

bcf STATUS, C
btfss num_bytes_written, 4
rlf num_bytes_written, F

goto end_isr

;;;;;;;;; END OF ISR CODE;;;;;;;;;
end_isr

movf status_temp,w ; retrieve copy of STATUS register
movwf STATUS ; restore pre-isr STATUS register contents
movf w_temp, w
retfie

;;;;;;;;;; END OF ISR ;;;;;;;;;;;;;;;

main
;;;;;; setup ;;;;;;;;;

bcf STATUS, RP1 ; access page 1
bsf STATUS, RP0

clrf num_bytes_written
movlw 0x08
movwf OUR_STAT
movlw 0x55
movwf next_byte_out

movlw 0x8D ; setup analog/digital IO PA0,PA1 analog
movwf ADCON1



19

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

movlw 0x03 ; PA7..PA2 output PA0, PA1 input
movwf TRISA

movlw 0x00
movwf TRISB ; PORTB outputs

movlw 0x50
movwf TRISC ; PC 6,4 input, rest output

movlw 0x02 ; pull ups enabled, int on rise edge, internal clock
for timer0, prescaler to timer0, 1:8 prescaler (Fosc/32)

movwf OPTION_REG

movlw 0x40 ; initialize SSPSTAT
movwf SSPSTAT

movlw 0x32 ; initialize USART
movwf TXSTA

bsf PIE1, TXIE ; enable USART transmit interupt

bcf STATUS, RP0 ; access page 0

movlw 0x80
movwf RCSTA

movlw 0x30 ;
movwf SSPCON ; enable SPI! must be after SSPSTAT has been written

movlw 0x81 ; A/D TOsc/32, AN0, No Conversion Complete, On
movwf ADCON0

movlw 0x55 ; put something in USART tx reg
movwf TXREG

call config_CC1000_TX

movlw 0xE0 ; global interupt on, , timer0 int on, , ,
movwf INTCON

loop
btfss OUR_STAT, CALC_BYTES_OUT
goto loop

; just got out of 70us interupt, calculate the next message bytes
bcf STATUS, RP0 ; page 0

movf LAST_RES_0H, W
; movlw 0x12 ; REMOVE THIS!!!

andlw 0x0F
movwf byte0
movf LAST_RES_0L, W

; movlw 0x34 ; REMOVE THIS!!!
movwf byte1

movf LAST_RES_1H, W
; movlw 0x56 ; REMOVE THIS!!!

andlw 0x0F
movwf byte2
movf LAST_RES_1L, W

; movlw 0x78 ; REMOVE THIS!!!
movwf byte3

; make byte 0
swapf byte0, F

swapf byte1, W
andlw 0x0F
iorwf byte0, F

; make byte 1



20

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

swapf byte1, F
movlw 0xF0
andwf byte1, F

movf byte2, W
andlw 0x0F
iorwf byte1, F

; make byte 2
movf byte3, W
movwf byte2

end_calc
bcf OUR_STAT, CALC_BYTES_OUT

goto loop

;;;;;;;;;;;;;;; SUBROUTINES ;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;
w_prog_addr

movwf byte_to_write
movf STATUS, W
movwf w_prog_status

bcf STATUS, RP0
bcf STATUS, RP1 ; page 0

bcf PORTC, 2 ; clear PALE

movf w_prog_status, W
movwf STATUS
movf byte_to_write, W

w_prog_data
;;; writes a byte to prog CC1000 thru SPI

movwf byte_to_write
movf STATUS, W
movwf w_prog_status ; save the current status

bcf STATUS, RP0 ; page 0
bcf STATUS, RP1

movf byte_to_write, W
movwf SSPBUF

bsf STATUS, RP0 ; page 1
wait_for_SPI_0 btfss SSPSTAT, BF ; wait for the byte to be written to SPI

goto wait_for_SPI_0

bcf STATUS, RP0 ; page 0
bsf PORTC, 2 ; set PALE high

movf w_prog_status, W
movwf STATUS
return

;;;;;;;;;;;;;;;;;;;;;;;
r_prog

;;;;; reads a byte from CC1000 thru SPI
;;;;; returns byte in W reg
movf STATUS, W
movwf w_prog_status ; save the current status

bcf STATUS, RP1
bsf STATUS, RP0 ; page 1

bsf TRISC, 5 ; set PC5 (Data out) to input

bcf STATUS, RP0 ; page 0

movwf SSPBUF ; write random crap from W

bsf STATUS, RP0 ; page 1
wait_for_SPI_1 btfss SSPSTAT, BF ; wait for the byte to be written to SPI



21

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

goto wait_for_SPI_1

bcf TRISC, 5 ; set PC5 to output

movf w_prog_status, W
movwf STATUS
return

;;;;;;;;;;;;;;;;;
wait_500us

clrf dummy
wait1 incf dummy

btfss STATUS, Z
goto wait1
return

;;;;;;;;;;;;;;;;;

config_CC1000_TX
; make the transmit wake up later than the rx

clrf dummy2
wait3 call wait_500us

incf dummy2
btfss STATUS, Z
goto wait3

movlw CC1000_MAIN_W
call w_prog_addr
movlw 0x3A
call w_prog_data

movlw CC1000_MAIN_W
call w_prog_addr
movlw 0x3B
call w_prog_data

call wait_500us
call wait_500us
call wait_500us
call wait_500us
call wait_500us

movlw CC1000_FREQ_2A_W
call w_prog_addr
movlw 0x5B
call w_prog_data
movlw CC1000_FREQ_1A_W
call w_prog_addr
movlw 0xA3
call w_prog_data
movlw CC1000_FREQ_0A_W
call w_prog_addr
movlw 0x13
call w_prog_data

movlw CC1000_FREQ_2B_W
call w_prog_addr
movlw 0x5B
call w_prog_data
movlw CC1000_FREQ_1B_W
call w_prog_addr
movlw 0xA3
call w_prog_data
movlw CC1000_FREQ_0B_W
call w_prog_addr
movlw 0x13
call w_prog_data

movlw CC1000_FSEP1_W
call w_prog_addr
movlw 0x01
call w_prog_data
movlw CC1000_FSEP0_W
call w_prog_addr
movlw 0xAB
call w_prog_data



22

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

movlw CC1000_CURRENT_W
call w_prog_addr
movlw 0xF3
call w_prog_data

movlw CC1000_FRONT_END_W
call w_prog_addr
movlw 0x32
call w_prog_data

movlw CC1000_PA_POW_W ; set PA_POW to zero for calibration
call w_prog_addr
movlw 0x00
call w_prog_data

movlw CC1000_PLL_W
call w_prog_addr
movlw 0x30
call w_prog_data

movlw CC1000_LOCK_W
call w_prog_addr
movlw 0x10
call w_prog_data

movlw CC1000_MODEM2_W
call w_prog_addr
movlw 0xC2
call w_prog_data
movlw CC1000_MODEM1_W
call w_prog_addr
movlw 0x6F ; was 13, keep at 6F
call w_prog_data
movlw CC1000_MODEM0_W
call w_prog_addr
movlw 0x54
call w_prog_data

movlw CC1000_MATCH_W
call w_prog_addr
movlw 0x10
call w_prog_data

movlw CC1000_FSCTRL_W
call w_prog_addr
movlw 0x01
call w_prog_data

movlw CC1000_PRESCALER_W
call w_prog_addr
movlw 0x00
call w_prog_data

movlw CC1000_TEST6_W
call w_prog_addr
movlw 0x10
call w_prog_data

movlw CC1000_TEST5_W
call w_prog_addr
movlw 0x08
call w_prog_data

movlw CC1000_TEST4_W
call w_prog_addr
movlw 0x3F
call w_prog_data
movlw CC1000_TEST3_W
call w_prog_addr
movlw 0x04
call w_prog_data
movlw CC1000_TEST2_W
call w_prog_addr
movlw 0x00
call w_prog_data
movlw CC1000_TEST1_W
call w_prog_addr
movlw 0x00
call w_prog_data
movlw CC1000_TEST0_W



23

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

call w_prog_addr
movlw 0x00
call w_prog_data

; begin calibration
movlw CC1000_CAL_W
call w_prog_addr
movlw 0x66
call w_prog_data

movlw CC1000_MAIN_W
call w_prog_addr
movlw 0xA1
call w_prog_data

call wait_500us
call wait_500us
call wait_500us
call wait_500us
call wait_500us

movlw CC1000_CURRENT_W
call w_prog_addr
movlw 0xF3
call w_prog_data

movlw CC1000_CAL_W
call w_prog_addr
movlw 0xE6
call w_prog_data

clrf dummy2
wait2 call wait_500us

incf dummy2
btfss STATUS, Z
goto wait2

movlw CC1000_CAL_W
call w_prog_addr
movlw 0x66
call w_prog_data

; end calibration

movlw CC1000_PA_POW_W
call w_prog_addr
movlw 0xFF
call w_prog_data

call wait_500us

return

END ; directive 'end of program'

Receiver Microcontroller Code (Assembly)

list p=16c774 ; list directive to define processor
#include <p16c774.inc> ; processor specific variable definitions

__CONFIG _CP_OFF & _WDT_ON & _BODEN_ON & _PWRTE_ON & _RC_OSC & _VBOR_25

; '__CONFIG' directive is used to embed configuration data within .asm file.
; The lables following the directive are located in the respective .inc file.
; See respective data sheet for additional information on configuration word.

;***** VARIABLE DEFINITIONS



24

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

w_temp EQU 0x70 ; variable used for context saving
status_temp EQU 0x71 ; variable used for context saving
RSSI EQU 0x72
DATA0 EQU 0x73
OUR_STAT EQU 0x74 ; bit0 = done A/D

w_prog_status EQU 0x75
num_match_bytes EQU 0x76
our_state EQU 0x77
byte_to_write EQU 0x78

dummy EQU 0x20
dummy2 EQU 0x21

byte_num EQU 0x22
byte0 EQU 0x23
byte1 EQU 0x24
byte2 EQU 0x25
byte3 EQU 0x26
byte4 EQU 0x27
byte5 EQU 0x28
byte6 EQU 0x29
byte7 EQU 0x2A

checksum1 EQU 0x2B
checksum2 EQU 0x2C
checksum3 EQU 0x2D
checksum4 EQU 0x2E

num_times_waited EQU 0x2F

in0 EQU 0x30
in1 EQU 0x31
in2 EQU 0x32
in3 EQU 0x33
in4 EQU 0x34
in5 EQU 0x35
in6 EQU 0x36
in7 EQU 0x37

out1B EQU 0x38
out1D EQU 0x39
out1A EQU 0x3A
out2B EQU 0x3B
out2D EQU 0x3C
out2A EQU 0x3D
counter EQU 0x3E
header EQU 0x3F

; OUR_STAT bits
WAIT_FOR_SB EQU 0
DO_CALC EQU 1
samp1a_bad EQU 2
samp2a_bad EQU 3
samp1b_bad EQU 4
samp2b_bad EQU 5

; our_state words

WAIT_FOR_SYNC EQU 0x04
SYNC_ EQU 0x08

;**********************************************************************
ORG 0x000 ; processor reset vector
clrf PCLATH ; ensure page bits are cleared
goto main ; go to beginning of program

ORG 0x004 ; interrupt vector location
movwf w_temp ; save off current W register contents
movf STATUS,w ; move status register into W register
movwf status_temp ; save off contents of STATUS register

; isr code can go here or be located as a call subroutine elsewhere
;;;;;;; BEGIN ISR ;;;;;;;;;;;;;;;
isr



25

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

bcf STATUS, RP0 ; page 0

int_was_USART

movf RCREG, W

movwf DATA0
btfsc our_state, 3
goto get_data

wait_sync

bcf STATUS, RP0 ; page 0
bcf RCSTA, SPEN ; disable the USART

start_count
clrf dummy

count_this
incf dummy,F

; nop ; was a nop here, but it fucks things
up!!! cant lock when initial message is all 0 or all 1 for some reason!

btfss PORTC,7
goto count_this
btfss dummy, 5 ; must get thru this loop 64 times to be the start

byte
goto start_count

movlw SYNC_
movwf our_state
clrf OUR_STAT

nop
nop
nop
nop
nop
nop
nop
nop

movlw 0x00
movwf dummy

gohere
incf dummy, F
btfss dummy, 3
goto gohere

bcf RCSTA, CREN ; clear an overrun if there was one
movlw 0x90
movwf RCSTA ; turn on USART

goto end_isr

get_data

movf DATA0, W
btfss OUR_STAT, WAIT_FOR_SB
goto get_data_byte

; check if its a start byte
incf num_times_waited, F
btfsc num_times_waited, 3
goto screwed ; if we've looked for the start byte 8 times in a

row, we're screwed up
sublw 0x80
btfss STATUS, Z
goto end_isr ; nope, not a start byte

; start byte

clrf num_times_waited
bcf OUR_STAT, WAIT_FOR_SB
movlw 0x01
movwf byte_num

movf byte0, W
movwf in0



26

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

movf byte1, W
movwf in1
movf byte2, W
movwf in2

bcf PORTA, 5
btfsc RSSI, 3
bsf PORTA, 5
swapf RSSI, W

andlw 0x07
movwf PORTE

movf out1B, W
movwf PORTB
movf out1D, W
movwf PORTD

bsf PORTC, 0
bcf PORTC, 0

movf out2B, W ; uncomment this after demo
movwf PORTB
movf out2D, W
movwf PORTD

bsf PORTC, 1
bcf PORTC, 1

bsf OUR_STAT, DO_CALC
goto end_isr

screwed
; movlw 0x04 ;;;;;old
; movwf our_state
; movlw 0x01
; movwf byte_num

movlw 0x04 ;;;;; new
movwf our_state
clrf OUR_STAT
clrf num_times_waited
movlw 0x01
movwf byte_num

goto end_isr

get_data_byte ; we're not waiting for SB so its data
; W contains data

btfsc byte_num,0
movwf byte0
btfsc byte_num,1
movwf byte1
btfsc byte_num,2
movwf byte2

bcf STATUS, C
rlf byte_num, F
btfsc byte_num, 3
bsf OUR_STAT, WAIT_FOR_SB

goto end_isr

;;;;;;;;; END OF ISR CODE;;;;;;;;;
end_isr

movf status_temp,w ; retrieve copy of STATUS register
movwf STATUS ; restore pre-isr STATUS register contents
swapf w_temp,f
swapf w_temp,w ; restore pre-isr W register contents



27

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

retfie ; return from interrupt
;;;;;;;;;; END OF ISR ;;;;;;;;;;;;;;;

main
;;;;;; setup ;;;;;;;;;

bcf STATUS, RP1 ; access page 1
bsf STATUS, RP0

movlw 0x0E ; setup analog/digital IO PA0 analog, left
justified

movwf ADCON1

movlw 0x01 ; PA7..PA1 output PA0, input
movwf TRISA

movlw 0x00
movwf TRISB ; PORTB outputs
movlw 0x00
movwf TRISD ; PORTD outputs
movlw 0x00
movwf TRISE ; PORTE outputs, PE & PD general purpose I/O

movlw 0xD0
movwf TRISC ; PC 7,6,4 input, rest output

movlw 0x02 ; pull ups enabled, int on rise edge, internal clock
for timer0, prescaler to timer0, 1:8 prescaler (Fosc/32)

movwf OPTION_REG

movlw 0x40 ; initialize SPI
movwf SSPSTAT

movlw 0x12 ; initialize USART
movwf TXSTA

bsf PIE1, RCIE ; enable USART receiver interupt

bcf STATUS, RP0 ; access page 0

movlw 0x04
movwf our_state
clrf OUR_STAT
movlw 0x01
movwf byte_num

movlw 0x80
movwf RCSTA

movlw 0x30 ;
movwf SSPCON ; enable SPI! must be after SSPSTAT has been written

movlw 0x81 ; A/D TOsc/32, AN0, No Conversion Complete, On
movwf ADCON0

call config_CC1000_RX

movlw 0xC0 ; global interupt on, , timer0 int off, , ,
movwf INTCON

movlw 0x90 ; enable cont receive on USART
movwf RCSTA

loop

bcf STATUS,RP0 ; make sure we're on page 0
btfss OUR_STAT, DO_CALC
goto loop

analyze_data

bcf ADCON0, GO_DONE
movf ADRESH, W ; get ch0 result



28

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

movwf RSSI

incf counter, F ; get the header nibble ready, 0F in
W

movlw 0x0F
andwf counter, F

movf in0, W
andlw 0xF0
movwf out1B
swapf out1B, F

swapf counter, W
iorwf out1B, F

movf in0, W
andlw 0x0F
movwf out1D
swapf out1D

swapf in1, W
andlw 0x0F
iorwf out1D, F

movf in1, W
andlw 0x0F
movwf out2B

swapf counter, W
iorwf out2B, F

movf in2, W
movwf out2D

end_calc

bsf ADCON0, GO_DONE ; start next A/D conversion
bcf OUR_STAT, DO_CALC
goto loop

;;;;;;;;;;;;;;; SUBROUTINES ;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;
w_prog_addr

movwf byte_to_write
movf STATUS, W
movwf w_prog_status

bcf STATUS, RP0
bcf STATUS, RP1 ; page 0

bcf PORTC, 2 ; clear PALE

movf w_prog_status, W
movwf STATUS
movf byte_to_write, W

w_prog_data
;;; writes a byte to prog CC1000 thru SPI

movwf byte_to_write
movf STATUS, W
movwf w_prog_status ; save the current status

bcf STATUS, RP0 ; page 0
bcf STATUS, RP1

movf byte_to_write, W
movwf SSPBUF

bsf STATUS, RP0 ; page 1
wait_for_SPI_0 btfss SSPSTAT, BF ; wait for the byte to be written to SPI

goto wait_for_SPI_0

bcf STATUS, RP0 ; page 0
bsf PORTC, 2 ; set PALE high

movf w_prog_status, W



29

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

movwf STATUS
return

;;;;;;;;;;;;;;;;;;;;;;;
r_prog

;;;;; reads a byte from CC1000 thru SPI
;;;;; returns byte in W reg
movf STATUS, W
movwf w_prog_status ; save the current status

bcf STATUS, RP1
bsf STATUS, RP0 ; page 1

bsf TRISC, 5 ; set PC5 (Data out) to input

bcf STATUS, RP0 ; page 0

movwf SSPBUF ; write random crap from W

bsf STATUS, RP0 ; page 1
wait_for_SPI_1 btfss SSPSTAT, BF ; wait for the byte to be written to SPI

goto wait_for_SPI_1

bcf TRISC, 5 ; set PC5 to output

movf w_prog_status, W
movwf STATUS
return

;;;;;;;;;;;;;;;

lock_filt
movlw CC1000_MODEM1_W
call w_prog_addr
movlw 0x7F
call w_prog_data
return

unlock_filt
movlw CC1000_MODEM1_W
call w_prog_addr
movlw 0x6F
call w_prog_data
return

;;;;;;;;;;;;;;;;;
wait_500us

clrf dummy
wait1 incf dummy

btfss STATUS, Z
goto wait1
return

;;;;;;;;;;;;;;;;;

config_CC1000_RX

movlw CC1000_MAIN_W
call w_prog_addr
movlw 0x3A
call w_prog_data

movlw CC1000_MAIN_W
call w_prog_addr
movlw 0x3B
call w_prog_data

call wait_500us
call wait_500us
call wait_500us
call wait_500us
call wait_500us

movlw CC1000_FREQ_2A_W
call w_prog_addr
movlw 0x5B
call w_prog_data
movlw CC1000_FREQ_1A_W



30

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

call w_prog_addr
movlw 0xA0
call w_prog_data
movlw CC1000_FREQ_0A_W
call w_prog_addr
movlw 0x00
call w_prog_data

movlw CC1000_FREQ_2B_W
call w_prog_addr
movlw 0x5B
call w_prog_data
movlw CC1000_FREQ_1B_W
call w_prog_addr
movlw 0xA0
call w_prog_data
movlw CC1000_FREQ_0B_W
call w_prog_addr
movlw 0x00
call w_prog_data

movlw CC1000_FSEP1_W
call w_prog_addr
movlw 0x01
call w_prog_data
movlw CC1000_FSEP0_W
call w_prog_addr
movlw 0xAB
call w_prog_data

movlw CC1000_CURRENT_W
call w_prog_addr
movlw 0x8C
call w_prog_data

movlw CC1000_FRONT_END_W
call w_prog_addr
movlw 0x32
call w_prog_data

movlw CC1000_PA_POW_W ; set PA_POW to zero for calibration
call w_prog_addr
movlw 0x00
call w_prog_data

movlw CC1000_PLL_W
call w_prog_addr
movlw 0x30
call w_prog_data

movlw CC1000_LOCK_W
call w_prog_addr
movlw 0x10
call w_prog_data

movlw CC1000_MODEM2_W
call w_prog_addr
movlw 0xC2
call w_prog_data

movlw CC1000_MODEM1_W
call w_prog_addr
movlw 0x6F
call w_prog_data
movlw CC1000_MODEM0_W
call w_prog_addr
movlw 0x54
call w_prog_data

movlw CC1000_MATCH_W
call w_prog_addr
movlw 0x10
call w_prog_data

movlw CC1000_FSCTRL_W
call w_prog_addr
movlw 0x01
call w_prog_data

movlw CC1000_PRESCALER_W



31

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

call w_prog_addr
movlw 0x00
call w_prog_data

movlw CC1000_TEST6_W
call w_prog_addr
movlw 0x10
call w_prog_data

movlw CC1000_TEST5_W
call w_prog_addr
movlw 0x08
call w_prog_data

movlw CC1000_TEST4_W
call w_prog_addr
movlw 0x3F
call w_prog_data
movlw CC1000_TEST3_W
call w_prog_addr
movlw 0x04
call w_prog_data
movlw CC1000_TEST2_W
call w_prog_addr
movlw 0x00
call w_prog_data
movlw CC1000_TEST1_W
call w_prog_addr
movlw 0x00
call w_prog_data
movlw CC1000_TEST0_W
call w_prog_addr
movlw 0x00
call w_prog_data

; begin calibration
movlw CC1000_CAL_W
call w_prog_addr
movlw 0x66
call w_prog_data

movlw CC1000_MAIN_W
call w_prog_addr
movlw 0x11
call w_prog_data

call wait_500us
call wait_500us
call wait_500us
call wait_500us
call wait_500us

movlw CC1000_CURRENT_W
call w_prog_addr
movlw 0x8C
call w_prog_data

movlw CC1000_CAL_W
call w_prog_addr
movlw 0xE6
call w_prog_data

clrf dummy2
wait2 call wait_500us

incf dummy2
btfss STATUS, Z
goto wait2

movlw CC1000_CAL_W
call w_prog_addr
movlw 0x66
call w_prog_data

; end calibration

return

END ; directive 'end of program'



32

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

PC Software (C)
/***************************
INCLUDES
***************************/

#include <stdio.h>
#include <dos.h>
#include <conio.h>
#include <math.h>
#include <io.h>
#include <process.h>
#include <alloc.h>
#include <stdlib.h>
#include <time.h>
#include <fcntl.h>
#include <sys\stat.h>
#include <graphics.h>

/****************************
DEFINITIONS
****************************/

#define base 0xfff4
#define porta base+0
#define portb base+1
#define portc base+2
#define ctrl base+3

#define DIAG 1
#define ACQ 2
#define QUIT 3

#define Y_RES 70
#define X_RES 1
#define XAXSTR 140 //60
#define XAXEND 620
#define XSTRT 141 //61
#define XEND 619
#define RECLEAD 10
#define YOFFSET 30
#define XOFFSET 140//60

#define XMIN 0
#define XMAX 640
#define YMIN 0
#define YMAX 480

#define PAD8 8
#define PAD7 7
#define PAD6 6
#define PAD5 5
#define PAD4 4
#define PAD3 3
#define PAD2 2
#define PAD1 1

#define YMIN8 0
#define YMIN7 60
#define YMIN6 120
#define YMIN5 180
#define YMIN4 240
#define YMIN3 300
#define YMIN2 360
#define YMIN1 420

#define YMAX8 59
#define YMAX7 119
#define YMAX6 179
#define YMAX5 239
#define YMAX4 299
#define YMAX3 359
#define YMAX2 419
#define YMAX1 479

#define XAXIS8 30
#define XAXIS7 90
#define XAXIS6 150
#define XAXIS5 210
#define XAXIS4 270



33

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

#define XAXIS3 330
#define XAXIS2 390
#define XAXIS1 450

/*****************************
FUNCTION PROTOTYPES
*****************************/

void init(void);
int intro(void);
void data_diag(void);
void data_acq(void);
unsigned int truncate(unsigned long int);
void rt_graph(int *x_last,int *y_last, int ymin, int ymax, int xaxis);
void rt_sigstr(unsigned long int, int);
void draw_rectangles(void);
void draw_lines(void);

/*****************************
GLOBALS
*****************************/

FILE *fp_1, *fp_2, *fp_3, *fp_4, *fp_5, *fp_6, *fp_7, *fp_8;

unsigned long int ms_data = 0, ls_data = 0, data = 0;
unsigned long int last_data_1, last_data_2, last_data_3, last_data_4, last_data_5,
last_data_6, last_data_7, last_data_8;
int empty_1 = 1, empty_2 = 1, empty_3 = 1, empty_4 = 1, empty_5 = 1, empty_6 = 1, empty_7
= 1, empty_8 = 1;

int x_8 = XSTRT, x_7 = XSTRT, x_6 = XSTRT, x_5 = XSTRT, x_4 = XSTRT, x_3 = XSTRT, x_2 =
XSTRT, x_1 = XSTRT;
int y_8 = 30, y_7 = 90, y_6 = 150, y_5 = 210, y_4 = 270, y_3 = 330, y_2 = 390, y_1 = 450;
unsigned int short_data = 0;
int yaxis;

int mode = 0;
int input;
int mux_sel = 0x0;
int check;
int delay_sigstr = 0;

int gdriver = DETECT;
int gmode;

/************************
TEMPORARY GLOBALS
************************/

long int x = 0, y = 0;
unsigned long int test;
int tester=0;

main()
{

init(); // initialization of IO Card and Files
mode = intro();

while(1)
{

if(mode == DIAG)
data_diag();

else if(mode == ACQ)
data_acq();

else if(mode == QUIT)
exit(0);

mode = 0;
mode = intro();

}
}

void init()
{

// Initalize the DIO Control Register, Regular Mode, A,B,CH In
outp(ctrl, 0x9A);



34

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

if((fp_8 = fopen("C:\\WMD\\emg1.dat", "wb+"))==NULL)
{

printf("Cannot open file.\n");
exit(1);

}
if((fp_7 = fopen("C:\\WMD\\emg2.dat", "wb+"))==NULL)
{

printf("Cannot open file.\n");
exit(1);

}
if((fp_6 = fopen("C:\\WMD\\emg3.dat", "wb+"))==NULL)
{

printf("Cannot open file.\n");
exit(1);

}
if((fp_5 = fopen("C:\\WMD\\emg4.dat", "wb+"))==NULL)
{

printf("Cannot open file.\n");
exit(1);

}
if((fp_4 = fopen("C:\\WMD\\emg5.dat", "wb+"))==NULL)
{

printf("Cannot open file.\n");
exit(1);

}
if((fp_3 = fopen("C:\\WMD\\emg6.dat", "wb+"))==NULL)
{

printf("Cannot open file.\n");
exit(1);

}
if((fp_2 = fopen("C:\\WMD\\emg7.dat", "wb+"))==NULL)
{

printf("Cannot open file.\n");
exit(1);

}
if((fp_1 = fopen("C:\\WMD\\emg8.dat", "wb+"))==NULL)
{

printf("Cannot open file.\n");
exit(1);

}
}

int intro()
{

printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n~~~~~~~~~~Welcome to
EMGview~~~~~~~~~~\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");

printf("Please Select Your Mode: (d)iagnositc, (a)cquisition, (q)uit\n");

while(mode == 0)
{

input = getch();
if(input=='d')
{

mode = DIAG;
printf("Entering Diagnostic Mode\n");

}
else if (input == 'a')
{

mode = ACQ;
printf("Entering Acquisition Mode\n");

}
else if (input == 'q')
{

mode = QUIT;
printf("Now Terminating, GoodBye");
delay(1000);

}
else

printf("Invald Entry, Please Try Again\n");
}
return mode;

}

void data_diag()
{

("Entering Diagnostic Mode, press any key to Exit\n");

initgraph(&gdriver, &gmode, "\bgi");



35

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

if(graphresult() != grOk)
{

printf("Error Opening Graphics Window.");
getch();
exit(1);

}

//labelling display

outtextxy(XSTRT-42,XAXIS8, "EMG1");
outtextxy(XSTRT-42,XAXIS7, "EMG2");
outtextxy(XSTRT-42,XAXIS6, "EMG3");
outtextxy(XSTRT-42,XAXIS5, "EMG4");
outtextxy(XSTRT-42,XAXIS4, "EMG5");
outtextxy(XSTRT-42,XAXIS3, "EMG6");
outtextxy(XSTRT-42,XAXIS2, "EMG7");
outtextxy(XSTRT-42,XAXIS1, "EMG8");
outtextxy(XSTRT-115, 5, "Sig_Str");

outtextxy(XSTRT - 79, XAXIS8+28, "TGE1");
outtextxy(XSTRT - 79, XAXIS6+28, "TGE2");
outtextxy(XSTRT - 79, XAXIS4+28, "TGE3");
outtextxy(XSTRT - 79, XAXIS2+28, "TGE4");

// draw initial y axis
setcolor(1);
int yaxis = 0 + YOFFSET;
while (yaxis < 480)
{

line(XAXSTR,yaxis,XAXEND,yaxis);
yaxis = yaxis+60;

}
// draw initial x axis
line(XOFFSET,YMIN,XOFFSET,YMAX);

// draw outline of signal strength boxes
draw_rectangles();
draw_lines();
test = 0x0;
while(!kbhit())
{

ms_data = inpw(porta);
ls_data = (0xF0 & inp(portc)) >> 4;
ms_data = (ms_data << 4);
data = ((0x000FFFFF & (ms_data | ls_data)));
outp(portc, (0x3 & (mux_sel+1)) << 2); // sets the MUX to toggle to next

pad

if(mux_sel == 0x0)
{

rt_graph(&x_8,&y_8,YMIN8,YMAX8,XAXIS8);
rt_sigstr(data, PAD8);

}
else if (mux_sel == 0x2)
{

rt_graph(&x_7,&y_7,YMIN7,YMAX7,XAXIS7);
rt_sigstr(data, PAD7);

}
if (mux_sel == 0x1)
{

rt_graph(&x_6,&y_6,YMIN6,YMAX6,XAXIS6);
rt_sigstr(data, PAD6);

}
else if (mux_sel == 0x3)
{

rt_graph(&x_5,&y_5,YMIN5,YMAX5,XAXIS5);
rt_sigstr(data, PAD5);

}

if(mux_sel<0x3)
mux_sel++;

else
mux_sel = 0x0;

}
getch();
closegraph();

}

void data_acq()



36

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

{
// begin data acquisition

printf("Press any Key to Begin Data Acquisition\n");
getch();
printf("\n~~~~~~~~~Data Acquisition Started~~~~~~~~~~\n");
printf("\n\nPress Any Key to Stop\n");

x = 0;
// begin data acquistion
while(!kbhit())
{

ms_data = inpw(porta);
ls_data = (0xF0 & inp(portc)) >> 4;
ms_data = (ms_data << 4);
data = ((0x000FFFFF & (ms_data | ls_data)));
check = (0xF0000 & data) >> 16;

outp(portc, (0x3 & (mux_sel+1)) << 2); // sets the MUX to toggle to next
pad outp(portc, (0x3 & (mux_sel+1)) << 2); // sets the MUX to toggle to next pa

if(mux_sel == 0x0)
{

if((check != last_data_8) || (empty_8 == 1))
{

short_data = truncate(data);
fwrite(&short_data, sizeof(short_data), 1, fp_8);
last_data_8 = check;
empty_8 = 0;

}
}
else if (mux_sel == 0x2)
{

if((check != last_data_7) || (empty_7 == 1))
{

short_data = truncate(data);
fwrite(&short_data, sizeof(short_data), 1, fp_7);
last_data_7 = check;
empty_7 = 0;

}
}
else if (mux_sel == 0x1)
{

if((check != last_data_6) || (empty_6 == 1))
{

short_data = truncate(data);
fwrite(&short_data, sizeof(short_data), 1, fp_6);
last_data_6 = check;
empty_6 = 0;

}
}
else if (mux_sel == 0x3)
{

if((check != last_data_5) || (empty_5 == 1))
{

short_data = truncate(data);
fwrite(&short_data, sizeof(short_data), 1, fp_5);
last_data_5 = check;
empty_5 = 0;

}
}
if(mux_sel<0x3)

mux_sel++;

else
mux_sel = 0x0;

}
getch();
printf("Please Move the Data (emg1.dat-emg8.dat) Files Before You Attempt to

Acquire More Data\n");
printf("\n\nPress any Key to Continue...\n");
getch();

}

unsigned int truncate(unsigned long int in_data)
{

int out_data;
in_data = (0x000FFF0 & in_data) >> 4;
out_data = in_data;



37

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

return out_data;
}

void rt_graph(int *x_last,int *y_last, int ymin, int ymax, int xaxis)
{

short_data = ((truncate(data))/(Y_RES));
setcolor(0);
rectangle(*x_last,ymin,*x_last+RECLEAD,ymax);
setcolor(2);
line(*x_last, *y_last,*x_last+X_RES,ymax-short_data);
setcolor(1);
line(XAXSTR,xaxis,XAXEND,xaxis);

if(*x_last <= XEND)
*x_last = *x_last + 1;

else
*x_last = XSTRT;

*y_last = ymax-short_data;
}

void rt_sigstr(unsigned long int in_data, int pad)
{

if(delay_sigstr < 500)
delay_sigstr++;

else
{

int sigstr, sigstr_last1 = 0, sigstr_last2 = 0;

in_data = 16 - (in_data & 0xF);
sigstr = ((4*in_data)-18)*1.53;

if (sigstr <= 0)
sigstr = 64;

else if (sigstr > 64)
sigstr = 0;

if(pad == PAD8 || pad == PAD7)
{

if(sigstr < 0)
sigstr = sigstr_last1;

else if (sigstr > 64)
sigstr = sigstr_last1;

else
sigstr_last1 = sigstr;

setfillstyle(0,0);
bar(XSTRT-89,YMAX8+34,XSTRT-86,YMIN8+29);
if (sigstr > 40)
{

setfillstyle(1,2);
bar(XSTRT-89,YMAX8+34-sigstr,XSTRT-86,(YMAX8+34));

}
else if (sigstr > 20)
{

setfillstyle(1,14);
bar(XSTRT-89,YMAX8+34-sigstr,XSTRT-86,(YMAX8+34));

}
else
{

setfillstyle(1,4);
bar(XSTRT-89,YMAX8+34-sigstr,XSTRT-86,(YMAX8+34));

}
}
else if(pad == PAD6 || pad == PAD5)
{

if(sigstr < 0)
sigstr = sigstr_last2;

else if (sigstr > 64)
sigstr = sigstr_last2;

else
sigstr_last2 = sigstr;

setfillstyle(0,0);
bar(XSTRT-89,YMAX6+34,XSTRT-86,YMIN6+29);
if(sigstr > 40)



38

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

{
setfillstyle(1,2);
bar(XSTRT-89,YMAX6+34-sigstr,XSTRT-86,(YMAX6+34));

}
else if(sigstr > 20)
{

setfillstyle(1,14);
bar(XSTRT-89,YMAX6+34-sigstr,XSTRT-86,(YMAX6+34));

}
else
{

setfillstyle(1,4);
bar(XSTRT-89,YMAX6+34-sigstr,XSTRT-86,(YMAX6+34));

}

}
else if(pad == PAD4 || pad == PAD3)
{

setfillstyle(0,0);
bar(XSTRT-89,YMAX4+34,XSTRT-86,YMIN4+29);
setfillstyle(1,1);
bar(XSTRT-89,YMAX4+34-sigstr,XSTRT-86,(YMAX4+34));

}
else if(pad == PAD2 || pad == PAD1)
{

setfillstyle(0,0);
bar(XSTRT-89,YMAX2+34,XSTRT-86,YMIN2+29);
setfillstyle(1,1);
bar(XSTRT-89,YMAX2+34-sigstr,XSTRT-86,(YMAX2+34));

}
delay_sigstr = 0;

}
}

void draw_rectangles()
{

setcolor(7);
rectangle(XSTRT-90, YMAX8+35, XSTRT-85, YMIN8+28);
rectangle(XSTRT-90, YMAX6+35, XSTRT-85, YMIN6+28);
rectangle(XSTRT-90, YMAX4+35, XSTRT-85, YMIN4+28);
rectangle(XSTRT-90, YMAX2+35, XSTRT-85, YMIN2+28);

}

void draw_lines()
{

setcolor(5);
line(XSTRT - 25, XAXIS8 + 12, XSTRT - 25, XAXIS7 - 7);
line(XSTRT - 25, XAXIS6 + 12, XSTRT - 25, XAXIS5 - 7);
line(XSTRT - 25, XAXIS4 + 12, XSTRT - 25, XAXIS3 - 7);
line(XSTRT - 25, XAXIS2 + 12, XSTRT - 25, XAXIS1 - 7);

line(XSTRT - 25, YMIN7+2, XSTRT - 45, YMIN7+2);
line(XSTRT - 25, YMIN5+2, XSTRT - 45, YMIN5+2);
line(XSTRT - 25, YMIN3+2, XSTRT - 45, YMIN3+2);
line(XSTRT - 25, YMIN1+2, XSTRT - 45, YMIN1+2);

line(XSTRT-95, YMIN7+2, XSTRT - 115, YMIN7+2);
line(XSTRT-95, YMIN5+2, XSTRT - 115, YMIN5+2);
line(XSTRT-95, YMIN3+2, XSTRT - 115, YMIN3+2);
line(XSTRT-95, YMIN1+2, XSTRT - 115, YMIN1+2);

circle(XSTRT - 117, YMIN7+2, 2);
circle(XSTRT - 117, YMIN5+2, 2);
circle(XSTRT - 117, YMIN3+2, 2);
circle(XSTRT - 117, YMIN1+2, 2);

setcolor(11);
arc(XSTRT - 124, YMIN7+2, 90, -90, 4);
arc(XSTRT - 126, YMIN7+2, 90, -90, 6);
arc(XSTRT - 128, YMIN7+2, 90, -90, 8);

arc(XSTRT - 124, YMIN5+2, 90, -90, 4);
arc(XSTRT - 126, YMIN5+2, 90, -90, 6);
arc(XSTRT - 128, YMIN5+2, 90, -90, 8);

arc(XSTRT - 124, YMIN3+2, 90, -90, 4);
arc(XSTRT - 126, YMIN3+2, 90, -90, 6);
arc(XSTRT - 128, YMIN3+2, 90, -90, 8);



39

Process Report for a Wireless EMG System

Copyright   2002 Wireless Medical Devices.

arc(XSTRT - 124, YMIN1+2, 90, -90, 4);
arc(XSTRT - 126, YMIN1+2, 90, -90, 6);
arc(XSTRT - 128, YMIN1+2, 90, -90, 8);

}

PC Software (Matlab)
function emgdisplay(filename);

% This gives what we want, the proper order for the data.
% open file for reading with little-endian byte order
FID2 = fopen(filename, 'r', 'l');
% read in 16 bit unsigned values into F2, and count how many values are read in
[F2, num_samples] = fread(FID2, inf, 'uint16');

% let 0FFF correspond to +1, and 0 correspond to -1;
% scale everything appropriately divide by 0FFF/2 = 2047;
scale_fact = 2047; %change this for real code to 2047

F3 = (F2/scale_fact) - 1;

sample_rate = 1000; % sampling rate in Hz
time_div = 1/sample_rate;
t = 0:time_div:((num_samples - 1)*time_div); % time values to plot samples against

F3T = transpose(F3); % take transpose to match matrix dimensions for plotting
figure; % opens new figure

plot(t, F3,'.',t,F3);

ST2 = fclose(FID2);


	1.0 - Introduction
	2.0 - Current Device
	
	2.1 – EMG Pad
	2.2 – TGE Module
	2.3 – Receiver Station
	2.4 – PC Software


	3.0 – Future Plans
	
	3.1 – More TGEs
	3.2 – New Chipcon Transceiver
	3.3 – Miniaturization
	3.4 – Acquire Other Biological Signals
	3.5 – Increased Battery Life
	3.6 – Fully Independent Wireless EMG


	4.0 – Personal Experience
	
	4.1 – Andrew Pruszynski
	4.2 – Eric Chow
	4.3 – David Press
	4.4 – Aaron Ridinger


	5.0 – Timeline
	6.0 – Budget
	7.0 – Conclusion
	Appendix
	
	Transmitter Microcontroller Code (Assembly)
	Receiver Microcontroller Code (Assembly)
	PC Software (C)
	PC Software (Matlab)



