
 VitalStatis Medical Solutions
School of Engineering Science
Simon Fraser University
Burnaby, BC, V5A 1S6
vitalstatis-med@sfu.ca

December 18, 2002

Dr. Andrew Rawicz
School of Engineering Science
Simon Fraser University
Burnaby, BC, V5A 1S6

Re: ENSC 340 Project Palm™ Bio-Reader Project Post Mortem

Dear Dr. Rawicz,

Attached you will find VitalStatis’ Palm™ Bio-Reader Project Post Mortem. After the 13-week
development period, we have completed the product and have documented the changes and
advancements in the document. The post mortem also includes the personal statements from
each member.

Please feel free to contact us should you have any questions, comments or concerns. We can be
reached by email through vitalstatis-med@sfu.ca or by phoning our CEO at 604-274-1888
(home) or 604-818-7899 (cell). Thank you for your time.

Sincerely,

See-Ho Tsang

See-Ho Tsang
CEO
VitalStatis Medical Solutions

Enclosure: Palm ™ Bio-Reader Project Post Mortem

Copyright 2002, VitalStatis Medical Solutions

Project Team: See-Ho Tsang,
 Bob Wai,
 Cory Jung,
 Jason Yu,
 James Hu,
 David Poon

Contact Email: vitalstatis-med@sfu.ca

Submitted to: Dr. Andrew Rawicz — ENSC 340
 Steve Whitmore — ENSC 305

 School of Engineering Science
 Simon Fraser University

Date Issued: December 18, 2002

Revision: 1.0

Palm Bio-Reader
Project Post Mortem

VitalStatis Medical Solutions

Table of Contents

List of Figures .. iii
Glossary .. iv
1. Introduction... 1
2. Current State of VitalChart... 2
3. Deviations From Design Specification... 4

3.1. Overall System Design.. 4
3.1.1. System Power .. 4
3.1.2. Printed Circuit Boards ... 5
3.1.3. Package... 5

3.2. Electrocardiogram ... 6
3.3. Respiratory Measuring Device .. 7
3.4. Hardware Interface.. 8

3.4.1. Overview.. 8
3.4.2. System Connection ... 9
3.4.3. Communication Methodology.. 9
3.4.4. Microcontroller Configuration and Firmware.. 10
3.4.5. A/D Conversion ... 10
3.4.6. Respiratory Rate Digital Signal Processing... 11
3.4.7. RS-232 Communication ... 11

3.5. VitalChart Software... 12
3.5.1. Software to Hardware Communication Interface (SHCI) 12
3.5.2. Database... 12
3.5.3. Graphical User Interface Design... 12

3.5.3.1. Overview ... 12
3.5.3.2. Main Interface Window... 13
3.5.3.3. Database User Interface... 13
3.5.3.4. About Menu .. 14

3.5.4. Graphics Engine Design .. 15
3.5.4.1. Overview ... 15
3.5.4.2. System Timing Flow .. 15
3.5.4.3. Peak Locator and Heart Rate Calculation... 15
3.5.4.4. Zoom .. 16

3.6. Future Plans.. 16
3.6.1. Hardware Interface... 16
3.6.2. Database... 16

4. Budget... 17
5. Project Timeline.. 18
6. Group Dynamics... 20
7. Personal Challenges... 21

See-Ho Tsang – Chief Executive Officer... 21
Cory Jung – VP Engineering .. 21
Bob Wai - VP Finance.. 22
Jason Yu – VP Communications.. 23
David Poon – Senior Engineer... 23

Copyright 2002, VitalStatis Medical Solutions i

VitalStatis Medical Solutions

James Hu – Senior Engineer... 24
8. Conclusion ... 25
9. References .. 26
Appendix A: PIC Microcontroller Firmware Source Code ... 27
Appendix B: Palm™ OS Source Code... 42

Copyright 2002, VitalStatis Medical Solutions ii

VitalStatis Medical Solutions

List of Figures

Figure 1: System block diagram... 2
Figure 2: Schematic of Power Circuitry .. 4
Figure 3: Pad Locations for the EKG ... 6
Figure 4: EKG Circuit .. 6
Figure 5: Respiratory Sensor... 7
Figure 6: Respiratory Measuring Device Circuit ... 8
Figure 7: Schematic of the Hardware Interface.. 8
Figure 8: System Connection Interface.. 9
Figure 9: The VitalChart Interface ... 13
Figure 10: The VitalChart Menu .. 13
Figure 11: The VitalChart Database User Interface ... 14
Figure 12: The About VitalChart Form ... 14
Figure 13: Initial Gant Chart for VitalChart Development .. 18

Copyright 2002, VitalStatis Medical Solutions iii

VitalStatis Medical Solutions

Glossary

A/D Analog to digital conversion, conversion of continuous analog signals
into digital binary format

Baud rate Measurement of speed in data transmission, equals one bit per second
bps Bits per second, unit of measurement of baud rate
DSP Digital signal processing, computer manipulation of analog signals

that have been converted to digital form
EKG Electrocardiogram, a graphical record of the cardiac cycle
HotSync™ Palm™ Proprietary PC to Palm synchronization software
GUI Graphical user interface, the screens of the software that the user

interacts with
Multiplex Merging of two or more signals for transmission on the same wire
OS Operating system, software to interface between application and

hardware
Parity The even or odd quality of the number of 1's or 0's in a binary code
PCB Printed circuit board, a thin board to which electronic components are

fixed by solder
PDA Personal digital assistant, also called handheld computers
PDB Palm Database file type
PRC Palm Resource file format, file format used for Palm PDA

applications
Protocol Standard procedure for regulating data transmission
QRS QRS complex, name of the electrocardiogram waveform. The various

peaks and troughs of a waveform are named P, Q, R, S, and T
RAM Random Access Memory, a kind of storage device that can be stored

or accessed in any order
RS-232 A communication interface standard, also named EIA-232
USART Universal Synchronous/Asynchronous Receiver/Transmitter,
USB Universal Serial Bus, a serial communication standard

Copyright 2002, VitalStatis Medical Solutions iv

1

VitalStatis Medical Solutions

11.. IInnttrroodduuccttiioonn
Our product, VitalChart, has come a long way in the past four months. It has progressed from
an idea, to a design, and finally to reality. This document will describe the current status of
VitalChart and reflect upon a number of important issues that VitalStatis has encountered
during the product development cycle. Much has changed with VitalChart during this time
and the deviations from our design specification, as well as what we have all learned as a result
of this project, are included. Our budget, product timeline, and group dynamics will also be
assessed to evaluate our performance for this project.

Lastly, a personal statement from each of our group members is included because even though
we all worked diligently on the same project, we each had our own unique viewpoints,
challenges, and triumphs.

Copyright 2002, VitalStatis Medical Solutions 1

2

VitalStatis Medical Solutions

22.. CCuurrrreenntt SSttaattee ooff VViittaallCChhaarrtt
The overall system overview of VitalChart has changed very little since the writing of the
design specification. VitalChart measures a patient’s EKG signal and respiratory rate utilizing a
hardware attachment to a Palm PDA. Electrodes and sensors are attached to the patient’s
body and the signals are sent through the hardware to the Palm PDA, where they are
displayed on the screen by the software. The system can be divided into three main
components: measurement hardware, interface hardware, and Palm software. The system
block diagram in Figure 1 illustrates how the components in the system interact with each
other.

Accelerometer
(Respiratory

sensor)

EKG electrodes
(EKG sensor) EKG Circuitry

Respiratory
Circuitry

Mircocontroller
(PIC16F873)

Serial Driver
(Max 232A)

Power Supply
Circuitry

ON/OFF Charge Monitor
Circuitry

Battery

System Board

Handheld PDA

Graphical
Display

User Application
(VitalChart)

User Input

Serial Port

Figure 1: System block diagram

Input to the board is provided by the following components:
• Analog EKG sensor signal
• Analog respiratory sensor signal
• Battery terminals
• On/Off button

Output from the board is:
• RS-232 standard serial signal

The EKG electrodes and respiratory rate sensor continuously measure heart and respiratory
signals. The data is captured by the microcontroller, a PIC16F873A, and sent periodically to the
Palm PDA via the MAX232A communications driver. Once the data is acquired by the PDA,
VitalChart software interprets the data and displays the EKG signal and respiratory rate in a
GUI. The PDA displays the patient’s EKG signal, pulse rate, and respiratory rate in a user-
friendly format.

Copyright 2002, VitalStatis Medical Solutions 2

3

VitalStatis Medical Solutions

A simple database system has been implemented in the VitalChart software to store patient
records on the Palm™ PDA. Each record contains the patient’s information, a 15 second sample
of the patient’s EKG signal, the respiratory rate, and pulse rate. This database can be exported
to a PC, where the records can be extracted to view the EKG signal or for interfacing with a full-
blown database system.

Most of the circuitry is implemented on PCBs, allowing us to fit the VitalChart product into a
plastic box that clips onto the Palm PDA and is held in place by Velcro. The battery that
powers the entire system is also enclosed in the package. Leads from the EKG and respiratory
units come out from the box and can be attached to the patient while viewing the Palm.

Copyright 2002, VitalStatis Medical Solutions 3

4

VitalStatis Medical Solutions

33.. DDeevviiaattiioonnss FFrroomm DDeessiiggnn SSppeecciiffiiccaattiioonn

33..11.. OOvveerraallll SSyysstteemm DDeessiiggnn
The overall system design did not deviate very much from our design specifications. The
handheld PDA and environmental considerations were completed without deviation. Aspects
of the system design that were changed or added will be discussed in the following sections.

33..11..11.. SSyysstteemm PPoowweerr
The power supply circuitry was absent in our design specification as we did not know what the
power requirements of our device would be.

The power supply circuitry of the device consists of two main halves. The first half of the
circuitry converts the single input voltage supply into a dual supply for the analog circuitry.
The second half takes the input voltage supply and creates a 5V regulated voltage supply to
power the digital side of the device. The single input voltage supply is a 9V alkaline battery.

The schematic of the power supply circuitry is shown in Figure 2.

Figure 2: Schematic of Power Circuitry

The circuit is essentially a voltage divider with two voltage buffers. The resistors at the output
of the voltage buffers allow the positive and negative side of the dual supplies to draw different
amount of currents while still maintaining the ground reference created between the two rails
constant. The -5V voltage regulator creates a -5V voltage with respect to the most positive rail.
The 5V voltage difference is used to power the digital circuitry. The analog and digital grounds
are connected to each other through a capacitor. This is to ensure the grounds of the analog and
digital circuitry are connected together, so the digital circuitry will receive clean voltage levels
when performing A/D conversion on the analog signals.

Copyright 2002, VitalStatis Medical Solutions 4

5

VitalStatis Medical Solutions

The charge monitoring circuitry monitors the voltage level of the battery supply. It compares
the voltage level of the analog ground to that of the digital ground using A/D conversion every
few seconds. Since the digital ground is always –5V with respect to the positive rail, and the
analog ground is halfway between the positive and negative rails, the analog ground would rise
in potential relative to the digital ground as the voltage level of the supply lowers. The
converted A/D value is compared against a threshold of 1.5V. When the value exceeds the
threshold, the low battery indicator LED would turn on.

33..11..22.. PPrriinntteedd CCiirrccuuiitt BBooaarrddss
The EKG circuit, respiratory circuit, hardware interface, and part of the power circuit were
implemented on PCBs. Protel XP was used to draw the schematics and PCB layout for each
circuit. The PCB layouts were printed on transparencies which were placed on top of
photosensitive copper boards and exposed to ultraviolet light. After exposing the board to the
light for approximately ten minutes, the boards were put into a developer solution to remove
the photoresist that was exposed to the light. Next, the boards were etched in ferric chloride
solution, and all of the copper that did not have photoresist on it was etched away leaving our
traces. Finally, holes were drilled for our components and the boards were populated.

33..11..33.. PPaacckkaaggee
The package for our project is a clear plastic box which we modified for use as our enclosure.
All leads, LEDs, and sockets are accessible from the outside while all sensitive circuitry is
located safely inside the box. Velcro adheres the Palm PDA to the enclosure so that our
project and the PDA become essentially a single unit.

Copyright 2002, VitalStatis Medical Solutions 5

6

VitalStatis Medical Solutions

33..22.. EElleeccttrrooccaarrddiiooggrraamm
The EKG unit detects the voltage potential between two medical pads, then filters and amplifies
the signal. This output signal is the EKG waveform read by the microcontroller.

The EKG unit outputs an analog signal by measuring the voltage potential between two nodes:
right chest (RC), and left chest (LC). The placements of these nodes are as shown in Figure 3.

Figure 3: Pad Locations for the EKG

The nodes were originally located at the right arm, left arm, and left ankle in our initial design.
As you can see, the final design represents an improvement, as the pad locations are the same as
hospital convention.

The potentials between the right chest and left chest with respect to the ground node are
amplified and filtered to produce the desired analog signal from microcontroller. The EKG
circuit is shown in Figure 4.

Figure 4: EKG Circuit

U1 (AD621AN) in Figure 4 is an instrumentation amplifier which takes the voltage difference
between the inputs. A low-pass filter is connected to remove most of the high frequency noise.
This is followed by three level of amplification that provides us with the EKG signal. All
voltage amplifiers have variable gain that helps us to locate the signals for different people. The

Copyright 2002, VitalStatis Medical Solutions 6

7

VitalStatis Medical Solutions

signal is then added with a variable DC offset which keeps the signals in the positive range as
required by the A/D module on the microcontroller. A diode is also used to clamp the circuit
to keep the signals from going negative.

The variable gain amplifier was not included in the initial design. Since with different pad
locations, and different persons, the signals can vary in both amplitude and DC offset.
Therefore, the variable gain amplifiers were added to help alleviate the problem. But as a
result, the unit will sometimes require tuning to locate the appropriate signal.

33..33.. RReessppiirraattoorryy MMeeaassuurriinngg DDeevviiccee
The finalized respiratory measuring device uses an ADXL202E accelerometer which is mounted
on pieces of foam with a cross rod underneath as shown in Figure 5.

Figure 5: Respiratory Sensor

The design of the respiratory sensor was changed from what was documented in the design
specification. After experimenting with the previous sensor design, we discovered placing the
accelerometer on the abdomen without additional attachment did not generate a signal large
enough for calculation of the respiratory rate. Thus, fiberglass rods connected in a T-shape is
used to increase the tilting angle when the patient’s abdomen expands and contracts when the
patient takes a breath. This accelerometer is a good tilting sensor especially when it operates
perpendicular to gravity. However, size and weight of the sensor increase proportionally
because of the extra attachments. The length and the weight of the sensor are longer than 10cm
and heavier than 150grams than the desired values in our design specification.

The output signal of the accelerometer is generated by pin Y-Filt (vertical movement).
Although wires connecting between the sensor and the circuitry are not shielded, the signal is
not significantly affected by noise. The circuitry was changed from the original design because
a differential amplifying circuit was not useful in measuring the respiratory rate. Figure 6
shows the schematic of the respiratory measuring device.

Copyright 2002, VitalStatis Medical Solutions 7

8

VitalStatis Medical Solutions

Figure 6: Respiratory Measuring Device Circuit

A high-pass filter is used to remove the DC offset of the input sensor signal. Afterwards, the
signal passes through two amplifier stages. Between each stage of the amplifying circuits is a
low-pass filter utilized to remove noise for a clearer output signal. A DC offset is then added to
the amplified signal to keep the output above 0V. A clamping diode is also used to avoid a
negative output voltage. The output voltage range is from 0V to 4.5V which is our desired
range.

33..44.. HHaarrddwwaarree IInntteerrffaaccee

33..44..11.. OOvveerrvviieeww
The hardware interface is located between the EKG and respiratory rate sensor circuitry and the
Palm™ PDA. Its functions are to convert the analog sensor outputs to digital, perform some
simple signal processing algorithms on the data, and send it to the Palm™ PDA. RS-232 serial
communication protocol is used for data transmission. The main components used in the
hardware interface are identical to the design specification, namely we used a PIC16F873
microcontroller and a MAX232 RS-232 Driver/Receiver. Figure 7 shows the schematic of the
hardware interface.

Figure 7: Schematic of the Hardware Interface

Copyright 2002, VitalStatis Medical Solutions 8

9

VitalStatis Medical Solutions

The most significant changes compared to the original design occurred in the RS-232
communication component of the interface, since we did not know the performance of the serial
port on the Palm PDA before we actually built the circuit and began transferring data. We
ran into a number of problems due to synchronization between the Palm PDA and the
hardware interface, especially because RS-232 is an asynchronous transmission protocol. The
modifications we made to the initial design allowed us to meet or even exceed all the functional
specification of the device. The changes we made from the design specification and possible
improvements are detailed in the following sections.

33..44..22.. SSyysstteemm CCoonnnneeccttiioonn

The signal connections between the hardware interface and the Palm PDA serial port are the
same as initially designed, except the RTS/CTS flow control signals were removed in the
communication bus. As discussed in the design specification, these signals were not being used
in our design, but we planned to connect them in case we later find a need for them. However,
after further research, we discovered that the operation of these signals is not standardized, and
every device uses them differently. Furthermore, our implementation of the communication
scheme ensures the device will operate without the flow control signals. Hence they were
removed in the final design. Figure 8 illustrates the modified signal connections.

Figure 8: System Connection Interface

33..44..33.. CCoommmmuunniiccaattiioonn MMeetthhooddoollooggyy
The most significant change in the hardware interface from design specification is the
communication between the interface and the Palm PDA was made bi-directional instead of
unidirectional, from the interface to the Palm PDA. The original design had the
microcontroller continuously transmitting the acquired data samples at fixed intervals so that

Copyright 2002, VitalStatis Medical Solutions 9

10

VitalStatis Medical Solutions

the Palm PDA could have its serial port open all the time to continuously receive data. In the
final design, data samples are only transmitted to the PDA when they are requested. This
modification was the result of several difficulties we encountered in transmitting the data
samples to the PDA.

We realized shortly after we began programming the Palm PDA communication code that we
could not continuously open the serial port on the PDA because it drains a significant amount
of the PDA’s battery, greatly shortening lifespan of the PDA on a single charge, and as a result,
our project’s operational period. Therefore, we needed to periodically open and close the serial
port. This complication led us to synchronization problems of when to open and close the port
so that the PDA would have its serial port open when data is transmitted from the hardware
interface, and hence, receive the data correctly. After much thought and experimentation with
different schemes of synchronization, we decided to instead make the PDA the active side of the
data transaction with a request based communication scheme.

In our revised communication methodology, the Palm PDA software requests for data
periodically, leaving the serial port open for a short interval after the request. When the
hardware interface detects the transmission request, it immediately sends the requested data
back to the Palm PDA which can then close the serial port and process the data. Extra
resources required for this communication scheme is we needed a relatively large buffer on the
hardware interface to buffer the data samples it acquired while waiting for a transmission
request. This is unavoidable since the Palm PDA cannot send requests very frequently or else
the operating system has no time to service other software functions and the whole operating
system becomes unresponsive.

33..44..44.. MMiiccrrooccoonnttrroolllleerr CCoonnffiigguurraattiioonn aanndd FFiirrmmwwaarree
The PIC16F873 microcontroller in the hardware interface operates on a 20MHz crystal, which is
the maximum operating frequency of the device. The high frequency is to ensure the EKG
signal transmitted has a high enough resolution and miscellaneous operations on the
microcontroller can be completed fast enough such that the EKG signal obtained will be as
accurate as possible. To accomplish this, we also turned off the watchdog timer on the device.

The differences in the firmware compared to the design specification were mostly made to
accommodate the new communication scheme. The complete assembly source code of the
microcontroller firmware can be found in Appendix A.

33..44..55.. AA//DD CCoonnvveerrssiioonn
Early in our integration, we decided that we wanted to increase the sampling rate of the EKG
signal to allow for better resolution for display on the Palm™ PDA. This would allow the user
to better see the EKG waveform. A timer is used to set a flag which causes the microcontroller
to perform an A/D conversion subroutine. To increase the sampling rate, all we had to do was
shorten the amount of time it takes for the timer to go off to 0.01 seconds.

Copyright 2002, VitalStatis Medical Solutions 10

11

VitalStatis Medical Solutions

For the A/D conversion we need to sample from the EKG and respiratory unit at the same time,
so we had to implement multiplexing to our sampling. The sampling period of the EKG is 0.01
seconds and the sampling period of the respiratory unit is 0.05 seconds. In the A/D conversion
subroutine, a sample from the EKG is read and saved in the EKG data buffer and a counter is
used to determine if a sample from the respiratory unit should be read. Every fifth time the
subroutine is run, the A/D is reconfigured to read data from the respiratory unit and a sample
is read and saved into the respiratory data buffer. Additional DSP algorithms are performed
periodically in the A/D subroutine and will be discussed later in the next section.

Overall, functionality of the A/D conversion has not been altered, however the increased
sampling rate of 100 Hz for the EKG data meant that we needed to increase the speed of the
A/D conversion. We accomplished this by setting the A/D conversion clock to the fastest
possible rate, 10 MHz.

33..44..66.. RReessppiirraattoorryy RRaattee DDiiggiittaall SSiiggnnaall PPrroocceessssiinngg
The DSP algorithm is performed on the microcontroller to calculate the respiratory rate to be
sent to the Palm PDA. The simple assembly code performs DSP on the breathing data
acquired from the A/D conversions. The algorithm is performed every 0.2 seconds and
involves averaging every fourth sample and saving the average into a data buffer reserved for
respiratory rate data. The DSP utilizes the entire buffer, which contains 12 seconds of data, to
calculate the breathing rate. In our initial design, we counted the number of peaks after a
minimum was found. In order to make the system more robust, we added threshold values to
search for the peaks and the troughs. Once the number of peaks is found, we send the number
of breaths the user has taken in 12 seconds. The Palm PDA multiplies this number by five
and displays a value that represents the number of breaths the user has taken in a minute.

33..44..77.. RRSS--223322 CCoommmmuunniiccaattiioonn
The configuration we used in our final design differs from our design specification in that it did
not utilize the parity bit of the RS-232 communication protocol. Since the hardware interface is
directly wired to the Palm PDA’s serial port, the chances of the signal becoming distorted
during transmission through a few centimeters of wires is minimal, hence parity bit error
checking is not necessary.

The baud rate of the RS-232 communication between the hardware interface and the Palm
PDA is 62,500kbps, up from our initial design of 19,200kbps. This non-standard baud rate is the
result of error in the microcontroller’s baud rate generator when dividing down the clock
frequency.

The configuration of the RS-232 communication used in the final design is 8 data bits, no parity
bit, and 1 stop bit.

Copyright 2002, VitalStatis Medical Solutions 11

12

VitalStatis Medical Solutions

33..55.. VViittaallCChhaarrtt SSooffttwwaarree

33..55..11.. SSooffttwwaarree ttoo HHaarrddwwaarree CCoommmmuunniiccaattiioonn IInntteerrffaaccee ((SSHHCCII))
All minimum requirements as specified in the functional specification have been met. In
addition to the minimum requirements, the software is able to discriminate between the proper
peripherals and other peripherals upon connection of the hardware to detect abnormal
termination of data transfer and indicate the status to user on the screen.

The design of the software has deviated slightly from the original. The software currently
operates at a baud rate of 62,500 bps, more than three times faster than the original proposed
baud rate of 19,200 bps. This increase in speed increases the resolution of the EKG and
respiratory data and response time between the Palm™ PDA and external circuits.

Another modification is that the Palm™ can now send data to the microcontroller. The
software to hardware communication interface (SCHI) was designed using the Palm™ 4.0 SDK
serial manager. This manager communicates with the microcontroller by sending a start byte
(0x05) and capturing up to 26 bytes of data every 0.1 seconds. During this process, the manager
asserts control of the operating system so a timeout sequence is required. In the design, the
manager allocates 0.02 seconds to retrieve the entire data stream before it times out. Using this
timeout sequence, the application can determine whether not the hardware device is connected.
The SCHI also performs the appropriate decoding of the data stream to differentiate between
EKG, respiration data, and null data.

33..55..22.. DDaattaabbaassee
The database section of the software is implemented as one of the ideal requirements from our
functional specification. The VitalChart database is implemented using the Palm™ PDA’s PDB
format. The user can record the patient’s name, age, and 15 seconds of EKG data. A unique ID
for each patient will be generated automatically whenever a new record is created and the user
can stop the recording sequence anytime during the 15 seconds recording cycle by pressing the
stop button. Records will be retained in the PDA’s memory unless the user explicitly deletes
the database file. Whenever the user uses the HotSync operation with their desktop PC, the
database file will be automatically transferred to the desktop. A database conversion utility has
been programmed so that user can extract all records contained in the PDB database file to a
text file. The EKG plot can then be displayed on the desktop PC using software such as Excel
and Matlab and then printed. The PDB database conversion utility is programmed using C and
Perl programming languages.

33..55..33.. GGrraapphhiiccaall UUsseerr IInntteerrffaaccee DDeessiiggnn
33..55..33..11.. OOvveerrvviieeww
The GUI has met all the minimum functional requirements and we even implemented several
ideal requirements from our functional specification. The ideal requirements we added include
the menu function for interacting with the database, a check box to initiate a zoom feature, and
a heartbeat detection indicator with sound. The database interface, once initiated by the menu,
allows a user to label and record patient records.

Copyright 2002, VitalStatis Medical Solutions 12

13

VitalStatis Medical Solutions

As well as meeting the minimal requirements, several areas of the design specification were
modified to improve the overall usability.

33..55..33..22.. MMaaiinn IInntteerrffaaccee WWiinnddooww
The following figure shows the application start-up form that was implemented.

Figure 9: The VitalChart Interface

To improve the usability, the hardware connection indicator has been implemented using an
electrical plug icon instead of a lighting bolt. The reason for this change is that a lightning bolt
cannot be resolved very well due to the low resolution of the Palm ™ PDA display and became
unrecognizable. In addition to this change, the Grid On button has been modified into a simple
check box for user simplicity where the check mark indicates whether or not the grid is
activated. Furthermore, a Zoom check box is now included to toggle a newly implemented 2x
zoom feature which allows for a higher resolution of the QRST complex to be displayed. The
details of this feature will be discussed in the next section.

33..55..33..33.. DDaattaabbaassee UUsseerr IInntteerrffaaccee
In addition to the modifications made to the GUI, a second, Database User Interface (DUI) was
added. The following figures show the menu used to activate the DUI and then the DUI itself.

Figure 10: The VitalChart Menu

Copyright 2002, VitalStatis Medical Solutions 13

14

VitalStatis Medical Solutions

Figure 11: The VitalChart Database User Interface

The DUI has two fields for entering the name and age of the patient whose vitals are to be
recorded. Once the user taps on the Start Recording button, the application will record 15
seconds of continuous EKG data from the patient and store it in the VitalChartDB.pdb file. The
Stop Recording button allows the user to quit recording immediately and store less data into the
database if they wish. By clicking on the menu bar, the user can exit the DUI and return to the
GUI.

33..55..33..44.. AAbboouutt MMeennuu
The menu of the VitalChart application allows for the activation of the about form as shown in
Figure 12.

Figure 12: The About VitalChart Form

Copyright 2002, VitalStatis Medical Solutions 14

15

VitalStatis Medical Solutions

The about form has been modified from the design specification such that the size of the form is
increased. The address of the company, as well as the serial number for the software, have been
removed. The serial number and company address were moved because they have not yet been
decided upon.

33..55..44.. GGrraapphhiiccss EEnnggiinnee DDeessiiggnn
33..55..44..11.. OOvveerrvviieeww
The VitalChart Graphics Engine (VGE) has met the minimal functional specification and has
been modified to incorporate extra features including a zoom feature and performance
improvements.

For the basic design, the VGE follows the design flowchart as described in the design
specification except for one change. The graphics buffer has now been removed and the
graphics engine updates the display immediately upon gathering the data. The reason for this
change is that the graphics buffer did very little in improving the display of the data points but
caused a great deal of processing lag between each point. Therefore, this step was removed in
favor of opting for a quicker plot time.

33..55..44..22.. SSyysstteemm TTiimmiinngg FFllooww
The greatest obstacle in this section was caused by buffer overrun and underrun issues. While
communicating with the hardware, the communications manager needs to collect data much
faster than the plot in order to provide real-time operation. Although the minimal requirement
of plotting the data within one second of the real-world time was met, plotting the data much
faster was highly desired since our device targets a medical application. After several trials
with “real” EKG data (the software was developed using waveforms generated from the
function generator). It appeared that the sampling rate at 0.05s was not high enough to resolve
the entire ST section of the QRST complex. Therefore, the sampling rate was increased to 0.01s
and the bottleneck of our system became the slow plotting speed of the Palm ™ PDA. In order
to resolve this problem, the data rate was increased to 62,500kbps as stated in Section 3.4.7.
Using the higher data rate, more data can be gathered at once on the hardware side and the
communications manager can request data less frequently and still acquire more data. This
allowed more computing time for the data conversion, peak locator, heart rate calculation and
plotting. The increase in resources for these functions allowed the Palm™ OS to plot data
within 0.2 seconds of when the data is received at a 100 Hz sampling rate.

In order to protect against buffer overrun and underrun at this data rate, the system utilizes a
large buffer for storing data and initiates a buffer pointer synchronization every after plotting
an entire screen. Once the pointers synchronize, the plotting is delayed for 10 samples to allow
the data buffer to fill ahead of the plot. This prevents buffer overrun and the synchronization
prevents underrun.

33..55..44..33.. PPeeaakk LLooccaattoorr aanndd HHeeaarrtt RRaattee CCaallccuullaattiioonn
In order to detect the peaks of the QRST complex, calculate the heart rate, and toggle the
heartbeat indicator, a peak detection algorithm is utilized. This algorithm takes the difference
between each data sample as they enter the plotting algorithm. When the difference is lower

Copyright 2002, VitalStatis Medical Solutions 15

16

VitalStatis Medical Solutions

than a set threshold, a trigger flag is set, and the algorithm looks for a difference that is higher
than a set threshold while the trigger is set and records the location of the peak. Once the plot
reaches the end of the display, the heart rate is calculated by averaging all the plot locations and
converting it to beats per minute.

33..55..44..44.. ZZoooomm
In addition to the minimum requirements, a zoom feature has been implemented for the Palm™
PDA display to resolve the QRST complex. At the regular resolution, the system displays
several QRST complexes at a once on each screen wipe whereas when the system is zoomed in,
the QRST complex is displayed at a much higher resolution with less samples per screen.

33..66.. FFuuttuurree PPllaannss

33..66..11.. HHaarrddwwaarree IInntteerrffaaccee
The most valuable improvement to the hardware interface, as with the other hardware
components of the device, would be to lower the power requirements. We found low voltage
substitutes for both the microcontroller and the RS-232 Driver/Receiver. The PIC16LF873 is a
low voltage version of the same microcontroller that can operate at a voltage supply down to
2.0V. The tradeoff for the low voltage is a decreased operational frequency, which is a
maximum of 4MHz. The MAX3224E is another RS-232 Driver/Receiver that can operate at
supply voltages of 3.3V to 5V. It also features an autoshutdown mode that can shut down the
chip when no traffic occurs on the signal lines. We hope to incorporate these components into
our device in a future revision of the design.

We found during our testing that the current bottleneck in the microcontroller firmware is the
serial data transmission, as many bytes are being sent at a time in a loop. Therefore, to achieve
the lower operating frequency, the algorithm must be optimized to increase its speed. Lastly,
we can utilize a smaller microcontroller in the design, as many output pins as well as much of
the program memory in our PIC16F873 microcontroller remains unused. This improvement
can cut down on both the size and cost of the device, two important factors in a portable
instrument design.

33..66..22.. DDaattaabbaassee
An important area to expand in the future will be the development of a web-based SQL server
system for the data collected by the VitalChart. In this system, hospital personnel will be able to
synchronize the data collected on to the PDA with the central database every time the Palm™
PDA is HotSync’ed. This database of patient information and records would eventually be
developed such that it can be accessible by other health care professionals by logging on to the
system and downloading the data. This ability is a vital part to increase the value of our system
by simplifying patient charting and information sharing. In addition, we will develop
VitalChart to use USB connectivity such that it will become compatible will all PDAs.
Furthermore, the implementation of EKG recognition and diagnostic software may be
developed.

Copyright 2002, VitalStatis Medical Solutions 16

17

VitalStatis Medical Solutions

44.. BBuuddggeett
The following table shows the final budget for our project. The actual costs are not exact because when
we bought electrical components, we often used the same parts in more than one module.

Table 1: Final Project Budget

Module Estimated Cost Actual Cost
EKG $150 $50
Respiratory Rate $225 $20
Hardware Interface $225 $140
Palm $345 $340
Development Software $0 $0
Power Supply $20 $20
Miscellaneous $100 $220
Total Expenses $1165 $790

As can be seen in Table 1, we were able to stay within our total budget and most sections of the
project were completed below budget. The reason we overestimated our costs for the EKG
module, breathing rate monitor, and interface is because we were expecting to have to buy all of
our parts. In actuality, we managed to obtain a significant number of the parts we needed
through free samples from various chip manufacturers.

Our miscellaneous costs were over our expected budget mostly because we did not budget for
the materials we needed to make our PCBs. We needed to buy chemicals for developing and
etching, photosensitive boards, a UV lamp to expose the boards, and a drill press stand for the
dremel we used to drill the holes in our PCBs. We are satisfied that we spent our money wisely
and managed to complete our project under budget.

Copyright 2002, VitalStatis Medical Solutions 17

18

VitalStatis Medical Solutions

55.. PPrroojjeecctt TTiimmeelliinnee
Our initial project timeline is illustrated below in Figure 13.

Figure 13: Initial Gant Chart for VitalChart Development

We managed to meet all of our milestones except for the post mortem which was finished just
before our project demonstration on Dec. 17th. While we managed to start almost all of our
tasks when we planned, we underestimated the time required for almost every task. Research
for the EKG and breathing apparatus was not completed until the end of October, when we had
to write our design specifications. This occurred because when we started developing each
module, additional problems or concerns would arise causing us to do more research to gain
greater insight into possible solutions. Once we had defined what we wanted to do in the
design specifications, we had researched most of the relevant information we would need.

Development of the EKG and breathing apparatus started as scheduled, but also unfortunately
took longer than expected. While the major development of the EKG was completed by the end
of November and the breathing apparatus by the beginning of December, we did not freeze our
design until the end of the second week of December. The reason the development was
extended was because we had to make changes to each module during integration. We should
have anticipated that integration would involve continued development of both modules.

The actual development of the EKG and breathing apparatus interface was delayed until the
beginning of November, however we began research of the interface at the time scheduled for
the start of interface development. Interface development was similar to the development of
the EKG and breathing apparatus in that the major development was finished by the end of
November, but minor changes were made until the second week of December. The reasoning
for the extended development is the same and, again, something we should have anticipated.

Like the interface, the Palm VitalChart software application development was delayed while
research was done. Actual development of the software commenced at the beginning of
November and continued until the second week of December, for the same reasons as the
development of the EKG, breathing apparatus, and interface. However, an addition reason for

Copyright 2002, VitalStatis Medical Solutions 18

19

VitalStatis Medical Solutions

the extended development of the VitalChart software was implementation of a database which
was a function not part of the minimum requirements of our project in our design specification.

Power source development was delayed until December because it was not part of our
minimum requirements so the other tasks took precedence over it. Our expected development
time was about right for the power source and was completed during the second week of
December.

Integration was delayed for two weeks as the other modules had not been developed to the
point where they could be integrated. We did try to integrate as soon as possible as it was
important for us to know that we would be able to communicate from one module to the other.
To this end, we first performed an initial integration as soon as the individual modules had
enough functionality that we can try combine them together. This was done to foresee any
particularly difficult problems that we may encounter during the process, and solve them
before the final project is to be combined. System integration was completed on schedule, just
in time for our demonstration.

Overall, we underestimated how long each task would take, but we also did not incorporate
two other factors into our scheduling. The first factor was documentation, which took up most
of the time we allocated for ENSC 340/305 for the first two months of our project. We thought
we would have more time to develop our project so that we would not have to change as much
during integration. We might have had that time, if not for the other factor we underestimated:
the dreaded sixth engineering semester. As each of our six group members was taking 17 or
more credits, we simply could not find as much time to work on our project as we wanted. This
resulted delays and the extension of our research and development times.

Copyright 2002, VitalStatis Medical Solutions 19

20

VitalStatis Medical Solutions

66.. GGrroouupp DDyynnaammiiccss
Without a doubt, any successes or failures we have had were impacted by our group dynamics,
the most important aspects being organization and communication. Our organization was
established from Day 1 when we began forming our team in the summer of 2002, three months
before the start of ENSC 340/305. We were a group of six talented engineering students who
had all worked together before and who knew what to expect from each other. This was a very
significant because we knew what the strengths and weaknesses of each group member was
and were able to organize our workload so that each member could work effectively. We began
having meetings in the summer, keeping meeting minutes and conducting ourselves like a
startup company would, to ensure that each member would have an input on any decision we
made.

Once our project official began at the beginning of September, we had weekly meetings on
Wednesdays to update everyone on the status of each other and to make sure everyone had a
clear idea of what our goals were. Our meeting minutes were being posted on our group
website so that everyone could see if they were on track. While these meetings were a little long
near the beginning of the semester, we quickly learned how to keep the meetings going at a
good pace. These meetings were particularly effective when we needed to brainstorm ideas or
debate management-type decision, such as choosing a company name and establishing the
scope of our project. However, as the semester progressed we found these meetings became
less valuable as we more often had engineering decisions to discuss where only a few group
members were needed at a time. Near the end of October we had split ourselves into smaller
workgroups and no longer had weekly meetings. Informal meetings were scheduled with the
relevant group members to avoid wasting the time of the other group members. Our
communication worked out quite well due to the fact that we are all friends and see each other
on a consistent basis. Had this situation been different, we would have adjusted our methods of
communication.

For the most part, we managed to cooperate fairly well with each other. While there were some
heated conversations, they were not a result of any personality conflicts and we are all still
friends with each other. In fact, we are probably a stronger group now than when we started,
having suffered and succeeded together. This project has been a valuable experience for all of
us; each of us has learned how to be a more effective team member and we even still like each
other.

Copyright 2002, VitalStatis Medical Solutions 20

21

VitalStatis Medical Solutions

77.. PPeerrssoonnaall CChhaalllleennggeess

SSeeee--HHoo TTssaanngg –– CChhiieeff EExxeeccuuttiivvee OOffffiicceerr
This course has been an extremely challenging but exciting experience for me. I enjoyed
developing our product throughout the 13+ weeks but not-so-enjoyed sleeping only 5 and half
hours in a 110 hr period. One thing that I will take away from this experience is the confidence
that we can design and build a product that is definitely non-trivial and difficult. I now feel
that we can tackle anything.

For the development of VitalChart, I was assigned to build the Graphics Interface and the
Graphical User Interface on the Palm™ side. For these tasks, I had to develop my skills as a
Palm™ OS programmer and think up some creative DSP algorithms to extract the heart rate
from the EKG waveform. However, the most difficult assignment was to create a system that
would plot the data in real-time. This proved to be the biggest headache since the Palm™ m500
has limited capabilities. This task brought on the occasional profanity coming from the back of
lab when things started to break down. However, once the program came together, I felt the
greatest feeling of satisfaction. For the future, I will probably use a more powerful PDA to
achieve our goal.

Another job I faced was assuming the role of CEO and help my team believe in my idea during
the planning process, and continue to believe when times were tough where it appeared that
this project might not be realizable. In addition to this, I also had to research the market and
make contact with nurses and other health care professionals to see whether or not the product
is useful.

If I were to do this project again, I would still work with the same group. When things were
tough we were all there toughing it out – as one. The one thing that kept our group as together
as it did was the fact that we mostly worked side by side. Even for the other courses, our group
would remain as one team. For this semester, we lived as one team in all the courses not just
340. Therefore, the amount of understanding and help that we gave each other occurred right
across the board.

Since we have decided to take this project to market, I think our team will keep a long lasting
friendship.

CCoorryy JJuunngg –– VVPP EEnnggiinneeeerriinngg
ENSC 340/305 has been both a pleasure and a pain-in-the-ass for me. On one hand, I am happy
with what I have learned from this course and I think it has been a valuable experience for me.
On the other hand, I have had to work extremely long and hard hours under the influence of
sleep deprivation, the health effects of which have probably shortened my life span.

The technical tasks I was assigned were the A/D conversion and subsequent multiplexing of
the sampling and producing the PCBs. While not trivial, these tasks were not especially
challenging to me. I like playing around with microcontrollers and was able to draw upon past

Copyright 2002, VitalStatis Medical Solutions 21

22

VitalStatis Medical Solutions

co-op experiences. I was well equipped to face these tasks. In fact, my most challenging tasks
were not technical at all.

The hardest task I was faced with was my role as VP Engineering. My tasks were to tasks to
each group member and generally act as the project manager. This proved to be quite difficult
for me as I had to be the one to make some of the tougher decisions. This meant increased
responsibility and as a result, increased stress. While I am generally pretty good at making
decisions, my inexperience in managing a project of this size was a challenging one. This role
has really allowed me to explore a different facet of project work, one I am glad to have had.
The experience I have gained is valuable and I hope to get another opportunity to work as a
project manager.

I am very grateful that I got to work with this great group of guys on this project. While it has
been painful at times, there have been moments I will never forget. After getting through all of
the obstacles that we have encountered in this project, I feel a real sense of accomplishment and
camaraderie. I guess in the end, despite the perhaps shortened lifespan, it was worth it.

BBoobb WWaaii -- VVPP FFiinnaannccee
From ENSC 305/340, I learned the importance of dividing workload evenly for a big project
and how to stay awake for 48 hours. Sleeping becomes optional after taking this project course.
Although I suffered in this course, I believe it is a valuable experience for me.

In the process of developing the respiratory circuit, the magnitude of the output signal was the
major obstacle because a ±2g accelerometer is not very sensitive to small vertical movement.
The magnitude of the sensor signal was almost the same level as the noise, which was not a
useful signal. To choose a suitable accelerometer for our respiratory sensor was difficult
because the current smallest g accelerometer is still not sensitive enough to detect the
respiratory movement and the z-axis accelerometer is not available in the market. As a result,
we spent a long time doing research on all possible respiratory sensors. I also face difficulty
when making PCBs. The pads and traces on the board could be ruined fairly easily since they
are thin and small. Since the PCB is small, it is complicated to troubleshoot the circuit when
there are problems.

I learned to use Protel Design Explorer to draw schematics and layout PCBs, as well how to
make a single layer PCB. This was a valuable experience for me because it could help me to
find a job in PCB industry and will help if I make PCBs in future projects. I also understand
how an accelerometer operates and how it is used to detect movement and rotation.

If I could redo this project, I would build an oxygen saturation circuit to measure the respiratory
rate because it gives a more accurate respiratory signal for further analysis.

Everyone contributed greatly in this project to achieve the goal of completing our project.

Copyright 2002, VitalStatis Medical Solutions 22

23

VitalStatis Medical Solutions

JJaassoonn YYuu –– VVPP CCoommmmuunniiccaattiioonnss
During the project development cycle, I was mostly occupied in developing the hardware
interface together with Cory. The hardware interface includes the microcontroller, RS-232
Driver/Receiver circuitry, and the microcontroller firmware. Within the firmware, my
responsibility was the communication between the Palm PDA and the hardware interface. I
felt that particular section is one of the trickier parts of the project and we ran into many
difficulties throughout the project development. I discovered that synchronizing
communication between multiple devices (in this case, only two) is quite a difficult task, and a
robust methodology is required to ensure good results. I enjoyed developing and
experimenting with the different communication methodologies to find one that worked well
for our requirements and participating in a larger scale project development.

Having seen through the development of a complete product from beginning to end, I learned
much about working on a big project in a team environment. Frequently we would have
questions about each other’s work, and it is very difficult to continue if we cannot get quick
responses from team members. Collaboration between the hardware interface personnel with
the Palm PDA software developers was especially critical to work on the communication.
Any changes to the communication required changes on both ends, and the modifications had
to be evaluated to see if any further tweaks were needed.

Working in a small group in a closed environment, under stress, and under sleep deprivation
was also an interesting experience that I gathered during the last 72 hours before the project
demonstration. I am happy to say I did not have to sleep in the lab, although most of my team
members did, in sleeping bags and inflatable mats on the floor. When everybody in the group
has had less than 5 hours of sleep within a 48-hour period, we definitely have to be more
tolerant towards each other.

DDaavviidd PPoooonn –– SSeenniioorr EEnnggiinneeeerr
I have been quite amazed at how our project has come together during the past 13 weeks. We
have completed and met every minimal requirement and even had extra time to implement
some extra features such as database and PCB. Our software, firmware, and hardware
integrated very smoothly as the project progressed, even though the software and the hardware
parts are done independently.

This ENSC 340 project provided me an opportunity to practically apply the skills that I have
acquired in the past few years. The C programming skill that I have developed helped me
tremendously in creating the VitalChart Bio-Reader software. During the project, I
programmed the serial communication interface for the Palm™ device, a database system for
storing patient’s EKG data and a desktop database conversion utility for extracting the Palm™
database into a text file. I have learned the project engineering cycle, from project idea
brainstorming, project planning, writing documentation, and doing a presentation. I have also
learned how to work with other people to create software, how to stay awake for a few days
with minimum sleep, and how to control my temper when I get cranky or annoyed by other
members. I have also learned the proper research methodology and how to utilize online
resources when I get stuck on software problems.

Copyright 2002, VitalStatis Medical Solutions 23

24

VitalStatis Medical Solutions

Finally, I enjoyed working with my fellow teammates and hopefully we can make VitalChart
Bio-Reader a successful commercial product.

JJaammeess HHuu –– SSeenniioorr EEnnggiinneeeerr
ENSC 340/305 has been a great pleasure for me. I have a personality trait that never lets me
give up so the project seemed like a big challenge to it. Throughout the project, these following
skills were constantly required: application of the knowledge and experience I have gained, co-
operation between team members, and problem solving.

Application of my knowledge was the most important for my duty. Since I am the senior
engineer in the group, the main part of my job was to design and fix circuits, program in
assembly, and other technical tasks. The EKG design was the main part of my duty.
Applications of filters and amplifiers were the very core design of the EKG unit. I also helped
out with programming the hardware interface where I designed and wrote the respiratory DSP
code.

Problem solving was also very important in my role; I learned a lot as our product was
developed. For example, the EKG design was developed and tested at the beginning of the
cycle, however, several problems were encountered, such as the voltage of each person is
different and the microcontroller can only input positive voltages. These were all solved by the
engineering intuition I have earned as I study in Simon Fraser engineering.

Co-operation between team members was the key to our success. Even though there were a lot
of arguments and disagreements, we were always working toward one important goal: the
completion of the project. As the deadline approached, the amount of sleep we got was close to
none. At this time, I learned it’s important to keep an open mind and make sure we work in a
humorous environment. I tried to keep all of us going by telling sick jokes once a while. Of
course, being friends with all the group members kept me from crossing the line and pissing
someone off.

Finally, I would like to thank all my group members for being able to stand me and being such
a great bunch with diversity and amazing talents. We’ve done great, guys!!!

Copyright 2002, VitalStatis Medical Solutions 24

25

VitalStatis Medical Solutions

88.. CCoonncclluussiioonn
There is no doubt that everyone in our group is extremely proud of what we have accomplished
for VitalChart. While the process has not been without frustration or suffering, it has also been
an on-going learning experience, and in the end, a rewarding one. We have managed to
accomplish the product goals we set out in our specifications and more.

While we certainly encountered our share of technical problems, we also contended with group
dynamics, organization, and project management difficulties. Despite these obstacles, our
group of six engineers has learned from our mistakes and we are confident we could continue
to improve VitalChart, whatever troubles should arise.

Copyright 2002, VitalStatis Medical Solutions 25

26

VitalStatis Medical Solutions

99.. RReeffeerreenncceess
ePanorama.net, (2001) “Power supplies.” http://www.epanorama.net/links/psu.html
(Accessed December 14, 2002).

Elliot Sound Products (1999) “Project 43 – Simple DC Adapter Power Supply.”
http://sound.westhost.com/project43.htm (Accessed December 14, 2002).

EDN Access (1997) “EDN Access—07.17.97 Op amp makes precise 9V-battery splitter.”
http://www.e-insite.net/ednmag/archives/1997/071797/15di_05.htm (Accessed December
14, 2002).

Copyright 2002, VitalStatis Medical Solutions 26

27

VitalStatis Medical Solutions

AAppppeennddiixx AA:: PPIICC MMiiccrrooccoonnttrroolllleerr FFiirrmmwwaarree SSoouurrccee CCooddee

;**
; This file is a basic code template for assembly code generation *
; on the PICmicro PIC16F873. This file contains the basic code *
; building blocks to build upon. *
; *
; If interrupts are not used all code presented between the ORG *
; 0x004 directive and the label main can be removed. In addition *
; the variable assignments for 'w_temp' and 'status_temp' can *
; be removed. *
; *
; Refer to the MPASM User's Guide for additional information on *
; features of the assembler (Document DS33014). *
; *
; Refer to the respective PICmicro data sheet for additional *
; information on the instruction set. *
; *
; Template file assembled with MPLAB V4.00 and MPASM V2.20.00 *
; *
;**
; *
; Filename: vcht_10.asm *
; Date: Dec. 15, 2002 *
; File Version: 1.0 *
; *
; Author: James Hu, Cory Jung, Jason Yu *
; Company: VitalStatis Medical Solutions *
; *
; *
;**
; *
; Files required: *
; *
; *
; *
;**
; *
; Notes: Implemented the following: *
; - Added low power detection code *
; *
;**

 list p=16f873 ; list directive to define processor
 #include <p16f873.inc> ; processor specific variable definitions

 __CONFIG _CP_OFF & _WDT_OFF & _BODEN_ON & _PWRTE_ON & _HS_OSC & _WRT_ENABLE_ON
& _LVP_ON & _CPD_OFF
; '__CONFIG' directive is used to embed configuration data within .asm file.
; The lables following the directive are located in the respective .inc file.
; See respective data sheet for additional information on configuration word.

;***** VARIABLE DEFINITIONS
; Variable EQU Data address

w_temp EQU 0x20 ; variable used for context saving
status_temp EQU 0x21 ; variable used for context saving

Copyright 2002, VitalStatis Medical Solutions 27

28

VitalStatis Medical Solutions

fsr_temp EQU 0x22 ; variable used for context saving
isr_temp EQU 0x23 ; variable used for context saving

AD_wait_count EQU 0x24
AD_dL EQU 0x25 ; temporary data storage, must be
AD_dH EQU 0x26 ; consecutive and low byte before high
sub_temp EQU 0x27 ; subroutine temporary variable
sub_temp2 EQU 0x28 ; subroutine temporary variable
prog_flags EQU 0x29 ; store program flags
parity EQU 0x2a ; temporary parity check
rcv_byte EQU 0x2b ; storage for RCREG
rcv_status EQU 0x2c ; storage for RCSTA
rcv_parity EQU 0x2d ; temporary storage for receive parity
AD_BR_count EQU 0x2e ; variable for A/D multiplexing
power_chk_cnt EQU 0x2f

; USART send buffer
send_buf_add EQU 0x30 ; data address pointer
send_buf_psnd EQU 0x31 ; buffer send pointer, points to first byte to
send
send_buf_pdat EQU 0x32 ; buffer data pointer, points to next empty
location
send_buf_start EQU 0x50 ; start address of send buffer
send_buf_end EQU 0x80 ; constant, location AFTER last buffer space

BR_addr EQU 0xA2 ; Breathing A/D Data
BR_DATA_ST EQU 0xC0 ; Breathing A/D buffer
BR_DATA_END EQU 0xFC
BR_rate EQU 0xAA ; Breathing Rate

;--------- part 1 data ------
BR_count EQU 0xA3
BR_temp EQU 0xA4
BR_carry EQU 0xA5

;--------- part 2 data ------
BR_flag EQU 0xA6
BR_max_count EQU 0xA7
BR_DSP_addr EQU 0xA8
BR_DSP_data EQU 0xA9

;***** PROGRAM CONSTANTS
AD_delay EQU 0x80
data_length EQU 0x02
send_window EQU 0x1A ; sends 26 bytes at a time
dummy_byte EQU 0x1F
power_th_H EQU 0x02
power_th_L EQU 0xCC ; 3.5V power threshold
power_chk_const EQU 0x14

; Breathing rate constants
BR_HI_const EQU 0x90
BR_LOW_const EQU 0x70
BR_HI_flag EQU 0x00

; Flags stored in prog_flag
go_ad_flag EQU 0x00 ; flag to start A/D
go_send_flag EQU 0x01 ; flag to start sending
go_receive_flag EQU 0x02 ; flag to start receive decode

; Transmission data ID (upper 3 bits)
ID_EKG_L EQU 0x00 ; ID: 000

Copyright 2002, VitalStatis Medical Solutions 28

29

VitalStatis Medical Solutions

ID_EKG_H EQU 0x20 ; ID: 001
ID_RES_L EQU 0x40 ; ID: 010
ID_RES_H EQU 0x60 ; ID: 011

; Instruction constants
TMT_SYNC EQU 0x04
TMT_SEND EQU 0x05
TMT_END EQU 0xbb ; not used yet

;**
 ORG 0x000 ; processor reset vector
 clrf PCLATH ; ensure page bits are cleared
 goto main ; go to beginning of program

;**

 ORG 0x004 ; interrupt vector location
 movwf w_temp ; save off current W register contents
 movf STATUS,w ; move status register into W register
 bcf STATUS,RP0 ; ensure file register bank set to 0
 movwf status_temp ; save off contents of STATUS register
 movf FSR,w
 movwf fsr_temp ; save off address in FSR

;-------------------------
; Check interrupt occurred
;-------------------------

 btfsc PIR1,RCIF ; check if receive int occurred
 goto receive_int
 btfsc PIR1,TMR1IF ; check if timer1 overflow occurred
 goto timer1_int
 goto end_isr ; failsafe to exit ISR

;------------------------
; USART receive interrupt
;------------------------

receive_int
 movf RCSTA,W ; copy RX9D bit
 movwf rcv_status
 movf RCREG,W ; copy received data
 movwf rcv_byte

receive_cont
 btfss rcv_status,OERR ; check receive overrun
 goto decode_inst ; instruction decode

oerr_handle
 bcf RCSTA,CREN
 bsf RCSTA,CREN
 goto end_isr

;--------------------------------
; Decode and process instructions
;--------------------------------

decode_inst
 movf rcv_byte,W
 sublw TMT_SEND ; start transmission instruction

Copyright 2002, VitalStatis Medical Solutions 29

30

VitalStatis Medical Solutions

 btfsc STATUS,Z
 goto inst_do_transmit
 goto end_isr ; failsafe to end ISR

; Start transmission instruction
inst_do_transmit
 bsf prog_flags,go_send_flag ; set flag to send data
 btfss PORTC,2 ; toggle send LED
 goto set_send_led
clr_send_led
 bcf PORTC,2
 goto end_isr
set_send_led
 bsf PORTC,2
 goto end_isr

;------------------
; Timer 1 interrupt
;------------------

timer1_int
 bsf prog_flags,go_ad_flag ; set A/D flag
 call set_timer
 bcf PIR1,TMR1IF ; re-enable timer
interrupt

 bsf ADCON0,GO_DONE ; perform single A/D acquisition

AD_done_loop
 btfsc ADCON0,GO_DONE ; wait for A/D to complete
 goto AD_done_loop

 movf ADRESH,W
 movwf AD_dH ; store upper A/D bits
 bsf STATUS,RP0 ; select bank 1
 movf ADRESL,W ; retrieve lower A/D bits
 bcf STATUS,RP0 ; select bank 0
 movwf AD_dL
 goto end_isr

;----------------------------
; Restore pre-interrupt state
;----------------------------

end_isr
 movf fsr_temp,w ; restore FSR contents
 movwf FSR
 bcf STATUS,RP0 ; ensure file register bank set to 0
 movf status_temp,w ; retrieve copy of STATUS register
 movwf STATUS ; restore pre-isr STATUS register contents
 swapf w_temp,f
 swapf w_temp,w ; restore pre-isr W register contents
 retfie ; return from interrupt

;**
; Subroutine: set_timer
;
; Adjusts the timer counter for 0.05s period
;**

set_timer
 bcf T1CON,TMR1ON ; stop timer1

Copyright 2002, VitalStatis Medical Solutions 30

31

VitalStatis Medical Solutions

 movlw 0x58 ; set timer counters
 movwf TMR1L
 movlw 0x9E
 movwf TMR1H
 bsf T1CON,TMR1ON ; start timer1

 return

;**

;--------------
; Main Program
;--------------

main

;-----------
; Setup A/D
;-----------

 bsf STATUS,RP0 ; select data bank 1
 movlw 0xC9 ; initialize ADCON1
 movwf ADCON1

 bcf STATUS,RP0 ; select data bank 0
 movlw 0x80 ; initialize ADCON0
 movwf ADCON0
 bsf ADCON0,ADON ; turn on A/D

 movlw AD_delay
 movwf AD_wait_count
AD_wait
 decfsz AD_wait_count,F
 goto AD_wait

;-------------
; PORT config
;-------------

 bsf STATUS,RP0 ; select data bank 1
 movlw 0xff
 movwf TRISA
 movlw 0x7f
 movwf TRISB ; make PORTB input
 movlw 0xB3
 movwf TRISC ; set PORTC direction

;--------------
; USART config
;--------------

 movlw D'4' ; baud rate = 62500
 movwf SPBRG
 movlw 0x00 ; configure serial tranmit
 movwf TXSTA
 bcf STATUS,RP0 ; select data bank 0
 movlw 0x10 ; configure serial receive
 movwf RCSTA
 bsf RCSTA,SPEN ; enable serial port

 movlw send_buf_start ; initialize send buffer

Copyright 2002, VitalStatis Medical Solutions 31

32

VitalStatis Medical Solutions

 movwf send_buf_psnd
 movwf send_buf_pdat ; store start address to pointer
 clrf AD_BR_count ; initialize multiplexing counter

 bsf STATUS,RP0 ; select bank 1
 bsf TXSTA,TXEN ; enable transmit

;------------
;Timer 1 Setup
;------------

 bcf STATUS,RP0 ; select data bank 0
 movlw 0x10 ; 1:2 prescaler
 movwf T1CON ; configure timer 1
 clrf TMR1L ; clear timer 1
 clrf TMR1H

;---------------------
; Configure interrupts
;---------------------

 bsf STATUS,RP0 ; select data bank 1
 bsf PIE1,RCIE ; enable serial receive int
 bsf PIE1,TMR1IE ; enable timer 1 int
 bcf STATUS,RP0
 movlw 0xC0 ; enable interrupts
 movwf INTCON

;---------------
; Process start
;---------------

 bsf PORTC,2 ; set transmit indicator
LED
 clrf prog_flags
 bsf STATUS,RP0 ; select data bank 1
 movlw BR_DATA_ST ; for initialization of EKG_data
 movwf BR_addr
 clrf BR_count ; for initializetion of DSP data
 clrf BR_temp
 clrf BR_carry
 clrf BR_flag
 bcf STATUS,RP0 ; select data bank 0
 call set_timer ; start timer

main_loop
 btfsc prog_flags,go_ad_flag ; wait for interrupt to
occur
 goto go_AD ; process data
 btfsc prog_flags,go_send_flag
 call send_data
 movf power_chk_cnt,W
 sublw power_chk_const
 btfsc STATUS,Z
 call check_power
 goto main_loop

;***

;---------------
; A/D process
;---------------

Copyright 2002, VitalStatis Medical Solutions 32

33

VitalStatis Medical Solutions

go_AD

 btfss PORTB,7 ; toggle an indicator pin
 goto set_indicator
clr_indicator
 bcf PORTB,7
 goto indicator_cont
set_indicator
 bsf PORTB,7

indicator_cont
 bsf PIR1,TMR1IF ; disable timer interrupt
 movlw AD_dL ; copy address of AD_dL to REGW
 call shift_data

 movf AD_dL,W ; append EKG header to data
 iorlw ID_EKG_L
 movwf AD_dL
 movf AD_dH,W
 iorlw ID_EKG_H
 movwf AD_dH

 movlw data_length ; select number of bytes to buffer
 call buffer_data

; Breathing rate A/D cycle

 incf AD_BR_count,F ; check whether to perform breathing A/D
 movlw 0x05
 subwf AD_BR_count,W
 btfss STATUS,Z ; do breathing A/D every 5 A/D cycles
 goto end_AD

 clrf AD_BR_count ; re-initialize counter

 bcf ADCON0,ADON ; turn off A/D
 bsf STATUS,RP0 ; select data bank 1
 movlw 0x49 ; initialize ADCON1
 movwf ADCON1 ; switch to AN1, left justified

 bcf STATUS,RP0 ; select data bank 0
 movlw 0x88 ; initialize ADCON0
 movwf ADCON0
 bsf ADCON0,ADON ; turn on A/D

 movlw AD_delay
 movwf AD_wait_count

AD_BR_wait1
 decfsz AD_wait_count,F ; wait for A/D initialization
 goto AD_BR_wait1

 bsf ADCON0,GO_DONE ; Start breathing rate A/D

AD_BR_done_loop
 btfsc ADCON0,GO_DONE ; wait for A/D to complete
 goto AD_BR_done_loop

 movf ADRESH,W ; store A/D data
 movwf AD_dH

BR_AVG_ST

Copyright 2002, VitalStatis Medical Solutions 33

34

VitalStatis Medical Solutions

 call st_BR_AVG
 bsf STATUS,RP0
 btfsc BR_count,2
 call DSP_BR

; Reconfigure A/D for EKG cycle

 bcf STATUS,RP0
 bcf ADCON0,ADON ; turn off A/D
 bsf STATUS,RP0 ; select data bank 1
 movlw 0xC9 ; initialize ADCON1
 movwf ADCON1 ; switch back to AN0, right justified
 bcf STATUS,RP0 ; select data bank 0
 movlw 0x80 ; initialize ADCON0
 movwf ADCON0
 bsf ADCON0,ADON ; turn on A/D

 movlw AD_delay
 movwf AD_wait_count

AD_BR_wait2
 decfsz AD_wait_count,F
 goto AD_BR_wait2

end_AD
 bcf prog_flags,go_ad_flag ; clear A/D flag
 bcf PIR1,TMR1IF ; re-enable timer
interrupt
 goto main_loop

;-------------
; Subroutines
;-------------

;---
; Subroutine: Check power supply voltage
;
; Checks if the power supply voltage is below a threshold (implemented as
; ABOVE threshold detection) and turns on an indicator LED when it is
;---

check_power

 bsf PIR1,TMR1IF ; disable timer interrupt
 bcf STATUS,RP0
 bcf ADCON0,ADON ; turn off A/D
 bsf STATUS,RP0 ; select data bank 1
 movlw 0xC9 ; initialize ADCON1
 movwf ADCON1 ; switch to AN2, right justified
 bcf STATUS,RP0 ; select data bank 0
 movlw 0x90 ; initialize ADCON0
 movwf ADCON0
 bsf ADCON0,ADON ; turn on A/D

 movlw AD_delay
 movwf AD_wait_count

AD_power_wait
 decfsz AD_wait_count,F
 goto AD_power_wait

Copyright 2002, VitalStatis Medical Solutions 34

35

VitalStatis Medical Solutions

 bsf ADCON0,GO_DONE ; perform single A/D acquisition

AD_power_done_loop
 btfsc ADCON0,GO_DONE ; wait for A/D to complete
 goto AD_power_done_loop

 movf ADRESH,W
 movwf AD_dH ; store upper A/D bits
 bsf STATUS,RP0 ; select bank 1
 movf ADRESL,W ; retrieve lower A/D bits
 bcf STATUS,RP0 ; select bank 0
 movwf AD_dL

 movf AD_dH,W
 andlw 0x03
 sublw power_th_H
 btfss STATUS,C
 goto supply_low
 movf AD_dL,W
 sublw power_th_L
 btfss STATUS,C
 goto supply_low

 bcf PORTC,3
 goto end_check_power

supply_low
 bsf PORTC,3

end_check_power
; Reconfigure A/D for EKG cycle
 clrf power_chk_cnt

 bcf ADCON0,ADON ; turn off A/D
 bsf STATUS,RP0 ; select data bank 1
 movlw 0xC9 ; initialize ADCON1
 movwf ADCON1 ; switch back to AN0, right justified
 bcf STATUS,RP0 ; select data bank 0
 movlw 0x80 ; initialize ADCON0
 movwf ADCON0
 bsf ADCON0,ADON ; turn on A/D

 movlw AD_delay
 movwf AD_wait_count

AD_power_wait2
 decfsz AD_wait_count,F
 goto AD_power_wait2

 bcf PIR1,TMR1IF ; re-enable timer
interrupt
 return

;---
; Subroutine: Breathing Average
; Updated: Nov 15th, 2002
;
;---

st_BR_AVG
 bcf STATUS,RP0 ; select bank 0
 movf AD_dH,W ; move data into buffer, W
 bsf STATUS,RP0 ; select bank 1

Copyright 2002, VitalStatis Medical Solutions 35

36

VitalStatis Medical Solutions

 addwf BR_temp,F ; W + Br_temp = BR_temp
 btfsc STATUS,C ; check if is carry is set
 incf BR_carry,F ; if true, increment BR_carry, and
BR_count
 incf BR_count,F ; if false, Just increment BR_count

 movlw 0x04 ; Check if four datas were saved
 subwf BR_count,W ; =
 btfsc STATUS,Z ; =
 goto STR_BR_D ; If true, Divide the total by 4 (go
into STR_BR_D)
 goto RET_BR_AVG ; If false, Return

STR_BR_D
 movf BR_addr,W ; Find current buffer address (BR_addr)
 movwf FSR ; =
 bcf STATUS,C ; Init carry to be 0 (divide
total by 4)
 btfsc BR_carry,0 ; Check if 1st carry exist
 bsf STATUS,C ; If exist, Set carry to 1 and
rotate
 rrf BR_temp,F ; If NO exist, Just rotate
 bcf STATUS,C ; Init carry to be 0
 btfsc BR_carry,1 ; Check if 2nd carry exist
 bsf STATUS,C ; If exist, Set carry to 1 and
rotate
 rrf BR_temp,W ; If NO exist, Just rotate
 movwf INDF ; Move my average to the current buffer
address (BR_addr)
 clrf BR_temp ; Reset my registers
 clrf BR_carry ; =
 movlw BR_DATA_END ; Check if the current buffer address @
the end
 subwf BR_addr,W ; =
 btfsc STATUS,Z ; =
 goto RESET_BR_ADDR ; if true, Reset current address to the top
 goto INC_BR_ADDR ; if NOT, Increment current buffer
address

INC_BR_ADDR
 incf BR_addr,F ; Increment current buffer address
 goto RET_BR_AVG

RESET_BR_ADDR
 movlw BR_DATA_ST ; Reset current address to the top
 movwf BR_addr

RET_BR_AVG
 bcf STATUS,RP0
 return

;---
; Subroutine: DSP for breathing rate
; Author: James Hu
; Updated: Nov. 15th, 2002
;
; Digital Signal process on digital signal data from accelerometer.
; PIC16F873 will process the data and provides us the breathing rate of the
; user. The final value will be store in br_rate @ 0x_$)(*!#$_)!(*#$.
;
; Pre: A/D signals are buffered inside RAM space in Bank1
; post: final breathing rate will be stored inside br_rate

Copyright 2002, VitalStatis Medical Solutions 36

37

VitalStatis Medical Solutions

;---

DSP_BR
 bsf STATUS,RP0
 clrf BR_max_count
 movf BR_addr,W
 movwf BR_DSP_addr

DSP_P1
 movf BR_DSP_addr,W ; acquire data from current DSP pointer
position
 movwf FSR ; =
 movf INDF,W ; =
 movwf BR_DSP_data ; =
 goto check_addr
check_addr_ret
 incf BR_DSP_addr,F ; increment current DSP pointer position
check_addr_ret2
 btfsc BR_flag,BR_HI_flag ; check if hi_flag is set or not
 goto Check_low_flag ; if already set, check low
 movlw BR_HI_const ; if NOT already set, Check if current
data higher than HI_THRESHOLD
 subwf BR_DSP_data,W ; =
 btfsc STATUS,C ; =
 goto set_flag ; if higher, goto set flag
 goto DSP_P1 ; if not go to the next data

check_addr
 movlw BR_DATA_ST ; Check Br_addr @ beginning (Find where
is the newest data)
 subwf BR_addr,W ; =
 btfsc STATUS,Z ; =
 goto Wrap_around_check ; If true, wrap around to the end
 goto Dec_check ; If false, Just decrement Br_addr
check_ret
 subwf BR_DSP_addr,W ; Compare DSP current pointer with pointer @
newest data
 btfsc STATUS,Z ; =
 goto DSP_end ; If same, DSP end.
 movlw BR_DATA_END ; If not, Check if Current pointer @
the end
 subwf BR_DSP_addr,W ; =
 btfsc STATUS,Z ; =
 goto BR_wrap_around ; If true, Current pointer wrap around
 goto check_addr_ret ; If not, return and increment current
DSP pointer position

Wrap_around_check
 movlw BR_DATA_END
 goto check_ret

Dec_check
 decf BR_addr,W
 goto check_ret

BR_wrap_around
 movlw BR_DATA_ST ; Current pointer wrap around to the
beginning
 movwf BR_DSP_addr ; =
 goto check_addr_ret2 ; =

Check_low_flag
 movlw BR_LOW_const ; Check if data is lower than LOW THRESHOLD

Copyright 2002, VitalStatis Medical Solutions 37

38

VitalStatis Medical Solutions

 subwf BR_DSP_data,W ; =
 btfss STATUS,C ; =
 goto clr_flag ; if lower, clear flag and increment
Br_max_count
 goto DSP_P1 ; if not go to the next data

set_flag
 bsf BR_flag,BR_HI_flag
 goto DSP_P1

clr_flag
 bcf BR_flag,BR_HI_flag
 incf BR_max_count,f
 goto DSP_P1

DSP_end
 movf BR_max_count,W ; stores BR_rate value
 movwf BR_rate ; =
 clrf BR_count ; reset BR_count = 0 from 4
 clrf BR_flag ; reset BR_flag

; Package and buffer breathing rate data

 movf BR_rate,W
 bcf STATUS,RP0
 movwf AD_dL
 clrf AD_dH

 movlw AD_dL
 call shift_data ; package data

 movf AD_dL,W ; append RES header
 iorlw ID_RES_L
 movwf AD_dL
 movf AD_dH,W
 iorlw ID_RES_H
 movwf AD_dH

 movlw data_length
 call buffer_data ; buffer data

 incf power_chk_cnt,F

 return

;---
; Subroutine: shift_data
;
; Shifts data into data transmission format: lower byte uses LS 5-bits,
; higher byte uses LS 5-bits. Two data bytes must be one after the other,
; with lower byte in lower address.
;
; Pre: Address of lower byte must be in REGW
;---

shift_data

 ; assemble lower data byte
 movwf FSR ; store lower byte address to indirect
reg
 movf INDF,W ; copy data in FSR location to W
 movwf sub_temp ; make a copy of lower byte at sub_temp
 andlw B'00011111' ; clear top 3 bits of data

Copyright 2002, VitalStatis Medical Solutions 38

39

VitalStatis Medical Solutions

 movwf INDF

 ; assemble upper data byte
 swapf sub_temp,F ; move upper 3-bits of lower byte to
right hand side
 rrf sub_temp,W
 andlw B'00000111' ; keep only bottom 3 bits
 movwf sub_temp

 incf FSR,F ; move pointer to upper byte address
 swapf INDF,F ; move upper byte to appropriate
position
 rrf INDF,W
 andlw B'00011000'
 iorwf sub_temp,W
 movwf INDF

 return

;---
; Subroutine: buffer_data
;
; Stores number of bytes into USART send buffer.
;
; Pre: - Number of bytes to buffer must be stored in REGW
; - Data to be buffered must be stored in AD_dL
; (and consecutive locations if buffer > 1 byte)
;---

buffer_data
 bcf STATUS,RP0
 movwf sub_temp ; use same temporary variable
 movlw AD_dL ; start address of data
 movwf send_buf_add

buffer_loop
 movf send_buf_add,W
 movwf FSR
 movf INDF,W ; load data to be buffered
 movwf sub_temp2 ; store to temporary location
 movf send_buf_pdat,W ; move current buffer pointer to REGW
 movwf FSR ; store buffer pointer to FSR
 movf sub_temp2,W
 movwf INDF ; store data bits
 incf send_buf_pdat,F ; increment buffer pointer
 incf send_buf_add,F ; increment data pointer

 movf send_buf_pdat,W
 sublw send_buf_end ; check if buffer pointer at end
 btfsc STATUS,Z
 goto reset_pdat ; reset buffer pointer to top

buffer_cont
 movf send_buf_pdat,W
 subwf send_buf_psnd,W ; check if buffer overflow
 btfsc STATUS,Z ; beginning pointer = end pointer if
overflow
 bsf PORTC,2 ; set power on/transmit
indicator LED

 decfsz sub_temp,F
 goto buffer_loop
 return

Copyright 2002, VitalStatis Medical Solutions 39

40

VitalStatis Medical Solutions

reset_pdat
 movlw send_buf_start ; buffer end reached
 movwf send_buf_pdat ; reset pointer to beginning
 goto buffer_cont

;---
; Subroutine: send_data
;
; Sends number of bytes as specified by send_window through TX of USART.
; Send begins at send_buf_psnd. Terminates when USART send complete.
;
;---

send_data

send_finish
 bsf STATUS,RP0 ; Select bank 1
 btfss TXSTA,TRMT ; Wait for previous send to complete
 goto send_finish

 bcf STATUS,RP0 ; Deselect bank 1
 movlw send_window
 movwf sub_temp
 movf send_buf_psnd,W ; send from location of buffer pointer
 movwf FSR

send_loop
 movf send_buf_psnd,W ; check if buffer underflow
 subwf send_buf_pdat,W
 btfsc STATUS,Z ; pointer beginning = pointer end if
underflow
 goto und_paddata ; run if buffer underrun

 call send_byte
 incf send_buf_psnd,W
 movwf send_buf_psnd
 sublw send_buf_end ; check if pointer at buffer end
 btfsc STATUS,Z
 goto reset_send_psnd ; reset if at buffer end

cont_send
 movf send_buf_psnd,W
 movwf FSR

send_wait
 btfss PIR1,TXIF ; Check if data has been moved to TSR
 goto send_wait ; Wait for TXREG to be empty

 decfsz sub_temp,F
 goto send_loop

 bcf prog_flags,go_send_flag
 return

reset_send_psnd
 movlw send_buf_start ; wrap around pointer to
beginning
 movwf send_buf_psnd ; of buffer
 goto cont_send

Copyright 2002, VitalStatis Medical Solutions 40

41

VitalStatis Medical Solutions

und_paddata
 movlw dummy_byte ; send dummy byte if underrun
 movwf sub_temp2
 movlw sub_temp2
 movwf FSR
 call send_byte
 goto send_wait

;---
; Subroutine: send_byte
;
; Sends byte through TX of USART. Returns immediately.
;
; Pre: Adress of data to be sent must be placed in FSR
;---

send_byte
 movf INDF,W
 movwf TXREG ; actual data send
 return

; End of source code
 END

Copyright 2002, VitalStatis Medical Solutions 41

42

VitalStatis Medical Solutions

AAppppeennddiixx BB:: PPaallmm™™ OOSS SSoouurrccee CCooddee

// VtChtGrph.h
//
// header file for VitalChartGraphics
//
// This wizard-generated code is based on code adapted from the
// stationery files distributed as part of the Palm OS SDK 4.0.
//
// Copyright (c) 1999-2000 Palm, Inc. or its subsidiaries.
// All rights reserved.

#ifndef VTCHTGRPH_H_
#define VTCHTGRPH_H_

// **
// Internal Structures
// **

typedef struct VtChtGrphPreferenceType
{
 UInt8 replaceme;
} VtChtGrphPreferenceType;

// **
// Global variables
// **

extern VtChtGrphPreferenceType g_prefs;

// **
// Internal Constants
// **

#define appFileCreator 'VSMS'
#define appName "VitalChart"
#define appVersionNum 0x01
#define appPrefID 0x00
#define appPrefVersionNum 0x01

#endif // VTCHTGRPH_H_
// **
// External Function Prototypes
// **
void EncodeValue(UInt8 num_array, UInt16 *EKG, UInt16 *RES);
static void GetData();
UInt16 ScaleData(UInt16 UnformattedData);
static void ResetDataBuffer();
static void ClearLine(UInt16 xlocation, UInt16 width);
static void DrawBitmap(Int16 resID, Int16 x, Int16 y);
static void CheckConnect();
UInt16 ScaleData(UInt16 UnformattedData);
static void PlotData();
static void ShowDateTime();
static void ResetPlotArea();
static void GridSelect();
static void ZoomSelect();
static void PeakDetect(UInt16 Index);
static void CalcHeartRate();
static void InvertHeart();

Copyright 2002, VitalStatis Medical Solutions 42

43

VitalStatis Medical Solutions

static void PlotBRate();
Boolean DatabaseFormHandleEvent(EventType * eventP);
Boolean DatabaseFormDoCommand(UInt16 command);
void * GetObjectPtr(UInt16 objectID);
void DatabaseFormInit(FormType * /*frmP*/);
static void EncodeValueDB(UInt8 num_array, UInt16 *EKG, UInt16 *RES);
static void GetDataDB();
static void PlaySound();
static void PlayAlarm();
void EncodeDBValue(UInt8 num_array, UInt16 *EKG, UInt16 *RES);
static void GetDataBaseData();
static void StopAlarm();
void CreateRecord();
static void CompleteBar();
static void ClearCompleteBar();

// Header generated by Constructor for Palm OS¨ 1.6
//
// Generated at 12:23:27 PM on December 16, 2002
//
// Generated for file: C:\Documents and Settings\See-Ho Tsang\My Documents\2002-
03\ENSC 340\Software\VitalChartDataBaseNew\VitalChartGraphics\Rsc\VtChtGrph.rsrc
//
// THIS IS AN AUTOMATICALLY GENERATED HEADER FILE FROM CONSTRUCTOR FOR PALM OS¨;
// - DO NOT EDIT - CHANGES MADE TO THIS FILE WILL BE LOST
//
// Palm App Name: "VitalChartGraphics"
//
// Palm App Version: "1.0"

// Resource: tFRM 1000
#define MainForm 1000 //(Left Origin = 0, Top
Origin = 0, Width = 160, Height = 160, Usable = 1, Modal = 0, Save Behind = 0, Help ID
= 0, Menu Bar ID = 1000, Default Button ID = 0)
#define MainZoomCheckbox 1008 //(Left Origin = 115, Top
Origin = 144, Width = 45, Height = 12, Usable = 1, Selected = 0, Group ID = 0, Font =
Standard)
#define MainGridCheckbox 1012 //(Left Origin = 81, Top
Origin = 144, Width = 45, Height = 12, Usable = 1, Selected = 1, Group ID = 0, Font =
Standard)
#define MainUnnamed1006BitMap 1140 //(Left Origin = 2, Top
Origin = 40, Bitmap Resource ID = 1140, Usable = 1)
#define MainUnnamed1003BitMap 1700 //(Left Origin = 2, Top
Origin = 18, Bitmap Resource ID = 1700, Usable = 1)
#define MainUnnamed1008BitMap 1160 //(Left Origin = 21, Top
Origin = 18, Bitmap Resource ID = 1160, Usable = 1)
#define MainUnnamed1010BitMap 1170 //(Left Origin = 60, Top
Origin = 18, Bitmap Resource ID = 1170, Usable = 1)
#define MainUnnamed1007BitMap 1800 //(Left Origin = 22, Top
Origin = 19, Bitmap Resource ID = 1800, Usable = 1)
#define MainPlayButtonGraphicButton 1002 //(Left Origin = 41, Top
Origin = 144, Width = 36, Height = 12, Usable = 1, Anchor Left = 1, Frame = 1, Non-
bold Frame = 1, Bitmap Resource ID = 1100, Selected Bitmap Resource ID = 1101)
#define MainStopButtonGraphicButton 1004 //(Left Origin = 2, Top
Origin = 144, Width = 36, Height = 12, Usable = 1, Anchor Left = 1, Frame = 1, Non-
bold Frame = 1, Bitmap Resource ID = 1110, Selected Bitmap Resource ID = 1111)

// Resource: tFRM 1100
#define AboutForm 1100 //(Left Origin = 2, Top
Origin = 2, Width = 156, Height = 156, Usable = 1, Modal = 1, Save Behind = 1, Help ID
= 0, Menu Bar ID = 0, Default Button ID = 0)

Copyright 2002, VitalStatis Medical Solutions 43

44

VitalStatis Medical Solutions

#define AboutOKButton 1105 //(Left Origin = 58, Top
Origin = 137, Width = 40, Height = 12, Usable = 1, Anchor Left = 1, Frame = 1, Non-
bold Frame = 1, Font = Standard)
#define AboutUnnamed1101BitMap 1001 //(Left Origin = 62, Top
Origin = 39, Bitmap Resource ID = 1001, Usable = 1)
#define AboutTitleLabel 1102 //(Left Origin = 22, Top
Origin = 18, Usable = 1, Font = Large)
#define AboutAboutCopyrightTextLabel 1103 //(Left Origin = 21, Top
Origin = 95, Usable = 1, Font = Standard)
#define AboutText2Label 1104 //(Left Origin = 49, Top
Origin = 121, Usable = 1, Font = Bold)
#define AboutUnnamed1106Label 1106 //(Left Origin = 18, Top
Origin = 70, Usable = 1, Font = Standard)

// Resource: tFRM 1200
#define DatabaseForm 1200 //(Left Origin = 0, Top
Origin = 0, Width = 160, Height = 160, Usable = 1, Modal = 0, Save Behind = 0, Help ID
= 0, Menu Bar ID = 1100, Default Button ID = 0)
#define DatabaseCreateRecordButton 1201 //(Left Origin = 85, Top
Origin = 108, Width = 68, Height = 15, Usable = 1, Anchor Left = 1, Frame = 1, Non-
bold Frame = 1, Font = Standard)
#define DatabaseEndRecordButton 1202 //(Left Origin = 86, Top
Origin = 127, Width = 68, Height = 15, Usable = 1, Anchor Left = 1, Frame = 1, Non-
bold Frame = 1, Font = Standard)
#define DatabaseDatabaseNameFieldField 1206 //(Left Origin = 35, Top
Origin = 90, Width = 90, Height = 15, Usable = 1, Editable = 1, Underline = 1, Single
Line = 0, Dynamic Size = 0, Left Justified = 1, Max Characters = 40, Font = Standard,
Auto Shift = 0, Has Scroll Bar = 0, Numeric = 0)
#define DatabaseDatabaseAgeFieldField 1207 //(Left Origin = 35, Top
Origin = 106, Width = 38, Height = 14, Usable = 1, Editable = 1, Underline = 1, Single
Line = 0, Dynamic Size = 0, Left Justified = 1, Max Characters = 5, Font = Standard,
Auto Shift = 0, Has Scroll Bar = 0, Numeric = 0)
#define DatabaseDatabaseIdLabel 1203 //(Left Origin = 5, Top
Origin = 122, Usable = 1, Font = Standard)
#define DatabaseDatabaseNameLabel 1205 //(Left Origin = 5, Top
Origin = 90, Usable = 1, Font = Standard)
#define DatabaseDatabaseAgeLabel 1208 //(Left Origin = 5, Top
Origin = 106, Usable = 1, Font = Standard)
#define DatabaseDatabaseTextLabel 1209 //(Left Origin = 5, Top
Origin = 19, Usable = 1, Font = Standard)

// Resource: Talt 1001
#define RomIncompatibleAlert 1001
#define RomIncompatibleOK 0

// Resource: MBAR 1000
#define VtChtGrphMainMenuBar 1000

// Resource: MBAR 1100
#define DatabaseMainMenuMenuBar 1100

// Resource: MENU 1000
#define OptionsMenu 1000
#define OptionsAboutVitalChartBioReader 1000

// Resource: MENU 10000
#define EditMenu 10000
#define EditUndo 10000 // Command Key: U
#define EditCut 10001 // Command Key: X
#define EditCopy 10002 // Command Key: C

Copyright 2002, VitalStatis Medical Solutions 44

45

VitalStatis Medical Solutions

#define EditPaste 10003 // Command Key: P
#define EditSelectAll 10004 // Command Key: S
#define EditKeyboard 10006 // Command Key: K
#define EditGraffitiHelp 10007 // Command Key: G

// Resource: MENU 1100
#define OptionsDatabaseMenu 1100
#define OptionsDatabaseManageDatabase 1100

// Resource: MENU 1200
#define DatabaseMenu 1200
#define DatabaseExitToMainMenu 1200

// Resource: PICT 1001
#define Bitmap 1001

// Resource: PICT 1002
#define Bitmap2 1002

// Resource: PICT 1008
#define Bitmap3 1008

// Resource: PICT 1011
#define Bitmap4 1011

// Resource: PICT 1012
#define Bitmap5 1012

// Resource: PICT 1018
#define Bitmap6 1018

// Resource: PICT 1100
#define PlayPauseBitmap 1100

// Resource: PICT 1101
#define InvPlayPauseBitmap 1101

// Resource: PICT 1110
#define StopBitmap 1110

// Resource: PICT 1111
#define InvStopBitmap 1111

// Resource: PICT 1140
#define GridBitmap 1140

// Resource: PICT 1150
#define PlugBitmap 1150

// Resource: PICT 1160
#define HeartBoxBitmap 1160

// Resource: PICT 1170
#define BreathingBBitmap 1170

// Resource: PICT 1190
#define DataPointBitmap 1190

// Resource: PICT 1200
#define GridLineStartBitmap 1200

// Resource: PICT 1300

Copyright 2002, VitalStatis Medical Solutions 45

46

VitalStatis Medical Solutions

#define GridDotsABitmap 1300

// Resource: PICT 1400
#define GridBlankBitmap 1400

// Resource: PICT 1500
#define GridLineStopBitmap 1500

// Resource: PICT 1600
#define GridDotsBBitmap 1600

// Resource: PICT 1700
#define NoPlugBitmap 1700

// Resource: PICT 1800
#define HeartBitmap 1800

// Resource: PICT 1900
#define DashBitmap 1900

// Resource: tbmf 1100
#define BitmapID1100BitmapFamily 1100

// Resource: tbmf 1101
#define SelectedBitmapID1101BitmapFamily 1101

// Resource: tbmf 1110
#define BitmapID1110BitmapFamily 1110

// Resource: tbmf 1111
#define SelectedBitmapID1111BitmapFamily 1111

// Resource: tbmf 1140
#define BitmapResourceID1140BitmapFamily 1140

// Resource: tbmf 1150
#define BitmapResourceID1150BitmapFamily 1150

// Resource: tbmf 1160
#define BitmapResourceID1160BitmapFamily 1160

// Resource: tbmf 1170
#define BitmapResourceID1170BitmapFamily 1170

// Resource: tbmf 1700
#define BitmapResourceID1700BitmapFamily 1700

// Resource: tbmf 1800
#define BitmapResourceID1800BitmapFamily 1800

// Resource: tbmf 1900
#define BitmapResourceID1900BitmapFamily 1900

// Resource: tbmf 1001
#define BitmapResourceID1001BitmapFamily 1001

// Resource: taif 1000
#define Largeicons12and8bitsAppIconFamily 1000

// Resource: taif 1001
#define Smallicons12and8bitsAppIconFamily 1001

Copyright 2002, VitalStatis Medical Solutions 46

47

VitalStatis Medical Solutions

// VtChtGrphMain.c
//
// main file for VitalChartGraphics
//
// This wizard-generated code is based on code adapted from the
// stationery files distributed as part of the Palm OS SDK 4.0.
//
// Copyright (c) 1999-2000 Palm, Inc. or its subsidiaries.
// All rights reserved.

#include <PalmOS.h>

#include "VtChtGrph.h"
#include "VtChtGrphRsc.h"

// **
// Entry Points
// **

// **
// Global variables
// **
#define leftOrigin 2
#define GridChangeCount 4
#define GridTopOrigin 40
#define GridHeight 100
#define GridWidth 155
#define EKG_ARRAYSIZE 10000
#define GridBottomOffset 138
#define MaxValue 93
#define SamplingTime 0.1
#define MaxEdgeIndexSize 50
#define ThresholdPlus 0
#define ThresholdMinus -40
#define MaxDiffArraySize 50
#define timeouttime 0.02
#define NumHRAve 3
#define DelayBuffer 10
#define PlotTime1 0.01
#define PlotTime2 0.02
#define DB_EKG_Len 1500
#define DB_RES_Len 20
#define timeoutconst 250

// g_prefs
// cache for application preferences during program execution

VtChtGrphPreferenceType g_prefs;
Boolean Plot=false;
Boolean GridOn=true;
Int32 i=0;
UInt16 DataIndex = 0;
UInt16 EKG_ARRAY[EKG_ARRAYSIZE];
UInt16 RES_ARRAY[EKG_ARRAYSIZE];
UInt16 EKG_ARRAY_DB[DB_EKG_Len];
UInt16 RES_ARRAY_DB[DB_RES_Len];
UInt16 DataBuffer[155];
UInt16 EKG_ARRAY_P;
UInt16 EKG_ARRAY_P_DB;
UInt16 RES_ARRAY_P;
UInt16 RES_ARRAY_P_DB;

Copyright 2002, VitalStatis Medical Solutions 47

48

VitalStatis Medical Solutions

Boolean Connected;
Boolean Delay =false;
Boolean Sync = false;
UInt16 EdgeLocation[MaxEdgeIndexSize];
UInt16 EdgeIndex=0;
Int16 DiffArray[MaxDiffArraySize];
UInt16 SoundAmp;
Boolean trigger=false;
Boolean CheckConnectDisable = false;
UInt32 *watchdog_time;
UInt32 *elapsed_time, *plotelapsed_time;
Boolean WatchDog = false;
UInt16 BSum =0;
UInt16 HRate=0;
UInt16 PointDelta = 2;
UInt32 WatchDogTime = 10;
Boolean GetHRate = true;
Boolean Zoom = false;
Boolean GetDBData=false;
Boolean DataComplete = false;
UInt32 HRTimeOut = 0;
Boolean DatabaseStarted = false;

// global database reference, will be init in AppStart() and close db in AppStop()
DmOpenRef gDatabase = 0;
// **
// Internal Constants
// **

// Define the minimum OS version we support
#define ourMinVersion sysMakeROMVersion(3,0,0,sysROMStageDevelopment,0)
#define kPalmOS10Version sysMakeROMVersion(1,0,0,sysROMStageRelease,0)

// **
// Internal Functions
// **

// FUNCTION: GetObjectPtr
//
// DESCRIPTION:
//
// This routine returns a pointer to an object in the current form.
//
// PARAMETERS:
//
// formId
// id of the form to display
//
// RETURNED:
// address of object as a void pointer

void * GetObjectPtr(UInt16 objectID)
{
 FormType * frmP;

 frmP = FrmGetActiveForm();
 return FrmGetObjectPtr(frmP, FrmGetObjectIndex(frmP, objectID));
}

Copyright 2002, VitalStatis Medical Solutions 48

49

VitalStatis Medical Solutions

// FUNCTION: MainFormInit
//
// DESCRIPTION: This routine initializes the MainForm form.
//
// PARAMETERS:
//
// frm
// pointer to the MainForm form.

static void MainFormInit(FormType * /*frmP*/)
{
}

// FUNCTION: MainFormDoCommand
//
// DESCRIPTION: This routine performs the menu command specified.
//
// PARAMETERS:
//
// command
// menu item id

static Boolean MainFormDoCommand(UInt16 command)
{
 Boolean handled = false;
 FormType * frmP;
 Char Send0x04[] = " \n";
 //Err err;
 //UInt16 portId;

 switch (command)
 {
 case OptionsAboutVitalChartBioReader:

 // Clear the menu status from the display
 MenuEraseStatus(0);

 // Display the About Box.
 frmP = FrmInitForm (AboutForm);
 FrmDoDialog (frmP);
 FrmDeleteForm (frmP);

 handled = true;
 break;

 case OptionsDatabaseManageDatabase:

 //MenuEraseStatus(0);
 FrmGotoForm (DatabaseForm);
 WatchDog = false;
 handled = true;
 break;

 case MainPlayButtonGraphicButton:

 if(Plot == true)
 {
 Plot = false;
 WatchDog = false;
 }

Copyright 2002, VitalStatis Medical Solutions 49

50

VitalStatis Medical Solutions

 else if(Plot == false)
 {
 DataIndex = 0;
 EKG_ARRAY_P = 0;
 Sync=true;
 Delay=true;
 WatchDog = true;
 StopAlarm();
 HRTimeOut = 0;
 Plot = true;
 }

 //record our open status in global.
 else
 {
 //SrmClose(portId);
 }

 break;

 case MainStopButtonGraphicButton:
 Plot=false;
 DataIndex=0;
 EKG_ARRAY_P=0;
 ResetPlotArea();
 ResetDataBuffer();
 WatchDog = false;
 StopAlarm();
 break;

 case MainGridCheckbox:
 GridSelect();

 break;

 case MainZoomCheckbox:
 ZoomSelect();
 }
 return handled;

}

// FUNCTION: MainFormHandleEvent
//
// DESCRIPTION:
//
// This routine is the event handler for the "MainForm" of this
// application.
//
// PARAMETERS:
//
// eventP
// a pointer to an EventType structure
//
// RETURNED:
// true if the event was handled and should not be passed to
// FrmHandleEvent

static Boolean MainFormHandleEvent(EventType * eventP)
{
 Boolean handled = false;

Copyright 2002, VitalStatis Medical Solutions 50

51

VitalStatis Medical Solutions

 FormType * frmP;

 switch (eventP->eType)
 {
 case menuEvent:
 return MainFormDoCommand(eventP->data.menu.itemID);

 case frmOpenEvent:
 frmP = FrmGetActiveForm();
 MainFormInit(frmP);
 FrmDrawForm(frmP);
 handled = true;
 break;

 case frmUpdateEvent:
 // To do any custom drawing here, first call
 // FrmDrawForm(), then do your drawing, and
 // then set handled to true.
 frmP = FrmGetActiveForm();
 FrmDrawForm(frmP);
 handled = true;
 break;

 case ctlSelectEvent:
 return MainFormDoCommand(eventP->data.ctlSelect.controlID);

 default:
 break;

 }

 return handled;
}

// FUNCTION: AppHandleEvent
//
// DESCRIPTION:
//
// This routine loads form resources and set the event handler for
// the form loaded.
//
// PARAMETERS:
//
// event
// a pointer to an EventType structure
//
// RETURNED:
// true if the event was handled and should not be passed
// to a higher level handler.

static Boolean AppHandleEvent(EventType * eventP)
{
 UInt16 formId;
 FormType * frmP;

 if (eventP->eType == frmLoadEvent)
 {
 // Load the form resource.
 formId = eventP->data.frmLoad.formID;
 frmP = FrmInitForm(formId);
 FrmSetActiveForm(frmP);

 // Set the event handler for the form. The handler of the

Copyright 2002, VitalStatis Medical Solutions 51

52

VitalStatis Medical Solutions

 // currently active form is called by FrmHandleEvent each
 // time is receives an event.
 switch (formId)
 {
 case MainForm:
 CheckConnectDisable = false;
 GridOn=true;
 FrmSetEventHandler(frmP, MainFormHandleEvent);
 break;

 case DatabaseForm:
 CheckConnectDisable = true;
 Plot = false;
 GridOn=false;
 ResetPlotArea();
 FrmSetEventHandler(frmP, DatabaseFormHandleEvent);
 break;

 default:
 break;

 }
 return true;
 }

 return false;
}

// FUNCTION: AppEventLoop
//
// DESCRIPTION: This routine is the event loop for the application.

static void AppEventLoop(void)
{
 UInt16 error;
 EventType event;

 //, *delaytime;
 // char EKGPointer1[20],EKGPointer2[20];
 //char numchar[20];
 Char Send0x04[] = " \n";
 //Err err;
 // UInt16 portId;

 // Initialize timer

 *elapsed_time = TimGetTicks();

 *plotelapsed_time = TimGetTicks();

 // delaytime=MemPtrNew(sizeof(UInt32));
 //*delaytime = TimGetTicks();

 do {
 // change timeout if you need periodic nilEvents
 EvtGetEvent(&event, 1);

 HRTimeOut++;
 if((HRTimeOut >= timeoutconst)&&(WatchDog ==true))
 PlayAlarm();

Copyright 2002, VitalStatis Medical Solutions 52

53

VitalStatis Medical Solutions

 if((i%50)==1)
 {
 PlotBRate();

 }

 if(DataComplete==true)
 {
 CreateRecord();
 DataComplete=false;
 //EKG_ARRAY_P_DB=0;
 }

 if (i>=GridWidth)
 {
 i=0;
 DataIndex = 0;
 EKG_ARRAY_P = 0;
 Sync=true;
 Delay=true;
 CalcHeartRate();

 }

 // err = SrmOpen(serPortCradleRS232Port /* port */, 19200, /* baud */
&portId);
 // if (err == errNone)
 // {
 // display error message here.

 // SrmControl(portId, srmCtlSetDTRAsserted, (void *)false,
(UInt16 *)sizeof(Boolean));
 // Send0x04[0] = 0x04;
 // SrmSend(portId, Send0x04, 2, &err);
 // SrmSendWait(portId);
 // SrmClose(portId);
 // }
 // }

 else
 {
 /*StrIToA(EKGPointer1,EKG_ARRAY_P);
 StrIToA(EKGPointer2,EKG_ARRAY_P2);
 WinDrawChars(" ",StrLen(" "),120,140);
 WinDrawChars(" ",StrLen(" "),120,150);
 WinDrawChars(EKGPointer1,StrLen(EKGPointer1),120,140);
 WinDrawChars(EKGPointer2,StrLen(EKGPointer2),120,150);*/

 if(Plot==true)
 SysSetAutoOffTime(0);

 else
 SysSetAutoOffTime(60);

 if(event.eType==nilEvent && CheckConnectDisable==false)
 CheckConnect();
 //if((Plot == true)&&(HaveData==true))

 if (! SysHandleEvent(&event))
 {

Copyright 2002, VitalStatis Medical Solutions 53

54

VitalStatis Medical Solutions

 if (! MenuHandleEvent(0, &event, &error))
 {
 if (! AppHandleEvent(&event))
 {

 FrmDispatchEvent(&event);
 }
 }
 }

 // StrIToA(EKGPointer,EKG_ARRAY_P%EKG_ARRAYSIZE);
 // StrIToA(DataIndexChar,DataIndex);
 // WinDrawChars(" ",StrLen(" "),120,130);
 // WinDrawChars(" ",StrLen(" "),120,120);
 // WinDrawChars(DataIndexChar,StrLen(DataIndexChar),120,120);
 // WinDrawChars(EKGPointer,StrLen(EKGPointer),120,130);

 if((Plot==true)&&(Delay==false)&&(Zoom==true))
 {
 if(((double)(TimGetTicks()-
*plotelapsed_time)/(double)SysTicksPerSecond()) >= PlotTime1)
 {
 *plotelapsed_time = TimGetTicks();
 PlotData();
 if(GetHRate ==true)
 PeakDetect(DataIndex);

 }
 }
 else if((Plot==true)&&(Delay==false)&&(Zoom==false))
 if(((double)(TimGetTicks()-
*plotelapsed_time)/(double)SysTicksPerSecond()) >= PlotTime2)
 {
 *plotelapsed_time = TimGetTicks();
 PlotData();
 PeakDetect(DataIndex);

 }

 // Watch dog timer for heart rate
 // if(WatchDog == true)
 // {
 // if(((double)(TimGetTicks()-
*watchdog_time)/(double)SysTicksPerSecond()) >= WatchDogTime)
 // {
 //Play Alarm
 // PlayAlarm();
 // }
 // }

 if(((EKG_ARRAY_P%EKG_ARRAYSIZE)>=DelayBuffer)&&(Sync==true))

 {
 Delay = false;
 Sync = false;
 }

Copyright 2002, VitalStatis Medical Solutions 54

55

VitalStatis Medical Solutions

 // WinDrawChars(" ",StrLen("
"),120,144);
 // Delay=false;
 // }
 // if((EKG_ARRAY_P%EKG_ARRAYSIZE)-DataIndex<=ResumeBuffer)
 // {
 // WinDrawChars("Bfr Udrn",StrLen("bfr Udrn"),120,144);
 // Delay=true;
 // }

 // If an event is not received within 0.2s, receive data
 if((event.eType == nilEvent) && (Plot == true))
 {
 if(((double)(TimGetTicks()-
*elapsed_time)/(double)SysTicksPerSecond()) >= SamplingTime)//&&(SendDelay==false));
 {
 *elapsed_time = TimGetTicks();
 GetData();

 }
 }
 if((event.eType == nilEvent) && (GetDBData == true))
 {
 if(((double)(TimGetTicks()-
*elapsed_time)/(double)SysTicksPerSecond()) >= SamplingTime)//&&(SendDelay==false));
 {
 *elapsed_time = TimGetTicks();
 GetDataBaseData();

 }
 }
 if(GetDBData == true)
 {
 CompleteBar();
 }
 }
 }
 while (event.eType != appStopEvent);

 // MemPtrFree(delaytime);
}

// FUNCTION: AppStart
//
// DESCRIPTION: Get the current application's preferences.
//
// RETURNED:
// errNone - if nothing went wrong

static Err AppStart(void)
{

 // database
 // declarations
 const UInt32 kType = 'DATA';
 const UInt32 kCreator = 'VSMS';

Copyright 2002, VitalStatis Medical Solutions 55

56

VitalStatis Medical Solutions

 const char *kName = "VitalChartDB";
 const int kCardNumber = 0;
 Err err = 0;

 LocalID theLocalID;
 UInt16 theCardNum;
 UInt16 theAttributes, index;

 UInt16 prefsSize;
 Boolean Plot = false;

 plotelapsed_time = (UInt32 *)MemPtrNew(sizeof(UInt32));
 elapsed_time = (UInt32 *)MemPtrNew(sizeof(UInt32));
 ShowDateTime();

 // Read the saved preferences / saved-state information.
 prefsSize = sizeof(VtChtGrphPreferenceType);
 if (PrefGetAppPreferences(
 appFileCreator, appPrefID, &g_prefs, &prefsSize, true) !=
 noPreferenceFound)
 {
 // FIXME: setup g_prefs with default values
 }

 SoundAmp = PrefGetPreference(prefGameSoundVolume);
 watchdog_time = (UInt32 *)MemPtrNew(sizeof(UInt32));

 for(index=0; index < DB_EKG_Len; index++)
 {
 EKG_ARRAY_DB[index] = 0;
 }

 BSum = 0;
 //EKG_ARRAY_P_DB = 0;
/*
DataBuffer [0] = 0 ;
DataBuffer [1] = 0 ;
DataBuffer [2] = 0 ;
DataBuffer [3] = 0 ;
DataBuffer [4] = 0 ;
DataBuffer [5] = 0 ;
DataBuffer [6] = 0 ;
DataBuffer [7] = 0 ;
DataBuffer [8] = 0 ;
DataBuffer [9] = 0 ;
DataBuffer [10] = 0 ;
DataBuffer [11] = 0 ;
DataBuffer [12] = 0 ;
DataBuffer [13] = 0 ;
DataBuffer [14] = 0 ;
DataBuffer [15] = 0 ;
DataBuffer [16] = 0 ;
DataBuffer [17] = 0 ;
DataBuffer [18] = 0 ;
DataBuffer [19] = 0 ;
DataBuffer [20] = 0 ;
DataBuffer [21] = 0 ;
DataBuffer [22] = 0 ;
DataBuffer [23] = 0 ;
DataBuffer [24] = 0 ;
DataBuffer [25] = 600 ;

Copyright 2002, VitalStatis Medical Solutions 56

57

VitalStatis Medical Solutions

DataBuffer [26] = 600 ;
DataBuffer [27] = 600 ;
DataBuffer [28] = 600 ;
DataBuffer [29] = 600 ;
DataBuffer [30] = 600 ;
DataBuffer [31] = 600 ;
DataBuffer [32] = 600 ;
DataBuffer [33] = 600 ;
DataBuffer [34] = 600 ;
DataBuffer [35] = 600 ;
DataBuffer [36] = 600 ;
DataBuffer [37] = 600 ;
DataBuffer [38] = 600 ;
DataBuffer [39] = 600 ;
DataBuffer [40] = 600 ;
DataBuffer [41] = 600 ;
DataBuffer [42] = 600 ;
DataBuffer [43] = 600 ;
DataBuffer [44] = 600 ;
DataBuffer [45] = 600 ;
DataBuffer [46] = 600 ;
DataBuffer [47] = 600 ;
DataBuffer [48] = 600 ;
DataBuffer [49] = 600 ;
DataBuffer [50] = 0 ;
DataBuffer [51] = 0 ;
DataBuffer [52] = 0 ;
DataBuffer [53] = 0 ;
DataBuffer [54] = 0 ;
DataBuffer [55] = 0 ;
DataBuffer [56] = 0 ;
DataBuffer [57] = 0 ;
DataBuffer [58] = 0 ;
DataBuffer [59] = 0 ;
DataBuffer [60] = 0 ;
DataBuffer [61] = 0 ;
DataBuffer [62] = 0 ;
DataBuffer [63] = 0 ;
DataBuffer [64] = 0 ;
DataBuffer [65] = 0 ;
DataBuffer [66] = 0 ;
DataBuffer [67] = 0 ;
DataBuffer [68] = 0 ;
DataBuffer [69] = 0 ;
DataBuffer [70] = 0 ;
DataBuffer [71] = 0 ;
DataBuffer [72] = 0 ;
DataBuffer [73] = 0 ;
DataBuffer [74] = 0 ;
DataBuffer [75] = 600 ;
DataBuffer [76] = 600 ;
DataBuffer [77] = 600 ;
DataBuffer [78] = 600 ;
DataBuffer [79] = 600 ;
DataBuffer [80] = 600 ;
DataBuffer [81] = 600 ;
DataBuffer [82] = 600 ;
DataBuffer [83] = 600 ;
DataBuffer [84] = 600 ;
DataBuffer [85] = 600 ;
DataBuffer [86] = 600 ;
DataBuffer [87] = 600 ;
DataBuffer [88] = 600 ;

Copyright 2002, VitalStatis Medical Solutions 57

58

VitalStatis Medical Solutions

DataBuffer [89] = 600 ;
DataBuffer [90] = 600 ;
DataBuffer [91] = 600 ;
DataBuffer [92] = 600 ;
DataBuffer [93] = 600 ;
DataBuffer [94] = 600 ;
DataBuffer [95] = 600 ;
DataBuffer [96] = 600 ;
DataBuffer [97] = 600 ;
DataBuffer [98] = 600 ;
DataBuffer [99] = 600 ;
DataBuffer [100] = 0 ;
DataBuffer [101] = 0 ;
DataBuffer [102] = 0 ;
DataBuffer [103] = 0 ;
DataBuffer [104] = 0 ;
DataBuffer [105] = 0 ;
DataBuffer [106] = 0 ;
DataBuffer [107] = 0 ;
DataBuffer [108] = 0 ;
DataBuffer [109] = 0 ;
DataBuffer [110] = 0 ;
DataBuffer [111] = 0 ;
DataBuffer [112] = 0 ;
DataBuffer [113] = 0 ;
DataBuffer [114] = 0 ;
DataBuffer [115] = 0 ;
DataBuffer [116] = 0 ;
DataBuffer [117] = 0 ;
DataBuffer [118] = 0 ;
DataBuffer [119] = 0 ;
DataBuffer [120] = 0 ;
DataBuffer [121] = 0 ;
DataBuffer [122] = 0 ;
DataBuffer [123] = 0 ;
DataBuffer [124] = 0 ;
DataBuffer [125] = 600 ;
DataBuffer [126] = 600 ;
DataBuffer [127] = 600 ;
DataBuffer [128] = 600 ;
DataBuffer [129] = 600 ;
DataBuffer [130] = 600 ;
DataBuffer [131] = 600 ;
DataBuffer [132] = 600 ;
DataBuffer [133] = 600 ;
DataBuffer [134] = 600 ;
DataBuffer [135] = 600 ;
DataBuffer [136] = 600 ;
DataBuffer [137] = 600 ;
DataBuffer [138] = 600 ;
DataBuffer [139] = 600 ;
DataBuffer [140] = 600 ;
DataBuffer [141] = 600 ;
DataBuffer [142] = 600 ;
DataBuffer [143] = 600 ;
DataBuffer [144] = 600 ;
DataBuffer [145] = 600 ;
DataBuffer [146] = 600 ;
DataBuffer [147] = 600 ;
DataBuffer [148] = 600 ;
DataBuffer [149] = 600 ;
DataBuffer [150] = 0 ;
DataBuffer [151] = 0 ;

Copyright 2002, VitalStatis Medical Solutions 58

59

VitalStatis Medical Solutions

DataBuffer [152] = 0 ;
DataBuffer [153] = 0 ;
DataBuffer [154] = 0 ;

*/

 // Database codes added!!!
 // open a database and create it if it does not exist
 //FrmAlert (OpenDBAlert); // alert of open DB
 gDatabase = DmOpenDatabaseByTypeCreator(kType, kCreator, dmModeWrite);
 if (!gDatabase) {
 //FrmAlert (DBCreatedAlert); // alert of create DB
 err = DmCreateDatabase(kCardNumber, kName, kCreator, kType, false);
 if (!err) {
 gDatabase = DmOpenDatabaseByTypeCreator(kType, kCreator,
dmModeWrite);
 if (!gDatabase)
 err = DmGetLastErr();
 }
 }

 DmOpenDatabaseInfo(gDatabase, &theLocalID, NULL, NULL, &theCardNum, NULL);
 DmDatabaseInfo(theCardNum, theLocalID, NULL, &theAttributes, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL);
 theAttributes |= dmHdrAttrBackup;
 DmSetDatabaseInfo(theCardNum, theLocalID, NULL, &theAttributes, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL);

 return err;

 //return errNone;
}

// FUNCTION: AppStop
//
// DESCRIPTION: Save the current state of the application.

static void AppStop(void)
{
 // Write the saved preferences / saved-state information. This
 // data will be saved during a HotSync backup.
 PrefSetAppPreferences(
 appFileCreator, appPrefID, appPrefVersionNum,
 &g_prefs, sizeof(VtChtGrphPreferenceType), true);

 // Close all the open forms.
 FrmCloseAllForms();

 // database codes added!!!
 // close database
 if (gDatabase)
 DmCloseDatabase(gDatabase);

 MemPtrFree(watchdog_time);
 MemPtrFree(elapsed_time);
 MemPtrFree(plotelapsed_time);
 StopAlarm();
}

// all code from here to end of file should use no global variables
#pragma warn_a5_access on

Copyright 2002, VitalStatis Medical Solutions 59

60

VitalStatis Medical Solutions

// FUNCTION: RomVersionCompatible
//
// DESCRIPTION:
//
// This routine checks that a ROM version is meet your minimum
// requirement.
//
// PARAMETERS:
//
// requiredVersion
// minimum rom version required
// (see sysFtrNumROMVersion in SystemMgr.h for format)
//
// launchFlags
// flags that indicate if the application UI is initialized
// These flags are one of the parameters to your app's PilotMain
//
// RETURNED:
// error code or zero if ROM version is compatible

static Err RomVersionCompatible(UInt32 requiredVersion, UInt16 launchFlags)
{
 UInt32 romVersion;

 // See if we're on in minimum required version of the ROM or later.
 FtrGet(sysFtrCreator, sysFtrNumROMVersion, &romVersion);
 if (romVersion < requiredVersion)
 {
 if ((launchFlags &
 (sysAppLaunchFlagNewGlobals | sysAppLaunchFlagUIApp)) ==
 (sysAppLaunchFlagNewGlobals | sysAppLaunchFlagUIApp))
 {
 FrmAlert (RomIncompatibleAlert);

 // Palm OS 1.0 will continuously relaunch this app unless
 // we switch to another safe one.
 if (romVersion <= kPalmOS10Version)
 {
 AppLaunchWithCommand(
 sysFileCDefaultApp,
 sysAppLaunchCmdNormalLaunch, NULL);
 }
 }

 return sysErrRomIncompatible;
 }

 return errNone;
}

// FUNCTION: VtChtGrphPalmMain
//
// DESCRIPTION: This is the main entry point for the application.
//
// PARAMETERS:
//
// cmd
// word value specifying the launch code.
//
// cmdPB
// pointer to a structure that is associated with the launch code
//

Copyright 2002, VitalStatis Medical Solutions 60

61

VitalStatis Medical Solutions

// launchFlags
// word value providing extra information about the launch
//
// RETURNED:
// Result of launch, errNone if all went OK

static UInt32 VtChtGrphPalmMain(
 UInt16 cmd,
 MemPtr /*cmdPBP*/,
 UInt16 launchFlags)
{
 Err error;
 UInt16 k;
 error = RomVersionCompatible (ourMinVersion, launchFlags);
 if (error) return (error);

 switch (cmd)
 {
 case sysAppLaunchCmdNormalLaunch:
 error = AppStart();
 if (error)
 return error;

 // start application by opening the main form
 // and then entering the main event loop
 FrmGotoForm(MainForm);

 // assignment initial values to global variables
 EKG_ARRAY_P = 0;
 RES_ARRAY_P = 0;
 Connected = false;

 for(k=0;k<=MaxEdgeIndexSize-1;k++)
 {
 EdgeLocation[k]=0;
 }
 for(k=0;k<=MaxDiffArraySize-1;k++)
 {
 DiffArray[k]=0;
 }
 AppEventLoop();

 AppStop();
 break;

 default:
 break;
 }

 return errNone;
}

/***
 *
 * FUNCTION: DrawBitmap
 *
 * DESCRIPTION: Get and draw a bitmap at a specified location
 *
 * PARAMETERS: resID -- bitmap resource id
 * x, y -- bitmap origin relative to current
window
 *
 * RETURNED: nothing.

Copyright 2002, VitalStatis Medical Solutions 61

62

VitalStatis Medical Solutions

 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * vmk 10/9/95 Initial Revision
 *
 ***/
static void DrawBitmap(Int16 resID, Int16 x, Int16 y)
{
 MemHandle resH;
 BitmapPtr resP;

 resH = DmGetResource(bitmapRsc, resID);
 //ErrFatalDisplayIf(!resH, "Missing bitmap");
 resP = MemHandleLock(resH);
 WinDrawBitmap (resP, x, y);
 MemPtrUnlock(resP);
 DmReleaseResource(resH);

}

// FUNCTION: GetData
//
// DESCRIPTION: This routine receives the data from the PIC.
//
// PARAMETERS:
//
// None
//
static void GetData()
{
 // Initialize local variables
 UInt16 *EKG;
 UInt16 *RES;
 UInt16 portId;
 UInt16 index;
 Err err, err2;
 Char recmsg[27];
 UInt32 lineStatus;
 UInt16 lineErrs;
 Char *error = "Error Opening Port\n";
 Char Send0x05[] = " \n";
 UInt32 timeout=SysTicksPerSecond()*timeouttime;
 UInt8
test_value[26]={0x1F,0x3F,0x5F,0x7F,0x1F,0x3F,0x5F,0x7F,0x1F,0x3F,0x1F,0x3F,0x5F,0x7F,
0x1F,0x3F,0x5F,0x7F,0x1F,0x3F,
 0x1F,0x3F,0x5F,0x7F,0x1F,0x3F};

//0x1F,0x3F,0x5F,0x7F,0x1F,0x3F,0x5F,0x7F,0x1F,0x3F,0x1F,0x3F};//,0x5F,0x7F,0x1F,0x3F,
0x5F,0x7F,0x1F,0x3F,

//0x1F,0x3F,0x5F,0x7F,0x1F,0x3F,0x5F,0x7F};
 UInt32 num_received;

 // allocates memory for storing EKG and RES data
 EKG = (UInt16 *)MemPtrNew(sizeof(UInt16));
 RES = (UInt16 *)MemPtrNew(sizeof(UInt16));

 err = SrmOpen(serPortCradleRS232Port /* port */, 62500, /* baud */
&portId);
 if (err == errNone)

Copyright 2002, VitalStatis Medical Solutions 62

63

VitalStatis Medical Solutions

 {
 // display error message here.

 num_received = 0;

 SrmControl(portId, srmCtlSetDTRAsserted, (void *)false, (UInt16
*)sizeof(Boolean));
 Send0x05[0] = 0x05;
 SrmSend(portId, Send0x05, 1, &err2);
 SrmSendWait(portId);

 num_received = SrmReceive (portId, recmsg, 26, timeout, &err2);

 if(err2 == serErrTimeOut)
 {
 Connected = false;
 }
 else
 {
 Connected = true;
 }

 recmsg[26] = '\0';

 if (err2 == serErrLineErr)
 {
 SrmGetStatus(portId, &lineStatus, &lineErrs);
 // test for framing or parity error.
 if (lineErrs & (serLineErrorFraming | serLineErrorParity))
 {
 //framing or parity error occurred. Do something.
 }
 SrmClearErr(portId);
 }

 for(index=0; index < num_received; index++)
 {
 test_value[index]=recmsg[index];
 }

 for(index=0; index < num_received; index++)
 {
 //throw away two consecutive 0x1F
 if((test_value[index] == 0x1F) && (test_value[index+1] ==
0x1F))
 {
 index++;
 continue;
 }

 EncodeValue(test_value[index],EKG,RES);

 }
 SrmClose(portId);
 }

Copyright 2002, VitalStatis Medical Solutions 63

64

VitalStatis Medical Solutions

 //record our open status in global.
 else
 {
 SrmClose(portId);
 }

 MemPtrFree(EKG);
 MemPtrFree(RES);
 //Delay=false;

}
// FUNCTION: GetDataBaseData
//
// DESCRIPTION: This routine receives the data from the PIC.
//
// PARAMETERS:
//
// None
//
static void GetDataBaseData()
{
 // Initialize local variables
 UInt16 *EKG;
 UInt16 *RES;
 UInt16 portId;
 UInt16 index;
 Err err, err2;
 Char recmsg[27];
 UInt32 lineStatus;
 UInt16 lineErrs;
 Char *error = "Error Opening Port\n";
 Char Send0x05[] = " \n";
 UInt32 timeout=SysTicksPerSecond()*timeouttime;
 UInt8
test_value[26]={0x1F,0x3F,0x5F,0x7F,0x1F,0x3F,0x5F,0x7F,0x1F,0x3F,0x1F,0x3F,0x5F,0x7F,
0x1F,0x3F,0x5F,0x7F,0x1F,0x3F,
 0x1F,0x3F,0x5F,0x7F,0x1F,0x3F};

//0x1F,0x3F,0x5F,0x7F,0x1F,0x3F,0x5F,0x7F,0x1F,0x3F,0x1F,0x3F};//,0x5F,0x7F,0x1F,0x3F,
0x5F,0x7F,0x1F,0x3F,

//0x1F,0x3F,0x5F,0x7F,0x1F,0x3F,0x5F,0x7F};
 UInt32 num_received;

 // allocates memory for storing EKG and RES data
 EKG = (UInt16 *)MemPtrNew(sizeof(UInt16));
 RES = (UInt16 *)MemPtrNew(sizeof(UInt16));

 err = SrmOpen(serPortCradleRS232Port /* port */, 62500, /* baud */
&portId);
 if (err == errNone)
 {
 // display error message here.

 num_received = 0;

 SrmControl(portId, srmCtlSetDTRAsserted, (void *)false, (UInt16
*)sizeof(Boolean));
 Send0x05[0] = 0x05;

Copyright 2002, VitalStatis Medical Solutions 64

65

VitalStatis Medical Solutions

 SrmSend(portId, Send0x05, 1, &err2);
 SrmSendWait(portId);

 num_received = SrmReceive (portId, recmsg, 26, timeout, &err2);

 if(err2 == serErrTimeOut)
 {
 Connected = false;
 }
 else
 {
 Connected = true;
 }

 recmsg[26] = '\0';

 if (err2 == serErrLineErr)
 {
 SrmGetStatus(portId, &lineStatus, &lineErrs);
 // test for framing or parity error.
 if (lineErrs & (serLineErrorFraming | serLineErrorParity))
 {
 //framing or parity error occurred. Do something.
 }
 SrmClearErr(portId);
 }

 for(index=0; index < num_received; index++)
 {
 test_value[index]=recmsg[index];
 }

 for(index=0; index < num_received; index++)
 {
 //throw away two consecutive 0x1F
 if((test_value[index] == 0x1F) && (test_value[index+1] ==
0x1F))
 {
 index++;
 continue;
 }

 EncodeDBValue(test_value[index],EKG,RES);

 }
 SrmClose(portId);
 }

 //record our open status in global.
 else
 {
 SrmClose(portId);
 }

 MemPtrFree(EKG);
 MemPtrFree(RES);
 //Delay=false;

Copyright 2002, VitalStatis Medical Solutions 65

66

VitalStatis Medical Solutions

}

// FUNCTION: EncodeValue
//
// DESCRIPTION: This routine initializes the MainForm form.
//
// PARAMETERS:
//
// test_value
// integer of the test value
//
// RETURNED:
// a decoded msg string

void EncodeValue(UInt8 num_array, UInt16 *EKG, UInt16 *RES)
{
 UInt8 header;
 UInt8 value;
 UInt16 converted_value;

 header = num_array >> 5;
 value = (num_array << 3) >> 3;
 converted_value = value; // converts from UInt8 to UInt16

 // EKG_L 000
 // EKG_H 001
 // RES_L 010
 // RES_H 011

 if(header == 0x00)
 {
 *EKG = (converted_value&(0x1F));
 }
 else if (header == 0x01)
 {
 *EKG += ((converted_value << 5)&(0x3E0));
 EKG_ARRAY[(EKG_ARRAY_P)%EKG_ARRAYSIZE] = (*EKG)&(0x3FF);
 EKG_ARRAY_P++;
 if(EKG_ARRAY_P>=EKG_ARRAYSIZE)
 EKG_ARRAY_P=0;
 }
 else if (header == 0x02)
 {
 *RES = (converted_value&(0x1F));

 }
 else if (header == 0x03)
 {
 *RES += ((converted_value << 5)&(0x3E0));

 RES_ARRAY[(RES_ARRAY_P)%EKG_ARRAYSIZE] = (*RES)&(0x3FF);
 RES_ARRAY_P++;
 }
}
// FUNCTION: EncodeValue
//
// DESCRIPTION: This routine initializes the MainForm form.
//
// PARAMETERS:
//

Copyright 2002, VitalStatis Medical Solutions 66

67

VitalStatis Medical Solutions

// test_value
// integer of the test value
//
// RETURNED:
// a decoded msg string

void EncodeDBValue(UInt8 num_array, UInt16 *EKG, UInt16 *RES)
{
 UInt8 header;
 UInt8 value;
 UInt16 converted_value;
 char eadb[20];
 header = num_array >> 5;
 value = (num_array << 3) >> 3;
 converted_value = value; // converts from UInt8 to UInt16

 // EKG_L 000
 // EKG_H 001
 // RES_L 010
 // RES_H 011

 if(header == 0x00)
 {
 *EKG = (converted_value&(0x1F));
 }
 else if (header == 0x01)
 {
 *EKG += ((converted_value << 5)&(0x3E0));
 EKG_ARRAY_DB[(EKG_ARRAY_P_DB)%(DB_EKG_Len)] = (*EKG)&(0x3FF);

 /*if(EKG_ARRAY_DB[(EKG_ARRAY_P_DB)%(DB_EKG_Len)] <= 20)
 {

 StrIToA(eadb,EKG_ARRAY_DB[EKG_ARRAY_P_DB%DB_EKG_Len]);
 WinDrawChars(eadb,StrLen(eadb),(EKG_ARRAY_P_DB*30)%150,40);
 }*/

 //StrIToA(eadb,EKG_ARRAY_DB[EKG_ARRAY_P_DB%(DB_EKG_Len+1)]);
 //WinDrawChars(eadb,StrLen(eadb),(EKG_ARRAY_P_DB*30)%150,60);

 EKG_ARRAY_P_DB++;

 if(EKG_ARRAY_P_DB>=DB_EKG_Len)
 {
 DataComplete=true;
 GetDBData=false;
 EKG_ARRAY_P_DB=0;
 }
 }
 /*else if (header == 0x02)
 {
 *RES = (converted_value&(0x1F));
 }
 /*else if (header == 0x03)
 {
 *RES += ((converted_value << 5)&(0x3E0));

 RES_ARRAY_DB[(RES_ARRAY_P)%DB_RES_Len] = (*RES)&(0x3FF);
 RES_ARRAY_P_DB++;

Copyright 2002, VitalStatis Medical Solutions 67

68

VitalStatis Medical Solutions

 if(RES_ARRAY_P_DB>=DB_RES_Len)
 {
 RES_ARRAY_P_DB=0;
 DataComplete=true;
 GetDBData=false;
 }
 }*/
}

// FUNCTION: PilotMain
//
// DESCRIPTION: This is the main entry point for the application.
//
// PARAMETERS:
//
// cmd
// word value specifying the launch code.
//
// cmdPB
// pointer to a structure that is associated with the launch code
//
// launchFlags
// word value providing extra information about the launch.
//
// RETURNED:
// Result of launch, errNone if all went OK

UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP, UInt16 launchFlags)
{
 return VtChtGrphPalmMain(cmd, cmdPBP, launchFlags);

}

// turn a5 warning off to prevent it being set off by C++
// static initializer code generation
#pragma warn_a5_access reset

/***
 *
 * FUNCTION: ResetDataBuffer
 *
 * DESCRIPTION: *
 * PARAMETERS: resID -- bitmap resource id
 * x, y -- bitmap origin relative to current
window
 *
 * RETURNED: nothing.
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * vmk 10/9/95 Initial Revision
 *
 ***/
 static void ResetDataBuffer()
 {
 UInt16 k;
 for(k=0;k<=EKG_ARRAYSIZE;k++)

Copyright 2002, VitalStatis Medical Solutions 68

69

VitalStatis Medical Solutions

 EKG_ARRAY[k]=0;
 }

/***
 *
 * FUNCTION: ClearLine
 *
 * DESCRIPTION: Clears a rectangle of width 5 for plotting new data
 *
 * PARAMETERS: Nothing
 *
 * RETURNED: nothing.
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * SHT 16/11/02 Initial Revision
 *
 ***/
static void ClearLine(UInt16 xlocation, UInt16 width)
{
 RectangleType bounds;
 bounds.topLeft.x = xlocation;
 bounds.topLeft.y = GridTopOrigin;
 bounds.extent.x = width;
 bounds.extent.y = GridHeight;
 WinEraseRectangle(&bounds, 0);
}
/***
 *
 * FUNCTION: CheckConnect
 *
 * DESCRIPTION:
 *
 * PARAMETERS: Nothing
 *
 * RETURNED: nothing.
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * SHT 16/11/02 Initial Revision
 *
 ***/
static void CheckConnect()
{
 if(Connected==true)
 DrawBitmap(PlugBitmap,2,18);
 if(Connected==false)
 DrawBitmap(NoPlugBitmap,2,18);

}
/***
 *
 * FUNCTION: ScaleData
 *
 * DESCRIPTION: Collects Data Points and Plots them on the grid
 *
 * PARAMETERS: Nothing
 *
 * RETURNED: nothing.
 *
 * REVISION HISTORY:

Copyright 2002, VitalStatis Medical Solutions 69

70

VitalStatis Medical Solutions

 * Name Date Description
 * ---- ---- -----------
 * SHT 16/11/02 Initial Revision
 *
 ***/
UInt16 ScaleData(UInt16 UnformattedData)
{
 UInt16 Scaleddata;

// Scaleddata = UnformattedData///Maxof Data?
 Scaleddata = GridBottomOffset+((UnformattedData/11)*-1);

 return Scaleddata;
}
/***
 *
 * FUNCTION: PlotData
 *
 * DESCRIPTION: Collects Data Points and Plots them on the grid
 *
 * PARAMETERS: Nothing
 *
 * RETURNED: nothing.
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * SHT 16/11/02 Initial Revision
 *
 ***/
//static void PlotData(UInt16 NumberSamples)
static void PlotData()
{
 UInt16 CurrentEKGdata, NextEKGdata;

Int16 j;
//Int16 k;
Int16 Delta;
Int16 p;
char ekgchar[20];

 UInt16 Diff;
 char DiffChar[20];

//CurrentLocation = i;
//for(k=0; k<=NumberSamples; k++)
//{
 if(i == GridWidth)
ClearLine(2,1);
 ClearLine(i+2,4);

// StrIToA(DiffChar,Diff);

 //WinDrawChars("Bfr Urn",StrLen("Bfr Urn"),120,144);
 //WinDrawChars(DiffChar,StrLen(DiffChar),140,140);
 if(GridOn==true)
 {
 if((i%2 == 0)&&(!(((i+1)%22==1)||((i+11)%22==0))))//Even Grid Points
 {
 p=GridTopOrigin;
 while(p<=GridHeight+GridTopOrigin)

Copyright 2002, VitalStatis Medical Solutions 70

71

VitalStatis Medical Solutions

 {
 WinDrawPixel(i+leftOrigin,p);
 p=p+22;
 }
 }
 else if((i%2 == 1)&&(!(((i+1)%22==1)||((i+11)%22==0))))
 {
 p=GridTopOrigin+11;
 while(p<=GridHeight+GridTopOrigin)
 {
 WinDrawPixel(i+leftOrigin,p);
 p=p+22;
 }
 }
 if((i+1)%22==1)
 {
 p=GridTopOrigin;
 while(p<GridHeight+GridTopOrigin)
 {
 WinDrawPixel(i+leftOrigin,p);
 p=p+2;
 }
 }

 if((i+11)%22==0)
 {
 p=GridTopOrigin+1;
 while(p<GridHeight+GridTopOrigin)
 {
 WinDrawPixel(i+leftOrigin,p);
 p=p+2;
 }
 }

 }

 //Interpolation Code
 if(DataIndex >= EKG_ARRAYSIZE)
 DataIndex = 0;
 if(DataIndex == EKG_ARRAYSIZE-1)
 {
 CurrentEKGdata = ScaleData(EKG_ARRAY[DataIndex]);
 Delta=ScaleData(EKG_ARRAY[0])-CurrentEKGdata;
 }
 else
 {
 CurrentEKGdata = ScaleData(EKG_ARRAY[DataIndex]);
 NextEKGdata = ScaleData(EKG_ARRAY[DataIndex+PointDelta]);
 Delta=NextEKGdata - CurrentEKGdata;
 }

 if(Delta < 0)
 {
 for(j=Delta+1; j<=-1; j++)

 if((CurrentEKGdata+j<=GridTopOrigin+GridHeight)&&(CurrentEKGdata+j>=GridTopOrig
in))
 WinDrawPixel(i+leftOrigin,CurrentEKGdata+j);
 }
 if(Delta >0)
 {
 for(j=1; j<=Delta-1; j++)

Copyright 2002, VitalStatis Medical Solutions 71

72

VitalStatis Medical Solutions

 if((CurrentEKGdata+j<=GridTopOrigin+GridHeight)&&(CurrentEKGdata+j>=GridTopOrig
in))
 WinDrawPixel(i+leftOrigin,CurrentEKGdata+j);
 }

 if((CurrentEKGdata<=GridTopOrigin+GridHeight)&&(CurrentEKGdata>=GridTopOrigin))
 WinDrawPixel(i+leftOrigin,CurrentEKGdata);
 //StrIToA(ekgchar,EKG_ARRAY[DataIndex]);
 //WinDrawChars(ekgchar,StrLen(ekgchar),i+leftOrigin,CurrentEKGdata);

 DataIndex=DataIndex+PointDelta;
 //DataIndex++;

 i++;

 //}

}
/***
 *
 * FUNCTION: ShowDateTime
 *
 * DESCRIPTION: Computes the Date and Time of Application start and displays it on
the GUI
 *
 * PARAMETERS: Nothing
 *
 * RETURNED: nothing.
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * SHT 16/11/02 Initial Revision
 *
 ***/

static void ShowDateTime()
{
 UInt32 seconds;
 DateTimeType TheDate;
 char DateString[dateStringLength];
 char TimeString[timeStringLength];

 seconds=TimGetSeconds();
 TimSecondsToDateTime(seconds,&TheDate);
 DateToAscii(TheDate.month,TheDate.day,TheDate.year,dfDMYWithSlashes,DateString)
;
 TimeToAscii(TheDate.hour,TheDate.minute,tfColon24h,TimeString);

 WinDrawChars(TimeString,StrLen(TimeString),117,28);
 WinDrawChars(DateString,StrLen(DateString),111,18);

}
/***
 *
 * FUNCTION: ResetPlotArea
 *
 * DESCRIPTION: Clears the Plot Area and Redraws the Grid
 *
 * PARAMETERS: Nothing

Copyright 2002, VitalStatis Medical Solutions 72

73

VitalStatis Medical Solutions

 *
 * RETURNED: nothing.
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * SHT 16/11/02 Initial Revision
 *
 ***/
static void ResetPlotArea()
{
 RectangleType bounds;
 bounds.topLeft.x = 2;
 bounds.topLeft.y = 40;
 bounds.extent.x = GridWidth;
 bounds.extent.y = GridHeight;
 WinEraseRectangle(&bounds, 0);
 if(GridOn==true)
 DrawBitmap(GridBitmap,2,40);
 i=0;
}
/***
 *
 * FUNCTION: GridSelect
 *
 * DESCRIPTION:
 *
 * PARAMETERS: Nothing
 *
 * RETURNED: nothing.
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * SHT 16/11/02 Initial Revision
 *
 ***/
static void GridSelect()
{

 ControlType *checkP;
 Int16 GridFlag;

 checkP=GetObjectPtr(MainGridCheckbox);
 GridFlag=CtlGetValue(checkP);
 if(GridFlag == 0)
 {
 GridOn=false;
 ResetPlotArea();
 }
 if(GridFlag ==1)
 {
 GridOn=true;
 ResetPlotArea();
 }

}
/***
 *
 * FUNCTION: ZoomSelect
 *
 * DESCRIPTION: *
 * PARAMETERS: Nothing

Copyright 2002, VitalStatis Medical Solutions 73

74

VitalStatis Medical Solutions

 *
 * RETURNED: nothing.
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * SHT 16/11/02 Initial Revision
 *
 ***/
static void ZoomSelect()
{

 ControlType *checkP;
 Int16 ZoomFlag;

 checkP=GetObjectPtr(MainZoomCheckbox);
 ZoomFlag=CtlGetValue(checkP);
 if(ZoomFlag == 1)
 {
 PointDelta = 1;
 ResetPlotArea();
 DataIndex = 0;
 EKG_ARRAY_P = 0;
 Sync=true;
 Delay=true;
 Zoom = true;

 }
 if(ZoomFlag ==0)
 {
 PointDelta = 2;
 ResetPlotArea();
 DataIndex = 0;
 EKG_ARRAY_P = 0;
 Sync=true;
 Delay=true;
 Zoom = false;

 }

}
/***
 *
 * FUNCTION: PeakDetect
 *
 * DESCRIPTION: Takes the difference (ie derivative) of the data and stores
 * the location of the peaks
 *
 * PARAMETERS: Nothing
 *
 * RETURNED: nothing.
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * SHT 16/11/02 Initial Revision
 *
 ***/
 static void PeakDetect(UInt16 Index)
 {
 Int16 Diff=0;
 char countchar[20];
 char diffchar[20];

Copyright 2002, VitalStatis Medical Solutions 74

75

VitalStatis Medical Solutions

 Diff = (EKG_ARRAY[Index+1]-EKG_ARRAY[Index]);//PlotTime2;
 //Diff=DataBuffer[Index+1]-DataBuffer[Index];
 if((Diff<=ThresholdMinus)&&(trigger==false))
 //if((EKG_ARRAY[Index+1]<ThresholdMinus)&&(trigger==false))
 {
 EdgeLocation[EdgeIndex%MaxEdgeIndexSize] = i;

 EdgeIndex++;
 trigger = true;
 InvertHeart();
 HRTimeOut =0;
 }
 if((Diff>=ThresholdPlus)&&(trigger==true))
 //if((EKG_ARRAY[Index+1]>=ThresholdPlus)&&(trigger==true))
 {
 trigger=false;
 InvertHeart();
 PlaySound();
 HRTimeOut =0;

 // count = count +1;
 }

 /*StrIToA(countchar,EdgeIndex);
 if(Diff <=0)
 {
 StrIToA(diffchar,Diff);
 WinDrawChars(" ",StrLen(" "),115,1);
 WinDrawChars(diffchar,StrLen(diffchar),115,1);
 }
 else
 {
 StrIToA(diffchar,Diff);
 WinDrawChars(" ",StrLen(" "),135,5);
 WinDrawChars(diffchar,StrLen(diffchar),135,5);
 }
 WinDrawChars(" ",StrLen(" "),120,140);
 WinDrawChars(countchar,StrLen(countchar),120,140);*/

}
/***
 *
 * FUNCTION: CalcHeartRate
 *
 * DESCRIPTION:
 *
 * PARAMETERS: Nothing
 *
 * RETURNED: nothing.
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * SHT 16/11/02 Initial Revision
 *
 ***/

static void CalcHeartRate()
{
 UInt16 k;
 double Sum=0;
 UInt32 Rate;

Copyright 2002, VitalStatis Medical Solutions 75

76

VitalStatis Medical Solutions

 char HrtRt[20];

 if(EdgeIndex>=2)
 {
 for(k=0;k<=EdgeIndex-2;k++)
 {
 DiffArray[k]=EdgeLocation[k+1]-EdgeLocation[k];
 }
 for(k=0;k<=EdgeIndex-2;k++)
 {
 Sum=DiffArray[k]+Sum;
 }
 if(Zoom==true)
 Rate=60/((Sum/(EdgeIndex-1))*PlotTime1);

 if(Zoom==false)
 Rate=60/((Sum/(EdgeIndex-1))*PlotTime2);

 if(Rate<=300)
 {
 StrIToA(HrtRt,Rate);
 WinDrawChars(" ",StrLen(" "),44,21);
 WinDrawChars(HrtRt,StrLen(HrtRt),44,21);
 }
 }

 else
 {
 WinDrawChars(" ",StrLen(" "),44,21);
 WinDrawChars("NA",StrLen("NA"),44,21);
 }
 EdgeIndex=0;

}
/***
 *
 * FUNCTION: InvertHeart
 *
 * DESCRIPTION: Inverts the Heart Bitmap
 *
 * PARAMETERS: Nothing
 *
 * RETURNED: nothing.
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * SHT 16/11/02 Initial Revision
 *
 ***/
 static void InvertHeart()
 {
 RectangleType bounds;
 bounds.topLeft.x = 22;
 bounds.topLeft.y = 19;
 bounds.extent.x = 19;
 bounds.extent.y = 17;
 WinInvertRectangle(&bounds, 0);
}
/***
 *
 * FUNCTION: PlotBRate()
 *

Copyright 2002, VitalStatis Medical Solutions 76

77

VitalStatis Medical Solutions

 * DESCRIPTION: *
 * PARAMETERS: Nothing
 *
 * RETURNED: nothing.
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * SHT 16/11/02 Initial Revision
 *
 ***/
 static void PlotBRate()
 {
 char BRatechar[20];
 UInt16 BRate=0;
 UInt16 Sum,AveB;
 UInt8 s;
 //if(RES_ARRAY_P>=3)
 //{
 // for (s=1;s<=3;s++)
 // {
 BRate = RES_ARRAY[(RES_ARRAY_P)%EKG_ARRAYSIZE-1]*5;
 // Sum = Sum+BRate;
 // }

 // AveB = (Sum/3)*5;
 if((BSum != BRate)&&(BRate<=99))
 //{
 {
 StrIToA(BRatechar,BRate);
 WinDrawChars(" ",StrLen(" "),79,21);
 WinDrawChars(BRatechar,StrLen(BRatechar),79,21);
 }
 // }
 BSum = BRate;
 //}
 }

 /***
 *
 * FUNCTION: PlaySound
 *
 * DESCRIPTION:
 *
 * PARAMETERS: nothing
 *
 * RETURNED: nothing
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 *
 *
 ***/
static void PlaySound()
{
 SndCommandType sndCmd;

 sndCmd.cmd = sndCmdFrqOn;
 sndCmd.param1 = 880;
 sndCmd.param2 = 1;
 sndCmd.param3 = SoundAmp;

Copyright 2002, VitalStatis Medical Solutions 77

78

VitalStatis Medical Solutions

 SndDoCmd(0, &sndCmd, true);

}

 /***
 *
 * FUNCTION: PlayAlarm
 *
 * DESCRIPTION:
 *
 * PARAMETERS: nothing
 *
 * RETURNED: nothing
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 *
 *
 ***/
static void StopAlarm()
{
 SndCommandType sndCmd;

 sndCmd.cmd = sndCmdFrqOn;
 sndCmd.param1 = 880;
 sndCmd.param2 = 60000;
 sndCmd.param3 = SoundAmp;

 SndDoCmd(0, &sndCmd, true);

}
 /***
 *
 * FUNCTION: PlayAlarm
 *
 * DESCRIPTION:
 *
 * PARAMETERS: nothing
 *
 * RETURNED: nothing
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 *
 *
 ***/
static void StopAlarm()
{
 SndCommandType sndCmd;

 sndCmd.cmd = sndCmdQuiet;
 sndCmd.param1 = 0;
 sndCmd.param2 = 0;
 sndCmd.param3 = 0;

 SndDoCmd(0, &sndCmd, true);

}
 /***
 *

Copyright 2002, VitalStatis Medical Solutions 78

79

VitalStatis Medical Solutions

 * FUNCTION: CompleteBar
 *
 * DESCRIPTION:
 *
 * PARAMETERS: nothing
 *
 * RETURNED: nothing
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 *
 *
 ***/
static void CompleteBar()
{

 RectangleType bounds;
 bounds.topLeft.x = 5;
 bounds.topLeft.y = 150;
 bounds.extent.x = EKG_ARRAY_P_DB/10;
 bounds.extent.y = 10;
 WinDrawRectangle (&bounds, 0);

}

Copyright 2002, VitalStatis Medical Solutions 79

	Table of Contents
	List of Figures
	Glossary
	Introduction
	Current State of VitalChart
	Deviations From Design Specification
	Overall System Design
	System Power
	Printed Circuit Boards
	Package

	Electrocardiogram
	Respiratory Measuring Device
	Hardware Interface
	Overview
	System Connection
	Communication Methodology
	Microcontroller Configuration and Firmware
	A/D Conversion
	Respiratory Rate Digital Signal Processing
	RS-232 Communication

	VitalChart Software
	Software to Hardware Communication Interface (SHCI)
	Database
	Graphical User Interface Design
	Overview
	Main Interface Window
	Database User Interface
	About Menu

	Graphics Engine Design
	Overview
	System Timing Flow
	Peak Locator and Heart Rate Calculation
	Zoom

	Future Plans
	Hardware Interface
	Database

	Budget
	Project Timeline
	Group Dynamics
	Personal Challenges
	See-Ho Tsang – Chief Executive Officer
	Cory Jung – VP Engineering
	Bob Wai - VP Finance
	Jason Yu – VP Communications
	David Poon – Senior Engineer
	James Hu – Senior Engineer

	Conclusion
	References
	Appendix A: PIC Microcontroller Firmware Source Code
	Appendix B: Palm™ OS Source Code

