Vindica Systems

Process Report for the Tactile Display

Project Team
Kevin Giroux
Stephen Hall
Leo Liting
Mike McFarland
Troy Tyler
Elaine Wong

Submitted to

Andrew Rawicz

Steve Whitmore

School of Engineering Science
Simon Fraser University

Date Issued
May 31, 2003

Revision
1.1 - May 28, 2003

© Vindica Systems, 2003

vsi Process Report - 2 -

Table of Contents

LI 101 (200 o111 T 1) o 2
LI 131 0 Yo 11 et 4 T T 3
I.1 TACLIE DiSPIAYS......ccaeaaeaannnnssnnsnnnsnnsnnnnsnnnnnnnsnnnnnnnnnnnnnnnnn 3
1.2 IMAIRELceeeieecieeeeii ittt cceeeeeeeeeetetenenaeeseeaasasnnnnssssssesessssensnsnnsseesesssensnnnnsnseseesnnnnnne 3
P - Vet 11V T3 T T Y 4
2.1 SYstemM OVEIVIEW......ccueiiiiiiieiaineeetetrieeeeannnneseessssseeessssssseesssssssssssssssssassssesesssssssssssses 4
2.2 Graphical User INTEIfACE.cccuiieiieaeiaaaaeeaiaaaaaaaaaaeaaeaaaaaaaaaaaaaasaasaassassaannnnnnnnnnnsnnnnnnnen 5
D2 B @0 Yo 11 o) =] 5
2.4 TACtile USEr INTEIfACE.ccceuuiiiiiitniiaieeerieerrttnnniaaeesesassennnnnsssesesesssennsnnssessssssssnnnnnnnnns 7
2.5 Problems ENCOUNTEIEA.......ccc.iuuuiuuuiaieierieeernnnnnaieaeesessssennnnnsssesssssssnnnnnnssessssssssnnnnnnnnns 7
K I 2 1V T 1= PR 8
T N 11y 1 =1 LT T 9
5 Group DyNamiCS...cccceeccresteccnestecstecsaecssesssessscssssssesssessssssssssssssssssssssssssnss 9
6 Changes tO MakKe.....ccccceuciencnneccnecsacctecsaecssecssessessscssssssesssassssssscsssssanssne 10
7 Individual Contributionsccccceccecceeceeceeceecenctnctnccsecsecsecsecsecsecsscsscsscssces 1n
8 CONCIUSION ..cceeieecnceeiectetecceceececeecaccecsesscsecsesscsesscsscscsscsssssssssesssssssessssnsne 13
8.1 FULUIE PlLANS ..cceveeiieiaeiiiiiiiiiieeeeeeeeeeeetenennnaeeesesessesennnnnsesssssssssnnnnsnsesesesssnnnnnnnsesasannes 13
8.2 RECOMMENAALIONS .cceuvunnieeieieiaeeniiiiiaeeeeeeeeerennnnaaeeesseesennnnnnnasessesesssnnnnnnnsesasanans 13
APPENAIX A ..ccceeininintneceeceecenctectnctsctscssctsessessecsscsscssssscssssssssesssssessssasssnsas 14
GUI SOUICE COQE......uuuuuuennennnnnnnunnnnennnnennnnennnsessessssssssssssnsssssssnnssssssnsssssssnsssssssnssnnnsnnnnnnnes 14
APPENdiX B ..cuciieiiiniiiiinitntteitteittetttcttnttettesttestacstscssessssssssssssssnsssssssnssnes 28
PICTEF628 FIrmwWare COAEuuuuuuuuuuuuuuumnnnnneneneenseensenssnsssessssssssnsssssssssssssssnnssnnsnnnsnnnes 28
APPENAIX € ..cucenincinintneceecaecenctectactsctscssetsessessecsscsscssssscssssssssessessessssssssssas 33
Tactile Display CONSIIUCHIONcuueiiieeeeeaieneeeeeeeaeseasasneesasseseesassssssssssssssessssssssssssssssaens 33
APPENAIX D.ccciecincinineitceecaectnctectnctsctsessetsessessecsscascsscssssssssssssssssssssssanssnsas 35
Project TIMEIINEcuuuuuiaiaaeeieeeeiiiiieeeeeeeeeeesenneaeeeesessssssnnnaseesssssssssnnnesaessssssssnnnnneesassnnes 35

© Vindica Systems Inc, 2003

vsi Process Report - 3 -

1 Introduction

In September of 2002 Vindica Systems (Vindica) launched a campaign into the
design & development of a tactile interface system dubbed TactiVision. The
driving force behind this undertaking was the need to facilitate improved access to
electronic media for the visually impaired.

1.1 Tactile Displays

In concept, a tactile display (TD) is any device that can be used to convey
information to its user through touch. In most instances, this is done by
controlling the heights of a number of pins relative to one another within a
matrix, so that the user can perceive surface-height variations with their hands and
fingertips. This allows for the closest possible mapping from the 3D visual world
to one of 2¥2D tactile. Other tactile displays utilize vibration or direct electrical
stimulation to relay information, but these methods alter the acuity and feel of the
perceived object making them inappropriate for many fundamental applications.

The TD concept is not a new one. There have been many advances in TD
technology over the last 10 years, including the design and development of several
commercially available (but expensive) refreshable Braille displays. ENSC340 itself
has seen a refreshable Braille display project in recent history. What set Vindica’s
TD apart from its ancestry is its ability to produce analog pin-heights at a high-
resolution. Vindica ranks well among the now dozens of organizations and
research groups that have attempted to produce such a device, having successes
that rival those of ventures which had budgets of over $4 million and project
timelines in excess of 2 years. That any organization would invest that much time
and money into such a device alludes to the large size of its potential market.

1.2 Market

Although no refreshable, analog tactile-display has been made commercially
available to this day, the market potential for such a device has already been
demonstrated. There are a number of refreshable Braille-type devices on the
market which have been welcomed by the blind community in spite of their high
costs. In addition to their obvious role as assistive devices for the blind, TDs have
a number of other potential uses including:

© Vindica Systems Inc, 2003

vsi Process Report - 4 -

« teletaction (feeling 3-dimensional objects / surfaces remotely) for pre-
operative exploration of MRI or CT scan imagery by surgeons
« reusable electronics test-beds for rapid printed-circuit testing (bed of nails)

There are undoubtedly also a number of other useful applications that remain
undiscovered thus far. Therefore, the market potential for refreshable, analog TDs
exists even if the technology is expensive; however, if the design uses technology
that is affordable to the average consumer, we feel that the resulting market for
such a device would be enormous and could easily be swept by the first supplier.

2 TactiVision

Vindica System’s ‘TactiVision’ is a proof-of-concept, refreshable, analog TD system
whose primary intended use is as an assistive device for the visually impaired. An
obvious change to any production version would be the development of invisible
software to relay data from other programs to the TD, or the development of a

controller that plugs straight into the VGA port, replacing the monitor altogether.

2.1 System Overview

Vindica’s TD system consists of a graphical user interface (GUI), controller, and the
tactile user interface (TUI). The GUI accepts user inputs in the form of an image
which can be manipulated through the software in a manner similar to that of the
common paint program. These inputs are then transmitted from the PC to the
controller from which motor commands are sent to the TUI actuators. The TUI
then displays 22 dimensional contours by adjusting pin-heights so that they
represent what is shown on the GUI, allowing one to visualize through touch. A
graphical representation of the system overview is shown in Figure 1.1 below.

Figure 1.1 - System Overview (GUI = controller = TUI)

© Vindica Systems Inc, 2003

vsi Process Report - 5 -

2.2 Graphical User Interface

The GUI is a Win32 based application written in Microsoft Visual C++ 6.0 using
Microsoft Foundation Classes (MFC). A complete, commented copy of the code
has been included in Appendix A. The program consists of a single dialog-style
window with 7 functions that the user can perform:

Open — activates standard Windows® File>Open dialog box where
user can browse and select .tvi image to be loaded into editor

Palette — allows user to select current brush color from a 256 degree
grayscale gradient [black = low : white = high]

Get Color— current color is updated with color of next pixel clicked in editor
window (similar to ‘eyedropper’ tool in other image software)

e Paint — left-click in editor window applies current brush color to selected
pixels (similar to ‘paintbrush’ tool in other image software)

e Pan — allows user to highlight and select a 19 -pixel honey-comb region
of the image to display on the 19 -pin tactile interface

o Update - initiates transmission of selected 19 -pixel data to controller

» Save — activates standard Windows® File>Save dialog box where

user is prompted to enter file name to save image in editor

Each pixel in the selected region has a brightness value between O (black) and 255
(white). This mapping is inverted with respect to the TUI actuator commands
which use white (completely off : high) and black (completely on : low), so the
number is subtracted from 255 to get the desired output. The software enables
the computer’s COMI serial port and controls asynchronous transmission of pin-
height data directly with the PIC’s built-in hardware SPI, via UART protocol. The
PIC stores the data so that each image need only be updated once.

2.3 Controller

The brain of the control hardware is a Microchip® PIC16F628 flash MCU which
was programmed using MPLab IDE and a PICPlus programmer. A complete,
commented copy of the code has been included in Appendix B. The on-chip SPI
receives data from the PC after it has passed through a logic inverter.

© Vindica Systems Inc, 2003

vsi Process Report - 6 -

The PIC receives one byte at a time, saving the values in memory as they arrive.
Once all 19 values have been received, they are sequentially latched into 8-bit

digital-to-analog-converters (DAC) using 2x 4-to-16 active-low line-decoders for
addressing and parallel 5-bit input lines. Only the most significant 5 bits of each
pin-height value are latched, with the remaining 3 leads being tied to ground.

This had to be done due to microcontroller output constraints, yet it still allows
32 unique pin-heights to be displayed (increments of approx. 70 um deflection).

The DAC outputs are buffered using parallel 200 mA high-power op-amps which
connect directly to a 20-pin connector that connects the controller to the TUIL. It
should be noted that this design has extremely low tolerance for variations in the
resistances of the muscle wire actuators (which occurs quite regularly). The
control system schematics for a single pin are shown in Figure 2.1.

—oAc—] v v
i I -

| pAc2 e
 DAC3

— DAC4
En}le
— ADDO to pin

— ADDI1
— ADD2
— ADD3

DA

DATA

PC Ready ———
PIC Ready———7

PIC16F628

DEMUX

N

Figure 2.1 - High-Level Control System Schematic

The design shown in Figure 2.1 deviates significantly from the design specifications
previously released. The original design used capacitors and transistors instead of
DACs and op-amps, and would have been significantly less expensive than the
new design; however, the original design was deemed to be flawed late into the
development process and was subsequently replaced by that shown in Figure 2.1.

The signals DACO - DAC4 are available at the inputs of each DAC, and the
addressing lines ADDO - ADD3 select which of the DACs will latch the current
value. When a DAC receives an active low from the decoder, the voltage at its
output is updated and reflected at the output of the voltage buffer (op-amps).

This design uses simple R2R ladder networks and transistors so it could be

integrated onto an IC, however the number of pins required on the package
would increase in direct proportion with the number of pins on the tactile display.

© Vindica Systems Inc, 2003

vsi Process Report - 7 -

2.4 Tactile User Interface

The TUI is a 19-pin array of hexagonal pins with shape memory alloy (SMA)
actuators. When heated by applying a potential difference across the wire, SMA
contracts pulling its associated pin downwards. Compression springs provide the
restoring force which pushes the pins back to their original heights as they cool.
The controller supplies each of the pins with its own designated voltage, precisely
regulating their heights. Although the mechanics behind the pin design are simple
in concept, they are difficult to implement with any precision by hand. Diagrams
of the TD design and construction process have been included in Appendix C.

2.5 Problems Encountered

The system was initially designed to conform to target cost constraint of $0.50 per
pin, however the first design had to be abandoned because it involved the
construction of and analog latch for each pin, a task that proved to be much more
difficult than expected. This necessitated a design overhaul late into the project.

Most of the problems encountered in the project were related to construction of
the TUI. The SMA used to actuate the pins was very difficult to work with for all
of the following reasons:

« heat sensitive (80° — 90° activation range)
« soldering burns out wire
« hysteresis in temperature vs length characteristic

« thinner than human hair (100 um diameter)
« difficult to work with by hand
« knots untie themselves when wire is heated

« non-stick, non-malleable alloy
o difficult to fasten
« force required to clamp often fractures wire

« non-uniform resistivity (approx 1 QQ per cm)
« resistance varies along length & with length
« small voltages (1.2 volts — 1.7 volts) burn out wires

A conservative estimate of the total amount of time spent designing, constructing,
testing, redesigning and reconstructing the pins is 400 hours. Pins that worked
would do so for a few contraction-lengthening cycles before either sliding through
the fastening crimp, or burning out. Some of this was due to what was observed
to be an inconsistency between resistances of equal lengths of the wire (two 5 cm

© Vindica Systems Inc, 2003

vsi Process Report - 8 -

pieces measured between 3.4 Q and 54.1 Q). As a result, Vindica’s final product
only had two contracting pins at the time of demonstration, though several of the
pins worked at some time prior to that point.

In addition to these project related issues, Vindica Systems suffered the loss of 3 of
its members well prior to project completion. Those who remained spent weeks
(including Christmas Eve!) trying to debug firmware authored by those who had
just left, without success. The firmware had to be rewritten from scratch and
undergo later modification when the control design was discovered to be flawed.

3 Budget

Vindica Systems was well under budget at the time of integration of its first design.
The design change drove the final costs up significantly, and was a failure of
concept in many ways. If the cost of pin-assembly labor were factored into the
cost of the system, the final price-tag would be thousands of dollars more. Of the
$1200.00 allocated for the project, $896.86 was spent. A summary of those
expenses is shown below:

$115.34 — shape memory alloy sample kit (3m)

$115.34 — 100 um shape memory alloy (5m)

$ 16.96 — 280 mA continuous transistors (50)

$ 36.09 — PIC16F628 microcontrollers (3)

$138.59 — crimps, connectors, sockets, springs, enclosure, switch, standoffs
$ 56.27 — thermal paste, small fan, heat sinks

$ 65.76 — power supply, connector, fuses

$210.06 — 200 mA high-power op-amps (40)

$107.67 — 8-bit digital-to-analog converters (20)

$ 34.78 — 4-to-16 active-low line decoders (3)

$896.86 — total

The final cost varies so significantly from our predicted budget requirements
because we initially expected to pay as much as $400.00 for SMA but only paid
$230.00. We were also able to obtain several free samples to offset some of the
cost of our initial design, and in spite of the unforeseen design change we were
able to offset the contingency cost of our second design against savings of the first.

© Vindica Systems Inc, 2003

vsi Process Report - 9 -

4 Timeline

To say the very least, Vindica’s actual project timeline strayed erratically from the
timeline proposed in September. Some of the deviation is credited to the late
start the founding members made, meeting and brainstorming for the first time
only days before the first ENSC305 class. Because the team was small it became
the leading candidate for an insertion of 3 foreign exchange students. The
addition of 3 more minds and 6 more helping hands was received as a blessing at
first, but as time wore on it became clear that the lopsided division of tasks within
the group was leading to significant delays. The effect of group dynamics on this
project is discussed further in Section5.

A graphical timeline has been included in Appendix D as it is too large for this
page. The most significant deviations from our predicted schedule were the late
development of the initial firmware, which could not be debugged before its
authors returned home, and the resulting delay in system integration which
revealed the design error. Vindica's remaining members were also engaged in full
course loads in the spring semester, leaving even less time to work on the project
than had been the case in the fall.

5 Group Dynamics

As mentioned in the previous section, group dynamics played an important role in
the timeline of the project. Two of the exchange students had very little practical
hands-on experience with electronics test equipment or hardware. The third
excelled in each of the other courses taken while visiting, yet surprisingly and
inexplicably failed to contribute much to either of ENSC305/340.

Whether the assumption of a more dominant leadership role by any of the group
members would have helped resolve this issue is uncertain. Only 2 pairs of
members knew each other prior to formation of the group, and the storming
stage went surprisingly well and quickly considering. Norming took considerably
longer than it should have in retrospect, due to the unavailability of certain
members as well as to differing work ethics and habits within the group.

A general lack of team cohesion in the early stages of the project meant that the

initiation of work in each facet of the design repeatedly fell to the same person.
Vindica’s leading project contributors were also guilty of spending more time

© Vindica Systems Inc, 2003

vsi Process Report - 10 -

producing documentation than they should have, given the skewed division of
tasks within the group. In spite of the possible drawbacks to working on a project
of this magnitude with people you don’t know, some of which were just
mentioned, most of Vindica’s members would agree that the experience reflects
the real-world work-place. In many respects we've learned more about team
dynamics and project management than we have about electronics throughout the
course of this project, and the experience has been invaluable.

6 Changes to Make

If Vindica Systems were to tempt fate once more and try to redevelop the TD
system from scratch, there are a few changes that would occur. Most importantly,
the actuating scheme would be more closely scrutinized. Shape memory alloys are
probably not the best suited material for this particular application, though they
will work. One other actuation method that Vindica would have liked to have
had more time to investigate last September was hydraulics. Though we’re not
mechanically inclined, it has as much promise as any other mechanism. If Vindica
decided to continue using SMA, custom pre-cut and pre-crimped lengths of wire
are now offered by our previous muscle-wire supplier, and might eliminate some
of the problems encountered with the interface assembly process.

Another change to make is the implementation of the control hardware on a
printed circuit board (PCB). In spite of our confidence in Kevin’s superhuman
soldering skills, 700 manual connections virtually eliminate any hope of
successfully debugging shorts or improper circuitry.

Lastly, Vindica’s design change came about so late in the process because we were
slow to exploit the resources and knowledge base available to us. Had we seen
Lucky sooner, or consulted with Dr Rawicz regarding some of our difficulties with
SMA we may well have been finished on schedule.

One thing that we wouldn’t change is the complexity and challenge of the
undertaking. There was much learned due to the struggle, about project
management and electronics, but also about ourselves and each other. Had we
chosen a simpler ENSC340 project we may have finished without learning a thing.

© Vindica Systems Inc, 2003

vsi Process Report - 11 -

7 Individual Contributions

The following is a summary of each of Vindica's group members’ contributions to
the project. Each is a personal account of what was done, with the exception of
the exchange students’ contributions, which have been recorded in their absence.

Kevin Giroux — When 340 began, | was looking forward to the opportunity to
do some hands on engineering work. With my experience in soldering and
building electronic devices, such as an audio power meter and multimedia
amplifier, my efforts were directed towards building the circuitry, the enclosure,
and the pins themselves. | learned through hand soldering around 700
connections on a generic proto board that fabricating a printed circuit board or
even just using wire wraps would have been a more efficient and reliable
technique. 1 also learned that while plenty of heat is essential for a good solder
joint, it is not the best technique to use when working with a substance that
changes its properties as its temperature varies, such as the nickel-titanium alloy
we were using to actuate the pins.

Aside from the frustrating process of manufacturing pins that did not work, one of
the most tedious parts of this project was building the case that would contain all
of the pins. Due to the complexity of the shape of our pin array, we had no other
means at our disposal besides hand filing it. This was an exercise in patience as
much as anything else, as one careless file stroke would result in having to start
over from scratch on a new case.

In addition to the practical experience gained in building the tactivision, | also
gained experience, through 305, in writing technical documents. While it was
disappointing not to see 19 functional pins at the end of the project, all the effort
that went into getting there was a very valuable learning experience.

Stephen Hall — Steve took the initiative to purchase a muscle-wire sample kit and
test the SMA’s strength to see if it met project requirements. He also proof-read
Vindica’s project documentation and helped draw up funding requests. Though
his contributions to the project were probably less than what they could have
been during his time here, in his defense he was taking several of the more difficult
courses in the SFU engineering program concurrently with ENSC305/340.

© Vindica Systems Inc, 2003

vsi Process Report - 12 -

Leo Liting & Elaine Wong — Leo Liting and Elaine Wong, our team members from
Singapore, were inseparable and although we are unaware of their individual
contributions, we do know what they added as a team. Leo and Elaine were
responsible for selecting and sourcing a microcontroller suitable for the project.
They chose the Microchip PIC16F628 because it met all of our requirements and
was relatively inexpensive and easy to program. They wrote the first version of
the firmware for our first design, but returned to Singapore before we were able
to test it. Nonetheless, some of their contributions snuck their way into the final
version of the firmware, and controlled Vindica’s TD at the demo.

Mike McFarland — In addition to working on all of the ENSC305 documentation
and writing the presentation, | was responsible for the development & debug of
the software and the firmware following Leo & Elaine’s departure. As CFO, |
sought project funding and sourced, ordered and financed all of the project
components. | helped design, bread-board and test several control hardware
schemes and, like the others, spent countless hours constructing pins and becoming
frustrated by muscle wire. My contributions involved every aspect of the project.

Troy Tyler — At the inception of the project | spent many hours researching ways
to actuate the pins, and to generally make the project happen. | worked
extensively with Mike both in the research and in producing the Project Proposal.
Mike and | also had a large part in all documentation. In the early months while
Mike was programming the software interface and | was advising, | built the
company website www.vindica.ca. During the project development stages | spent

many hours in the lab prototyping ways to actuate muscle wire. Mike and 1 built
the initial design circuitry and ultimately the final design circuitry. 1 also had fun
soldering the first of those 700+ connections on the final control board. 1 assisted
with the firmware as well, though | did manage to break a few pins on a few
chips. We then integrated the circuitry with the software. At this point we had to
finish the pin assembly as its state at the time was unusable. | spent many, many
hours filing, cutting, tying, crimping, building and re-building pins and the
enclosure. When it was all done we had 4 pins actuating! But alas, by the time
we demoed we were down to 1 or 2. | made the slides for the pin enclosure
because | got to have cool graphics to make, and was fortunate to be the one to
explain all the work involved in making the pins. | found the group members that
| worked with on those long days very fun to work with, which is probably why
we are all still here today.

© Vindica Systems Inc, 2003

vsi Process Report - 13 -

8 Conclusion

8.1 Future Plans

Despite our sense that tremendous potential exists for tactile display technology,
we have no immediate plans to pursue its development any further. The device is
at a stage where it could be made to work with only minor changes however the
design falls short of its original component cost target and has high assembly costs.

8.2 Recommendations

To management or any design teams considering the pursuit of a solution to this
problem in the future, we would strongly recommend against the use of shape
memory alloy in its design (at least SMA of the ‘muscle wire’ variety). We felt
that the project was challenging in all aspects of electronics circuitry, software and
firmware design, and would recommend projects of similar magnitude to future
students. We truly appreciate Steve and Andrew’s willingness to allow us to see
the project through to completion and each of us enjoyed ENSC305/340.

© Vindica Systems Inc, 2003

vsi Process Report - 14 -

Appendix A

GUI Source Code

// Written by Mike McFarland © Vindica Systems 2002
// TactiVision.h : main header file for the TACTIVISION application
#include "resource.h"

class CTactiVisionApp : public CWinApp

{

public:
CTactiVisionApp();
//{{AFX_VIRTUAL(CTactiVisionApp)
public:
virtual BOOL InitInstance();
//YAFX_VIRTUAL

g

// Written by Mike McFarland © Vindica Systems 2002
// TactiVision.cpp : Defines the class behaviors for the application.

#include "stdafx.h"
#include "TactiVision.h"
#include "TactiVisionDlg.h"

CTactiVisionApp theApp;

BOOL CTactiVisionApp::Initinstance()

{
#ifdef AFXDLL

Enable3dControls(); // Call this when using MFC in a shared DLL
#else

Enable3dControlsStatic(); // Call this when linking to MFC statically
#endif

CTactiVisionDlg dlg;

m_pMainWnd = &dlg;

int nResponse = dlg.DoModal();

return FALSE;
}

#include "stdafx.h"
#include "TactiVision.h"
#include "TactiVisionDlg.h"
#include "windows.h"
#include <math.h>

#define zoomLeft 276
#define zoomTop 97

© Vindica Systems Inc, 2003

vsi Process Report - 15 -

#define gradleft 250
#define gradTop 118

#define openlLeft 323
#define openTop 62
#define openRight 391
#define openBottom 79
#define saveleft 468
#define saveTop 62
#define saveRight 527
#define saveBottom 79
#define arealeft 62

#define areaTop 262
#define areaRight 205
#define areaBottom 279
#define colorLeft 90
#define colorTop 228
#define colorRight 205
#define colorBottom 241
#define updateleft 115

#define updateTop 304
#define updateRight 205

#define updateBottom 321

Hexagon::Hexagon()

{
vertex[0].x = vertex[0].y = O,
vertex[1].x = vertex[1].y = O,
vertex[2].x = vertex[2].y = O,
vertex[3].x = vertex[3].y = O,
vertex[4].x = vertex[4].y = O,
vertex[5].x = vertex[5].y = O,
hexcolor = OxOOFFFFFF;

}

void Hexagon::setHexagon(int xcoord, int ycoord, COLORREF color)
{

hexcolor = color;

vertex[0].x = vertex[5].x = xcoord;

vertex[0].y = vertex[2].y = ycoord;

vertex[1].x = vertex[4].x = xcoord + 5;

vertex[1].y = ycoord - 3; vertex[4].y = ycoord + 9;

vertex[2].x = vertex[3].x = xcoord + 10;

vertex[3].y = vertex[5].y = ycoord + 6;
vertex[6].x = xcoord + 5;

© Vindica Systems Inc, 2003

vsi Process Report - 16 -

vertex[6].y = ycoord + 3;

}
void CTactiVisionDlg::SetHexagons()
{
int xRef = zoomlLeft; int yRef = zoomTop; int xOffset = 5;
int deltaX = 10; int delta¥Y = 9; int nexthex = 0;
for (int row=0; row<31; row++)
if (row%2 == 0)
for (int col=0; col<30; col++)
{zoomhex[nexthex].setHexagon (xRef+col*deltaX,
yRef+row*deltaY, (COLORREF) OxOOFFFFFF);
nexthex++; }
else
for (int col=0; col<29; col++)
{zoomhex[nexthex].setHexagon (xRef+col*deltaX+
xOffset,yRef+row*delta¥, (COLORREF) OxOOFFFFFF);
nexthex++; }
CPen outlinePen(PS_SOLID,1,(COLORREF) OxE1B982);
screen->SelectObject(&outlinePen);
for (int thishex=0; thishex<915; thishex++)
{
screen->MoveTo(zoomhex[thishex].getVertex1().x,zoomhex[thishex].getVertex1().y);
screen->LineTo(zoomhex[thishex].getVertex2().x,zoomhex[thishex].getVertex2().y);
screen->LineTo(zoomhex[thishex].getVertex3().x,zoomhex[thishex].getVertex3().y);
screen->LineTo(zoomhex[thishex].getVertex4().x,zoomhex[thishex].getVertex4().y);
screen->LineTo(zoomhex[thishex].getVertex5().x,zoomhex[thishex].getVertex5().y);
screen->LineTo(zoomhex[thishex].getVertex6().x,zoomhex[thishex].getVertex6().y);
screen->LineTo(zoomhex[thishex].getVertex1().x,zoomhex[thishex].getVertex1().y);
}
outlinePen.DeleteObject();
}
void Hexagon::FillPoly(CDC* screen)
{
CPen outlinePen(PS_SOLID,1,(COLORREF) OxE1B982);
screen->SelectObject(&outlinePen);
CBrush hexFillBrush(this->getColor());
screen->SelectObject(&hexFillBrush);
screen->Polygon(vertex,6);
outlinePen.DeleteObject();
hexFillBrush.DeleteObject();
}

CTactiVisionDlg::CTactiVisionDIg(CWnd* pParent)
: CDialog(CTactiVisionDlg::IDD, pParent)

tvlcon = AfxGetApp()->Loadlcon(IDR_MAINFRAME);

© Vindica Systems Inc, 2003

vsi Process Report - 17 -

keyStop = ::LoadAccelerators(AfxGetlnstanceHandle(), MAKEINTRESOURCE(LimitKeypress));

}
void CTactiVisionDlg::DoDataExchange(CDataExchange* pDX)
{
CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CTactiVisionDlg)
//}}AFX_DATA_MAP
}
BOOL CTactiVisionDlg::PreTranslateMessage(MSG* incoming)
{
if (keyStop != NULL)
if (::TranslateAccelerator(m_hWnd, keyStop, incoming)) return TRUE;
return CDialog::PreTranslateMessage(incoming);
}

BEGIN_MESSAGE_MAP(CTactiVisionDlg, CDialog)
//{{AFX_MSG_MAP(CTactiVisionDlg)
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_WM_LBUTTONDOWN()
ON_WM_MOUSEMOVE()
ON_WM_LBUTTONUP()
ON_BN_CLICKED(LoadButton, OnlLoadButton)
ON_BN_CLICKED(PanButton, OnPanButton)
ON_WM_CONTEXTMENU()
ON_BN_CLICKED(SaveButton, OnSaveButton)
ON_BN_CLICKED(ColorButton, OnGetColor)
ON_BN_CLICKED(UpdateButton, OnUpdateButton)
ON_WM_RBUTTONDOWN()
//HAFX_MSG_MAP

END_MESSAGE_MAP()

BOOL CTactiVisionDlg::OnlnitDialog()

{
CDialog::OnlnitDialog();
Setlcon(tvlcon, TRUE); // Set big icon
Setlcon(tvlcon, FALSE); // Set small icon

screen = this->GetDC();

currColor = (COLORREF) OxOOFFFFFF;
lastFrame = 100;

lastColor = 100;

cursorHidden = FALSE;

inPanMode = FALSE;

inGetColorMode = FALSE;

inDrawArea = FALSE;

hasPanned = FALSE;

hasColor = FALSE;

© Vindica Systems Inc, 2003

vsi Process Report - 18 -

SetHexagons();

currColor = (COLORREF) 0x00000000;

colorHex.setHexagon(gradLeft + 2, gradTop - 14, (COLORREF) 0x00000000);
GUIlLayoutMemory.CreateCompatibleDC(screen);

//Load Application Backdrop into Memory
CBitmap guiBMP;
guiBMP.LoadBitmap(BackDrop);
GUILayoutMemory.SelectObject(guiBMP);
guiBMP.Detach();

guiBMP.DeleteObject();

return TRUE; // return TRUE unless you set the focus to a control

void CTactiVisionDlg::OnPaint()
{
if (Islconic())
{
CPaintDC dc(this); // device context for painting
SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

// Center icon in client rectangle

int cxlcon = GetSystemMetrics(SM_CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;

GetClientRect(&rect);

int x = (rect.Width() - cxlcon + 1) / 2;

int y = (rect.Height() - cylcon + 1) / 2;

// Draw the icon
dc.Drawlcon(x, y, tvlcon);

else

screen->BitBIt(0,0,600,400,&GUlLayoutMemory,0,0,SRCCOPY);
CPen framePen(PS_SOLID,1,(COLORREF) OxOO000OFF);

if (hasPanned) FrameHandle(lastFrame, &framePen);
framePen.DeleteObject();

colorHex.FillPoly(screen);
for (int index=0; index<915; index++)
zoomhex[index].FillPoly(screen);

// Pass windows message to CDialog class OnPaint handler
CDialog::OnPaint();

© Vindica Systems Inc, 2003

vsi Process Report - 19 -

HCURSOR CTactiVisionDIg::OnQueryDraglcon()
{ return (HCURSOR) tvlcon; }

int CTactiVisionDlg::GetHexagon(CPoint point)
{

int x,y;

int currentMinHex = O;

float hexDistance = 0;

float minDistance = 500;

for (int index=0; index<915; index++)
{ x = abs(zoomhex[index].getCenter().x - point.x);

y = abs(zoomhex[index].getCenter().y - point.y);

hexDistance = (float) sqrt((x*x)+(y*y));

if (hexDistance < minDistance)

{ currentMinHex = index;

minDistance = hexDistance; } }

return currentMinHex;

void CTactiVisionDlg::GetDrawing(CPoint point)
{
CPen framePen(PS_SOLID,1,(COLORREF) OxOO000O0FF);
int drawnOn = GetHexagon(point);
{ zoomhex[drawnOn].setColor(currColor);
zoomhex[drawnOn].FillPoly(screen);
if (hasPanned) FrameHandle(lastFrame, &framePen); }
framePen.DeleteObject();

void CTactiVisionDlg::OnLButtonDown(UINT nFlags, CPoint point)
{

if (zoomhex[0].getVertex1().x <= point.x && zoomhex[0].getVertex2().y <= point.y
&& zoomhex[914].getVertex4().x >= point.x && zoomhex[914].getVertex5().y >= point.y)
if(linPanMode && linGetColorMode)

{
inDrawArea = TRUE;
GetDrawing(point);

}

if(inPanMode)

{
inPanMode = FALSE;
::ShowCursor(TRUE);
::ClipCursor(NULL);
cursorHidden = FALSE;

}

if(inGetColorMode)

© Vindica Systems Inc, 2003

vsi Process Report - 20 -

inGetColorMode = FALSE;

CPen frameColor (PS_SOLID, 1,(COLORREF) OxE1B982);
currColor = zoomhex[GetHexagon(point)].getColor();
GetColorHandle(GetHexagon(point), &frameColor);
::ShowCursor(TRUE);

::ClipCursor(NULL);

cursorHidden = FALSE;

frameColor.DeleteObject();

if (point.x >= gradleft && point.x <= gradLeft + 10
&& point.y >= gradTop && point.y <= gradTop + 255)
{
int pixelToTake = point.y - gradTop;
if (pixelToTake < 0) pixelToTake = O;
if (pixelToTake > 255) pixelToTake = 255;
pixelToTake = 255 - pixelToTake;
currColor = ((COLORREF) ((pixelToTake << 16L) + (pixelToTake << 8L) +
(pixelToTake)));

colorHex.setHexagon(gradLeft + 2, gradTop - 14, currColor);
colorHex.FillPoly(screen);

if (point.x >= openleft && point.x <= openRight &&
point.y >= openTop && point.y <= openBottom)
OnLoadButton();

if (point.x >= arealeft && point.x <= areaRight &&
point.y >= areaTop && point.y <= areaBottom)
OnPanButton();

if (point.x >= saveleft && point.x <= saveRight &&
point.y >= saveTop && point.y <= saveBottom)
OnSaveButton();

if (point.x >= colorLeft && point.x <= colorRight &&
point.y >= colorTop && point.y <= colorBottom)
OnGetColor();

if (point.x >= updateleft && point.x <= updateRight &&
point.y >= updateTop && point.y <= updateBottom)
OnUpdateButton();

CDialog::OnLButtonDown(nFlags, point);

© Vindica Systems Inc, 2003

vsi Process Report - 21 -

void CTactiVisionDlg::FrameHandle(int centerHex, CPen* currentPen)

{

screen->SelectObject(currentPen);

screen->MoveTo(zoomhex[centerHex- 2].getVertex1().x, zoomhex[centerHex- 2].getVertex1().y);
screen->LineTo(zoomhex[centerHex- 2].getVertex6().x, zoomhex[centerHex- 2].getVertex6().y);
screen->LineTo(zoomhex[centerHex- 2].getVertex5().x, zoomhex[centerHex- 2].getVertex5().y);
screen->LineTo(zoomhex[centerHex+28].getVertex6().x, zoomhex[centerHex+28].getVertex6().y);
screen->LineTo(zoomhex[centerHex+28].getVertex5().x, zoomhex[centerHex+28].getVertex5().y);
screen->LineTo(zoomhex[centerHex+58].getVertex6().x, zoomhex[centerHex+58].getVertex6().y);
screen->LineTo(zoomhex[centerHex+58].getVertex5().x, zoomhex[centerHex+58].getVertex5().y);
screen->LineTo(zoomhex[centerHex+58].getVertex4().x, zoomhex[centerHex+58].getVertex4().y);
screen->LineTo(zoomhex[centerHex+59].getVertex5().x, zoomhex[centerHex+59].getVertex5().y);
screen->LineTo(zoomhex[centerHex+59].getVertex4().x, zoomhex[centerHex+59].getVertex4().y);
screen->LineTo(zoomhex[centerHex+60].getVertex5().x, zoomhex[centerHex+60].getVertex5().y);
screen->LineTo(zoomhex[centerHex+60].getVertex4().x, zoomhex[centerHex+60].getVertex4().y);
screen->LineTo(zoomhex[centerHex+60].getVertex3().x, zoomhex[centerHex+60].getVertex3().y);
screen->LineTo(zoomhex[centerHex+31].getVertex4().x, zoomhex[centerHex+31].getVertex4().y);
screen->LineTo(zoomhex[centerHex+31].getVertex3().x, zoomhex[centerHex+31].getVertex3().y);
screen->LineTo(zoomhex[centerHex+ 2].getVertex4().x, zoomhex[centerHex+ 2].getVertex4().y);
screen->LineTo(zoomhex[centerHex+ 2].getVertex3().x, zoomhex[centerHex+ 2].getVertex3().y);
screen->LineTo(zoomhex[centerHex+ 2].getVertex2().x, zoomhex[centerHex+ 2].getVertex2().y);
screen->LineTo(zoomhex[centerHex-28].getVertex3().x, zoomhex[centerHex-28].getVertex3().y);
screen->LineTo(zoomhex[centerHex-28].getVertex2().x, zoomhex[centerHex-28].getVertex2().y);
screen->LineTo(zoomhex[centerHex-58].getVertex3().x, zoomhex[centerHex-58].getVertex3().y);
screen->LineTo(zoomhex[centerHex-58].getVertex2().x, zoomhex[centerHex-58].getVertex2().y);
screen->LineTo(zoomhex[centerHex-58].getVertex1().x, zoomhex[centerHex-58].getVertex1().y);
screen->LineTo(zoomhex[centerHex-59].getVertex2().x, zoomhex[centerHex-59].getVertex2().y);
screen->LineTo(zoomhex[centerHex-59].getVertex1().x, zoomhex[centerHex-59].getVertex1().y);
screen->LineTo(zoomhex[centerHex-60].getVertex2().x, zoomhex[centerHex-60].getVertex2().y);
screen->LineTo(zoomhex[centerHex-60].getVertex1().x, zoomhex[centerHex-60].getVertex1().y);
screen->LineTo(zoomhex[centerHex-60].getVertex6().x, zoomhex[centerHex-60].getVertex6().y);
screen->LineTo(zoomhex[centerHex-31].getVertex1().x, zoomhex[centerHex-31].getVertex1().y);
screen->LineTo(zoomhex[centerHex-31].getVertex6().x, zoomhex[centerHex-31].getVertex6().y);
screen->LineTo(zoomhex[centerHex- 2].getVertex1().x, zoomhex[centerHex- 2].getVertex1().y);

void CTactiVisionDlg::PanDrawArea(CPoint point)

{
CPen frameColor (PS_SOLID, 1,(COLORREF) OxE1B982);
CPen selectColor (PS_SOLID, 1,(COLORREF) 0xO00OFF);

int centerHex = GetHexagon(point);
FrameHandle(lastFrame, &frameColor);
FrameHandle(centerHex, &selectColor);
lastFrame = centerHex;

frameColor.DeleteObject();

© Vindica Systems Inc, 2003

vsi Process Report - 22 -

selectColor.DeleteObject();

}
void CTactiVisionDlg::GetColorHandle(int centerHex, CPen* currentPen)
{
screen->SelectObject(currentPen);
screen->MoveTo(zoomhex[centerHex].getVertex1().x, zoomhex[centerHex].getVertex1().y);
screen->LineTo(zoomhex[centerHex].getVertex2().x, zoomhex[centerHex].getVertex2().y);
screen->LineTo(zoomhex[centerHex].getVertex3().x, zoomhex[centerHex].getVertex3().y);
screen->LineTo(zoomhex[centerHex].getVertex4().x, zoomhex[centerHex].getVertex4().y);
screen->LineTo(zoomhex[centerHex].getVertex5().x, zoomhex[centerHex].getVertex5().y);
screen->LineTo(zoomhex[centerHex].getVertex6().x, zoomhex[centerHex].getVertex6().y);
screen->LineTo(zoomhex[centerHex].getVertex1().x, zoomhex[centerHex].getVertex1().y);
}
void CTactiVisionDlg::GetColorDrawArea(CPoint point)
{
CPen frameColor (PS_SOLID, 1,(COLORREF) OxE1B982);
CPen selectColor (PS_SOLID, 1,(COLORREF) 0xO000FF);
int centerHex = GetHexagon(point);
GetColorHandle(lastColor, &frameColor);
GetColorHandle(centerHex, &selectColor);
lastColor = centerHex;
frameColor.DeleteObject();
selectColor.DeleteObject();
}
void CTactiVisionDIg::OnMouseMove(UINT nFlags, CPoint point)
{
if (inPanMode)
{
if (cursorHidden && (point.x < zoomhex[0].getVertex1().x | | point.y <
zoomhex[0].getVertex2().y
|| point.x > zoomhex[914].getVertex3().x || point.y > zoomhex[914].getVertex5().y))
{ ::ShowCursor(TRUE); cursorHidden = FALSE; }
if (lcursorHidden && (point.x >= zoomhex[0].getVertex1().x && point.y >=
zoomhex[0].getVertex2().y
&& point.x <= zoomhex[914].getVertex3().x && point.y <=
zoomhex[914].getVertex5().y))
{ ::ShowCursor(FALSE); cursorHidden = TRUE; }
PanDrawArea(point);
}
if (inGetColorMode)
{

if (cursorHidden && (point.x < zoomhex[0].getVertex1().x | | point.y <
zoomhex[0].getVertex2().y
| | point.x >zoomhex[914].getVertex3().x| | point.y > zoomhex[914].getVertex5().y))

© Vindica Systems Inc, 2003

vsi Process Report - 23 -

{ ::ShowCursor(TRUE); cursorHidden = FALSE; }

if (cursorHidden && (point.x >= zoomhex[0].getVertex1().x && point.y >=
zoomhex[0].getVertex2().y
&& point.x <= zoomhex[914].getVertex3().x && point.y <=

zoomhex[914].getVertex5().y))
{ ::ShowCursor(FALSE); cursorHidden = TRUE; }
GetColorDrawArea(point);

}

if (inDrawArea) GetDrawing(point);

CDialog::OnMouseMove(nFlags, point);

void CTactiVisionDIg::OnLButtonUp(UINT nFlags, CPoint point)
{

inDrawArea = FALSE;

CDialog::OnLButtonUp(nFlags, point);

void CTactiVisionDlg::OnLoadButton()
{
CString fileName(_T("));
TCHAR filters[] = _T("TactiVision Image (.tvi) |*.tvi| |");
CFileDialog loadTVI (TRUE, T("tvi"), _T("*.tvi"), OFN_FILEMUSTEXIST
| OFN_HIDEREADONLY, filters);
if (loadTVI.DoModal() == IDOK) fileName = loadTVI.GetPathName();
if (fileName !=_T("))
{
CFile tviFile(fileName, CFile::modeRead);
COLORREF loadColor;
CArchive tviArchive(&tviFile, CArchive::load);//, 8192);

for (int index=0; index<915; index++)

{

tviArchive >> loadColor;
zoomhex[index].setColor(loadColor);

tviArchive.Close();
tviFile.Close();

}
OnPaint();

void CTactiVisionDIg::OnSaveButton()

{
CString fileName;
fileName.Empty();

TCHAR filters[] = _T("TactiVision Image (.tvi) | *.tvi| |");

© Vindica Systems Inc, 2003

vsi Process Report - 24 -

CFileDialog saveTVI (FALSE, T("tvi"), _T("*.tvi"), OFN_OVERWRITEPROMPT, filters);
if (saveTVI.DoModal() == IDOK) fileName = saveTVI.GetPathName();
if (!fileName.IsEmpty())
{
CFile tviFile(fileName, CFile::modeReadWrite | CFile::modeCreate);
CArchive tviArchive(&tviFile, CArchive::store);
for (int index=0; index<915; index++) tviArchive << zoomhex[index].getColor();

tviArchive.Close();
tviFile.Close();

}
}
void CTactiVisionDIg::OnPanButton()
{
CRect panWindow;
this->GetWindowRect(&panWindow);
hasPanned = TRUE;
CPoint topLeftClipPoint (zoomhex[3].getVertex1().x + 2 + panWindow.left,
zoomhex[150].getVertex2().y + 2 + panWindow.top);
CPoint bottomRightClipPoint (zoomhex[912].getVertex3().x - 2 + panWindow.left,
zoomhex[890].getVertex5().y + O + panWindow.top);
CRect clipRegion (topLeftClipPoint, bottomRightClipPoint);
::SetCursorPos(((topLeftClipPoint.x + bottomRightClipPoint.x)/2), ((topLeftClipPoint.y +
bottomRightClipPoint.y)/2));
::ClipCursor(clipRegion);
inPanMode = TRUE;
}
void CTactiVisionDlg::OnContextMenu(CWnd* pWnd, CPoint point)
{
GUISelector.TrackPopupMenu(TPM_LEFTALIGN | TPM_LEFTBUTTON | TPM_RIGHTBUTTON,
(point.x), (point.y), this);
}
void CTactiVisionDlg::OnGetColor()
{
CRect drawWindow;
this->GetWindowRect(&drawWindow);
hasColor = TRUE;
CPoint topLeftClipPoint (zoomhex[0].getVertex1().x + 7 + drawWindow.left,
zoomhex[0].getVertex2().y + 27 + drawWindow.top);
CPoint bottomRightClipPoint (zoomhex[914].getVertex3().x - 2 + drawWindow.left,
zoomhex[914].getVertex5().y + 16 + drawWindow.top);
CRect clipRegion (topLeftClipPoint, bottomRightClipPoint);
::SetCursorPos(((topLeftClipPoint.x + bottomRightClipPoint.x)/2), ((topLeftClipPoint.y +
bottomRightClipPoint.y)/2));
::ClipCursor(clipRegion);
inGetColorMode = TRUE;
}

© Vindica Systems Inc, 2003

vsi

void CTactiVisionDlg::OnUpdateButton()

{

char colorBank[19];
COLORREF colorREFBank[19];

colorREFBank[0] = zoomhex[lastFrame-60].getColor();
colorREFBank[1] = zoomhex[lastFrame-59].getColor();
colorREFBank[2] = zoomhex[lastFrame-58].getColor();
colorREFBank[3] = zoomhex[lastFrame-31].getColor();
colorREFBank[4] = zoomhex[lastFrame-30].getColor();
colorREFBank[5] = zoomhex[lastFrame-29].getColor();
colorREFBank[6] = zoomhex[lastFrame-28].getColor();
colorREFBank[7] = zoomhex[lastFrame- 2].getColor();
colorREFBank[8] = zoomhex[lastFrame- 1].getColor();
colorREFBank[9] = zoomhex[lastFrame].getColor();
colorREFBank[10] = zoomhex][lastFrame+ 1].getColor();
colorREFBank[11] = zoomhex[lastFrame+ 2].getColor();
colorREFBank[12] = zoomhex[lastFrame+28].getColor();
colorREFBank[13] = zoomhex[lastFrame+29].getColor();
colorREFBank[14] = zoomhex[lastFrame+30].getColor();
colorREFBank[15] = zoomhex[lastFrame+31].getColor();
colorREFBank[16] = zoomhex[lastFrame+58].getColor();
colorREFBank[17] = zoomhex[lastFrame+59].getColor();
colorREFBank[18] = zoomhex[lastFrame+60].getColor();

for (int index=0; index<19; index++)

Process Report - 25 -

colorBank[index] = (char) (255 - (colorREFBank[index] & OxFF)):// + calibrate[index];

// Serial Port Communication Setup

comHandle = CreateFile(_T("Com1"), GENERIC_READ | GENERIC_WRITE, O, NULL,

OPEN_EXISTING, 0, NULL);
SetupComm(comHandle, 1, 1);
GetCommState(comHandle, &serialDCB);

serial DCB.BaudRate = 9600;
serial DCB.ByteSize = 8;
serial DCB.Parity = NOPARITY;
serial DCB.StopBits = ONESTOPBIT;

serial DCB.fAbortOnError = TRUE;
serial DCB.fRtsControl = RTS_CONTROL_HANDSHAKE;
SetCommState(comHandle, &serialDCB);

WriteFile(comHandle,colorBank,19,&bytesWritten,NULL);
CloseHandle(comHandle);

© Vindica Systems Inc, 2003

vsi

class Hexagon

{

private:

public:

5

CPoint vertex[7];
COLORREF hexcolor;

Hexagon();

CPoint getVertex1() { return vertex[0]; }
CPoint getVertex2() { return vertex[1]; }
CPoint getVertex3() { return vertex[2]; }
CPoint getVertex4() { return vertex[3]; }
CPoint getVertex5() { return vertex[4]; }
CPoint getVertex6() { return vertex[5]; }
CPoint getCenter() { return vertex[6]; }
COLORREF getColor() { return hexcolor; }

void setHexagon(int xcoord, int ycoord, COLORREF color);

void setColor(COLORREF color) { hexcolor = color; }
void FillPoly(CDC* screen);

class CTactiVisionDlg : public CDialog
{ public: CTactiVisionDIg(CWnd* pParent = NULL);

//{{AFX_DATA(CTactiVisionDIg)
enum { IDD = IDD_TACTIVISION_DIALOG };
//YIAFX_DATA

//I{{AFX_VIRTUAL(CTactiVisionDIg)

protected:

virtual void DoDataExchange(CDataExchange* pDX);
//MAFX_VIRTUAL

CMenu GUISelector;

protected:

HICON tvlcon;
HACCEL keyStop;

HANDLE comHandle;
DCB serialDCB;
DWORDbytesWritten;

BOOL inDrawArea;
BOOL inPanMode;
BOOL inGetColorMode;
BOOL cursorHidden;
BOOL hasPanned;
BOOL hasColor;

© Vindica Systems Inc, 2003

Process Report - 26 -

vsi Process Report - 27 -

Hexagon zoomhex[915];
Hexagon colorHex;

COLORREF currColor;
CRect lastPan;

CDC realThumbMemory;
CDC zoomThumbMemory;
CDC GUlLayoutMemory;
CDC* screen;

int lastFrame;
int lastColor;
int topInBox;
int leftinBox;

BOOL PreTranslateMessage(MSG* incoming);

void SetHexagons();

void ColorPixels();

void OutputPixels();

void GetDrawing(CPoint point);

void FrameHandle(int centerHex, CPen* currentPen);
void PanDrawArea(CPoint point);

int GetHexagon(CPoint point);

void GetColorHandle(int centerHex, CPen* currentPen);
void GetColorDrawArea(CPoint point);

// Generated message map functions
J/{H{AFX_MSG(CTactiVisionDIg)

virtual BOOL OnlnitDialog();

afx_msg void OnPaint();

afx_msg HCURSOR OnQueryDraglcon();

afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
afx_msg void OnMouseMove(UINT nFlags, CPoint point);
afx_msg void OnLButtonUp(UINT nFlags, CPoint point);
afx_msg void OnLoadButton();

afx_msg void OnPanButton();

afx_msg void OnContextMenu(CWnd* pWnd, CPoint point);
afx_msg void OnSaveButton();

afx_msg void OnGetColor();

afx_msg void OnUpdateButton();

afx_msg void OnRButtonDown(UINT nFlags, CPoint point);
//BAFX_MSG

DECLARE_MESSAGE_MAP()

return to Section2.2 ...

© Vindica Systems Inc, 2003

vsi Process Report - 28 -

Appendix B

PIC16F628 Firmware Code

<Slodedoleloleoeolololololooioinnioininininininininininininioioinioioinioioioioioinoln inoininoioiooinnnininininlnlnioioinioioinioioioioioinoinoininininioionnninininininlnioioinioioinoiolook

; TactiVision Control Software Version1.3
; (C) Vindica Systems Inc 2003

; Written by Mike McFarland

; Last Modified: 03/26/03

; Revisions from Version1.0:

; - implemented indexed addressing
H - added continuous refresh functionality
; - increased pixel capacity from 16 to 19

; Revisions from Version 1.1:
; - added sorting algorithm to receive/DAC routine

; Revisions from Version 1.2
; - removed sorting/swapping routines due to design change

<ot oo oot ool il il oot il ittt i oo et e e e e e e e e et e e et e e e e e e e e e e e e e e e e e e e
5

list p=16628
#include <p16f628.inc>

__CONFIG _WDT_OFF & BODEN_OFF & PWRTE_ON & MCLRE OFF & LVP_OFF &
_INTRC_OSC_NOCLKOUT

pinO1 EQU 0x20 ; memory address of first pin height
nextpin EQU 0x33 ; memory address of next pin to receive
clock EQU 0x35 ; clock variable definition
subclock EQU 0x36 ; subclock variable definition
saveW EQU 0x37 ; register for saving working register contents on interrupt
saveFSR EQU 0x38 ; register for saving FSR register contents on interrupt
saveSTATUS EQU 0x39 ; register for saving STATUS register contents on interrupt
org 0x000
clrf PCLATH ; clear upper byte of program counter
goto initialize ; branch to initialization
org 0x004 ; interrupt vector received (initiate service routine)
push movwf saveW ; save working register contents in saveW
movf STATUS,W ; move STATUS register contents into working register

movwf saveSTATUS ; and save in saveSTATUS

© Vindica Systems Inc, 2003

vsi

receive

pull

initialize clrf

zeroed

main

setupRX

btfsc
call
movf
movwf
movf
retfie

STATUS
clrf
clrf
bsf
clrf
bsf
bcf

clrf
clrf
moviw
movwf

bsf
clrf
clrf
bsf
bcf
bcf
call

moviw
movwf
clrf
incf
movf
xorwf
btfss
goto
goto

btfss
goto

moviw
movwf
bsf
moviw
movwf
bsf
bcf
bsf
bcf

PIR1,RCIF
rxHandler
saveSTATUS, W
STATUS
saveW,W

INTCON
PIR1
STATUS,RPO
PIE1
PCON,OSCF
STATUS,RPO

PORTA
PORTB
0x07
CMCON

STATUS,RPO
TRISA

TRISB
TRISB,1
STATUS,RPO
PORTB,0
loadorder

pinO1

FSR

INDF

FSR
FSR,W/
0x33
STATUS,Z
zeroed
refresh

PORTA,5
main

0x20

nextpin
STATUS,RPO
0x19

SPBRG
TXSTA,BRGH
TXSTA,SYNC
PIET,RCIE
STATUS,RPO

© Vindica Systems Inc, 2003

Process Report - 29 -

; if receive interrupt flag has been set
; call the receive interrupt service

; reload pre-interrupt value into STATUS register
; reload pre-interrupt value into working register
; return from interrupt

; clear all STATUS and interrupt flags
; select register bankl

; clear interrupt enable flags

; enable internally generated clock

; select register bankO

; initialize portA & portB to zeros

; disable comparator functions of portA

; select register bankl

; clear tristate (output portA)

; clear tristate (output portB)

; set receive pin on portB

; select register bankO

; clear the 'receive ready' line

; load the decoder output sequence

; initialize pin heights in memory to zero

; stay here until the PC is ready to send something
; when it is, skip this loop call and enter setupRX

; load the location of the first address to receive

; setup up the SP1 hardware for receive

; enable receive flag

vsi

bsf
bsf
bsf
bcf
bsf
bsf

getyet btfsc
goto

bcf
bcf
bcf
bcf
bcf

refresh moviw
movwf
cycle bsf
bsf
bsf
bsf
bsf

btfss
bcf
btfss
bcf
btfss
bcf
btfss
bcf
btfss
bcf
call

moviw
movwf
movf
movwf
moviw
addwf
btfsc
goto
movf
movwf
goto

demux2 moviw
movwf

INTCON,GIE
INTCON,PEIE
RCSTA,SPEN
RCSTA,RX9
RCSTA,CREN
PORTB,5

PORTA,5
getyet

PORTB,5
RCSTA,CREN
RCSTA,SPEN
INTCON,PEIE
INTCON,GIE

0x32
FSR
PORTB,7
PORTB,6
PORTB,4
PORTB,3
PORTB,0

INDF,7
PORTB,7
INDF,6
PORTB,6
INDF,5
PORTB,4
INDF.4
PORTB,3
INDF,3
PORTB,0
timer

0xDO
PORTA
FSR,W
saveFSR
0x20
FSR,F
INDF.4
demux2
INDF,W
PORTA
complete

0xDO
orderindex

© Vindica Systems Inc, 2003

Process Report - 30 -

; enable global interrupts
; enable peripheral interrupts

; tell PC that PIC is ready to begin receiving

; should vector to interrupt handler
; PC will clear send signal when complete

; clear and disable all interrupts

; sequentially address decoder to enable DACs in sequence

; move pin-height value for current DAC onto PortA

vsi

btfss
bcf
btfss
bcf
movf
movwf
btfss
bcf

complete movf
movwf
call
bsf
moviw
movwf

decf
moviw
xorwf
btfss
goto
goto

rxHandler:
movf
movwf
movf
clrf
movwf
incf
return

loadorder:
moviw
movwf
moviw
movwf

loadall movf
movwf
incf
incf
moviw
xorwf
btfss
goto
return

timer:
moviw
movwf

INDF,0
orderindex,6
INDF,1
orderindex,7
orderindex, W
PORTA
INDF,2
PORTB,2

saveFSR,W
FSR

timer
PORTB,2
0xDO
PORTA

FSR,F
Ox1F
FSR,W
STATUS,Z
cycle
main

nextpin,W
FSR
RCREG,W
RCREG
INDF
nextpin,F

0x01
nextpin
0x40

FSR
nextpin,W
INDF
FSR,F
nextpin,F
0x53
FSR,W/
STATUS,Z
loadall

0x00
clock

© Vindica Systems Inc, 2003

Process Report - 31 -

; repeat for next address, next DAC, next value

; until all 19 pins have been updated
; return to main to wait for new values from PC

; load address of next pin into working register

; copy it into the indexed addressing register

; transfer the contents of RCREG to working register
; clear the USART receiver register once read

; increment pointer to next pin location

; preload the decoder addressing sequence

; use subtimer loop inside timer for ~ 1 second delay

vsi Process Report - 32 -

ping incf clock,F
call subtimer
movlw OxFF
xorwf clock,W
btfss STATUS,Z
goto ping
return

subtimer:
movilw 0x00
movwf subclock

pong incf subclock,F
moviw 0x0A
xorwf subclock,W
btfss STATUS,Z
goto pong
return

END

return to Section2.3 ...

© Vindica Systems Inc, 2003

vsi

Appendix C

Tactile Display Construction
Pictures courtesy of Matt Lane © 2003

Air

To Pin
Circuitry Assembly

Process Report - 33 -

20-pin
Fitted Connector
Plastic
Copper
Tube
25 \l . = l
Plastic
Sheet
Spring Metal
Bar
Ground
Wire
53

© Vindica Systems Inc, 2003

vsi Process Report - 34 -

Muscle .
Wire Insulation i
' T

[

.

.|

Wire to rrp Insulating
20-pin Ring
Connector

)

Pin
Glue

(-

Heat
Shrink

\
\

return to Section2.4 ...

© Vindica Systems Inc, 2003

Appendix D

Project Timeline

| September | October | Nevember | December
| inmtial design tested |
| PC software developed 1
| research |

| control hardware asembled |

| tactile interface asse mbled

| firmware version1.1 developed |

| exchangees abandon s hip 1

|_firmware version 1.1 debugged

| January | February | March | April

| tactile interface assembled (part 11)

I system integrated : design flaw revealed I
| chaos : interim report sent to management |
| new design tested |

| new parts ordered and shipped 1

| new aontrol hardware ase mbled 1

| firmware adapted 1

| new system integrated and tested

return to Section4 ...

© Vindica Systems Inc, 2003

