¥ LittleFellows Inc.

Date: 12/17/02

Document Version:

1.1

Reference: Post Morterm Document

Page 1

December 17, 2002

Dr. Andrew Rawicz

School of Engineering Science
Simon Fraser University
Burnaby, B.C., V5A 1S6

Re: ENSC340 Project Post Morterm Document for SmileyBaby Mobile

Dear Dr. Rawicz:

The following document, Post Morterm for SmileyBaby Mobile, lists the
current and future states of the product, the deviation, the budget and time

constraints and inter-personal experiences.

LittleFellows is comprised of four fun loving but focused energetic 3" year
engineering science students: Shona Huang, Marjan Houshmand, Farnam
Mohasseb, and Farhood Hashmi. If you have any questions concerning our
proposal, please feel free to contact us by email at ensc340-group@sfu.ca

Sincerely,

Marjan Houshmand
Marjan Houshamnd

Chief Executive Officer
LittleFellows Inc.

Enclosure: Post Morterm for SmileyBaby Mobile

Copyright 2002 LittleFellows Inc.

¥ LittleFellows Inc.

Date: 12/17/02 Document Version: 1.1

Reference: Post Morterm Document Page 2

Post Morterm for SmileyBaby Mobile

Team Project: Farnam Mohasseb
Marjan Houshmand
Shona Huang
Farhud Hashemian

Submitted to: Dr. Andrew Rawicz

Steve Whitmore
School of engineering science

Issued date: December 17, 2002

© 2002 LittleFellows Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, including photocopying, electronic, mechanical, recording or

otherwise, without prior permission of LittleFellows Inc.

Copyright 2002 LittleFellows Inc.

¥ LittleFellows Inc.

Date: 12/17/02 Document Version: 1.1

Reference: Post Morterm Document Page 3

Table of Contents

TADIE OF CONTENES. .. eeeeeeeee et ee e e e e e e e e eaeeeeaeeeeneeeeneeees
ItOAUCTION «.eeeieeeeee e e e e e e e e e e eeeeree e e e e e aans
Current State Of the DEVICE.uvieeiieee e e e aans

Deviation Of the DEVICE ...vnnieee e ee e

(05 21 | BN 7] <3 1 SRS
STZNAL ACUISTEION ...ttt ettt e e e bt b e bt et e et e saeesbee bt e bt es e e eaeesbeeabeenbe e beenteeneesae
SYSTEIM POWETINE ...ttt ettt ettt ettt et s ae e b e bt et et eestesatesbesbeenbe e beenteeneesae
SIZNAL PTOCESSINEeetitieiietieteee ettt ettt e bt ettt sat e s bt e bt et eateebtesbeenbe e beenteeneesae
INTETTACE CITCUIL.....couiiieietiieiietirt ettt ettt ettt ettt ettt ettt b et b e n e ebenn e ens

Copyright 2002 LittleFellows Inc.

¥ LittleFellows Inc.

Date: 12/17/02 Document Version: 1.1
Reference: Post Morterm Document Page 4
Introduction

Officially, we have been working on our project, SmileyBaby Mobile, for the past
thirteen weeks. Not only, we have gained technical, and non-technical skills, but also an
amazing group work dynamic has been established amongst us. Truly, we did choose an
ambitious project; however it is very rewarding and exciting to be able to demonstrate the
functionality of our product. This report reveals both the current and future states of
SmileyBaby, deviations and constraints, and our personal experiences.

Current State of the Device

As stated in our project proposal, SmileyBaby Mobile constantly monitors the nursery,
and differentiates the baby’s crying pattern from other common-household sounds and
noises such as talking, music, pets, and the occasional car driving by. In the situation
where the baby cries, our device switches on the mobile, which also plays a selection of
music determined by the parents with the intent of comforting the child. The basic idea
has been shown in Figure 1.

Figure 1, The Basic Overview of the System

Copyright 2002 LittleFellows Inc.

¥ LittleFellows Inc.

Date: 12/17/02 Document Version: 1.1

Reference: Post Morterm Document Page 5

In this section, we explain the current state of the device by referring to the current state
of each blocks of Figure 1. The first stage is obtaining the input. For our project, we do
not use a microphone. Instead, we use lining to receive sounds though a CD-player. This
idea can be better explained using Figure 2.

L-in L-qut Mic
py
\ 4
'i' Codec
U |
— >
Internal DSP Mem <+<— SD-RAM

Figure 2, The Implementation of Audio Input

The second stage contains the main process, detecting the sleeping rabbit. For this
purpose, the data will go through a low pass filter, envelope detector, average moving
filter, and finally the pattern detector. The sleeping rabbit detector looks for the first peak
and stores its information. Next, after finding the second peak, it compares the
information of both peaks to determine the pattern. Once the pattern is recognized, it
passes on the necessary data to the decision maker. At this point, the decision maker will
turn on/off the mobile. Figure 3 will illustrate the software-hardware interfacing.

A4.5V
4052 sto
D P
5 E rocker Mobile
ocean
P Enable
music

1

Figure 3, The Hardware-Software Interface

Copyright 2002 LittleFellows Inc.

¥ LittleFellows Inc.

Date: 12/17/02 Document Version: 1.1

Reference: Post Morterm Document Page ¢

Deviation of the Device

Overall System

We achieved what we planned as far as functionality is concerned. We did not package
our device because of time limitations. A more general interface unit may be possible in
order to more easily adapt to a wider variety of OEM baby mobile products and other
toys. At the moment, our prototype consists of an input device (a CD player), DSP
evaluation board, and an interface board connected to an OEM baby mobile. Details of
the deviations of each part of our project will be discussed in the following sections.

Signal Acquisition

We originally planned to use a dynamic microphone and place it directionally pointing
toward the baby with the crib, strategically hidden; then connect this input signal to the
general-purpose audio in jack on the DSP evaluation board. However, the input is not
filtered against spurious noise that creates problems for the software in distinguishing
desired audio content from broadband noise. The attempt to use a dynamic microphone
created an excessive amount of noise, preventing the A/D converter from correct
operation. To prove the concept of our technology, we decided to connect the line out
from a CD player directly to the audio input of the evaluation board. Even so, the short
connection wires pick up a lot of noise from the surrounding atmosphere; but we
managed to filter most of the noise out via software and obtained acceptable data for
further processing. A solution would be to use an electrets condenser microphone with
filtering, prior to passing signal into the DSP. Successful interpretation of input data
must be free of noise prior to inputting to the DSP. Failure to do so will prevent the DSP
from correctly processing the information.

System Powering

At the current state, the three major parts of our system obtained power from separate
sources. The DSP evaluation board is plugged into a computer mother board and receive
power there. The DSP board by TI does not supply DC voltage to the OEM baby
product. The Mobile and the interface circuit operate on three C type batteries. In this
case, signal logic levels are compatible without level translation. Furthermore, the input
sound is provided by a CD player which operates on batteries inside the player.

Copyright 2002 LittleFellows Inc.

¥ LittleFellows Inc.

Date: 12/17/02 Document Version: 1.1

Reference: Post Morterm Document Page 7

Signal Processing

In order to implement our signal processing we had to consider many algorithms since we
had to minimize the required computation power yet not decrease our hit rate. We
achieved what was originally planed and managed to distinguish all the cries form other
surrounding noise.

Interface Circuit

We originally planned to use a relay to control the OEM baby mobile by disabling
through our DSP output the on/off switch. Relays draw excessive current and would
deplete the DC battery supply in the OEM unit. We chose to enable the on/off functions
within the OEM unit with a simple logic level voltage implemented through a CMOS
4052 dual 1 of 4 switches.

We chose a CMOS family because it is more tolerant of different supply voltage (3-18V)
and because it has lower power demands. We decided that two output signals from the
DSP chip were sufficient to select the songs available for the OEM mobile. The
connection to the evaluation board with single wires is convenient but messy. The
female type connecter that we required to plug into the DSP board was not available in
town, and due to funding limitation we did not order it from on-line stores. Our
SmileyBaby Mobile also presents some connection problems when connecting to some
OEM baby mobile products because we don’t have enough information on circuitry
inside OEM and power supply voltage levels.

Future Plans

SmileBaby Mobile is capable of being improved a lot. There are several possibilities we
are considering for its future plan. First, we will have two different models: the Classic
SmileyBaby and Advanced SmileyBaby. Our current state is our classic model. The
Advanced SmileyBaby includes all the classic mode’s functionalities plus additional
features and abilities. Inside the digital signal processor, after being recognized as a
baby’s cry, the signal goes on for further processes. Then, the system tries to match the
cry with the samples stored in its memory to decide what type of cry it is. Next, through
LCD or any other user interface devices, the chip displays its decision regarding the cry
for parents to see.

Furthermore, parents are capable of programming the chip to play the child’s favorite
music at a specific time. This will be adapted using the internal timer of the chip.

Copyright 2002 LittleFellows Inc.

¥ LittleFellows Inc.

Date: 12/17/02 Document Version: 1.1

Reference: Post Morterm Document Page s

After the time has expired, an interrupt signal will go on, and as a consequence the music
will be played.

In addition, we are hoping with a little research to make SmileyBaby act as a bio-
feedback mechanism. This ability will help the parents to train the baby to sleep through

the night without crying. As a whole, SmileyBaby will be designed in such a way to
comfort both parents and the babies.Budgetary and Time Constraints

Budget

Table 1 indicates the estimated cost and the cost up to December 16", 2002.

Required Material Estimated Cost Actual Cost
Two digital to analog $80 No need
converters (D/A)
Two analog to digital $80 No need
converters (A/D)
Two bus controllers $140 No need
Three digital signal $240 Borrowed
processing chip
Two microphones $10 Borrowed
Two headphones $10 Borrowed
Two mobiles $120 $60
Cables/Wires $30 Borrowed
Miscellaneous $100 $30
Total $810 $90

Table 1: Estimated Cost vs. Actual Cost

As the above Table illustrates, our estimated cost was a lot more than the actual amount
we spent to develop SmileyBaby. This is because we borrowed an advanced DSP chip,
and it contained most of the components we needed. This DSP chip contained a D/A, an
A/D and a bus controller. Consequently, there was no need to purchase these items
separately. However, we were also able to borrow the PCB (hardware) design and
fabrication equipment, a microphone, a headphone and cables as well. In other words, the
only thing that we were required to purchase was the actual mobile. The estimated budget
for the miscellaneous category was also much less because we overestimated this cost in
our proposal.

Copyright 2002 LittleFellows Inc.

¥ LittleFellows Inc.

Date: 12/17/02 Document Version: 1.1
Reference: Post Morterm Document Page 9
Time

The Grant Chart below indicates the start and end dates of various tasks we perform at
different stages of SmileyBaby development process. The blue print indicates the
expected time of completion and the red print indicates the slippage time.

ID Task name Week of Week of Week of Week of
September | October | November | December

1{2]314]1]2]|3]4]1]2|3]4]1]2]3]4

Research

Proposal

Functional Specification

Design Specification

Implementation/Integration

Debugging/Modification

Documentation/Website

RN N A [RN =—-

Process Report

Table 2: Grant Chart

Since we were the pioneers at this application, we had to do an extensive research and
data gathering before we could initiate any analysis. As the above table illustrates, the
research took a great deal of time and it interfered with other documentations. In fact, our
design specification could not have been completed until the third week of November.
Moreover, the implementation process had to be halted until we gathered enough data. In
addition, the DSP chip was quite advanced, and we had underestimated the complexity of
working with it. This also caused some delays in the implementation process.

However, as much frustrating, time consuming and difficult the tasks appeared, we all
kept our focus and composer to complete this project on time. We did our best to adhere
with our schedule, but the R&D was underestimated and took longer than we expected.
Consequently, we were behind in our schedule most of the time. Nonetheless, we did

finish our project in early December and were able to demo it on Monday, December
16", 2002.

Copyright 2002 LittleFellows Inc.

¥ LittleFellows Inc.

Date: 12/17/02 Document Version: 1.1

Reference: Post Morterm Document Page 10

Inter-Personal and Technical Experiences

Marjan Houshmand

I enjoyed working with this group tremendously. Not only we have accomplished what
we intended to, but also a strong group bound has been created, which will help us in the
future. I believe, as a group, we stand a very good chance in succeeding as a company.

During this semester, I have gained a lot of personal and technical experience. I have
learned about the DSP technology and how powerful but unfriendly sometimes they are!
It took us a while, in order to be able to work with the chip. In addition, I exercised my C
programming skill. Most of our time was spent on debugging the code or trying to
understand how to use the DSP chip.

Besides the technical implementation of the product, a great deal of research was
involved, specially in the beginning of the project. These tasks were more fun comparing
to staring at the computer screen for hours and hours. We had to obtain various baby’s
crying samples from different sources. And that itself was a quite challenge. Personally, I
take pleasure in dealing with people and fortunately this project included both business
and technical aspects of the product. It was a pleasant experience being a part of
LittleFellows Inc.

Farhud Hashemian

I believe this project provided the best opportunity for me to learn about DSPs, perform
advance C programming and baby-cry signal analysis. By programming the Texas
Instrument xC60 DSP chip, I learn how a digital signal processing system communicates
with other component on a circuit, and how it performs its computations. Moreover, since
I was dealing with an advanced DSP chip, I had to raise my C programming skills and
write more sophisticated codes. The coding style that we had to follow for this
application was very different from the regular coding I did for my other engineering
courses. In addition, this project helped me increase my knowledge about baby-cry
signals and their characteristics. It was also a tangible proof for me that baby-cry signals
are different and exhibit certain unique patterns.

Beside the technical knowledge that I gained by developing SmileyBaby, I really enjoyed
working with my group members. I believe this was one the finest groups I have worked
with for the past few years. Even though we went through some rough and frustrating

Copyright 2002 LittleFellows Inc.

¥ LittleFellows Inc.

Date: 12/17/02 Document Version: 1.1

Reference: Post Morterm Document Page 11

periods during the cycle of development, all of us kept our focus and were determined
that we could get this done. And in the end, we came up on top and successful.

Shona Huang

The last 13 weeks must be a flash-forward to the life of real engineer working on a team-
designed project. This project surely must be a precursor to the interpersonal and
technical challenges and frustrations every engineer faces when attempting to produce a
viable prototype in a given amount of time. So what did I gain from this experience?!

I learned that no matter how tired my body and mind were feeling, how daunting the
technical problem, how endless the documentation, I could always find from somewhere
within me the energy to smile and continue. In addition, I am now somewhat more
familiar with A/D conversion, Fast Fourier Transform algorithms and the importance a
DSP plays in design. Even though the TI evaluation kit is not the friendliest of devices
for a beginner, I am content to have had the opportunity to use a DSP. The digital signal
processing algorithms our project employed were simple by comparison to those used in
commercial products but I can see advantages a DSP has over a microprocessor when
signal processing is involved. Some things that were murky prior to beginning this
venture are now coming into focus. The RISC like architecture, parallel processing,
internal memory organization and specialized units such as multipliers /accumulators
allow the DSP to be 2 to 3 times faster than a microprocessor. Why? Digital signal
processing requires a large amount of real —time calculations. For example, a 386
processor would require about 3mS to complete a Fast Fourier Transform for

N=1024. The same Transform with a DSP can be completed in less than 1.5mS.
Multiplication is the major task of a DSP. It seems that the most common operation in
digital signal processing is the sum of products calculation S = >.a b. Addition needs 3
clock cycles in a 8086 micro, while multiplication requires 130-160 clock cycles. To
increase speed, a DSP has many specialized arithmetic logic units within such as
multipliers and accumulators in order to complete both multiplication and addition in one
clock cycle. This feature of the DSP was needed for LittleFellows.

Noise became a persistent irritant for me in this endeavor. Noise had to be reduced both
at the i/p to the DSP and the o/p interface to the OEM baby mobile. I was unable to
achieve the type of i/p signal needed from the microphone, but now know what the level
of the signal must be in order that the A/D can make sense of the audio content. It must
have a dynamic range of 70 dB yet provide a gain of 60 dB. This would require a high
performance preamp similar to those manufactured by TDL Technology.

Copyright 2002 LittleFellows Inc.

¥ LittleFellows Inc.

Date: 12/17/02 Document Version: 1.1

Reference: Post Morterm Document Page 12

The connection to the OEM mobile created it’s own set of noise problems. The songs
played by the drop chip within the mobile unit became superimposed on the logic level
signals needed to control the functions and were very difficult to remove without altering
the original content of the music. It would have been faster and more productive to record
higher fidelity music on digital storage devices rather than use the electronics supplied in
the mobile.

Working in a group meant compromise, patience, and understanding. I experienced
learning to sort through different opinions, recording/writing styles and seeking
accountability for meeting deadlines. Problems are problems and there will always be
someone to help work them out. Problems are more easily solved with many heads
together rather than one head alone. Working with a group was a good experience for me.

Farnam Mohasseb

This was the most challenging project I ever experienced. Unlike all other project I've
done in the past, there were no certain paths or procedures to follow. There were points in
the project that we countered problems that seemed to have no feasible solutions. Yet we
did not give up and continued. I believe, it was the group dynamic that played an
extraordinary role in the project’s success. It was assuring to see your group member still
smiling after working on frustrating problem overnight. Without such a n amazing group
dynamic, the project would have been impossible.

This project provides me with an excellent opportunity to learn. Since we are the pioneer
in this field we had to do a lot research to achieve this project. As result I learned a lot
about everything not just C programming skills. I learned more about baby’s
psychologies, much more advance C programming and various signal processing
concepts. Dealing with Texas instrument C6000 series DSP, helped me to understand and
learn and implement many algorithm that is being used in the industry. Completing this
project was not an easy task, but the learning experience was worth the effort, and I
would have done the same if I was starting this project again.

Copyright 2002 LittleFellows Inc.

/**/

// add this to command file

/*

.ny_sect 1:
. ny_sect 2:

*/

{} > SDRAML
{} > SDRAML

/**/

/

#i ncl ude

#i ncl ude
#i ncl ude

#i ncl ude
#i ncl ude
#i ncl ude

=== audi 0. c

<std. h>
<stdi o.
<pi p. h>
<l og. h>
<trc. h>
<hst. h>
<mem h>

<string. h>
<stdarg. h>

"dss. h"
"audi o.

" Proj ect Cons. h"

Int PHASE = 0;
Uns ProbePoi nter[32];

i nt NewDat aFl ag;

Uns LuckyArray[32];

h>

hu

/* menset ()

*/

/* var arg stuff

[* nunber

#pragma DATA SECTI ON(buf ferin,
si gned short bufferin[TheBufferSize];

#pr agma DATA SECTI ON(buf f er out
si gned short bufferout[TheBufferSize];

static far

static far

static far

static far

static far

static int my_start _up;
static

static int SldListFlag;
static int SldListPtr;
static int Mbil eStatus;

unsi gned | ong Sl dListArray[3];

static Uns all ocBuf (PI
static Void freeBuf (P

0,0

of

/* "@#) DSP/BICS 4.51.0 05-23-01 (barracuda-i 10)" */
*

*/

sanpl es of phase difference */

".my_sectl");

".my_sect2");

unsi gned | ong RxBuflnPtr;
unsi gned | ong RxBuf Qut Ptr
unsi gned | ong TxBuflnPtr;
unsi gned | ong TxBuf QutPtr;
i nt RequestProcess =

0;

bj *out,

static Uns getBuf (PIP_Cbj *in,

static Void process(Uns *src,
static Void putBuf (Pl P_Obj
static Void witeBuf(PlP_(bj

//static Void MyForceRestart();
static void nytest();

static In
static Pl

void nyte
{

int k
buffe
buffe
buf fe
buf fe
buffe
for(k

t

st()

rout[0]
rout[1]
rout[2]
rout| 3]
rout| 4]
=0; k<10

| oadVal
P_Obj *host Pi pe

0;

:O,

= NULL;

_(bj *out);
Uns **puf);
Int size,
*out,

unsi gned | ong Myd obal Count er

Uns **buf);

Uns *dst);

Uns si ze);

*out

Uns *buf, Uns size);

*/

buf f er out [(k+4)

}/oi d main()

I nt size;
Uns *buf;

| xxxxxf gr hud****/
[*initialize

cal |

whi | e(1)
{

b

/*****end****/

/*

*/

#i f AUDI O_USEHST

whi | e(1)

sl d function

% Buf f er Si ze]

mobi l e_on();
nmobi |l e _of f();

s

host Pi pe

#endi f

LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray
LuckyArray

RxBuf | nPt r
RxBuf CQut Pt
TxBuf I nPt r
TxBuf Qut Pt

k+4;

HST_get pi pe(&ost Qut put Probe) ;

OCO~NOUITRAWNEFEO

r

r

my_start_up

32;

3
0;

O.
1.

0x00004000;
0x00000000;
0x00000000;
0x00000000;
0x00000000;
0x00000000;
0x00000000;
0x00000000;
0x00004000;
0x00000000;
0x00000000;
0x00000000;
0x00000000;
0x00000000;
0x00000000;
0x00000000;
0x00004000;
0x00000000;
0x00000000;
0x00000000;
0x00000000;
0x00000000;
0x00000000;
0x00000000;
0x00004000;
0x00000000;
0x00000000;
0x00000000;
0x00000000;
0x00000000;
0x00000000;
0x00000000;

2;

Myd obal Counter = O;
Mobi | eStatus = O;

Sl dListPtr

Sl dLi stFlag =
Sl dLi st Array|
Sl dLi st Array|
Sl dLi st Array|
myfilter init
envel ope init
sld_init();

DSS init(); /* Initialize codec and serial port */

coo

Ol
0;
0]
1]
2]
()
0

[IFilter _init();//Initilize |owass filter
/*
LOG printf(&race, "Audio exanple started!!\n");

LOG printf(&race, "Short signed is %\n", sizeof(signed short));
LOG printf(&race, "int is %\n", sizeof(int));
LOG printf(&race, "Uns is %\n", sizeof(Uns));
LOG printf(&race, "first part is %\n", (short signed) LuckyArray[24]);
for (size = 0; size<4; size++)
tenpl[size] = (short signed) LuckyArray[24];
tenmp_value = (Uns) templ[1];

tenp_val ue & O0x0000FFFF;
LOG printf(&race, "reconstruct part is %\n", tenp_value);

*

/
/* Prime output buffers with silence */
size = al | ocBuf (&DSS t xPi pe, &buf);
menset (buf, 0, size * sizeof (Uns));
put Buf (&DSS t xPi pe, size);
size = al | ocBuf (&DSS t xPi pe, &buf);
menset (buf, 0, size * sizeof (Uns));
put Buf (&DSS t xPi pe, size - PHASE);
/* Fall into BIOS idle |oop */
return;

}

/*

Voi d MyFor ceRestart ()

{
RxBuf I nPtr = 32;
RxBuf Qut Ptr = 32;
TxBuf InPtr = 0;
TxBuf QutPtr = 0
my_start_up = 1;
Myd obal Counter = O;
Sl dListPtr = O;
Sl dLi stFlag = O;
Sl dLi st Array[0] = O;
Sl dListArray[1] = O;
Sl dLi st Array[2] = O;
myfilter_init();
envel ope_i nit (),
sld_init();

}

*|

/*

* —======= gudi 0 ========
*/

Voi d audi o(PIP_Cbj *in, PIP_Obj *out)
{

Uns *src, *dst;
Uns si ze;

i f (PlIP_get Reader Nunframes(in) ==

0 || PIP getWiterNunFrames(out) == 0) {
error("Error: audio signal falsely t

riggered! ");

}

/* get input data and allocate output buffer */
size = getBuf(in, &src);
al | ocBuf (out, &dst);

/* process input data in src to output buffer dst */
process(src, size, dst);

/* check for real-tine error */
if (DSS error !'= 0)
LOG printf(&race,
"Error: DSS missed real-tine! (DSS error = Ox%)", DSS error);
| oadVvVal -= 1;
DSS error = 0;
}

/* output data and free input buffer */
put Buf (out, size);
freeBuf (in);

}
/*
* _————_——= error —_———————=
*/
Void error(String nmsg, ...)
{
va_list va;
va_start(va, nsg);
LOG error(nsg, va arg(va, Arg)); /* wite error nessage to sys log */
LOG di sabl e(LOG D systen); /* stop systemlog */
for (;;) {
; /* loop for ever */
}
}

voi d nyl DLLoop()
{

int i;

unsi gned | ong incremnente;
far unsigned | ong tenp;
signed short tenp_array[64];

unsigned long diffl = O;
unsigned long diff2 = 0;
i f(Request Process == 1)

if ((my_start_up == 1) && (TxBuflnPtr > 0x2000))//BufferSize))

/!l copy data
[l WiteDaFil e(&bufferout[0]);
[Inmytest();
tenp_array[0] = O0x1111;
LOG printf(&race, "buffer value is %", bufferout[TxBuflnPtr % BufferSize]);
LOG printf(&race, "pointer value is %", (TxBuflnPtr % BufferSize));

LOG printf(&race, "buffer[0] value is %", bufferout[0 % BufferSize]);

LOG printf(&race, "buffer[1] value is %", bufferout[1 % BufferSize]);

LOG printf(&race, "buffer[2] value is %", bufferout[2 % BufferSize]);

LOG printf(&race, "pointer to b[2,BS] is %", &bufferout[(2 % BufferSize)]);
LOG printf(&race, "pointer to b[2] is %", &ufferout[2]);

LOG printf(&race, "pointer to b[3,BS] is %", &bufferout[(3 % BufferSize)]);
LOG printf(&race, "pointer to b[3] is %", &boufferout[3]);

LOG printf(&race, "[3, BS] is %", (3 % BufferSize));

LOG printf(&race, "[3, 64K] is %", (3 % (64*1024)));
LOG printf(&race, "3 is %", (3));
for(i=0; i< 0x2000; i++)
{
temp_array[0] = bufferout[(i %BufferSize)];
tenp_array[0] += 1;
bufferout[(i)] = tenp_array[O0];

T T T T T T
e Tt L L

}
temp_array[0] &= OxFFFF;
[Ibufferout[1] = tenp_array[O0];

x|

/*

*/

MG
if
{

}

tenp
tenp
for

my_start_up =

obal Count er ++;

(Mobil eStatus ==1) && (Sl dListPtr > 2) & (Myd obal Counter - Sl dListArray[(Sl dListPtr-2)%

Mobi | eStatus = O;
nmobi le_of f();
LOG printf(&race, "turning off the nobile");

(i =31, i >=0; i--)

incremente = envel ope(buff r|n[RxBufOJtPtr++ % BufferSize], &bufferout[0], TxBuflnPtr);
if(incremente == Oxffff) // error require force restart
{

MyFor ceRestart ();
Request Process = 0,
return;

}

TxBuf InPtr = TxBuflnPtr + increnente;
myfilter(increnente, &bufferout[0], TxBuflnPtr);

if (sld(incremente, &bufferout[0], TxBuflnPtr) == 1)
{

S| dLi st Fl ag++;
Sl dLi st Array[Sl dLi st Pt r++9%8] = Myd obal Count er;

/I WiteDaFil e(&bufferout[0]);
LOG printf(&race, "dobal counter is %", M/d obal Counter);

if((SldListFlag >= 3) && (MobileStatus == 0))
{

diffl
diff2
/*
LOG printf(
LOG printf(
LOG printf(
LOG printf(
ntf(
ntf(
ntf(
nt f (

SldListArray[(Sl dListPtr-1)98] - SldListArray[(SldListPtr-2)9%3];
SldListArray[(Sl dListPtr-2)98] - SldListArray[(SlIdListPtr-3)9%3];

&race," diffl ,%", diffl);

&race," diff2 ,%", diff2);

&race," sldp0 ,% ", SldListArray[SldListPtr93]);
|
|

2
=
QD
o
o

sldpl , %", SldListArray dListPtr-1)9%3]);
LOG pri dListPtr-2)93]);
LOG pri
LOG pri
LOG pri
*/

if((diffl <= 4500) && (diff2 <= 4500))

[
&race," sldp2 ,%", SldListArray](
& race," sld0 ,%u", SldListArray[O]
&race," sldl ,%", SldListArray[1]

2]

S
S
g.
&race," sld2 ,%", SldListArray[2])

Mobi | eStatus = 1;
LOG printf(&race,"” TURNING THE MOBI LE ON');
nmobi l e_on();

tf(&race, "TXBuf QutPtr 9",)
tf(&race, "TXBuf QutPtr 9", (Ox00420000 + ((TxBuf I nPtr%BufferSize)*2)-0x200
tf(&race, "SLD DETECTED !!!!1");
_prlntf(&trace "start probing!");
intf(&race, "probing done");
n()

r (i =31, i > 0; i--)

RxBuf Qut Pt r ++;

buf f erout [TxBuf I nPtr++ % BufferSi ze] = (bufferin[RxBuf QutPtr % BufferSize]);//x2/3)+(buffe
/I bufferout[TxBuf I nPtr++ % BufferSi ze] = bufferin[RxBuf QutPtr++ % BufferSize];
[ltenmp_array[i+32] = bufferout[TxBuflnPtr % BufferSize];

RxBuf Qut Ptr;
temp - 32;
(i=1; i<64 ; i++)

tenp_array[i] = bufferout[tenp++ % BufferSize];

Request Process = O0;

* =—======= g| | ocBUf ========
*/
static Uns allocBuf (PIP_bj *out, Uns **buf)

PI P_all oc(out);
*buf = PIP_getWiterAddr(out);;
return (PIP_getWiterSize(out));

* ======== freeBuf ========
*/
static Void freeBuf (PIP_hj *out)

PIP_free(out);

*/
static Uns getBuf (PIP_Cbj *in, Uns **buf)
{

PIP_get(in);
*buf = PI P_get Reader Addr (in);;
return (Pl P_get Reader Si ze(in));
}
/*
*/

static Void process(Uns *src, Int size, Uns *dst)

Int i;

si gned short test_array[32];

//'Uns tenp_val ue;

/local _max = filter(src, size, dst);

/LOG printf(&race, " % |ocal _nax", |ocal_mx);
/ envel ope(l ocal _max);

/src = &LuckyArray[O0];

or (i =size - 1; 1 >=0; i--)

~——h e~~~

[ldst[i] srcl[i];

[ldst[i] LuckyArray[i];

test _array[i] = (signed short) src[i];

buf feri n[RxBuf InPtr++ % BufferSi ze] = test_array[i];

temp_value = (Uns) bufferin[RxBuf InPtr % BufferSize];

11

[Itenmp_val ue & Ox0000FFFF;
[ldst[i] = tenp_val ue;

/] test _array[i] = bufferin[RxBufl nPtr % BufferSize];
/I ProbePointer[i] = src[i];

}

for (i =size - 1; i >=0; i--)

{
dst[i] = LuckyArray[i];

[* tenp_val ue = (Uns) bufferout[TxBuf Qut Ptr++ % BufferSize];

tenp_val ue &= 0x0000FFFF;
dst[i] = tenp_val ue;*/

}

Request Process = 1;

/* if hostPipe is non-NULL wite data to this pipe */
if (hostPipe !'= NULL) {
wri t eBuf (host Pi pe, dst, size);

*/
static Void putBuf (PIP_Obj *out, Uns size)

PIP_setWiterSi ze(out, size);
Pl P_put (out);

* =—======= W iteBuf ========
* [
static Void witeBuf (PIP_Cbj *out, Uns *buf, Uns size)
{
Uns dstSi ze;
Uns *dst;
Int i;

/* allocate outBuffer for output */
dst Si ze = al | ocBuf (out, &dst);

/* copy data to output buffer (but not nore than output buffer size) */

for (1 = (dstSize >= size) ? size : dstSize; i > 0;
*dst ++ = *buf ++;
}

/* put buffer to output pipe */
put Buf (out, size);

#i ncl ude <std. h>
#i ncl ude <trc. h>
#i ncl ude <l og. h>
#i ncl ude <sw . h>

/| #i ncl ude "sldcfg.h"
#i ncl ude "sld. h"

extern far LOG Ohj trace;
const far unsigned | ong BufferSize4 = 64*1024;

Uns tinmer_val ue[2];

static signed short peakl, peak2;//, dunby tinmer, noi seAnmunity;
static Uns tiner;

[/ static int SLD fl ag;

static int start_flag, count, |low counterl, |ow counter?2;

int sld(int numnew nenebers, signed short *buffer, unsigned |ong index);
int sld_process(signed short menber);

int sld calculate();

void sld init();

void sld reset();

[/ extern void c_put(Uns var);
[/ extern Uns c_get();

[*void main()

int k;
sld_init();
LOG printf(&race, "In nmain");
/[linitialize all nenbers to 45!
for(k=0; k < ECHOFRAMELEN, k++)
c_put (45);
/[/linput 0,2,4,3,1
for(k = 0; k < 3; k++)
{
c_put(2 * k);
}
for(k = 2; k >0; k--)
{
c put(2* k - 1);
sl d(5);

/linput 11 zeros
for(k=0; k < 11; k++)

c_put (0);
sl d(11);
/linput 0,2,4,6,8,7,3,1
for(k = 0; k < 5; k++)
{

c_put(2 * k);
}
for(k = 4; k > 0; k--)
{

c_put(2 * k - 1);

sl d(9);

/linput 7 zeros
for(k=0; k < 7; k++)

c_put (0);
sld(7);
/input a good SLD data : 0,2,4,6,8,7,5,3,1,0,2,4,3,1
or(k = 0; k <5; k++)

c_put(2 * k);

— ~——~

for(k = 4;, k > 0; k--)
{
c put(2* k - 1);

sl d(9);
for(k = 0; k < 3; k++)

c_put(2 * k);
}
for(k = 2; k > 0; k--)
{

c_put(2 * k - 1);
sl d(5);
return;

}
void c_put (Uns var)

c_buffer[wite_index++ % ECHOFRAMELEN] = var
count er ++;

}

Uns c_get ()
{ Uns tenp;
i f(counter == 0)

LOG printf(&race, "G rcular Buffer is enpty.

return 1;

el se

{

counter--;

tenp = c_buffer[read_i ndex++ % ECHOFRAMELEN] ;

[ILOG printf(&race, "% nenber", tenp);
return tenp;

bl

void sld_init()

{
start _fl ag=0;
sld reset();

}

void sl d_reset()

| ow counterl
| ow counter?2
timer = 0;
tinmer_val ue[0]
timer_val ue[1]
count ;
peakl 0;
peak?2 0;

[l dunby_tinmer =
/1 noi seAnmruni ty

oo

o
Lo

’

0;
= O,

int sld(int numnew nenebers, signed short *buffer

int sld detected = O;
i ndex = index - num new _nenebers;
whi | e(num new_neneber s)

if (sld_process(buffer[index++ % BufferSized])

sl d_detected = 1;
num new_meneber s- -;

return sld _detected;

There is nothing to return.");

unsi gned | ong i ndex)

==]_)

i nt sld_process(signed short nenber)
{
/1 LOG printf(&race, "% nenber", menber);
[* if(dunby_tinmer >= dunby_tiner_ther)
{
(& race, "dummy timer ran out!! start_flag % nenber %", start_flag, nenber);
pel
if(start_flag == 0)
if ((menber >= low ther) && (low counterl >= 100))
{
start _flag = 1;
| ow counterl = O;
/I noi seAmmunity = O;
[1LOG printf(&race, "starting");

el se if(menber >= | ow t her)

{
| ow_count er 1++;
}
}
el se
{

/11ow counterl = O;
if (nmenmber <= | ow_ther)

{
*if (noi seAmmunity < 100)

/
{ . .
noi seAmuni t y++
!
[lelse if (tinmer <= 500)
[1{
[l dunby tiner++;
/1 noi seAnmunity = O;
/1

*if (noi seAmmunity < 100)
noi seAmuni t y++
| se if(!peak2 && !count)

timer_val ue[count] =ti mer;
ti mer=0;
/] count ++;
dunmby ti mer =0;
noi seAmuni t y=0
I
[* else if((tinmer < 500) && !peakl)

sld_init();
1)
i f(low counter2 <= 200)

{

| ow_count er 2++;

—

/*el se if(peak <= high_ther)
sld_init();

else if (((peakl >= high ther) && !count) ||
((peak2 >= high_ther) & count))

{
/11 ow counter2 = O;
[1LOG printf(&race, "before going to sld_calcutate %", peakl);
return sld_cal culate();

el se

sld_init();

else if (menber >= | ow_ther)

{
[*dunby timer = 0;
i f (noiseAmmunity < 100)
{
noi seAmuni t y++
}
i f(low counter3 <= 100)
{
| ow_count er 1++;
I
Ilels
114
//low counterl = O;
| ow counter2 = O;
timer++;
/1 noi seAmunity = O;
if(!count && (menber >= high_ther) && (peakl < nenber))
{
peakl = nenber;
//dunby _timer = 0;
el se if(count && (member >= high_ther) && (peak2 < nenber))
peak2 = nenber;
/! dunby_tinmer = O;
}
[l LOG p intf(&race, "% state", state);
[* if(menber >= high_ther)
{
/] Store the max
if((count == 0) && (peakl < nenber))
{
peakl = menber;
}
el se if(
if((count == 1) && (peak2 < nenber))
{
peak2 = menber;
}
Pl
}
11}
return O;

sl d_cal cul ate()

/1 LOG printf(&race, "timer %u and count %l in sld calculate", tiner, count);
/1 LOG printf(&race, "peakl % peak2 % in sld_cal cul ate", peakl, peak2);
tinmer_value[count] = tiner;

timer = 0;

start _flag = O;

count ++;

//n0|seAnnun|ty = 0;

/! dunby _tinmer = O;

i f(count == 2)

{
i f((peakl >= high_ther2) && (peak2 >= high ther) &&
((timer_value[0] >= (2*tinmer_value[1l])) && (tinmer_value[0] <= (12*tinmer_value[l]))) &&
((peakl >= peak2) && (peakl <= (6*peak2)))) /*&&
((timer_value[O] / timer_value[l]) <= tinme_ther2)*/

[1SLD flag =
LCELprintf(&trace "% peakl", peakl);
LOG printf(&race, "%l peak2", peak2);
LOG printf(&race, "% tiner_count[O]", timer_value[0]);
LOG printf(&race, "% tiner_count[1]", tinmer_value[l]);
LOG printf(&race, "SLD flag set!");
sld_init();
return 1,
}
el se
{
LOG printf(&race, "swtching");
[1LOG printf(&race, "in switching peakl %l is peak2 is%", peakl, peak2);

timer_value[0] = timer_value[l];
peakl = peak2;

peak2 = O;
timer_value[l] = O;
count = 1;

}

return O;

#i ncl ude <std. h>

#i ncl ude <stdarg. h>
#i ncl ude <l og. h>

#i nclude <trc. h>

#i nclude "nyfilter.h"

static int BufferlnPtr;
[/static int BufferQutPtr;
si gned short buffer[filterLen];

static short signed filter_process(signed short new val ue);

void nyfilter_init()

{
int i;
Buf ferlnPtr = 0O;
for (i=0; i<filterLen; i++)
buffer[i] = O;
}

void nyfilter(int numnew nenbers, signed short *buffer, unsigned |ong index)

{
i ndex = index - num new nenbers;
whi | e(num new_nenbers)

buffer[index++ % BufferSi ze3] = filter_process(buffer[index % BufferSize3]);
num new_menber s- -;

}
}
short signed filter_process(signed short new val ue)
{

int i;

si gned short avg;
buffer[BufferlnPtr++ % filterCons] = new val ue;
for (i=0; i<filterLen; i++)
{
avg += buffer[i]/filterCons;

——

i f (avg>2500)

return O;

S o~

eturn avg;

#i ncl ude "tiner.h"
#i ncl ude "regs. h"

void nobile on ();
voi d nobile off ();

voi d nobile_on ()

{
static int musicNum = O;
nmusi cNumt+;
if ((musicNunt@) == 0)
TOUT _VAL(O, 1);
TOUT_VAL(1,0);
if ((rusicNun@) == 1)
TOUT_VAL(O, 1);
TOUT _VAL(1,1);
}
if ((musicNunt@) == 2)
TOUT_VAL(O0, 0);
TOUT_VAL(1,1);
}

voi d nobile_off ()

TOUT_VAL(O, 0) ;
TOUT_VAL(1, 0);

/[#1 ncl ude <stdio. h>

#i ncl ude <std. h>

#i ncl ude <stdarg. h>

#i ncl ude <l og. h>

#i ncl ude <trc. h>

#i ncl ude "envel ope_dec. h"
/| #i ncl ude " Proj ect Cons. h"
/ | #i ncl ude "meowcfg. h"

/| #defi ne BufferSize2 64*1024

int i;

int tenp;

si gned short peak val ue[Len];

si gned short Last_Max;

si gned short New Max;

/| extern signed short bufferout[BufferSize];
extern far unsigned | ong TxBuflnPtr;

extern far LOG (bj trace;

short signed sorted_array[Len];

static void env_rest();
static void interpolate();

*

voi d mai n()

int k;

Uns testArray[10];
testArray[0] =1
testArray[1l] = O;
testArray[2] = 50;
testArray[3] = O;
testArray[4] = 10;
testArray[5] = 30;
testArray[6] = O;
testArray[7] = 20;
testArray[8] = O;
testArray[9] = 10;
tenmp =0;

envel ope_init(); //
or (k = 0; k<9; k++)

envel ope(test Array[Kk]);

f

{

}

for (k = 0; k<9; k++)

i sorted_array[k] = c_get(9-k);
r

eturn;

}

x|

voi d envel ope_init()

{
Last _Max = O;
peak val ue[0] = Last_Max;
peak_val ue[1] = 1;
i = 1;
return;

}

/*

voi d send_dat a()

int k;
/! send data (the first i-1 data are ready to go)
for(k = 1; k<i; k++)
{
c_put (peak_val ue[k]);
test _array[tenp] = peak_val ue[Kk];
t enp++;
LOG printf(&race, "Audio exanple started!!\n");

T T T T
~ Y~~~

printf("location %, has value %", tenp++, peak value[Kk]);

}
Last Max = New Max;

peak val ue[0] = Last_Max;
peak val ue[1] = peak _value[i];
i = 1;
return;
}
*
voi d interpol ate()
{
int j =0;
signed short average;
/*
int tenp flag = 0;
si gned short tenp | ocal [100];
for (j =0; j <= (i); j+%)
{
tenp local[j] = peak value[j];
if (temp_local[j] <O
}
if (temp_flag == 1)
for (j =0; j <=(i); j++)
{
LOG printf(&race,"location %, value is %", j, peak _value[j]);
}
*

New Max = peak _val ue[i-1];

i f (New_Max > Last_Max)

{
average = (New Max - Last_Max)/ (i-1);
for (j =1;) <= (i-1); j++)
{

peak value[j] = Last_Max + (j * average);

el se
average = (Last_Max - New Max)/ (i-1);
for (j =1; j <= (i-1); j++)
{ peak value[j] = Last_Max - (j * average);
}
[* if (tenp_flag == 1)
for (j =0; j <=(i); j+4)

LOG printf(&race,"location %, value is %", j, peak _valuel[j]);

}
*/
/*
for (j =0; j <= (i); j+%)
{

tenp local[j] = peak value[j];

if (temp_local[j] < 0)
Pl

/1 send _data();
}

void env_rest()

Last _Max = New_Max;

unsi

peak_val ue[0]
peak val ue[1]
i 1;

Last _Max;
peak_val ue[i];

gned | ong envel ope(signed short | ocal val ue, signed short *buffer, unsigned |ong index)

/lstatic int MyResetFlag = 0O;
int k,I;

unsi gned | ong t enpy=0;

signed short filtered_ val ue;
i nt b=0;

signed short average;

signed short tenp_array2[201];
i ++;
peak_value[i] = local val ue;

if ((i-10) > Len)

i
{
/] for (b=0; b<200; b++)
/1 tenmp_array2[b] = peak_val ue[b];
i f (peak_value[i-1] < 0)
{

peak _val ue[i-1] = 0-peak_val ue[i-1];

}

/| peak_val ue[i-1] = 10;

peak _value[i] = peak_value[i-1] -1
peak val ue[i-2] = peak value[i-1] -1

/'l \yReset Fl ag =1;
LOG printf(&race,"l ook at ne |ater on");
/lreturn O;

}
if (peak_val ue[i-1] <= 0)

return O;

}

/1 checks to see if the niddle nunber is the peak
if ((peak value[i-1] >= peak value[i]) &&
(peak_val ue[i-1] >= peak_value[i-2]))

% Buf ferSi ze]);

{
/1 calculate teh nidpoints
i nterpol ate();
[1LOG printf(&race, "tenpy is %", tenpy);
[ILOG printf(&race, "index is %", index);
//LOG_pr|ntf(&trace "buffer value is %", buffer[index % BufferSize]);
/] update the main array
for(k = 1; k<i; k++)
{
/1 filtering process
buf fer[index++ % BufferSi ze2] = peak_val ue[k];
t enpy++;
}
/'l get ready for the next peak
[1LOG printf(&race, "tenpy is %", tenpy);
[ILOG printf(&race, "index is %", index);
[1LOG printf(&race, "buffer value is %", buffer[(index-k)
env_rest();
return tenpy;
return O;

T~

All

U. S. Patent Nos.
/

* %k 3k 3k X X X X X

B

*

dss_evnb2.c

#i ncl ude <std. h>

#i ncl ude "dss. h"
#i nclude "dss_priv.h"

#define RXINT_BIT 0x0100
#define TXINT_BIT 0x0200

granted through contract.
5,283,900 5, 392,448

Copyright 2001 by Texas |nstrunments | ncorporated.
rights reserved. Property of Texas Instruments |ncorporated.
Restricted rights to use,

duplicate or disclose this code are

"@#) DSP/BIOS 4.51.0 05-23-01 (barracuda-i10)" */

/[* assume DMAO rx interrupt on INT 8 */
[* assume DMAL tx interrupt on INT 9 */

/| * CPLD (Conpl ex Progranmabl e Logi c Device)

#define CPLD (*(volatile unsigned int

/| * Codec Menory Mapped Registers */

#define AR (*(volatile

#define IDR (*(volatile unsigned int *)0x01720004) /* |ndexed Data Reg */
#define SR (*(volatile unsigned int *)0x01720008) /* Status Reg */
#define PO (*(volatile unsigned int *)0x0172000c) /* PIO Data Reg */

[* Codec Indirect Mapped Registers */

#define DAC LEFT_CNTL 0x06 /* 16 - Left DAC Qutput Control */

#define DAC_ RIGHT_CNTL 0x07 /* 17 - Right DAC CQutput Control */

#defi ne FS_PDF_CNTL 0x48 /[/* 18 - FS & Playback Data Control (MCE set)
#defi ne Pl O CNTL 0x49 /* 19 - Interface Control (MCE set) */
#defi ne MODE_CNTL Ox0c /* 112 - Modde and ID Control */

#defi ne SP_CNTL Ox50 /* 116 - Alternate Feature enable 1 (MCE set)
#define LINE LEFT CNTL 0x12 /* 118 - Left Line Input Control */

#define LINE RIGHT_CNTL 0x13 /* 119 - Right Line Input Control */

#def i ne CDF_CNTL Ox5¢c [/* 128 - Capture Data Format (MCE set)*/

[* Codec Commands */

#def i ne DAC_UNMUTE 0x00 /* Unnute DAC-to-m xer */

#defi ne MODE2_ENABLE 0x40 /* Enable MODE 2 */

#define | NI T_DONE 0x80 /* Initialization bit */

#define SP_32 ENABLE O0OxOa /* Serial Port (32 bits) */

#defi ne SP_64E ENABLE 0x02 /* Serial Port (64 bits enhanced) */

#define SP_64 ENABLE O0x06 /* Serial Port (64 bits enhanced) */

#define CDF_S L16 0x50 /* CDF; Stereo, linear, 16-bhit */

#define FS8_ S L16 0x50 /* FS: 8kHz, PDF; Stereo, linear, 16-bit */
#define FS44 S L16 Ox5c /* FS. 44kHz, PDF; Stereo, linear, 16-bit */
#defi ne Pl O ENABLE Oxc3 [/* Enable PIO (capture and pl ayback) */
#defi ne MCE_RESET Oxbf /* Reset Mode Control Bit (MCE) */

[* CPLD commands */

unsi gned int

regi ster */

+) 0x01780000)

#def i ne CODEC DI SABLE 0xf8
#def i ne CODEC ENABLE 0x04
/* Macros */
#def i ne SETBI TMASKCODEC(i , n)\
AR = (i);\
IDR | = (n);
#def i ne SETREGCODEC(i, n)\
AR = (i);\
IDR = (n);

static void codeclnit(void);

*/

DSS i ni t

voi d DSS_i ni t (voi d)

{

/* Configure codec */
codeclnit();

/*

/* Configure Codec */

Enabl e Transmt and Receive bits */
MCBSP_enabl eRcv(DSS_hMcbsp0) ;

)0x01720000) / I ndex Address Reg */

*/

*/

MCBSP_enabl eXnt (DSS_hMcbspO0) ;

* zZzz======= codecl nit ========
*/
static void codeclnit(void)
{
/* Reset and enabl e codec */
CPLD &= CODEC DI SABLE;
CPLD | = CODEC_ENABLE;

/* wait for codec to finish initialization */
while(lAR & I NI T_DONE) ;

/* Enabl e node 2 */
SETBI TMASKCODEC(MODE_CNTL, MODE2_ENABLE) ;

/* Set codec Serial port format */
SETREGCODEC(SP_CNTL, SP_32_ENABLE);

/* Set capture format */
SETREGCODEC(CDF_CNTL, CDF_S L16);

/* Set playback format and sanple rate */
SETREGCODEC(FS PDF CNTL, FS8 S L16);//FS44_ S L16);

/* Enable bits in PIO (programmed |/OQ */
SETREGCODEC(PI O_CNTL, Pl O_ENABLE) ;

/* Reset Mdde Control Bit (MCE) */
| AR & MCE_RESET;

/* Unmute left/right DAC-to-m xer */

SETREGCODEC(DAC_LEFT_CNTL, DAC_UNMUTE) ;
SETREGCODEC(DAC_RI GHT_CNTL, DAC_UNMUTE) ;

* —======= DSS_SpWite —=======
*/
Voi d DSS spWite(Uns data)
whi | e ((MCBSP_RGETH(DSS_hMcbsp0, SPCR) & 0x20000) == 0);

MCBSP_RSETH(DSS_hMcbsp0, DXR, data);

* ———====== DSS_SpRead ———=====
*/
Uns DSS spRead(Voi d)
whi | e ((MOBSP_RGETH(DSS hMcbsp0, SPCR) & 0x2) == 0);

return (MCBSP_RGETH(DSS hMcbspO, DRR));

T~

Copyright 2001 by Texas |nstrunments | ncorporated.

Al rights reserved. Property of Texas Instrunents |ncorporated.
Restricted rights to use, duplicate or disclose this code are
granted through contract.

U.S. Patent Nos. 5,283,900 5,392,448

"@#) DSP/BIOS 4.51.0 05-23-01 (barracuda-i10)" */

* %k 3k 3k X X X X X

B

* ——====== dss_dn’aci Sr.C ========
#i ncl ude <std. h>
#i ncl ude <pi p. h>
#defi ne _DVA _ 1

#i ncl ude "dss. h"
#i ncl ude "dss_priv.h"

/ *
* ———====== DSS_dn’HR(lsr ———=====
*/

voi d DSS_dmaRxl sr (voi d)

{

Pl P_put (&DSS r xPi pe) ;
DSS rxCnt = O;

DMA RSETH(DSS hDmaRi nt 0, SECCTL, 0x08);
DSS_r xPri me(TRUE)

}

/ *
* —======= DSS_dn'HTXlSI’ —=======
*/

voi d DSS _dmaTxl sr(voi d)

{

Pl P_free(&DSS t xPi pe);
DSS txCnt = O;

DMA RSETH(DSS_hDmaXi nt 0, SECCTL, 0x08);
DSS_t xPri me(TRUE)

T~

All

/

* %k 3k 3k X X X X X

B

*

seri

F %k 3k 3k 3k o S 3k 3k 3k 3k % X kS Sk 3k 3k 3k ¥ X X X o S 3k 3k 3k ko ko F 3k 3k 3k 3k X X X X X X Sk 3k 3k X X X

/

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

#i ncl ude
#i ncl ude

#i f def

Copyright 2001 by Texas |nstrunments | ncorporated.

rights reserved. Property of Texas Instruments |ncorporated.

al po

Restricted rights to use,
granted through contract.
U. S. Patent Nos.

5,283,900 5,392, 448

dss. ¢ ========

rt.

Startup:
BI OS startup

DSS provi des a pi pe(PlP)
DSS export two pipes:
read by the client to receive data fromthe serial port and

DSS t xPi pe can be witten to by the client to send data to the

noti fyWiter()

St eady state:

I SR(writer)

PIP p
I

ut ()

DSS rxPrinme(1)

start

Startup:
BI OS startup

_PIP_alloc()

DIVA

notifyWiter()

I SR(r

Pl P_f
I

St eady state:

eader)

ree()

DSS t xPrinme(1)

<std.
<pi p.
<l og.
<trc.
<cl k.

"dss.
"dss_priv.h"

EDVA

start

h>
h>
h>
h>
h>

hu

__PIP_get()

DIVA

#i ncl ude <csl _cache. h>

#endi f

duplicate or disclose this code are

"@#) DSP/BIOS 4.51.0 05-23-01 (barracuda-i10)" */

interface to the serial port audio data.

DSS rxPi pe and DSS t xPi pe. DSS rxPi pe can be

__DSS rxPrine(0)

client(reader)

__DSS txPrine(0)

__nhotifyReader ()--> audio()

__PIP_get()
“process data’
PIP free()

client(witer)

__hotifyWiter()--> audio()

__PIP_alloc()
"wite data’

Pl P_put ()

The i nput pipe (DSS rxPipe) operates as foll ows:

__notifyWiter()
__DSS rxPrime(0)

The out put pipe (DSS txPi pe) operates as foll ows:

__notifyReader ()
__DSS txPrime(0)

I nt DSS error = 0O;
I nt DSS rxCnt = O;
I nt DSS txCnt = O;
nt *DSS rxPtr = NULL;
nt *DSS txPtr = NULL;
DSS Ohj DSS config = {
0 /* enable tracing */
b
/*
* —=—===== DSS_tXPri me ========
* Called when DSS txPipe has a full buffer to be transnmtted
* (i.e., when notifyReader() is called) and when the DSS | SR
* is ready for nore data.

voi d DSS_t xPri me(Bool call edByl SR)

{

Pl P_nj *t xPi pe = &DSS t xPi pe;
static int delay = 1; [* or 2, 3, etc. */
static Int nested = 0O;

LOG nessage("DSS txPrinme(): %", CLK gethtine());

f 1 (defined(_EDVMA) || defined(_DVA))
if (calledByl SR {

DSS _conput ePhase(Pl P_get WiterSi ze(txPipe));

}
#endi f

if (nested) { /* prohibit recursive call via PIP_get() */
return,;

}

if (delay) { /* ensure that output does not start too soon */
del ay- -;
return;

nested = 1;

if (DSS_txCnt == 0 && Pl P_get Reader Nunfranes(txPi pe) > 0) {

Int count, i;
Mdl nt *dst;
Pl P_get (t xPi pe) ;

/* must set 'Ptr' before 'Cnt' to synchronize with isr() */
DSS txPtr = PI P_get Reader Addr (t xPi pe);

/* ensure bit 0 of DAC word is 0; AIC uses bit 0 to request control
count = (sizeof (Int) / sizeof(MlInt)) * PlP_getReaderSi ze(txPi pe);
for (i = count, dst = (MlInt *)DSS txPtr; i > 0; i--) {

*dst++ = Oxfffe & *dst;
}

DSS txCnt = count;

#if defined(_EDMA) || defined(_DVA)

#endi f

DSS dmaTxStart (DSS_txPtr, DSS txCnt);

}
else if (calledByl SR & (DSS error & DSS TXERR) == 0) {

if (DSS_config.enable) {
TRC di sabl e(TRC_GBLTARG ;

}
LOG error("transmt buffer underflow %", CLK gethtine());
DSS error | = DSS_TXERR;

* —====== DSS_rxPri me ========
Cal | ed when DSS rxPi pe has an enpty buffer to be filled,;
* e.g., when notifyWiter() is called) and when the DSS | SR

*/

* is ready to fill another buffer.
*/
voi d DSS_rxPri me(Bool call edByl SR)

Pl P_nj *rxPi pe = &DSS r xPi pe;
static Int nested = 0O;

LOG nessage("DSS rxPrinme(): %", CLK gethtine());
#if ! (defined(EDVA) || defined(_DMA))
if (calledByl SR
DSS _conput ePhase(Pl P_get WiterSi ze(rxPi pe));
}
#endi f

if (nested) { /* prohibit recursive call via PIP_alloc() */
return;

nested = 1;

if (DSS rxCnt == 0 && PIP_getWiterNunfranes(rxPipe) > 0) {
Pl P_al | oc(rxPi pe);

/* must set 'Ptr' before 'Cnt' to synchronize with isr() */
DSS rxPtr = PIP_getWiterAddr(rxPipe);

DSS r xCnt ;(sizeof(lnt) / sizeof (MIInt)) * PIP_getWiterSize(rxPipe);

#i f defined(_EDVA) || defined(_DVA)
DSS dnmaRxStart (DSS rxPtr, DSS rxCnt);
#endi f

}
else if (calledByl SR & (DSS error & DSS RXERR) == 0) {
i f (DSS_config.enable)
TRC di sabl e(TRC_GBLTARG ;

LOG error("receive buffer overflow %", CLK gethtinme());
DSS error | = DSS_RXERR;
}

nested = 0;

fdef _EDVA_

| *
* —=—==—=—=== DSS_dn’a| nit ========
* Initialise EDVA Controller
*/

Voi d DSS_dmal ni t (Voi d)

{

LOG nessage("DSS dnalnit(): %", CLK gethtine());

/* General EDMA Initialization */

EDVA RSET(EER, 0x0000); /* Disable all events */

EDVA RSET(ECR, Oxffff); [* Clear all pending events */

EDVA RSET(Cl ER, 0x0000); /* Disable all events to Interrupt */
EDVA RSET(CI PR, Oxffff); /[* Clear all pending Queued EDVA ints */

/* Enable Rx/ Tx DVA Conplete Interrupts to the CPU */
EDVA RSET(Cl ER, DSS_RXDONE | DSS_TXDONE);

* =—====== DSS_dnHRXSt art ========

%/
Voi d DSS dmaRxStart (Void *dst, |Int nsanps)
{

LOG nessage("DSS_dmaRxstart(): %", CLK gethtine());
CACHE cl ean(CACHE L2, dst, nsanps);
/* Reconfig EDVA channel for next receive buffer */

EDVA RSETH(DSS hEdnaRi nt 0, CNT, (Uns) nsanps);
EDVA RSETH(DSS hEdnaRi nt 0, DST, (Uns) dst);

EDVA_RSET(EER, 0x3000); /* Enabl e McBSPO Rx/ Tx Events to the DVA */

* —====== DSS_drrB_T)(St art ========

*/
Voi d DSS _dmaTxStart (Void *src, Int nsanps)
{

static Int startup =
LOG nessage("DSS _dmaTxstart(): %", CLK gethtine());
CACHE fl ush(CACHE L2, src, nsanps);

if (startup) {
startup = 0O;
DSS sp W| e(0); DSS spWite(0);
/* EDMA SET(ECR 0x3000) ; /d ear any previ ous McBSP Events */
}

/* Reconfig EDMA channel for next transmit buffer */
EDVA RSETH(DSS hEdnaXi nt 0, SRC, (Uns) src);
EDVA RSETH(DSS_hEdnaXi nt 0, CNT, (Uns) nsanps);

EDVA RSET(EER, 0x3000); /* Enable McBSPO Rx/ Tx Events to the DVA */
}
#endi f
#i f def _DMA
[*
* =—====== DSS_dnHRXSt art ========
*/

voi d DSS dmaRxStart (void *dst, |Int nsanps)
{

DVA RSETH(DSS _hDmaRi nt 0, SRC, (I nt) (&DSS_hMbsp0- >baseAddr [_MCBSP_DRR _OFFSET])) ;
DVA RSETH(DSS_hDmaRi nt 0, DST, (Uns)dst);

DVA_RSETH(DSS_hDmaRi nt 0, XFRCNT, (0x1 << 16) + nsanps / (sizeof(Int) / sizeof(Mlnt)));
DVA st art (DSS_hDrmaRi ntO)

* —=—===== DSS_dn’aTXSt art ========
*/
void DSS dmaTxStart(void *src, Int nsanps)

static Int startup =

if (startup) {
startup = 0;
DSS spWite(0); DSS spWite(0);

}

DVMA RSETH(DSS_hDmaXi nt 0, SRC, (Uns)src);

DVA_RSETH(DSS_hDnaXi nt 0, DST, (I nt) (&DSS_hMbsp0- >baseAddr [_MCBSP_DXR _OFFSET]));
DVA_RSETH(DSS_hDmaXi nt 0, XFRCNT, (0x1 << 16) + nsanps / (sizeof(Int) / si zeof(l\/bll nt)));
DVA st art (DSS_hDmaXi nt 0)

P
#endi f

[* Do *not* directly nmodify this file.
[* generated by the Configuration Tool;
[* changes risk being overwitten.

/* | NPUT audi

o0.cdb */

/* MODULE PARAMETERS */
GBL_USERI NI TFXN = _FXN_F_nop;

MEM MALLOCSEG = MEM NULL,;

CLK_TI MEFXN = CLK_F_get shti ne;

CLK_HOOKFXN =
PRD_THOOKFXN

HW F _di spat ch;
= FXN_F_nop;

RTDX_DATAVEMSEG = | DRAM

HST_DSMBUFSEG = | DRAM

SW _EHOOKFXN
SW _| HOOKFXN
SW _EXECFXN =
SW “RUNFXN =

TSK_STACKSEG

TSK_CREATEFXN
TSK_DELETEFXN

TSK_EXI TFXN =

= GBL_NULL;
= GBL_NULL;

SW _F_iexec;
SW _F_run;

= MEM NULL;
_FXN_F_nop;
_FXN_F_nop;
_FXN_F_nop;

| DL_CALI BRFXN = | DL_F cali brate;

SYS_ABORTFXN
SYS_ERRORFXN
SYS_EXI TFXN =
SYS_PUTCFXN =

[* OBJECT ALI

= _error;
= error;
_error;
_FXN_F_nop;

ASES */

| PRAM = | PRAM

~SBSRAM
~SDRAMD
~SDRAML

SBSRAM
SDRAMD;
SDRAML;

| DRAM = | DRAM

_PRD clock =
_RTA fronHost
_RTA toHost =
HW RESET =

PRD cl ock;
= RTA fronHost;
RTA t oHost ;

HW _RESET;

HW_NM = HW _NM ;

_HW _RESERVEDO
_HW _RESERVED1

HW _RESERVEDO;
HW —RESERVEDL;

“HW I NT4 = HW _I| NT4;
“HW I NT5 = HW _I NT5;
“HW I NT6 = HW _I NT6;
“HW _INT7 = HW _I NT7:
“HW I NT8 = HW _I NTS:
“HW I NT9 = HW _I NTO;
“HW _I NT10 = HW _| NT10;
THW I NT11 = HW I NT11:
THW I NT12 = HW I NT12:
“HW I NT13 = HW | NT13;
“HW I NT14 = HW | NT14;
HW I NT15 = HW _I NT15:

_audioSwi = a
_LNK _dat aPunp
_RTA di spatch
I DL_cpulLoad

_IDLO = I DLO;
_LOG system =
trace = trac
_DSS rxPipe =
_DSS txPi pe =
1 DL_busyj

_DSS i oPhase

/* MODULE GBL

SECTI ONS {
.vers (COP

udi oSwi ;
= LNK dat aPunp;

er = RTA di spatcher;

= | DL_cpulLoad;

LOG system
€,

DSS r xPi pe;

DSS t xPi pe;
= | DL_busyj ;
= DSS i oPhase;

*/

Y): {} /* version information

It was

any

*/

*/

*/
*/

-1 I nkrt dx. a62

-l drivers. a62 /* device drivers support */

-1 bi osi . a62 /* DSP/ Bl OS support */

Ir /* RTDX support */

1csl 6201.1ib

-1 rtsbi 0s. a62 /* Cand C++ run-tine library support

_GBL_CACHE = GBL_CACHE;

[* MODULE MEM */
-stack 0x800

MEMORY {
| PRAM . origin = 0x0, I en = 0x10000
SBSRAM : origin = 0x400000, l en = 0x40000
SDRAMD : origin = 0x2000000, | en = 0x400000
SDRAML : origin = 0x3000000, [en = 0x400000
| DRAM : origin = 0x80000000, Ien = 0x10000
}
/* MODULE CLK */
SECTI ONS {
.clk: {
CLK F gethtime = CLK F _getshti ne;
CLK_A TABBEG = .;
*(.clk)
CLK_A TABEND = .;
CLK_A TABLEN = (. - CLK_A TABBEG / 1;
} > | DRAM

CLK_PRD = CLK_PRD;
_CLK_COUNTSPMS = CLK_COUNTSPNE;
CLK_REGS = CLK_REGS;
_CLK_USETI MER = CLK_USETI MER;
_CLK_TI MERNUM = CLK_TI MERNUM
CLK_TDDR = CLK_TDDR;

/* MODULE PRD */
SECTI ONS {
.prd: {
PRD A TABBEG = .;
/* no PRD objects */
PRD A TABEND = .;
PRD A TABLEN = (. - PRD A TABBEG / 32;
} > | DRAM

/* MODULE RTDX */
_RTDX i nterrupt_mask = 0xO0;

[* MODULE HW */
SECTI ONS {
.hwi _vec: 0x0 {
HW A VECS = .;
*(. hwi _vec)

}

/* MODULE SW */
SECTI ONS {
swic {

SW A TABBEG = .;
*(.SW)

SW _A TABEND
SW _A TABLEN
} > | DRAM

(. - SW_A TABBEG) / 44;

/* MODULE TSK */
KNL_swi = O;
[* MODULE IDL */

| DL_A TABBEG) / 8;

>
@
|—
m
Z
o

*(.idlcal)
IDL_A CALEND = .;
IDL_A CALLEN = (. - IDL_A CALBEG / 8;
} > | DRAM
SECTI ONS {
. bss: {} > | DRAM
Cfar: {} > | DRAM

.sysdata: {} > | DRAM
. mem {} > | DRAM
.gblinit: {} > | DRAM
.sysregs: {} > | DRAM

.trcdat a: {} > | DRAM
.args: fill=0 {

*(.args)

. += 0x4;
} > | DRAM

.hst: {

HST A TABBEG = .
_HST_A TABBEG = .;
*(. hst)

HST_A TABEND = .;

HST_A TABEND

(. - _HST_A TABBEG) / 20:

“HST_A_TABLEN = _HST A
_HST_A TABLEN = (. - _HST_A TABBEG / 20;
} > | DRAM
.cinit: {} > | DRAM
.pinit: {} > | DRAM
. dat a: {} > | DRAM
. const: {} > | DRAM
.Switch: {} > | DRAM
. Ci o: {} > | DRAM

/* RTA toHost buffer */
.hst0: align = 0x4 {} > | DRAM

.sts: {
STS A TABBEG = .
_STS A TABBEG = .;
*(.sts)
STS A TABEND = .
STS A TABEND

(. - _STS A TABBEG / 16:

~STS A _TABLEN = STS A
_STS A TABLEN = (. - _STS A TABBEG) / 16
} > TDRAM
. SYs: {} > | DRAM

.stack: fill=0xcOffee {
GBL_st ackbeg = .;
*(. stack)
GBL_stackend = GBL_stackbeg + 0x800 - 1;
_HW _STKBOTTOM = GBL_stackbeg + 0x800 - 4 & ~7
_HW _STKTOP = GBL_st ackbeg;
} > | DRAM

.rtdx _data: {} > |DRAM

.log: {
LOG A TABBEG = .
_LOG A TABBEG = .;

*(.1o0Q)
LOG A TABEND = .;
LOG A TABEND

TLOG A TABLEN = (. - _LOG A TABBEG) / 24:
_LOG A TABLEN = (. - _LOG A TABBEG) / 24;
} > TDRAM

.dsm {} > | DRAM

/[* RTA fronmHost buffer */
.hst1: align = 0x4 {} > | DRAM

/* DSS_txPipe buffer */
.pipl: align = 0x80 {} > | DRAM

\ TABBEG = .;

. pi p: f
| . TABBEG = . :

PIP_.
PIP_
I(lo
P
p

*|
J>)>

—
o
vl

PIP_A TABEND = .;
|P A TABEND = .;
| P_A_TABLEN
Pl P_A_TABLEN

} > TDRAM

'U'UI
J>)>I

(. - _PIP_A TABBEG / 100;
(. - _PIP_A_TABBEG / 100

[* DSS rxPipe buffer */
.pip0: {} > |IDRAM

.printf (COPY): {} > | DRAM
/[* LOG system buffer */

. LOG systentbuf: align = 0x800 fill = Oxffffffff {} > | DRAM
/* trace buffer */

.trace$buf: align = 0x80 fill = Oxffffffff {} > | DRAM

frt: {} > I PRAM

.sysinit: {} > | PRAM

.rtdx_text: {} > |IPRAM
.text: {} > I PRAM
.hwi: {} > IPRAM

. bi os: {} > I PRAM

	Table of Contents
	Introduction
	Current State of the Device
	Deviation of the Device
	Overall System
	Signal Acquistion
	System Powering
	Signal Processing
	Interface Circuit

	Future Plan
	Budget
	Time
	Inter-Personal and Technical Experiences
	Marjan Houshmand
	Farhud Hashemian
	Shona Huang
	Farnam Mohasseb

