
LittleFellows Inc.
Date: 12/17/02 Document Version: 1.1
Reference: Post Morterm Document Page 1

Copyright 2002 LittleFellows Inc.

December 17, 2002

Dr. Andrew Rawicz
School of Engineering Science
Simon Fraser University
Burnaby, B.C., V5A 1S6

Re: ENSC340 Project Post Morterm Document for SmileyBaby Mobile

Dear Dr. Rawicz:

The following document, Post Morterm for SmileyBaby Mobile, lists the
current and future states of the product, the deviation, the budget and time
constraints and inter-personal experiences.

LittleFellows is comprised of four fun loving but focused energetic 3rd year
engineering science students: Shona Huang, Marjan Houshmand, Farnam
Mohasseb, and Farhood Hashmi. If you have any questions concerning our
proposal, please feel free to contact us by email at ensc340-group@sfu.ca

Sincerely,

Marjan Houshmand

Marjan Houshamnd
Chief Executive Officer
LittleFellows Inc.

Enclosure: Post Morterm for SmileyBaby Mobile

LittleFellows Inc.
Date: 12/17/02 Document Version: 1.1
Reference: Post Morterm Document Page 2

Copyright 2002 LittleFellows Inc.

Post Morterm for SmileyBaby Mobile

 Team Project: Farnam Mohasseb
 Marjan Houshmand
 Shona Huang
 Farhud Hashemian

 Submitted to: Dr. Andrew Rawicz
 Steve Whitmore
 School of engineering science

 Issued date: December 17, 2002

© 2002 LittleFellows Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, including photocopying, electronic, mechanical, recording or

otherwise, without prior permission of LittleFellows Inc.

LittleFellows Inc.
Date: 12/17/02 Document Version: 1.1
Reference: Post Morterm Document Page 3

Copyright 2002 LittleFellows Inc.

Table of Contents

Table of Contents.. 3
Introduction .. 4
Current State of the Device... 4
Deviation of the Device .. 6

Overall System ... 6
Signal Acquisition .. 6
System Powering.. 6
Signal Processing ... 7
Interface Circuit.. 7

Future Plans .. 7
Budget... 8
Inter-Personal and Technical Experiences.................................... 10

LittleFellows Inc.
Date: 12/17/02 Document Version: 1.1
Reference: Post Morterm Document Page 4

Copyright 2002 LittleFellows Inc.

Introduction
Officially, we have been working on our project, SmileyBaby Mobile, for the past
thirteen weeks. Not only, we have gained technical, and non-technical skills, but also an
amazing group work dynamic has been established amongst us. Truly, we did choose an
ambitious project; however it is very rewarding and exciting to be able to demonstrate the
functionality of our product. This report reveals both the current and future states of
SmileyBaby, deviations and constraints, and our personal experiences.

Current State of the Device

As stated in our project proposal, SmileyBaby Mobile constantly monitors the nursery,
and differentiates the baby’s crying pattern from other common-household sounds and
noises such as talking, music, pets, and the occasional car driving by. In the situation
where the baby cries, our device switches on the mobile, which also plays a selection of
music determined by the parents with the intent of comforting the child. The basic idea
has been shown in Figure 1.

 Figure 1, The Basic Overview of the System

LittleFellows Inc.
Date: 12/17/02 Document Version: 1.1
Reference: Post Morterm Document Page 5

Copyright 2002 LittleFellows Inc.

In this section, we explain the current state of the device by referring to the current state
of each blocks of Figure 1. The first stage is obtaining the input. For our project, we do
not use a microphone. Instead, we use lining to receive sounds though a CD-player. This
idea can be better explained using Figure 2.

 Figure 2, The Implementation of Audio Input

The second stage contains the main process, detecting the sleeping rabbit. For this
purpose, the data will go through a low pass filter, envelope detector, average moving
filter, and finally the pattern detector. The sleeping rabbit detector looks for the first peak
and stores its information. Next, after finding the second peak, it compares the
information of both peaks to determine the pattern. Once the pattern is recognized, it
passes on the necessary data to the decision maker. At this point, the decision maker will
turn on/off the mobile. Figure 3 will illustrate the software-hardware interfacing.

Figure 3, The Hardware-Software Interface

Codec

SD-RAM

L-in L-out Mic

Internal DSP Mem

D

S

P

Mobile rocker

ocean

music

sto
p

4052
A

E

Enable

4.5V

LittleFellows Inc.
Date: 12/17/02 Document Version: 1.1
Reference: Post Morterm Document Page 6

Copyright 2002 LittleFellows Inc.

Deviation of the Device
Overall System
We achieved what we planned as far as functionality is concerned. We did not package
our device because of time limitations. A more general interface unit may be possible in
order to more easily adapt to a wider variety of OEM baby mobile products and other
toys. At the moment, our prototype consists of an input device (a CD player), DSP
evaluation board, and an interface board connected to an OEM baby mobile. Details of
the deviations of each part of our project will be discussed in the following sections.

Signal Acquisition

We originally planned to use a dynamic microphone and place it directionally pointing
toward the baby with the crib, strategically hidden; then connect this input signal to the
general-purpose audio in jack on the DSP evaluation board. However, the input is not
filtered against spurious noise that creates problems for the software in distinguishing
desired audio content from broadband noise. The attempt to use a dynamic microphone
created an excessive amount of noise, preventing the A/D converter from correct
operation. To prove the concept of our technology, we decided to connect the line out
from a CD player directly to the audio input of the evaluation board. Even so, the short
connection wires pick up a lot of noise from the surrounding atmosphere; but we
managed to filter most of the noise out via software and obtained acceptable data for
further processing. A solution would be to use an electrets condenser microphone with
filtering, prior to passing signal into the DSP. Successful interpretation of input data
must be free of noise prior to inputting to the DSP. Failure to do so will prevent the DSP
from correctly processing the information.

System Powering

At the current state, the three major parts of our system obtained power from separate
sources. The DSP evaluation board is plugged into a computer mother board and receive
power there. The DSP board by TI does not supply DC voltage to the OEM baby
product. The Mobile and the interface circuit operate on three C type batteries. In this
case, signal logic levels are compatible without level translation. Furthermore, the input
sound is provided by a CD player which operates on batteries inside the player.

LittleFellows Inc.
Date: 12/17/02 Document Version: 1.1
Reference: Post Morterm Document Page 7

Copyright 2002 LittleFellows Inc.

Signal Processing

In order to implement our signal processing we had to consider many algorithms since we
had to minimize the required computation power yet not decrease our hit rate. We
achieved what was originally planed and managed to distinguish all the cries form other
surrounding noise.

Interface Circuit

We originally planned to use a relay to control the OEM baby mobile by disabling
through our DSP output the on/off switch. Relays draw excessive current and would
deplete the DC battery supply in the OEM unit. We chose to enable the on/off functions
within the OEM unit with a simple logic level voltage implemented through a CMOS
4052 dual 1 of 4 switches.

We chose a CMOS family because it is more tolerant of different supply voltage (3-18V)
and because it has lower power demands. We decided that two output signals from the
DSP chip were sufficient to select the songs available for the OEM mobile. The
connection to the evaluation board with single wires is convenient but messy. The
female type connecter that we required to plug into the DSP board was not available in
town, and due to funding limitation we did not order it from on-line stores. Our
SmileyBaby Mobile also presents some connection problems when connecting to some
OEM baby mobile products because we don’t have enough information on circuitry
inside OEM and power supply voltage levels.

Future Plans

SmileBaby Mobile is capable of being improved a lot. There are several possibilities we
are considering for its future plan. First, we will have two different models: the Classic
SmileyBaby and Advanced SmileyBaby. Our current state is our classic model. The
Advanced SmileyBaby includes all the classic mode’s functionalities plus additional
features and abilities. Inside the digital signal processor, after being recognized as a
baby’s cry, the signal goes on for further processes. Then, the system tries to match the
cry with the samples stored in its memory to decide what type of cry it is. Next, through
LCD or any other user interface devices, the chip displays its decision regarding the cry
for parents to see.

Furthermore, parents are capable of programming the chip to play the child’s favorite
music at a specific time. This will be adapted using the internal timer of the chip.

LittleFellows Inc.
Date: 12/17/02 Document Version: 1.1
Reference: Post Morterm Document Page 8

Copyright 2002 LittleFellows Inc.

After the time has expired, an interrupt signal will go on, and as a consequence the music
will be played.

In addition, we are hoping with a little research to make SmileyBaby act as a bio-
feedback mechanism. This ability will help the parents to train the baby to sleep through
the night without crying. As a whole, SmileyBaby will be designed in such a way to
comfort both parents and the babies.Budgetary and Time Constraints

Budget

Table 1 indicates the estimated cost and the cost up to December 16th, 2002.

Required Material Estimated Cost Actual Cost

Two digital to analog
converters (D/A)

$80 No need

Two analog to digital
converters (A/D)

$80 No need

Two bus controllers $140 No need
Three digital signal

processing chip
$240 Borrowed

Two microphones $10 Borrowed
Two headphones $10 Borrowed

Two mobiles $120 $60
Cables/Wires $30 Borrowed
Miscellaneous $100 $30

Total $810 $90
Table 1: Estimated Cost vs. Actual Cost

As the above Table illustrates, our estimated cost was a lot more than the actual amount
we spent to develop SmileyBaby. This is because we borrowed an advanced DSP chip,
and it contained most of the components we needed. This DSP chip contained a D/A, an
A/D and a bus controller. Consequently, there was no need to purchase these items
separately. However, we were also able to borrow the PCB (hardware) design and
fabrication equipment, a microphone, a headphone and cables as well. In other words, the
only thing that we were required to purchase was the actual mobile. The estimated budget
for the miscellaneous category was also much less because we overestimated this cost in
our proposal.

LittleFellows Inc.
Date: 12/17/02 Document Version: 1.1
Reference: Post Morterm Document Page 9

Copyright 2002 LittleFellows Inc.

Time

The Grant Chart below indicates the start and end dates of various tasks we perform at
different stages of SmileyBaby development process. The blue print indicates the
expected time of completion and the red print indicates the slippage time.

Week of
September

Week of
October

Week of
November

Week of
December

ID Task name

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 Research
2 Proposal
3 Functional Specification
4 Design Specification
5 Implementation/Integration
6 Debugging/Modification
7 Documentation/Website
8 Process Report

Table 2: Grant Chart

Since we were the pioneers at this application, we had to do an extensive research and
data gathering before we could initiate any analysis. As the above table illustrates, the
research took a great deal of time and it interfered with other documentations. In fact, our
design specification could not have been completed until the third week of November.
Moreover, the implementation process had to be halted until we gathered enough data. In
addition, the DSP chip was quite advanced, and we had underestimated the complexity of
working with it. This also caused some delays in the implementation process.

However, as much frustrating, time consuming and difficult the tasks appeared, we all
kept our focus and composer to complete this project on time. We did our best to adhere
with our schedule, but the R&D was underestimated and took longer than we expected.
Consequently, we were behind in our schedule most of the time. Nonetheless, we did
finish our project in early December and were able to demo it on Monday, December
16th, 2002.

LittleFellows Inc.
Date: 12/17/02 Document Version: 1.1
Reference: Post Morterm Document Page 10

Copyright 2002 LittleFellows Inc.

Inter-Personal and Technical Experiences

Marjan Houshmand

I enjoyed working with this group tremendously. Not only we have accomplished what
we intended to, but also a strong group bound has been created, which will help us in the
future. I believe, as a group, we stand a very good chance in succeeding as a company.

During this semester, I have gained a lot of personal and technical experience. I have
learned about the DSP technology and how powerful but unfriendly sometimes they are!
It took us a while, in order to be able to work with the chip. In addition, I exercised my C
programming skill. Most of our time was spent on debugging the code or trying to
understand how to use the DSP chip.

Besides the technical implementation of the product, a great deal of research was
involved, specially in the beginning of the project. These tasks were more fun comparing
to staring at the computer screen for hours and hours. We had to obtain various baby’s
crying samples from different sources. And that itself was a quite challenge. Personally, I
take pleasure in dealing with people and fortunately this project included both business
and technical aspects of the product. It was a pleasant experience being a part of
LittleFellows Inc.

Farhud Hashemian

I believe this project provided the best opportunity for me to learn about DSPs, perform
advance C programming and baby-cry signal analysis. By programming the Texas
Instrument xC60 DSP chip, I learn how a digital signal processing system communicates
with other component on a circuit, and how it performs its computations. Moreover, since
I was dealing with an advanced DSP chip, I had to raise my C programming skills and
write more sophisticated codes. The coding style that we had to follow for this
application was very different from the regular coding I did for my other engineering
courses. In addition, this project helped me increase my knowledge about baby-cry
signals and their characteristics. It was also a tangible proof for me that baby-cry signals
are different and exhibit certain unique patterns.

Beside the technical knowledge that I gained by developing SmileyBaby, I really enjoyed
working with my group members. I believe this was one the finest groups I have worked
with for the past few years. Even though we went through some rough and frustrating

LittleFellows Inc.
Date: 12/17/02 Document Version: 1.1
Reference: Post Morterm Document Page 11

Copyright 2002 LittleFellows Inc.

periods during the cycle of development, all of us kept our focus and were determined
that we could get this done. And in the end, we came up on top and successful.

Shona Huang

The last 13 weeks must be a flash-forward to the life of real engineer working on a team-
designed project. This project surely must be a precursor to the interpersonal and
technical challenges and frustrations every engineer faces when attempting to produce a
viable prototype in a given amount of time. So what did I gain from this experience?!

I learned that no matter how tired my body and mind were feeling, how daunting the
technical problem, how endless the documentation, I could always find from somewhere
within me the energy to smile and continue. In addition, I am now somewhat more
familiar with A/D conversion, Fast Fourier Transform algorithms and the importance a
DSP plays in design. Even though the TI evaluation kit is not the friendliest of devices
for a beginner, I am content to have had the opportunity to use a DSP. The digital signal
processing algorithms our project employed were simple by comparison to those used in
commercial products but I can see advantages a DSP has over a microprocessor when
signal processing is involved. Some things that were murky prior to beginning this
venture are now coming into focus. The RISC like architecture, parallel processing,
internal memory organization and specialized units such as multipliers /accumulators
allow the DSP to be 2 to 3 times faster than a microprocessor. Why? Digital signal
processing requires a large amount of real –time calculations. For example, a 386
processor would require about 3mS to complete a Fast Fourier Transform for
N=1024. The same Transform with a DSP can be completed in less than 1.5mS.
Multiplication is the major task of a DSP. It seems that the most common operation in
digital signal processing is the sum of products calculation S = ∑a b. Addition needs 3
clock cycles in a 8086 micro, while multiplication requires 130-160 clock cycles. To
increase speed, a DSP has many specialized arithmetic logic units within such as
multipliers and accumulators in order to complete both multiplication and addition in one
clock cycle. This feature of the DSP was needed for LittleFellows.

Noise became a persistent irritant for me in this endeavor. Noise had to be reduced both
at the i/p to the DSP and the o/p interface to the OEM baby mobile. I was unable to
achieve the type of i/p signal needed from the microphone, but now know what the level
of the signal must be in order that the A/D can make sense of the audio content. It must
have a dynamic range of 70 dB yet provide a gain of 60 dB. This would require a high
performance preamp similar to those manufactured by TDL Technology.

LittleFellows Inc.
Date: 12/17/02 Document Version: 1.1
Reference: Post Morterm Document Page 12

Copyright 2002 LittleFellows Inc.

The connection to the OEM mobile created it’s own set of noise problems. The songs
played by the drop chip within the mobile unit became superimposed on the logic level
signals needed to control the functions and were very difficult to remove without altering
the original content of the music. It would have been faster and more productive to record
higher fidelity music on digital storage devices rather than use the electronics supplied in
the mobile.

Working in a group meant compromise, patience, and understanding. I experienced
learning to sort through different opinions, recording/writing styles and seeking
accountability for meeting deadlines. Problems are problems and there will always be
someone to help work them out. Problems are more easily solved with many heads
together rather than one head alone. Working with a group was a good experience for me.

Farnam Mohasseb

This was the most challenging project I ever experienced. Unlike all other project I’ve
done in the past, there were no certain paths or procedures to follow. There were points in
the project that we countered problems that seemed to have no feasible solutions. Yet we
did not give up and continued. I believe, it was the group dynamic that played an
extraordinary role in the project’s success. It was assuring to see your group member still
smiling after working on frustrating problem overnight. Without such a n amazing group
dynamic, the project would have been impossible.

This project provides me with an excellent opportunity to learn. Since we are the pioneer
in this field we had to do a lot research to achieve this project. As result I learned a lot
about everything not just C programming skills. I learned more about baby’s
psychologies, much more advance C programming and various signal processing
concepts. Dealing with Texas instrument C6000 series DSP, helped me to understand and
learn and implement many algorithm that is being used in the industry. Completing this
project was not an easy task, but the learning experience was worth the effort, and I
would have done the same if I was starting this project again.

/**/
// add this to command file
/*
 .my_sect1: {} > SDRAM1
 .my_sect2: {} > SDRAM1
*/
/**/
/* "@(#) DSP/BIOS 4.51.0 05-23-01 (barracuda-i10)" */
/*
 * ======== audio.c ========
 */

#include <std.h>
#include <stdio.h>
#include <pip.h>
#include <log.h>
#include <trc.h>
#include <hst.h>
#include <mem.h>

#include <string.h> /* memset() */
#include <stdarg.h> /* var arg stuff */

#include "dss.h"
#include "audio.h"
#include "ProjectCons.h"

Int PHASE = 0; /* number of samples of phase difference */
Uns ProbePointer[32];

int NewDataFlag;

Uns LuckyArray[32];

#pragma DATA_SECTION(bufferin, ".my_sect1");
signed short bufferin[TheBufferSize];

#pragma DATA_SECTION(bufferout, ".my_sect2");
signed short bufferout[TheBufferSize];

static far unsigned long RxBufInPtr;
static far unsigned long RxBufOutPtr;
static far unsigned long TxBufInPtr;
static far unsigned long TxBufOutPtr;
static far int RequestProcess = 0;
static int my_start_up;
static unsigned long MyGlobalCounter;
static int SldListFlag;
static int SldListPtr;
static int MobileStatus;
unsigned long SldListArray[3];

static Uns allocBuf(PIP_Obj *out, Uns **buf);
static Void freeBuf(PIP_Obj *out);
static Uns getBuf(PIP_Obj *in, Uns **buf);
static Void process(Uns *src, Int size, Uns *dst);
static Void putBuf(PIP_Obj *out, Uns size);
static Void writeBuf(PIP_Obj *out, Uns *buf, Uns size);
//static Void MyForceRestart();
static void mytest();

static Int loadVal = 0;
static PIP_Obj *hostPipe = NULL;

void mytest()
{
 int k;
 bufferout[0] = 0;
 bufferout[1] = 1;
 bufferout[2] = 2;
 bufferout[3] = 3;
 bufferout[4] = 4;
 for(k=0;k<100; k++)

 {
 bufferout[(k+4) % BufferSize] = k+4;
 }
 /*
 while (1)
 {
 }*/
}

/*
 * ======== main ========
 */
Void main()
{
 Int size;
 Uns *buf;

/*****farhud****/
/*initialize
call sld function

while(1)
{
};

/*****end****/

/* while(1)
 {
 mobile_on();
 mobile_off();
 };
*/

#if AUDIO_USEHST
 hostPipe = HST_getpipe(&hostOutputProbe);
#endif

 LuckyArray[0] = 0x00004000;
 LuckyArray[1] = 0x00000000;
 LuckyArray[2] = 0x00000000;
 LuckyArray[3] = 0x00000000;
 LuckyArray[4] = 0x00000000;
 LuckyArray[5] = 0x00000000;
 LuckyArray[6] = 0x00000000;
 LuckyArray[7] = 0x00000000;
 LuckyArray[8] = 0x00004000;
 LuckyArray[9] = 0x00000000;
 LuckyArray[10] = 0x00000000;
 LuckyArray[11] = 0x00000000;
 LuckyArray[12] = 0x00000000;
 LuckyArray[13] = 0x00000000;
 LuckyArray[14] = 0x00000000;
 LuckyArray[15] = 0x00000000;
 LuckyArray[16] = 0x00004000;
 LuckyArray[17] = 0x00000000;
 LuckyArray[18] = 0x00000000;
 LuckyArray[19] = 0x00000000;
 LuckyArray[20] = 0x00000000;
 LuckyArray[21] = 0x00000000;
 LuckyArray[22] = 0x00000000;
 LuckyArray[23] = 0x00000000;
 LuckyArray[24] = 0x00004000;
 LuckyArray[25] = 0x00000000;
 LuckyArray[26] = 0x00000000;
 LuckyArray[27] = 0x00000000;
 LuckyArray[28] = 0x00000000;
 LuckyArray[29] = 0x00000000;
 LuckyArray[30] = 0x00000000;
 LuckyArray[31] = 0x00000000;

 RxBufInPtr = 32;
 RxBufOutPtr = 32;
 TxBufInPtr = 0;
 TxBufOutPtr = 0;
 my_start_up = 1;

 MyGlobalCounter = 0;
 MobileStatus = 0;

 SldListPtr = 0;
 SldListFlag = 0;
 SldListArray[0] = 0;
 SldListArray[1] = 0;
 SldListArray[2] = 0;
 myfilter_init();
 envelope_init();
 sld_init();
 DSS_init(); /* Initialize codec and serial port */

 //Filter_init();//Initilize lowpass filter
/*
 LOG_printf(&trace, "Audio example started!!\n");

 LOG_printf(&trace, "Short signed is %i\n", sizeof(signed short));
 LOG_printf(&trace, "int is %i\n", sizeof(int));
 LOG_printf(&trace, "Uns is %i\n", sizeof(Uns));

 LOG_printf(&trace, "first part is %i\n", (short signed) LuckyArray[24]);

 for (size = 0; size<4; size++)
 {
 temp1[size] = (short signed) LuckyArray[24];
 }

 temp_value = (Uns) temp1[1];
 temp_value &= 0x0000FFFF;
 LOG_printf(&trace, "reconstruct part is %i\n", temp_value);

*/
 /* Prime output buffers with silence */
 size = allocBuf(&DSS_txPipe, &buf);
 memset(buf, 0, size * sizeof (Uns));
 putBuf(&DSS_txPipe, size);

 size = allocBuf(&DSS_txPipe, &buf);
 memset(buf, 0, size * sizeof (Uns));
 putBuf(&DSS_txPipe, size - PHASE);

 /* Fall into BIOS idle loop */
 return;
}

/*
Void MyForceRestart()
{
 RxBufInPtr = 32;
 RxBufOutPtr = 32;
 TxBufInPtr = 0;
 TxBufOutPtr = 0;
 my_start_up = 1;
 MyGlobalCounter = 0;

 SldListPtr = 0;
 SldListFlag = 0;
 SldListArray[0] = 0;
 SldListArray[1] = 0;
 SldListArray[2] = 0;
 myfilter_init();
 envelope_init();
 sld_init();
}
*/

/*
 * ======== audio ========
 */
Void audio(PIP_Obj *in, PIP_Obj *out)
{
 Uns *src, *dst;
 Uns size;

 if (PIP_getReaderNumFrames(in) == 0 || PIP_getWriterNumFrames(out) == 0) {
 error("Error: audio signal falsely triggered!");

 }

 /* get input data and allocate output buffer */
 size = getBuf(in, &src);
 allocBuf(out, &dst);

 /* process input data in src to output buffer dst */
 process(src, size, dst);

 /* check for real-time error */
 if (DSS_error != 0) {
 LOG_printf(&trace,
 "Error: DSS missed real-time! (DSS_error = 0x%x)", DSS_error);
 loadVal -= 1;
 DSS_error = 0;
 }

 /* output data and free input buffer */
 putBuf(out, size);
 freeBuf(in);
}

/*
 * ======== error ========
 */
Void error(String msg, ...)
{
 va_list va;
 va_start(va, msg);

 LOG_error(msg, va_arg(va, Arg)); /* write error message to sys log */
 LOG_disable(LOG_D_system); /* stop system log */

 for (;;) {
 ; /* loop for ever */
 }
}

void myIDLLoop()
{
 int i;
 unsigned long incremente;
 far unsigned long temp;
 signed short temp_array[64];

 unsigned long diff1 = 0;
 unsigned long diff2 = 0;

 if(RequestProcess == 1)
 {

 if ((my_start_up == 1) && (TxBufInPtr > 0x2000))//BufferSize))
 {
 // copy data
 // WriteDaFile(&bufferout[0]);
 //mytest();
// temp_array[0] = 0x1111;
// LOG_printf(&trace, "buffer value is %i", bufferout[TxBufInPtr % BufferSize]);
// LOG_printf(&trace, "pointer value is %i", (TxBufInPtr % BufferSize));
// LOG_printf(&trace, "buffer[0] value is %i", bufferout[0 % BufferSize]);
// LOG_printf(&trace, "buffer[1] value is %i", bufferout[1 % BufferSize]);
// LOG_printf(&trace, "buffer[2] value is %i", bufferout[2 % BufferSize]);
// LOG_printf(&trace, "pointer to b[2,BS] is %x", &bufferout[(2 % BufferSize)]);
// LOG_printf(&trace, "pointer to b[2] is %x", &bufferout[2]);
// LOG_printf(&trace, "pointer to b[3,BS] is %x", &bufferout[(3 % BufferSize)]);
// LOG_printf(&trace, "pointer to b[3] is %x", &bufferout[3]);
// LOG_printf(&trace, "[3, BS] is %x", (3 % BufferSize));
// LOG_printf(&trace, "[3, 64K] is %x", (3 % (64*1024)));
// LOG_printf(&trace, "3 is %x", (3));
// for(i=0; i< 0x2000; i++)
// {
// temp_array[0] = bufferout[(i%BufferSize)];
// temp_array[0] += 1;
// bufferout[(i)] = temp_array[0];
// }
// temp_array[0] &= 0xFFFF;
 //bufferout[1] = temp_array[0];

 my_start_up = 0;
 }

 MyGlobalCounter++;

 if ((MobileStatus ==1) && (SldListPtr > 2) && (MyGlobalCounter - SldListArray[(SldListPtr-2)%3
 {
 MobileStatus = 0;
 mobile_off();
 LOG_printf(&trace, "turning off the mobile");
 }

 for (i = 31; i >= 0; i--)
 {
 incremente = envelope(bufferin[RxBufOutPtr++ % BufferSize], &bufferout[0], TxBufInPtr);
/* if(incremente == 0xffff) // error require force restart
 {
 MyForceRestart();
 RequestProcess = 0;
 return;
 }
*/
 TxBufInPtr = TxBufInPtr + incremente;
 myfilter(incremente, &bufferout[0], TxBufInPtr);
 if (sld(incremente, &bufferout[0], TxBufInPtr) == 1)
 {
 SldListFlag++;
 SldListArray[SldListPtr++%3] = MyGlobalCounter;

 //WriteDaFile(&bufferout[0]);
 LOG_printf(&trace, "Global counter is %u", MyGlobalCounter);

 if((SldListFlag >= 3) && (MobileStatus == 0))
 {
 diff1 = SldListArray[(SldListPtr-1)%3] - SldListArray[(SldListPtr-2)%3];
 diff2 = SldListArray[(SldListPtr-2)%3] - SldListArray[(SldListPtr-3)%3];
 /*
 LOG_printf(&trace," diff1 ,%u", diff1);
 LOG_printf(&trace," diff2 ,%u", diff2);
 LOG_printf(&trace," sldp0 ,%u", SldListArray[SldListPtr%3]);
 LOG_printf(&trace," sldp1 ,%u", SldListArray[(SldListPtr-1)%3]);
 LOG_printf(&trace," sldp2 ,%u", SldListArray[(SldListPtr-2)%3]);
 LOG_printf(&trace," sld0 ,%u", SldListArray[0]);
 LOG_printf(&trace," sld1 ,%u", SldListArray[1]);
 LOG_printf(&trace," sld2 ,%u", SldListArray[2]);
 */
 if((diff1 <= 4500) && (diff2 <= 4500))
 {
 MobileStatus = 1;
 LOG_printf(&trace," TURNING THE MOBILE ON");
 mobile_on();
 }
 }
 //LOG_printf(&trace, "TXBufOutPtr %x",)
 //LOG printf(&trace, "TXBufOutPtr %x", (0x00420000 + ((TxBufInPtr%BufferSize)*2)-0x200
 //LOG_printf(&trace, "SLD DETECTED !!!!");
 //LOG_printf(&trace, "start probing!");
 //LOG_printf(&trace, "probing done");
 //mobile_on();
 }
 }

/*
 for (i = 31; i >= 0; i--)
 {
 RxBufOutPtr++;
 bufferout[TxBufInPtr++ % BufferSize] = (bufferin[RxBufOutPtr % BufferSize]);//x2/3)+(buffe
 //bufferout[TxBufInPtr++ % BufferSize] = bufferin[RxBufOutPtr++ % BufferSize];
 //temp_array[i+32] = bufferout[TxBufInPtr % BufferSize];
 }
*/
 temp = RxBufOutPtr;
 temp = temp - 32;
 for (i= 1; i<64 ; i++)
 {

 temp_array[i] = bufferout[temp++ % BufferSize];
 }

 RequestProcess = 0;
 }
}

/*
 * ======== allocBuf ========
 */
static Uns allocBuf(PIP_Obj *out, Uns **buf)
{
 PIP_alloc(out);
 *buf = PIP_getWriterAddr(out);;
 return (PIP_getWriterSize(out));
}

/*
 * ======== freeBuf ========
 */
static Void freeBuf(PIP_Obj *out)
{
 PIP_free(out);
}

/*
 * ======== getBuf ========
 */
static Uns getBuf(PIP_Obj *in, Uns **buf)
{
 PIP_get(in);
 *buf = PIP_getReaderAddr(in);;
 return (PIP_getReaderSize(in));
}

/*
 * ======== process ========
 */
static Void process(Uns *src, Int size, Uns *dst)
{
 Int i;
 signed short test_array[32];
 //Uns temp_value;
 //local_max = filter(src, size, dst);
 //LOG_printf(&trace, " %u local_max", local_max);
 //envelope(local_max);
 //src = &LuckyArray[0];
 for (i = size - 1; i >= 0; i--)
 {
 //dst[i] = src[i];
 //dst[i] = LuckyArray[i];
 test_array[i] = (signed short) src[i];
 bufferin[RxBufInPtr++ % BufferSize] = test_array[i];

 //temp_value = (Uns) bufferin[RxBufInPtr % BufferSize];
 //temp_value &= 0x0000FFFF;
 //dst[i] = temp_value;
// test_array[i] = bufferin[RxBufInPtr % BufferSize];
 //ProbePointer[i] = src[i];
 }

 for (i = size - 1; i >= 0; i--)
 {
 dst[i] = LuckyArray[i];

/* temp_value = (Uns) bufferout[TxBufOutPtr++ % BufferSize];
 temp_value &= 0x0000FFFF;
 dst[i] = temp_value;*/
 }

 RequestProcess = 1;

 /* if hostPipe is non-NULL write data to this pipe */
 if (hostPipe != NULL) {
 writeBuf(hostPipe, dst, size);
 }
}

/*
 * ======== putBuf ========
 */
static Void putBuf(PIP_Obj *out, Uns size)
{
 PIP_setWriterSize(out, size);
 PIP_put(out);
}

/*
 * ======== writeBuf ========
 */
static Void writeBuf(PIP_Obj *out, Uns *buf, Uns size)
{
 Uns dstSize;
 Uns *dst;
 Int i;

 /* allocate outBuffer for output */
 dstSize = allocBuf(out, &dst);

 /* copy data to output buffer (but not more than output buffer size) */
 for (i = (dstSize >= size) ? size : dstSize; i > 0; i--) {
 *dst++ = *buf++;
 }

 /* put buffer to output pipe */
 putBuf(out, size);
}

#include <std.h>
#include <trc.h>
#include <log.h>
#include <swi.h>

//#include "sldcfg.h"
#include "sld.h"

extern far LOG_Obj trace;
const far unsigned long BufferSize4 = 64*1024;

Uns timer_value[2];
static signed short peak1, peak2;//, dumby_timer, noiseAmmunity;
static Uns timer;
//static int SLD_flag;
static int start_flag, count, low_counter1, low_counter2;

int sld(int num_new_memebers, signed short *buffer, unsigned long index);
int sld_process(signed short member);
int sld_calculate();
void sld_init();
void sld_reset();

//extern void c_put(Uns var);
//extern Uns c_get();

/*void main()
{
 int k;
 sld_init();
 LOG_printf(&trace, "In main");
 //initialize all members to 45!
 for(k=0; k < ECHOFRAMELEN; k++)
 c_put(45);

 //input 0,2,4,3,1
 for(k = 0; k < 3; k++)
 {
 c_put(2 * k);
 }
 for(k = 2; k > 0; k--)
 {
 c_put(2 * k - 1);
 }

 sld(5);

 //input 11 zeros
 for(k=0; k < 11; k++)
 c_put(0);

 sld(11);

 //input 0,2,4,6,8,7,3,1
 for(k = 0; k < 5; k++)
 {
 c_put(2 * k);
 }

 for(k = 4; k > 0; k--)
 {
 c_put(2 * k - 1);
 }

 sld(9);

 //input 7 zeros
 for(k=0; k < 7; k++)
 c_put(0);

 sld(7);

 //input a good SLD data : 0,2,4,6,8,7,5,3,1,0,2,4,3,1
 for(k = 0; k < 5; k++)
 {
 c_put(2 * k);
 }

 for(k = 4; k > 0; k--)
 {
 c_put(2 * k - 1);
 }

 sld(9);

 for(k = 0; k < 3; k++)
 {
 c_put(2 * k);
 }
 for(k = 2; k > 0; k--)
 {
 c_put(2 * k - 1);
 }

 sld(5);

 return;
}

void c_put(Uns var)
{
 c_buffer[write_index++ % ECHOFRAMELEN] = var;
 counter++;
}

Uns c_get()
{ Uns temp;
 if(counter == 0)
 {
 LOG_printf(&trace, "Circular Buffer is empty. There is nothing to return.");
 return 1;
 }
 else
 {
 counter--;
 temp = c_buffer[read_index++ % ECHOFRAMELEN];
 //LOG_printf(&trace, "%u member", temp);
 return temp;
 }
}*/

void sld_init()
{
 start_flag=0;
 sld_reset();
}

void sld_reset()
{
 low_counter1 = 0;
 low_counter2 = 0;
 timer = 0;
 timer_value[0] = 0;
 timer_value[1] = 0;
 count = 0;
 peak1 = 0;
 peak2 = 0;
 //dumby_timer = 0;
 //noiseAmmunity = 0;
}

int sld(int num_new_memebers, signed short *buffer, unsigned long index)
{
 int sld_detected = 0;
 index = index - num_new_memebers;
 while(num_new_memebers)
 {
 if (sld_process(buffer[index++ % BufferSize4]) == 1)
 sld_detected = 1;
 num_new_memebers--;
 }
 return sld_detected;
}

int sld_process(signed short member)
{
 //LOG_printf(&trace, "%u member", member);

/* if(dumby_timer >= dumby_timer_ther)
 {
 LOG_printf(&trace, "dummy timer ran out!! start_flag %d member %d", start_flag, member);
 sld_init();
 }*/

 if(start_flag == 0)
 {
 if ((member >= low_ther) && (low_counter1 >= 100))
 {
 start_flag = 1;
 low_counter1 = 0;
 //noiseAmmunity = 0;
 //LOG_printf(&trace, "starting");
 }
 else if(member >= low_ther)
 {
 low_counter1++;
 }
 }

 else
 {
 //low_counter1 = 0;
 if (member <= low_ther)
 {
 /*if (noiseAmmunity < 100)
 {
 noiseAmmunity++;
 }*/
 //else if (timer <= 500)
 //{
 // dumby_timer++;
 //noiseAmmunity = 0;
 // }

 /*if (noiseAmmunity < 100)
 {
 noiseAmmunity++;
 }
 else if(!peak2 && !count)
 {
 timer_value[count]=timer;
 timer=0;
 //count++;
 dumby_timer=0;
 noiseAmmunity=0;
 }*/
 /* else if((timer < 500) && !peak1)
 {
 sld_init();
 }*/
 if(low_counter2 <= 200)
 {
 low_counter2++;
 }
 /*else if(peak <= high_ther)
 {
 sld_init();
 }*/
 //low_counter2 = 0;
 else if (((peak1 >= high_ther) && !count) ||
 ((peak2 >= high_ther) && count))
 {
 //low_counter2 = 0;
 //LOG_printf(&trace, "before going to sld_calcutate %d", peak1);
 return sld_calculate();
 }
 else
 {
 sld_init();
 }
 }

 else if (member >= low_ther)
 {
 /*dumby_timer = 0;
 if (noiseAmmunity < 100)
 {
 noiseAmmunity++;
 }
 if(low_counter3 <= 100)
 {
 low_counter1++;
 }*/
 //else
 //{
 //low_counter1 = 0;
 low_counter2 = 0;
 timer++;
 // noiseAmmunity = 0;
 if(!count && (member >= high_ther) && (peak1 < member))
 {
 peak1 = member;
 //dumby_timer = 0;
 }
 else if(count && (member >= high_ther) && (peak2 < member))
 {
 peak2 = member;
 //dumby_timer = 0;
 }
 // LOG_printf(&trace, "%d state", state);
 /* if(member >= high_ther)
 {
 //Store the max
 if((count == 0) && (peak1 < member))
 {
 peak1 = member;
 }
 else if(
 if((count == 1) && (peak2 < member))
 {
 peak2 = member;
 }
 }*/
 }
 //}
 }
 return 0;
}

int sld_calculate()
{
 //LOG_printf(&trace, "timer %u and count %d in sld_calculate", timer, count);
 //LOG_printf(&trace, "peak1 %d peak2 %d in sld_calculate", peak1, peak2);
 timer_value[count] = timer;
 timer = 0;
 start_flag = 0;
 count++;
 //noiseAmmunity = 0;
 //dumby_timer = 0;
 if(count == 2)
 {
 if((peak1 >= high_ther2) && (peak2 >= high_ther) &&
 ((timer_value[0] >= (2*timer_value[1])) && (timer_value[0] <= (12*timer_value[1]))) &&
 ((peak1 >= peak2) && (peak1 <= (6*peak2)))) /*&&
 ((timer_value[0] / timer_value[1]) <= time_ther2)*/
 {
 //SLD_flag = 1;
 LOG_printf(&trace, "%d peak1", peak1);
 LOG_printf(&trace, "%d peak2", peak2);
 LOG_printf(&trace, "%u timer_count[0]", timer_value[0]);
 LOG_printf(&trace, "%u timer_count[1]", timer_value[1]);
 LOG_printf(&trace, "SLD_flag set!");
 sld_init();
 return 1;
 }

 else
 {
 LOG_printf(&trace, "switching");
 //LOG_printf(&trace, "in switching peak1 %d is peak2 is%d", peak1, peak2);

 timer_value[0] = timer_value[1];
 peak1 = peak2;
 peak2 = 0;
 timer_value[1] = 0;
 count = 1;
 }
 }
 return 0;
}

#include <std.h>
#include <stdarg.h>
#include <log.h>
#include <trc.h>
#include "myfilter.h"

static int BufferInPtr;
//static int BufferOutPtr;
signed short buffer[filterLen];

static short signed filter_process(signed short new_value);

void myfilter_init()
{
 int i;
 BufferInPtr = 0;
 for (i= 0; i<filterLen; i++)
 {
 buffer[i] = 0;
 }

}

void myfilter(int num_new_members, signed short *buffer, unsigned long index)
{
 index = index - num_new_members;
 while(num_new_members)
 {
 buffer[index++ % BufferSize3] = filter_process(buffer[index % BufferSize3]);
 num_new_members--;
 }
}

short signed filter_process(signed short new_value)
{
 int i;
 signed short avg;
 buffer[BufferInPtr++ % filterCons] = new_value;
 for (i= 0; i<filterLen; i++)
 {
 avg += buffer[i]/filterCons;
 }
 if (avg>2500)
 {
 return 0;
 }
 return avg;
}

#include "timer.h"
#include "regs.h"

void mobile_on ();
void mobile_off ();

void mobile_on ()
{
 static int musicNum = 0;

 musicNum++;
 if ((musicNum%3) == 0)
 {
 TOUT_VAL(0,1);
 TOUT_VAL(1,0);
 }

 if ((musicNum%3) == 1)
 {
 TOUT_VAL(0,1);
 TOUT_VAL(1,1);
 }

 if ((musicNum%3) == 2)
 {
 TOUT_VAL(0,0);
 TOUT_VAL(1,1);
 }
}

void mobile_off ()
{
 TOUT_VAL(0,0);
 TOUT_VAL(1,0);
}

//#include <stdio.h>
#include <std.h>
#include <stdarg.h>
#include <log.h>
#include <trc.h>
#include "envelope_dec.h"
//#include "ProjectCons.h"
//#include "meowcfg.h"

//#define BufferSize2 64*1024

int i;
int temp;
signed short peak_value[Len];
signed short Last_Max;
signed short New_Max;
//extern signed short bufferout[BufferSize];
extern far unsigned long TxBufInPtr;
extern far LOG_Obj trace;

short signed sorted_array[Len];

static void env_rest();
static void interpolate();

/*
void main()
{
 int k;
 Uns testArray[10];
 testArray[0] = 10;
 testArray[1] = 0;
 testArray[2] = 50;
 testArray[3] = 0;
 testArray[4] = 10;
 testArray[5] = 30;
 testArray[6] = 0;
 testArray[7] = 20;
 testArray[8] = 0;
 testArray[9] = 10;
 temp =0;
 envelope_init(); //

 for (k = 0; k<9; k++)
 {
 envelope(testArray[k]);
 }

 for (k = 0; k<9; k++)
 {
 sorted_array[k] = c_get(9-k);
 }
 return;
}
*/
void envelope_init()
{
 Last_Max = 0;
 peak_value[0] = Last_Max;
 peak_value[1] = 1;
 i = 1;
 return;
}
/*
void send_data()
{
 int k;
 // send data (the first i-1 data are ready to go)
 for(k = 1; k<i; k++)
 {
// c_put(peak_value[k]);
// test_array[temp] = peak_value[k];
// temp++;
// LOG_printf(&trace, "Audio example started!!\n");
// printf("location %i, has value %u", temp++, peak_value[k]);

 }

 Last_Max = New_Max;
 peak_value[0] = Last_Max;
 peak_value[1] = peak_value[i];
 i = 1;
 return;
}
*/
void interpolate()
{
 int j = 0;
 signed short average;

/*
 int temp_flag = 0;

 signed short temp_local[100];
 for (j = 0; j <= (i); j++)
 {
 temp_local[j] = peak_value[j];
 if (temp_local[j] < 0)
 ;
 }

 if (temp_flag == 1)
 {
 for (j = 0; j <= (i); j++)
 {
 LOG_printf(&trace,"location %i, value is %x", j, peak_value[j]);
 }
 }
*/

 New_Max = peak_value[i-1];

 if (New_Max > Last_Max)
 {
 average = (New_Max - Last_Max)/ (i-1);

 for (j = 1; j <= (i-1); j++)
 {
 peak_value[j] = Last_Max + (j * average);
 }
 }
 else
 {
 average = (Last_Max - New_Max)/ (i-1);

 for (j =1; j <= (i-1); j++)
 {
 peak_value[j] = Last_Max - (j * average);
 }
 }

/* if (temp_flag == 1)
 {
 for (j = 0; j <= (i); j++)
 {
 LOG_printf(&trace,"location %i, value is %x", j, peak_value[j]);
 }
 }
 */
 /*
 for (j = 0; j <= (i); j++)
 {
 temp_local[j] = peak_value[j];
 if (temp_local[j] < 0)
 ;
 }*/
 //send_data();
}

void env_rest()
{
 Last_Max = New_Max;

 peak_value[0] = Last_Max;
 peak_value[1] = peak_value[i];
 i = 1;
}

unsigned long envelope(signed short local_value, signed short *buffer, unsigned long index)
{
 //static int MyResetFlag = 0;
 int k,l;
 unsigned long tempy=0;
 signed short filtered_value;
 int b=0;
 signed short average;

 signed short temp_array2[201];
 i++;
 peak_value[i] = local_value;

 if ((i-10) > Len)
 {
 // for (b=0; b<200; b++)
 // temp_array2[b] = peak_value[b];
 if (peak_value[i-1] < 0)
 {
 peak_value[i-1] = 0-peak_value[i-1];
 }
 //peak_value[i-1] = 10;
 peak_value[i] = peak_value[i-1] -1;
 peak_value[i-2] = peak_value[i-1] -1;

 //MyResetFlag =1;
 LOG_printf(&trace,"look at me later on");
 //return 0;
 }

 if (peak_value[i-1] <= 0)
 {
 return 0;
 }

 //checks to see if the middle number is the peak
 if ((peak_value[i-1] >= peak_value[i]) &&
 (peak_value[i-1] >= peak_value[i-2]))
 {
 // calculate teh midpoints
 interpolate();
 //LOG_printf(&trace, "tempy is %i", tempy);
 //LOG_printf(&trace, "index is %i", index);
 //LOG_printf(&trace, "buffer value is %i", buffer[index % BufferSize]);
 // update the main array
 for(k = 1; k<i; k++)
 {
 // filtering process
 buffer[index++ % BufferSize2] = peak_value[k];
 tempy++;
 }

 // get ready for the next peak
 //LOG_printf(&trace, "tempy is %i", tempy);
 //LOG_printf(&trace, "index is %i", index);
 //LOG_printf(&trace, "buffer value is %i", buffer[(index-k) % BufferSize]);
 env_rest();
 return tempy;
 }
 return 0;
}

/*
 * Copyright 2001 by Texas Instruments Incorporated.
 * All rights reserved. Property of Texas Instruments Incorporated.
 * Restricted rights to use, duplicate or disclose this code are
 * granted through contract.
 * U.S. Patent Nos. 5,283,900 5,392,448
 */
/* "@(#) DSP/BIOS 4.51.0 05-23-01 (barracuda-i10)" */
/*
 * ======== dss_evm62.c ========
 */

#include <std.h>

#include "dss.h"
#include "dss_priv.h"

#define RXINT_BIT 0x0100 /* assume DMA0 rx interrupt on INT 8 */
#define TXINT_BIT 0x0200 /* assume DMA1 tx interrupt on INT 9 */

/* CPLD (Complex Programmable Logic Device) register */
#define CPLD (*(volatile unsigned int *)0x01780000)

/* Codec Memory Mapped Registers */
#define IAR (*(volatile unsigned int *)0x01720000) /* Index Address Reg */
#define IDR (*(volatile unsigned int *)0x01720004) /* Indexed Data Reg */
#define SR (*(volatile unsigned int *)0x01720008) /* Status Reg */
#define PIO (*(volatile unsigned int *)0x0172000c) /* PIO Data Reg */

/* Codec Indirect Mapped Registers */
#define DAC_LEFT_CNTL 0x06 /* I6 - Left DAC Output Control */
#define DAC_RIGHT_CNTL 0x07 /* I7 - Right DAC Output Control */
#define FS_PDF_CNTL 0x48 /* I8 - FS & Playback Data Control (MCE set) */
#define PIO_CNTL 0x49 /* I9 - Interface Control (MCE set) */
#define MODE_CNTL 0x0c /* I12 - Mode and ID Control */
#define SP_CNTL 0x50 /* I16 - Alternate Feature enable 1 (MCE set) */
#define LINE_LEFT_CNTL 0x12 /* I18 - Left Line Input Control */
#define LINE_RIGHT_CNTL 0x13 /* I19 - Right Line Input Control */
#define CDF_CNTL 0x5c /* I28 - Capture Data Format (MCE set)*/

/* Codec Commands */
#define DAC_UNMUTE 0x00 /* Unmute DAC-to-mixer */
#define MODE2_ENABLE 0x40 /* Enable MODE 2 */
#define INIT_DONE 0x80 /* Initialization bit */
#define SP_32_ENABLE 0x0a /* Serial Port (32 bits) */
#define SP_64E_ENABLE 0x02 /* Serial Port (64 bits enhanced) */
#define SP_64_ENABLE 0x06 /* Serial Port (64 bits enhanced) */
#define CDF_S_L16 0x50 /* CDF; Stereo, linear, 16-bit */
#define FS8_S_L16 0x50 /* FS: 8kHz, PDF; Stereo, linear, 16-bit */
#define FS44_S_L16 0x5c /* FS: 44kHz, PDF; Stereo, linear, 16-bit */
#define PIO_ENABLE 0xc3 /* Enable PIO (capture and playback) */
#define MCE_RESET 0xbf /* Reset Mode Control Bit (MCE) */

/* CPLD commands */
#define CODEC_DISABLE 0xf8
#define CODEC_ENABLE 0x04

/* Macros */
#define SETBITMASKCODEC(i,n)\
 IAR = (i);\
 IDR |= (n);

#define SETREGCODEC(i,n)\
 IAR = (i);\
 IDR = (n);

static void codecInit(void); /* Configure Codec */

/*
 * ======== DSS_init ========
 */
void DSS_init(void)
{
 /* Configure codec */
 codecInit();

 /* Enable Transmit and Receive bits */
 MCBSP_enableRcv(DSS_hMcbsp0);

 MCBSP_enableXmt(DSS_hMcbsp0);

 /* Enable DMA-to-CPU interrupts */
 IER |= RXINT_BIT; /* INT 8 */
 IER |= TXINT_BIT; /* INT 9 */
}

/*
 * ======== codecInit ========
 */
static void codecInit(void)
{
 /* Reset and enable codec */
 CPLD &= CODEC_DISABLE;
 CPLD |= CODEC_ENABLE;

 /* wait for codec to finish initialization */
 while(IAR & INIT_DONE);

 /* Enable mode 2 */
 SETBITMASKCODEC(MODE_CNTL, MODE2_ENABLE);

 /* Set codec Serial port format */
 SETREGCODEC(SP_CNTL, SP_32_ENABLE);

 /* Set capture format */
 SETREGCODEC(CDF_CNTL, CDF_S_L16);

 /* Set playback format and sample rate */
 SETREGCODEC(FS_PDF_CNTL, FS8_S_L16);//FS44_S_L16);

 /* Enable bits in PIO (programmed I/O) */
 SETREGCODEC(PIO_CNTL, PIO_ENABLE);

 /* Reset Mode Control Bit (MCE) */
 IAR &= MCE_RESET;

 /* Unmute left/right DAC-to-mixer */
 SETREGCODEC(DAC_LEFT_CNTL, DAC_UNMUTE);
 SETREGCODEC(DAC_RIGHT_CNTL, DAC_UNMUTE);
}

/*
 * ======== DSS_spWrite ========
 */
Void DSS_spWrite(Uns data)
{
 while ((MCBSP_RGETH(DSS_hMcbsp0, SPCR) & 0x20000) == 0);

 MCBSP_RSETH(DSS_hMcbsp0, DXR, data);
}

/*
 * ======== DSS_spRead ========
 */
Uns DSS_spRead(Void)
{
 while ((MCBSP_RGETH(DSS_hMcbsp0, SPCR) & 0x2) == 0);

 return (MCBSP_RGETH(DSS_hMcbsp0, DRR));
}

/*
 * Copyright 2001 by Texas Instruments Incorporated.
 * All rights reserved. Property of Texas Instruments Incorporated.
 * Restricted rights to use, duplicate or disclose this code are
 * granted through contract.
 * U.S. Patent Nos. 5,283,900 5,392,448
 */
/* "@(#) DSP/BIOS 4.51.0 05-23-01 (barracuda-i10)" */
/*
 * ======== dss_dmacisr.c ========
 */

#include <std.h>
#include <pip.h>

#define _DMA_ 1

#include "dss.h"
#include "dss_priv.h"

/*
 * ======== DSS_dmaRxIsr ========
 */
void DSS_dmaRxIsr(void)
{
 PIP_put(&DSS_rxPipe);
 DSS_rxCnt = 0;

 DMA_RSETH(DSS_hDmaRint0, SECCTL, 0x08);
 DSS_rxPrime(TRUE);
}

/*
 * ======== DSS_dmaTxIsr ========
 */
void DSS_dmaTxIsr(void)
{
 PIP_free(&DSS_txPipe);
 DSS_txCnt = 0;

 DMA_RSETH(DSS_hDmaXint0, SECCTL, 0x08);
 DSS_txPrime(TRUE);
}

/*
 * Copyright 2001 by Texas Instruments Incorporated.
 * All rights reserved. Property of Texas Instruments Incorporated.
 * Restricted rights to use, duplicate or disclose this code are
 * granted through contract.
 * U.S. Patent Nos. 5,283,900 5,392,448
 */
/* "@(#) DSP/BIOS 4.51.0 05-23-01 (barracuda-i10)" */
/*
 * ======== dss.c ========
 * DSS provides a pipe(PIP) interface to the serial port audio data.
 * DSS export two pipes: DSS_rxPipe and DSS_txPipe. DSS_rxPipe can be
 * read by the client to receive data from the serial port and
 * DSS_txPipe can be written to by the client to send data to the
 * serial port.
 *
 * The input pipe (DSS_rxPipe) operates as follows:
 *
 * Startup:
 * BIOS startup
 * ------------
 * notifyWriter()
 * |__DSS_rxPrime(0)
 *
 *
 * Steady state:
 * ISR(writer) client(reader)
 * ----------- --------------
 * PIP_put()
 * |__notifyReader()--> audio()
 * |
 * DSS_rxPrime(1) |
 * |__PIP_alloc() |
 * start DMA |
 * |__PIP_get()
 * `process data`
 * PIP_free()
 * |__notifyWriter()
 * |__DSS_rxPrime(0)
 *
 * The output pipe (DSS_txPipe) operates as follows:
 *
 * Startup:
 * BIOS startup
 * ------------
 * notifyWriter()
 * |__DSS_txPrime(0)
 *
 *
 * Steady state:
 * ISR(reader) client(writer)
 * ----------- --------------
 * PIP_free()
 * |__notifyWriter()--> audio()
 * |
 * DSS_txPrime(1) |
 * |__PIP_get() |
 * start DMA |
 * |__PIP_alloc()
 * `write data`
 * PIP_put()
 * |__notifyReader()
 * |__DSS_txPrime(0)
 */

#include <std.h>
#include <pip.h>
#include <log.h>
#include <trc.h>
#include <clk.h>

#include "dss.h"
#include "dss_priv.h"

#ifdef _EDMA_
#include <csl_cache.h>
#endif

Int DSS_error = 0;

Int DSS_rxCnt = 0;
Int DSS_txCnt = 0;

Int *DSS_rxPtr = NULL;
Int *DSS_txPtr = NULL;

DSS_Obj DSS_config = {
 0 /* enable tracing */
};

/*
 * ======= DSS_txPrime ========
 * Called when DSS_txPipe has a full buffer to be transmitted
 * (i.e., when notifyReader() is called) and when the DSS ISR
 * is ready for more data.
 */
void DSS_txPrime(Bool calledByISR)
{
 PIP_Obj *txPipe = &DSS_txPipe;
 static int delay = 1; /* or 2, 3, etc. */
 static Int nested = 0;

 LOG_message("DSS_txPrime(): %u", CLK_gethtime());

#if !(defined(_EDMA_) || defined(_DMA_))
 if (calledByISR) {
 DSS_computePhase(PIP_getWriterSize(txPipe));
 }
#endif

 if (nested) { /* prohibit recursive call via PIP_get() */
 return;
 }

 if (delay) { /* ensure that output does not start too soon */
 delay--;
 return;
 }

 nested = 1;

 if (DSS_txCnt == 0 && PIP_getReaderNumFrames(txPipe) > 0) {
 Int count, i;
 MdInt *dst;
 PIP_get(txPipe);

 /* must set 'Ptr' before 'Cnt' to synchronize with isr() */
 DSS_txPtr = PIP_getReaderAddr(txPipe);

 /* ensure bit 0 of DAC word is 0; AIC uses bit 0 to request control */
 count = (sizeof(Int) / sizeof(MdInt)) * PIP_getReaderSize(txPipe);
 for (i = count, dst = (MdInt *)DSS_txPtr; i > 0; i--) {
 *dst++ = 0xfffe & *dst;
 }

 DSS_txCnt = count;

#if defined(_EDMA_) || defined(_DMA_)
 DSS_dmaTxStart(DSS_txPtr, DSS_txCnt);
#endif
 }
 else if (calledByISR && (DSS_error & DSS_TXERR) == 0) {
 if (DSS_config.enable) {
 TRC_disable(TRC_GBLTARG);
 }
 LOG_error("transmit buffer underflow: %u", CLK_gethtime());
 DSS_error |= DSS_TXERR;
 }

 nested = 0;
}

/*
 * ======= DSS_rxPrime ========
 * Called when DSS_rxPipe has an empty buffer to be filled;
 * e.g., when notifyWriter() is called) and when the DSS ISR

 * is ready to fill another buffer.
 */
void DSS_rxPrime(Bool calledByISR)
{
 PIP_Obj *rxPipe = &DSS_rxPipe;
 static Int nested = 0;

 LOG_message("DSS_rxPrime(): %u", CLK_gethtime());

#if !(defined(_EDMA_) || defined(_DMA_))
 if (calledByISR) {
 DSS_computePhase(PIP_getWriterSize(rxPipe));
 }
#endif

 if (nested) { /* prohibit recursive call via PIP_alloc() */
 return;
 }
 nested = 1;

 if (DSS_rxCnt == 0 && PIP_getWriterNumFrames(rxPipe) > 0) {
 PIP_alloc(rxPipe);

 /* must set 'Ptr' before 'Cnt' to synchronize with isr() */
 DSS_rxPtr = PIP_getWriterAddr(rxPipe);
 DSS_rxCnt = (sizeof(Int) / sizeof(MdInt)) * PIP_getWriterSize(rxPipe);

#if defined(_EDMA_) || defined(_DMA_)
 DSS_dmaRxStart(DSS_rxPtr, DSS_rxCnt);
#endif
 }
 else if (calledByISR && (DSS_error & DSS_RXERR) == 0) {
 if (DSS_config.enable) {
 TRC_disable(TRC_GBLTARG);
 }
 LOG_error("receive buffer overflow: %u", CLK_gethtime());
 DSS_error |= DSS_RXERR;
 }

 nested = 0;
}

#ifdef _EDMA_
/*
 * ======== DSS_dmaInit ========
 * Initialise EDMA Controller
 */
Void DSS_dmaInit(Void)
{
 LOG_message("DSS_dmaInit(): %u", CLK_gethtime());

 /* General EDMA Initialization */
 EDMA_RSET(EER, 0x0000); /* Disable all events */
 EDMA_RSET(ECR, 0xffff); /* Clear all pending events */
 EDMA_RSET(CIER, 0x0000); /* Disable all events to Interrupt */
 EDMA_RSET(CIPR, 0xffff); /* Clear all pending Queued EDMA ints */

 /* Enable Rx/Tx DMA Complete Interrupts to the CPU */
 EDMA_RSET(CIER, DSS_RXDONE | DSS_TXDONE);
}

/*
 * ======= DSS_dmaRxStart ========
 */
Void DSS_dmaRxStart(Void *dst, Int nsamps)
{
 LOG_message("DSS_dmaRxstart(): %u", CLK_gethtime());

 CACHE_clean(CACHE_L2, dst, nsamps);

 /* Reconfig EDMA channel for next receive buffer */
 EDMA_RSETH(DSS_hEdmaRint0, CNT, (Uns) nsamps);
 EDMA_RSETH(DSS_hEdmaRint0, DST, (Uns) dst);

 EDMA_RSET(EER, 0x3000); /* Enable McBSP0 Rx/Tx Events to the DMA */
}

/*

 * ======= DSS_dmaTxStart ========
 */
Void DSS_dmaTxStart(Void *src, Int nsamps)
{
 static Int startup = 1;

 LOG_message("DSS_dmaTxstart(): %u", CLK_gethtime());

 CACHE_flush(CACHE_L2, src, nsamps);

 if (startup) {
 startup = 0;
 DSS_spWrite(0); DSS_spWrite(0);
 /* EDMA_RSET(ECR, 0x3000); /Clear any previous McBSP Events */
 }

 /* Reconfig EDMA channel for next transmit buffer */
 EDMA_RSETH(DSS_hEdmaXint0, SRC, (Uns) src);
 EDMA_RSETH(DSS_hEdmaXint0, CNT, (Uns) nsamps);

 EDMA_RSET(EER, 0x3000); /* Enable McBSP0 Rx/Tx Events to the DMA */
}
#endif

#ifdef _DMA_
/*
 * ======= DSS_dmaRxStart ========
 */
void DSS_dmaRxStart(void *dst, Int nsamps)
{
 DMA_RSETH(DSS_hDmaRint0, SRC,(Int)(&DSS_hMcbsp0->baseAddr[_MCBSP_DRR_OFFSET]));
 DMA_RSETH(DSS_hDmaRint0, DST, (Uns)dst);
 DMA_RSETH(DSS_hDmaRint0, XFRCNT, (0x1 << 16) + nsamps / (sizeof(Int) / sizeof(MdInt)));
 DMA_start(DSS_hDmaRint0);
}

/*
 * ======= DSS_dmaTxStart ========
 */
void DSS_dmaTxStart(void *src, Int nsamps)
{
 static Int startup = 1;

 if (startup) {
 startup = 0;
 DSS_spWrite(0); DSS_spWrite(0);
 }
 DMA_RSETH(DSS_hDmaXint0, SRC, (Uns)src);
 DMA_RSETH(DSS_hDmaXint0, DST,(Int)(&DSS_hMcbsp0->baseAddr[_MCBSP_DXR_OFFSET]));
 DMA_RSETH(DSS_hDmaXint0, XFRCNT, (0x1 << 16) + nsamps / (sizeof(Int) / sizeof(MdInt)));
 DMA_start(DSS_hDmaXint0);
}
#endif

/* Do *not* directly modify this file. It was */
/* generated by the Configuration Tool; any */
/* changes risk being overwritten. */

/* INPUT audio.cdb */

/* MODULE PARAMETERS */
GBL_USERINITFXN = _FXN_F_nop;

MEM_MALLOCSEG = MEM_NULL;

CLK_TIMEFXN = CLK_F_getshtime;
CLK_HOOKFXN = HWI_F_dispatch;

PRD_THOOKFXN = FXN_F_nop;

RTDX_DATAMEMSEG = IDRAM;

HST_DSMBUFSEG = IDRAM;

SWI_EHOOKFXN = GBL_NULL;
SWI_IHOOKFXN = GBL_NULL;
SWI_EXECFXN = SWI_F_iexec;
SWI_RUNFXN = SWI_F_run;

TSK_STACKSEG = MEM_NULL;
TSK_CREATEFXN = _FXN_F_nop;
TSK_DELETEFXN = _FXN_F_nop;
TSK_EXITFXN = _FXN_F_nop;

IDL_CALIBRFXN = IDL_F_calibrate;

SYS_ABORTFXN = _error;
SYS_ERRORFXN = _error;
SYS_EXITFXN = _error;
SYS_PUTCFXN = _FXN_F_nop;

/* OBJECT ALIASES */
_IPRAM = IPRAM;
_SBSRAM = SBSRAM;
_SDRAM0 = SDRAM0;
_SDRAM1 = SDRAM1;
_IDRAM = IDRAM;
_PRD_clock = PRD_clock;
_RTA_fromHost = RTA_fromHost;
_RTA_toHost = RTA_toHost;
_HWI_RESET = HWI_RESET;
_HWI_NMI = HWI_NMI;
_HWI_RESERVED0 = HWI_RESERVED0;
_HWI_RESERVED1 = HWI_RESERVED1;
_HWI_INT4 = HWI_INT4;
_HWI_INT5 = HWI_INT5;
_HWI_INT6 = HWI_INT6;
_HWI_INT7 = HWI_INT7;
_HWI_INT8 = HWI_INT8;
_HWI_INT9 = HWI_INT9;
_HWI_INT10 = HWI_INT10;
_HWI_INT11 = HWI_INT11;
_HWI_INT12 = HWI_INT12;
_HWI_INT13 = HWI_INT13;
_HWI_INT14 = HWI_INT14;
_HWI_INT15 = HWI_INT15;
_audioSwi = audioSwi;
_LNK_dataPump = LNK_dataPump;
_RTA_dispatcher = RTA_dispatcher;
_IDL_cpuLoad = IDL_cpuLoad;
_IDL0 = IDL0;
_LOG_system = LOG_system;
_trace = trace;
_DSS_rxPipe = DSS_rxPipe;
_DSS_txPipe = DSS_txPipe;
_IDL_busyObj = IDL_busyObj;
_DSS_ioPhase = DSS_ioPhase;

/* MODULE GBL */

SECTIONS {
 .vers (COPY): {} /* version information */

}

-llnkrtdx.a62
-ldrivers.a62 /* device drivers support */
-lbiosi.a62 /* DSP/BIOS support */
-lrtdx.lib /* RTDX support */
-lcsl6201.lib
-lrtsbios.a62 /* C and C++ run-time library support */

_GBL_CACHE = GBL_CACHE;

/* MODULE MEM */
-stack 0x800
MEMORY {
 IPRAM : origin = 0x0, len = 0x10000
 SBSRAM : origin = 0x400000, len = 0x40000
 SDRAM0 : origin = 0x2000000, len = 0x400000
 SDRAM1 : origin = 0x3000000, len = 0x400000
 IDRAM : origin = 0x80000000, len = 0x10000
}
/* MODULE CLK */
SECTIONS {
 .clk: {
 CLK_F_gethtime = CLK_F_getshtime;
 CLK_A_TABBEG = .;
 *(.clk)
 CLK_A_TABEND = .;
 CLK_A_TABLEN = (. - CLK_A_TABBEG) / 1;
 } > IDRAM
}
_CLK_PRD = CLK_PRD;
_CLK_COUNTSPMS = CLK_COUNTSPMS;
_CLK_REGS = CLK_REGS;
_CLK_USETIMER = CLK_USETIMER;
_CLK_TIMERNUM = CLK_TIMERNUM;
_CLK_TDDR = CLK_TDDR;

/* MODULE PRD */
SECTIONS {
 .prd: {
 PRD_A_TABBEG = .;
 /* no PRD objects */
 PRD_A_TABEND = .;
 PRD_A_TABLEN = (. - PRD_A_TABBEG) / 32;
 } > IDRAM
}

/* MODULE RTDX */
_RTDX_interrupt_mask = 0x0;

/* MODULE HWI */
SECTIONS {
 .hwi_vec: 0x0 {
 HWI_A_VECS = .;
 *(.hwi_vec)
 }
}

/* MODULE SWI */
SECTIONS {
 .swi: {
 SWI_A_TABBEG = .;
 *(.swi)
 SWI_A_TABEND = .;
 SWI_A_TABLEN = (. - SWI_A_TABBEG) / 44;
 } > IDRAM
}

/* MODULE TSK */
_KNL_swi = 0;
/* MODULE IDL */
SECTIONS {
 .idl: {
 IDL_A_TABBEG = .;
 *(.idl)
 IDL_A_TABEND = .;
 IDL_A_TABLEN = (. - IDL_A_TABBEG) / 8;
 IDL_A_CALBEG = .;

 *(.idlcal)
 IDL_A_CALEND = .;
 IDL_A_CALLEN = (. - IDL_A_CALBEG) / 8;
 } > IDRAM
}

SECTIONS {
 .bss: {} > IDRAM

 .far: {} > IDRAM

 .sysdata: {} > IDRAM

 .mem: {} > IDRAM

 .gblinit: {} > IDRAM

 .sysregs: {} > IDRAM

 .trcdata: {} > IDRAM

 .args: fill=0 {
 *(.args)
 . += 0x4;
 } > IDRAM

 .hst: {
 HST_A_TABBEG = .;
 _HST_A_TABBEG = .;
 *(.hst)
 HST_A_TABEND = .;
 _HST_A_TABEND = .;
 HST_A_TABLEN = (. - _HST_A_TABBEG) / 20;
 _HST_A_TABLEN = (. - _HST_A_TABBEG) / 20;
 } > IDRAM

 .cinit: {} > IDRAM

 .pinit: {} > IDRAM

 .data: {} > IDRAM

 .const: {} > IDRAM

 .switch: {} > IDRAM

 .cio: {} > IDRAM

 /* RTA_toHost buffer */
 .hst0: align = 0x4 {} > IDRAM

 .sts: {
 STS_A_TABBEG = .;
 _STS_A_TABBEG = .;
 *(.sts)
 STS_A_TABEND = .;
 _STS_A_TABEND = .;
 STS_A_TABLEN = (. - _STS_A_TABBEG) / 16;
 _STS_A_TABLEN = (. - _STS_A_TABBEG) / 16;
 } > IDRAM

 .sys: {} > IDRAM

 .stack: fill=0xc0ffee {
 GBL_stackbeg = .;
 *(.stack)
 GBL_stackend = GBL_stackbeg + 0x800 - 1;
 _HWI_STKBOTTOM = GBL_stackbeg + 0x800 - 4 & ~7;
 _HWI_STKTOP = GBL_stackbeg;
 } > IDRAM

 .rtdx_data: {} > IDRAM

 .log: {
 LOG_A_TABBEG = .;
 _LOG_A_TABBEG = .;

 *(.log)
 LOG_A_TABEND = .;
 _LOG_A_TABEND = .;
 LOG_A_TABLEN = (. - _LOG_A_TABBEG) / 24;
 _LOG_A_TABLEN = (. - _LOG_A_TABBEG) / 24;
 } > IDRAM

 .dsm: {} > IDRAM

 /* RTA_fromHost buffer */
 .hst1: align = 0x4 {} > IDRAM

 /* DSS_txPipe buffer */
 .pip1: align = 0x80 {} > IDRAM

 .pip: {
 PIP_A_TABBEG = .;
 _PIP_A_TABBEG = .;
 *(.pip)
 PIP_A_TABEND = .;
 _PIP_A_TABEND = .;
 PIP_A_TABLEN = (. - _PIP_A_TABBEG) / 100;
 _PIP_A_TABLEN = (. - _PIP_A_TABBEG) / 100;
 } > IDRAM

 /* DSS_rxPipe buffer */
 .pip0: {} > IDRAM

 .printf (COPY): {} > IDRAM

 /* LOG_system buffer */
 .LOG_system$buf: align = 0x800 fill = 0xffffffff {} > IDRAM

 /* trace buffer */
 .trace$buf: align = 0x80 fill = 0xffffffff {} > IDRAM

 frt: {} > IPRAM

 .sysinit: {} > IPRAM

 .rtdx_text: {} > IPRAM

 .text: {} > IPRAM

 .hwi: {} > IPRAM

 .bios: {} > IPRAM

}

	Table of Contents
	Introduction
	Current State of the Device
	Deviation of the Device
	Overall System
	Signal Acquistion
	System Powering
	Signal Processing
	Interface Circuit

	Future Plan
	Budget
	Time
	Inter-Personal and Technical Experiences
	Marjan Houshmand
	Farhud Hashemian
	Shona Huang
	Farnam Mohasseb

