

School of Engineering Science
Burnaby, BC V5A 1S6
nvision-tech@sfu.ca

October 27, 2003

Dr. Andrew Rawicz
School of Engineering Science
Simon Fraser University
Burnaby, British Columbia
V5A 1S6

Re: ENSC 340 Design Specification for an Automotive Diagnostic Tool

Dear Dr. Rawicz:

The attached document, Design Specification for an Automotive Diagnostic System,
outlines our design project for ENSC 340 (Engineering Project). We are in the process of
designing a system that will interface with existing diagnostic ports on late-model
automobiles, thereby providing hobby mechanics and sport enthusiasts with inexpensive
access to detailed information from the car’s computer.

This design specification outlines the implementation of the various capabilities of the
Automotive Diagnostic Tool stated in our functional specification. Included in this
document is a complete detailing of the hardware, firmware, software and system
interfaces required for the proof-of-concept prototype. Also included is the system test
plan. The proof-of-concept device will be delivered by mid-December, 2003.

NVision Technologies is a group of four talented, enthusiastic and creative third-year
engineering students: Jozsef Dudas, Seema Jaffer, Deanna Lee, and Byron Thom. Should
you have any questions or concerns, please feel free to contact me via telephone at
604-773-9712 or email at nvision-tech@sfu.ca.

Sincerely,

Jozsef Dudas
President and CEO
NVision Technologies

Enclosure: Design Specification for an Automotive Diagnostic System

 Design Specification for an

 Automotive Diagnostic Tool

 Contact Person:

NVision Technologies: Jozsef Dudas
Seema Jaffer
Deanna Lee
Byron Thom

Jozsef Dudas
NVision-Tech@sfu.ca

Submitted to: Dr. Andrew Rawicz – ENSC 340
Steve Whitmore – ENSC 305
School of Engineering Science
Simon Fraser University

Issue Date: October 27, 2003
Revision: 0

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

Executive Summary

The constantly increasing complexity of recent automobiles requires hobby mechanics
and sports car enthusiasts to purchase expensive electronic tools to appropriately enjoy
their hobby. With the automotive diagnostic tool, users can communicate directly with
the computer in their car, allowing them to retrieve real-time sensor data and malfunction
codes, as well as modify operating parameters in the computer at an affordable price.
Enthusiasts can then diagnose problems and improve performance at the click of an
economical button!

Development of the product will occur in multiple stages. The first stage, to be
completed by mid-December, 2003, will be a proof-of-concept device including the
following features:

• Full communications link with the car’s onboard computer in late-model GM
vehicles, via the SAE J1850 VPW protocol.

• User Interface that provides colourful and easy viewing of sensor data.
• Support for accessing a handful of the most common vehicle sensors.
• Ability to read malfunction codes from the automobile computer.

Development of NVision Technologies Automotive Diagnostic Tool is well under way
based upon the designs discussed in this document.

Copyright © 2003 NVision Technologies. Proudly sponsored by ii

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

Table of Contents

Executive Summary .. ii
Table of Contents... iii
List of Figures ... v
Glossary ... vi
1 Introduction... 1

1.1 Scope... 1
1.2 Referenced Documents ... 1
1.3 Intended Audience .. 2

2 System Requirements.. 3
2.1 System Overview.. 3

2.1.1 Reliability and Autonomy... 5
3 System Hardware Design.. 6

3.1 User Interface Module .. 7
3.2 Microcontroller ... 7
3.3 RS232 Transceiver.. 8
3.4 J1850 VPW Transceiver ... 9
3.5 In-Circuit Programming.. 10
3.6 Power Supplies.. 11

4 System Firmware Design.. 13
4.1 Firmware Design Overview.. 13

4.1.1 Interfaces with the Translator Cable ... 14
4.1.2 Real-Time Considerations .. 14

4.2 Communications with PCM.. 14
4.2.1 Pre-Transmission and Post-Reception .. 15
4.2.2 Transmission and Reception ... 16

4.3 Communications with User Interface ... 17
4.3.1 Universal Asynchronous Transmitter Receiver .. 17
4.3.2 Command Decoder ... 18

4.4 Data Buffers .. 19
4.5 Real-Time Considerations .. 19

5 Application Software Design.. 21
5.1 Platform... 21
5.2 System Features .. 21
5.3 High Level Implementation .. 21

5.3.1 Graphical User Interface ... 22
5.3.2 Data Transmission .. 23
5.3.3 Data Acquisition ... 24

6 Test Plan.. 25
6.1 Hardware Test Plan... 25

Copyright © 2003 NVision Technologies. Proudly sponsored by iii

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

6.1.1 Power Supplies.. 25
6.1.2 Translator Cable Interfaces ... 25

6.2 Firmware Test Plan... 26
6.2.1 J1850 and NVision Header Byte Encoding/Decoding.............................. 26
6.2.2 RS-232 and J1850 VPW Timing Testing ... 26
6.2.3 Stack Errors and Buffer Overflow Issues ... 26

6.3 Software Test plan .. 26
6.3.1 Window Layout, Buttons and Menus ... 26
6.3.2 J2190 Standard Encoding and NVision Header Byte Testing 26
6.3.3 Serial Communication Testing ... 27
6.3.4 J2190 Standard Decoding and Data Handling Testing 27

6.4 System-Wide Test Plan... 27
6.4.1 Physical Requirements Test.. 27
6.4.2 System Communications Test... 28

7 Conclusion .. 29

Copyright © 2003 NVision Technologies. Proudly sponsored by iv

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

List of Figures

Figure 1 – System Overview... 3
Figure 2 – Block Diagram of System Design ... 4
Figure 3 – Hardware Block Diagram.. 6
Figure 4 – Microcontroller circuit schematic.. 8
Figure 5 – Schematic diagram for RS232 transceiver circuit. .. 9
Figure 6 – Schematic diagram for J1850 transceiver circuit. ... 10
Figure 7 – In-Circuit programming header... 11
Figure 8 – Power regulator circuit. ... 11
Figure 9 – Firmware System Overview.. 13
Figure 10 – J1850 Module Overview ... 15
Figure 11 – RS-232 Module Overview... 17
Figure 12 – Program flow for UART command decoder. .. 18
Figure 13 – Main Program (Sequential) Flowchart .. 20
Figure 14 – Dynamic Command Structure Example.. 23

Copyright © 2003 NVision Technologies. Proudly sponsored by v

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

Glossary

CSA Canadian Standards Association

ISO 9141 International Standards Organization OBD-II communication mode, used
by Chrysler and most foreign cars. One of three hardware layers defined
by OBD-II

J1850 An SAE Standard set in March, 1998 on Verification Test Procedures.
One of three hardware layers defined by OBD-II.

J1962 An SAE Standard set in June, 1992 on Diagnostic Connector

J2178 An SAE Standard set in January, 1994 on Network Messages

J2190 An SAE Standard set in June, 1993 on Enhancing E/E Diagnostic Test
Modes

OBD-II On Board Diagnostics 2. A standard for interfacing with all automobiles
manufactured after 1996.

PCM Powertrain Control Module. The most sophisticated form of the
automobile computer that electronically controls all drive functions from
fuel management to gear selection for an automatic transmission.

PWM Pulse Width Modulated

RS-232C Recommended Standard-232C, a standard interface approved by the
Electronic Industries Alliance (EIA) for connecting serial devices.

SAE Society of Automotive Engineers

UART Universal Asynchronous Transmitter Receiver. Hardware to send and
receive serial without a common clock signal.

UI User Interface

USB Universal Serial Bus

VPW Variable Pulse Width

Copyright © 2003 NVision Technologies. Proudly sponsored by vi

http://www.webopedia.com/TERM/R/standard.html
http://www.webopedia.com/TERM/R/interface.html
http://www.webopedia.com/TERM/R/Electronic_Industries_Alliance.html
http://www.webopedia.com/TERM/R/serial.html
http://www.webopedia.com/TERM/R/device.html

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

1 Introduction

The automotive diagnostic tool will interface directly with the electronics on newer
vehicles, in order to deliver a wide range of information about the internal operation of
the automobile, to the user. This link is made possible by connecting to the automobile’s
central computer via the OBD-II standard interface. This protocol gives the hobby
mechanic access to real-time data from sensors that are distributed throughout the
vehicle, information about potential malfunctions detected by the computer, and the
ability to reconfigure the internal computer.

Our project will be completed in a series of stages, with each one building closer to a
production-quality unit. The first stage’s final deliverable is a proof-of-concept device
produced for ENSC 340, which is slated for completion by mid-December, 2003.

1.1 Scope

This document describes the designs that engineering staff at NVision Technologies has
proposed for the automobile diagnostic tool. These designs fulfill the functional
requirements, as specified in the NVision Technologies’ Functional Specification for an
Automotive Diagnostic Tool. The scope of this document covers all aspects of the project
including: hardware, firmware, software, and system design. As well, a comprehensive
test plan has been included.

The proof-of-concept stage is fully defined herein, and any further changes to our
functional specifications will require additional changes to this document. Substantial
development work will be required to bring this product to market, so it is expected that
final designs will evolve with experience gained from earlier designs.

1.2 Referenced Documents

[1] Proposal for an Automotive Diagnostic Tool. NVision Technologies.

[2] Functional Specification for an Automotive Diagnostic Tool. NVision
Technologies.

[3] SAE Standard J1850: Class B Data Communication Network Interface

[4] SAE Standard J2178: Class B Data Communication Network Messages

[5] SAE Standard J2190: Enhanced E/E Diagnostic Test Modes

[6] Microchip Technologies Inc. PIC18F252 Datasheet

[7] Respective manufacturers datasheets

Copyright © 2003 NVision Technologies. Proudly sponsored by 1

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

1.3 Intended Audience

Design engineers will use this document to create design specifications for components
of the automotive diagnostic tool.

Financial and marketing representatives (entrepreneurial engineers) will use this
document to secure venture capital and other sources of funding for prototype
development.

Quality engineers will use this document to verify the final product has met intended
specifications.

Copyright © 2003 NVision Technologies. Proudly sponsored by 2

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

2 System Requirements

2.1 System Overview

The diagram shown below shows a qualitative system overview of the product. The
PCM collects data from various sensors throughout the car and performs various
diagnostic and control functions. The user can request data via the graphical User
Interface, which then is relayed to the PCM via the translator cable and returned along the
same route. All user interaction occurs at the User Interface, while the translator cable
connects to a port on the car, located within 2 feet of the steering wheel.

Translator
Cable User

Interface

Automobile

Temperature
sensor

Speed sensor

Aut

OBD-II
Interface

omobile
Inte l

Computer
rna

PCM

Figure 1 – System Overview

 As shown in Figure 1, the entire system is composed of three modules:

1) OBD-II Interface,

2) Translator Cable, and

3) User Interface Unit

To implement this system, Figure 2 shows the detailed communication path between
various components.

Copyright © 2003 NVision Technologies. Proudly sponsored by 3

Design Specification

nvision-tech@sfu.ca

for an Automobile Diagnostic Tool

October 27, 2003

Figure 2 – Block Diagram of System Design

Copyright © 2003 NVision Technologies. Proudly sponsored by

 4

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

When the main control unit receives a data request from the user, the communications
controller sends a serial packet to the Translator Cable. The Translator Cable then
repackages the request, and transmits the sensor data request to the PCM. After
processing the request, the PCM sends the requested data to the Translator Cable. After
proper repackaging, the Translator Cable sends the to the communications controller via
the serial connection where, if no error code was detected, the sensor data will be
processed by the User Interface.

2.1.1 Reliability and Autonomy

The Translator Cable component of the overall design will have removable interfaces to
both the User Interface and the PCM, and will act as a stand-alone unit. The system will
have plug and play capabilities that deal with a user removing from the Translator Cable
the connection to either the OBD-II port or to the User Interface. The OBD-II
port/Translator Cable connection will be controlled by code from the firmware side,
while software from the User Interface will control the User Interface/Translator Cable
link. The mechanisms built into the firmware and software will act so as to minimize the
possibility of crashes and failures, by directing traffic in such a way that both interfaces
are always available to handle the load.

Copyright © 2003 NVision Technologies. Proudly sponsored by 5

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

3 System Hardware Design

This section details the hardware components chosen for the design of the automotive
diagnostic tool. Special attention is paid to some of the off-the shelf components used in
the proof-of-concept stage, which will be also be implemented in hardware for future
production models.

The figure below shows a basic block diagram of the major hardware components.

Figure 3 – Hardware Block Diagram

The User Interface Module is a stand-alone unit that provides the complete user
experience, including a colourful graphical interface (GUI) as well as communication to
the translator cable, and data storage as required.

The translator cable consists of several peripheral blocks surrounding the microcontroller
at its centre. The microcontroller is responsible for controlling the flow of data between
the User Interface and the PCM by buffering transmissions and encapsulating J2190
messages (received from the UI) into J1850 VPW packets for sending to the PCM. The
microcontroller will be solely responsible for all timing, conversion, and error-checking
duties. The two transceiver blocks perform level conversion from the CMOS-compatible
levels at the microcontroller to levels at their respective interfaces, while the in-circuit
programming adapter merely allows the microcontroller to be reprogrammed without
disrupting the physical circuit.

Copyright © 2003 NVision Technologies. Proudly sponsored by 6

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

3.1 User Interface Module

In order to save considerably on development time and financial expense, an off-the-shelf
User Interface module was selected. In particular, the latest personal digital assistants
(PDA) sport high-resolution colour displays, fast processors, and ample on-board
memory. For this design, a Compaq iPaq 3650 was selected because it was available
inexpensively, and some group members have experience with the device. The device
provides more than enough horsepower with the following features:

• 240 x 320 pixel display with over 4000 colours.
• User Input via touch screen.
• 32 MB of RAM shared between program and data memory.
• Built-in RS232 serial and USB ports.
• 200 MHz processor.

3.2 Microcontroller

The microcontroller forms the core of the firmware design. To meet performance
requirements and provide easy prototyping, the device had to meet or exceed the
following requirements:

• 16 kB of Electrically Erasable Programmable Program memory.
• In-circuit programmable without specialized hardware.
• 1 kB on-board RAM to buffer data and run code.
• On-board UART peripheral for communications with UI.
• On-board Capture and Compare (CCP) peripheral for J1850 timing requirements.
• Sufficient speed to meet real-time requirements (~ 10 MIPS).
• Readily available C-Compiler.

The PIC18F252 from Microchip Technologies exceeds all of these requirements, and was
available free of charge from the manufacturer. In addition, some group members have
extensive experience with this family of devices. A schematic for the basic configuration
is shown in the following figure.

Copyright © 2003 NVision Technologies. Proudly sponsored by 7

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

Figure 4 – Microcontroller circuit schematic.

The system clock is provided by a 10 MHz crystal, while the PIC is configured to
internally multiply this value by 4, thereby providing the required throughput of 10 MIPS
(PIC architecture requires 4 external clocks for each internal instruction). Additional
peripheral circuitry connects directly to the microcontroller pins, as shown above.

3.3 RS232 Transceiver

The role of the RS232 transceiver is to convert between the CMOS-compatible voltage
range of 0V ~ +5V and the RS232-C standard -25V ~ +25V. For the purposes of this
design, the device should accomplish this conversion with a single supply rail that is also
shared with logic power (i.e. +5V) for convenience. The MAX232 and related products
from Dallas-Maxim Semiconductor provide this functionality with few external parts.
The schematic for the circuit used in our design, as derived directly from product data
sheets, is shown in the figure below.

Copyright © 2003 NVision Technologies. Proudly sponsored by 8

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

Figure 5 – Schematic diagram for RS232 transceiver circuit.

Capacitors C1-C5 provide storage for the internally-controlled charge pump, which
generates the required voltages for the RS232 side of the circuit. The MAX232 contains
two transmitter (CMOS to RS232) and two receiver (RS232 to CMOS) ports, of which
one port from each is used to transmit and receive data. The remaining two ports could
potentially be used to implement a hardware flow-control system between the Translator
Cable and iPaq, if the software and firmware were modified accordingly.

3.4 J1850 VPW Transceiver

As with the RS232 interface, the J1850 VPW bus uses signal levels (0V -12V nominal)
that are incompatible with microcontroller inputs and outputs, thereby necessitating some
external transceiver circuitry. The J1850 bus is also a single-wire bus, so a mechanism is
needed to separate the single line into the separate transmit and receive paths required for
the microcontroller firmware. In addition, the J1850 specification places strict
requirements on the minimum rise and fall times of signals transmitted on the bus, which
means wave-shaping filters need to be included in this circuitry. Although the required
circuitry would be straightforward to implement using discrete components, large
semiconductor manufacturers offer highly efficient integrated solutions such as the
AU5783D from Philips Semiconductor. A schematic of the prototype circuit, as derived
from product documentation, is shown in the figure below.

Copyright © 2003 NVision Technologies. Proudly sponsored by 9

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

Figure 6 – Schematic diagram for J1850 transceiver circuit.

Certain features, such as power supply control and internal shutdown are not
implemented for this prototype, in order to simplify the circuit. Note that the receive port
open-collector output is pulled up to the logic high voltage.

It should also be noted that we also received this part free of charge, which proved
critical in the selection process.

3.5 In-Circuit Programming

The programming connections are provided to allow easy configuration of the
PIC18F252 on-board program memory while in the application circuit. In-circuit
programming will significantly reduce firmware and software development time, and also
allow the unit to be easily upgraded.

An external programmer is still required to be connected in order to provide necessary
programming voltages and buffering. A schematic of this configuration is shown in the
figure below.

Copyright © 2003 NVision Technologies. Proudly sponsored by 10

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

Figure 7 – In-Circuit programming header.

3.6 Power Supplies

The power requirements for this prototype are fairly relaxed, allowing a simple solution
to be implemented. More specifically, the current draw from the +5V supply rail, for
each module, can be summarized as per the following table.

Table 1 – Power consumption summary

Module Nominal Current Draw (mA)
PIC18F2F2 25mA (operating) + 15mA (I/O ports) = 40 mA
RS232 30 mA
J1850 15 mA
Total 85 mA

With such a small current being drawn, a simple linear regulator circuit can be used to
step down the 12V supply from the automobile battery, to the usable 5V rail. A standard
7805 regulator was selected and used in the configuration shown in the following figure.

Figure 8 – Power regulator circuit.

Copyright © 2003 NVision Technologies. Proudly sponsored by 11

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

This device is capable of supplying well over the 100 mA that our circuit requires,
without significant power dissipation problems. All capacitors shown in the circuit are to
filter and bypass, to improve line regulation.

Copyright © 2003 NVision Technologies. Proudly sponsored by 12

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

4 System Firmware Design

The primary function of the firmware is to act as a middle layer for data transmission
between the User Interface and the PCM. This translation is accomplished by receiving
packets from the user-interface (UI). The translator cable repackages this information
into packets acceptable for transmission on the automobile’s J1850 single-wire bus. Our
cable also controls the appropriate timings to transmit along that bus. Reception follows
in a reverse manner.

The translator cable merely translates between two distinct and incompatible data-link
standards without any knowledge of the data passing through.

4.1 Firmware Design Overview

The following diagram outlines the firmware design for the translator cable.

PIC Firmware

J1850 Module
(communicates with PCM)

Transmit/
Arbitration

RS 232 Module
(communicates

with iPaq)

Receive

J1850
(OUT)

RS232
(iPaq)

Data Buffer

Figure 9 – Firmware System Overview

The firmware is broken down by its interfaces, specifically the RS232 interface to the
iPaq, and the J1850 interface to the PCM. The two interfaces act independently of each
other, as data is asynchronously received from the iPaq, and data is asynchronously sent
to the PCM. Data from both interfaces is buffered sufficiently to prevent errors due to
slow communications.

Copyright © 2003 NVision Technologies. Proudly sponsored by 13

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

4.1.1 Interfaces with the Translator Cable

The translator cable interfaces with our User Interface and the PCM. The cable will
interface with the User Interface via a common RS-232 connection. On the other side of
the cable is the J1850 bus. The J1850 bus is a multi-node, master-less system, which
means multiple devices must be able access the bus without a central node to control
activity. Each node, including the translator cable, must self-arbitrate their access to the
bus, which is handled by the Arbitration block within the transmitter signal path. The
arbitration process is further described in Section 4.2.

4.1.2 Real-Time Considerations

Due to the nature of the device, many of the activities occurring within the firmware are
triggered asynchronously. For example, the timing user input cannot be predicted, nor
can responses from the PCM itself. Furthermore, implementing such a low-level
communications standard makes the implementation of this system timing-critical. As
such, real-time embedded system techniques are being employed to ensure all processes
described above are able to run when needed and as fast as needed within a reasonable
workload. Details of this real-time emulation are described in Section 4.5.

4.2 Communications with PCM

The main objective of the J1850 Module is to send iPaq requests for sensor data and
receive the corresponding sensor data from the PCM. The following diagram outlines the
lower level firmware that is designed to communicate with the PCM.

Copyright © 2003 NVision Technologies. Proudly sponsored by 14

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

Figure 10 – J1850 Module Overview

The translator cable communicates with the PCM via the OBD-II port on the car, through
the Variable Pulse Width standard. This standard is fully defined in the SAE J1850
specification, and the firmware fully follows this standard.

4.2.1 Pre-Transmission and Post-Reception

Prior to transmission to the PCM, the J1850-Module repackages the sensor data request
from the iPaq by creating a new header, as per the SAE J1850 Standard. CRC checks are
generated, and the new header byte is then saved in a buffer for transmission.

After having received information, the data is buffered, the CRC checks are decoded and
performed, to ensure correct data reception, and the header information is decoded and
repackaged to the iPaq.

4.2.1.1 CRC Checking

CRC checking is an essential part in implementing the J1850 standard because it ensures
the correctness of the data received. The CRC byte can be found by the following
Modulo 2 division equation:

Copyright © 2003 NVision Technologies. Proudly sponsored by 15

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

)(
)()(

)(
...)(71*8

XP
XRXQ

XP
XXXXDX nnn

+=
++++ ++

D(X) is the data packet being sent, n is the length of the data packet in bits, and P(X) is
the CRC division polynomial X8 + X4 + X3 + X2 + 1 (11D in hexadecimal). The X8*
means to left bit shift the data D(X) 8 times, so that the most significant bit of D(X) lines
up with the most significant bit of the Xn + … + Xn+7. In Modulo 2 arithmetic, each digit
is considered independently from its neighbours, which means numbers are not carried or
borrowed. A series of exclusive Ors (XOR) can be used to perform this calculation.
When transmitting, the CRC byte is made to equal to R(X) , where R(X) is the 1’s
complement of R(X). On receipt of new data, the CRC for the entire packat (including
transmitted CRC) is calculated. Then, if R(X) is equal to a unique constant (C4 in
hexadecimal), no error has been detected and the data packet is considered correct..
Otherwise, the data segment contains invalid information and an error flag must be set to
indicate this error. The firmware will then know that transmission was unsuccessful and
act accordingly.

4.2.1.2 Arbitration

In order to transmit over the single-wire bus, arbitration is required. The arbitration
process begins by listening to the J1850 bus. If the bus is idle, and if the translator cable
needs to transmit information, then it will transmit the first bit on the line. Bit-by-bit, the
line is checked to verify that the cable has correctly sent the last bit, and if so, it will
continue sending the information. At any point in this bit-by-bit arbitration, if the bit on
the line is not the last bit sent by the translator cable, then the firmware understands that
the PCM, which has a higher bus priority, is utilizing the single-wire bus. The Translator
Cable will then abort the transmission and service the signal sent by the PCM. The
firmware will try to send the entire packet again when the line becomes idle.

4.2.2 Transmission and Reception

The data transmission and data reception is achieved serially over a single wire using
variable pulse-width (VPW) modulation as specified by the J1850 standard. Detailed
timing issues need be established to allow the Translator Cable to communicate
effectively with the PCM.

Along the receive path, the Timing block uses the PIC’s Input Capture peripheral to
measure the period between transitions on the bus (Note: J1850 VPW is set up such that
every bit transmitted requires only a single bus transition, from low to high or vice-
versa). The Symbol State Machine then uses this symbol (the combination of bus logic
level and the duration of the pulse), along with the previous bit value, to decode the value

Copyright © 2003 NVision Technologies. Proudly sponsored by 16

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

of the received bit. As each bit comes in, it is shifted into a storage register, which then
forms the bytes of incoming data.

Transmission is the reverse of reception. The Shift Register shifts out data bits one by
one to the Symbol State Machine, which then decides the required duration of the next
pulse. This duration is then used to configure the Timing block, which uses the Output
Compare peripheral to ensure precise timing for each pulse. The J1850 VPW bus value
toggles to an opposite value for every bit, so the Timing block is configured to do the
same, and merely toggles the output to a different value when the pulse has reached its
required duration.

4.3 Communications with User Interface

The RS-232 module is designed to interface with the iPaq User Interface system by
receiving requests and sending sensor data, in the form of NVision Technologies’ header
and over a standard serial connection. The following diagram outlines the firmware
designed to communicate with the iPaq.

Figure 11 – RS-232 Module Overview

The operation of this module can be broken down into the physical UART, the command
decoder, and the data buffer. Note that, initially, no error checking will be included for
this interface so that code can be further simplified.

4.3.1 Universal Asynchronous Transmitter Receiver

The selected PIC18F252 supplies a hardware UART to handle the shifting of data across
the serial lines. The peripheral will be configured to generate interrupts on the receipt of
data, from which point the incoming data is promptly stored in a safe buffer to allow
further data to be received. This method fits well with the asynchronous design model
used throughout the rest of the firmware.

Copyright © 2003 NVision Technologies. Proudly sponsored by 17

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

For this initial design, hardware flow control will not be used to control transmission
along the RS-232 lines.

4.3.2 Command Decoder

As described later in the software design section, the translator cable supports several
modes of operation. The UI will inform the cable that it should enter these modes via
commands sent across the serial (RS-232) link. It is the task of the command decoder to
interpret incoming data and respond accordingly. Whenever a byte is received, the
decoder will determine whether it is a command or data, and deals with it appropriately.
The following flow diagram illustrates the process.

Received Byte on
UART

What
 type of byte was

expected?

Handle command as
needed

Command

Send response if
needed (status polling)

Enable Transmission
across J1850

Save data to buffer

Data

Last
byte of data
received?

Setup mode for next
byte (ie expecting data

or command?)

Resume Main

Figure 12 – Program flow for UART command decoder.

Copyright © 2003 NVision Technologies. Proudly sponsored by 18

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

4.4 Data Buffers

A large role of the translator cable is to alleviate the UI of timing-critical activities, and
thereby acts much like a buffer. To accomplish this high-level buffering, a robust
internal buffering mechanism is required. Internally, a fixed block of memory is
permanently allocated to separate transmit and receive (i.e. to and from the PCM,
respectively) buffers, where the receive buffer should be fairly large (more than 1 kB) to
accommodate the possibility of the PCM returning frequent data that the User Interface
cannot handle. The transmit buffer need not be so large because the UI is capable of
throttling down its requests. When data arrives at the cable from either interface, the
respective modules request storage space from the buffer, where it remains until the
opposite interface is able to send it away.

4.5 Real-Time Considerations

In order to meet the real-time requirements of our system, the firmware must be
structured such that data is processed before it is required so that information is always
ready when asynchronous events are triggered. For example, an internal timer that
triggers an interrupt will handle bit timing for the J1850. When this interrupt handler is
called, the value for the next timer interval must already be calculated to allow a seamless
transition. All of this processing and calculating will be done in a constantly looping
main program, while outside events trigger interrupts that make use of the calculated
data. Figure 13 outlines the main program (sequential) flow.

This flow may be interrupted at any time by either of the interface ports to request data,
so care must be taken ensure processing speed is fast enough. The sleep cycle is
tentatively schedule if processor time permits, in order to save power.

Copyright © 2003 NVision Technologies. Proudly sponsored by 19

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

Initialize

Handle received data
from iPaq (incl.

response if required)

Have new
data to transmit

to PCM?

Calculate bit received
from J1850

Pre-calculate next bit
to transmit on J1850

Process received data
(buffer data, check
CRC and decode

header)

Prepare data for Tx
(encode header,

generate CRC, send to
buffer)

Y

N

A

A

Received
an entire J1850

packet?

Y

N

Sleep

Figure 13 – Main Program (Sequential) Flowchart

Copyright © 2003 NVision Technologies. Proudly sponsored by 20

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

5 Application Software Design

The application software will be used to interface with the PCM. As such, it must control
all user interactions as well as perform the necessary encoding needed to send J2190
commands to the translator cable, and through the cable to the PCM.

5.1 Platform

NVision Technologies has chosen to write the application software using Embedded
Visual C++ for its ease in GUI implementation and event driven architecture. The entire
embedded tool suite is available free of charge from Microsoft and includes the software
development kit (SDK) for the operating system used on this iPaq (Windows CE 3.0
PocketPC 2002).

5.2 System Features

The application software will be a robust system that will allow the user to interact with
the PCM through the translator cable. The program will transmit and receive data to the
translator cable via the serial port and will have the appropriate encoding and decoding to
follow the J2190 and J2178 standards.

Application specific features to be included in the software:

• System query to translator cable will request status on buffers, stack and check if
it is connected to the PCM. to be implemented using a Header Byte. This query
will be implemented via a single byte at the front of the command sent to the
iPaq, and will also signal if the attached data is a PCM command.

• Dynamic command table look-up will allow the user to specify commands to the
car if the user knows the appropriate command codes and parameter information.
The command table will also allow the user to specify how the diagnostic tool
should interpret the incoming data.

• Animated graphs to display engine temperature, engine efficiency and other
sensor data.

5.3 High Level Implementation

The high level implementation of the software will occur in three distinct stages:

• The Graphical User Interface

• Data Transmission

• Data Acquisition

Copyright © 2003 NVision Technologies. Proudly sponsored by 21

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

Each of these stages presents unique challenges to the software designers and deserves
special attention in the design documentation.

5.3.1 Graphical User Interface

The graphical User Interface will be the only PCM access point for the local user. Its
purpose is to create an environment that easily allows the user to request and interpret
data from the diagnostic tool. In the proof-of-concept stage, the focus of the graphical
User Interface will be to manage the flow of data between the translator cable and the
user in an easy to use fashion. While effort will be taken to create a user-friendly design,
functionality will take precedence over visual flavour.

The GUI for the automotive diagnostic tool will consist of separate window layouts for
each of the different major features. The windows will share a similar feel, but be
tailored to serve each feature’s individualistic purpose. Wherever appropriate, graphics
will be used to display data in an easily to discern fashion. The focus of the graphical
User Interface will be on creating a program that allows the user to traverse the small
screen windows intuitively.

5.3.1.1 Main Software Functions

NVision Technologies foresees three main software interactions that the automotive
diagnostic tool will adopt: sensor acquisition, diagnostic trouble-shooting and PCM
parameter modifications.

Acquisition of specific sensor data will be the main feature of the proof-of-concept stage
software. Specific sensors will be polled and the requested data will be presented to the
user in a user-friendly format. Sensor acquisition on the automotive diagnostic tool will
support different data formats including Boolean and continuous values.

The diagnostic trouble-shooting and PCM parameter modification abilities are functions
that are not critical to the application software but are rather add-on features. The
trouble-shooting mode would allow the user to gain more insight on different error
warnings that a car has such as the ambiguous check engine and maintenance required
lights, while the ability to modify PCM parameter information would be a great feature
for hobby enthusiasts who want to get maximum performance out of their vehicles.

5.3.1.2 Graphical Features

Whenever possible, the use of tables and text will be kept to a minimum, replaced with
graphics and charts to display sensor data. The diagnostic application will be written as a
small screen application for a PDA and must therefore manage the flow of information in
the most efficient manner through the use of graphics and text.

In particular, gauges, which appear similar to those on a typical dashboard, will be used
to indicate sensor values such as speed, oil pressure, and intake air temperature.

Copyright © 2003 NVision Technologies. Proudly sponsored by 22

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

Furthermore, a graph will be plotted to display the calculated horsepower vs. speed
(revolutions per minute) curve. These display will be created as a custom controls,
derived from classes available from the Microsoft embedded toolkit.

5.3.1.3 Dynamic Command Structure

Communications with the translator cable will occur over a serial connection utilizing the
SAE J2190 standard. To create the appropriate commands to diagnose every sensor and
function available inside the PCM would waste a considerable amount of memory.
Instead, the automotive diagnostic tool will support a file-parsing process that will
encode generic commands in the J2190 standard. The process will allow the user to
specify the 2190 command type, parameter information, and how to handle the returning
data in a command file which can be easily appended to. This will allow the diagnostic
tool to be robust and handle many different command, parameter and output display
combinations. The basic structure is shown below in Figure 14.

Figure 14 – Dynamic Command Structure Example

An additional benefit of such a structure is that end-users can add support for more
sensors (and thus different cars) without having to directly modify source-code, thereby
alleviating responsibility from NVision Technologies for maintaining the product.
Prototyping and debugging will also be further simplified.

5.3.2 Data Transmission

The User Interface will interact with the translator cable via a serial connection utilizing
the RS-232 standard. Commands to the translator cable will be multiple bytes long with
the embedded commands meant for the PCM encoded in the J2190 standard.

The data will be transmitted asynchronously via a flow plan that NVision Technologies
has devised. Part of this system is an added header byte to the J2190 commands that the
User Interface sends out. This header byte allows the User Interface to communicate
with the translator cable such as requesting system status, identifying whether or not the
translator cable is connected to the OBD-II port, signalling the translator cable that the
attached command is to be passed to the PCM, and to diagnose any translator cable
errors.

Once the User Interface has created an appropriate command code, the command is sent
to the translator cable all at once. The User Interface does not wait for a response from
the translator cable but rather assumes that the command was correctly sent to the
translator cable’s incoming data buffer. Once a command has been sent over the serial
connection, the User Interface can immediately send a new command.

Copyright © 2003 NVision Technologies. Proudly sponsored by 23

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

5.3.2.1 NVision Header Byte

NVision Technologies foresees the need to create a header byte to all commands sent to
the translator cable via the serial RS-232 connection. If a PCM command is to be sent,
the J2190 command structure that the User Interface sends to the translator cable will be
appended to the header byte. This additional byte will be decoded and serviced by the
translator cable. It will signal to the translator cable the nature of the command such as
whether or not the command is meant for the PCM or if it is meant for the translator cable
to service by itself. The additional byte will not be passed to the PCM; it will be stripped
if the remainder of the command will be sent to the PCM via the OBD-II interface.

5.3.2.2 J2190 Encoding

The Society of Automotive Engineers (SAE) specifies the application layer commands
that the User Interface follows to transmit data and requests to the PCM via the translator
cable. The J2190 standard [5] and the J2178 standard [4] are the documents that NVision
technologies is following in implementing this layer.

5.3.3 Data Acquisition

When communicating with the PCM via the Translator Cable, the User Interface
specifies the command using the J2190 standard and sends it out over the serial
connection. If the data transmission occurred correctly, the User Interface expects a
response from the PCM.

The design of the User Interface and the Translator Cable is such that the User Interface
is never locked into waiting for a response from the PCM. When a response is sent from
the PCM and processed by the translator cable, it is first stored in the translator cable’s
output buffer and a signal is sent to the User Interface signalling that the translator cable
is ready to transmit data.

When able, the User Interface signals the translator to begin sending the data over the
serial connection. The data is stored in an input buffer waiting for the entire command to
arrive. Responses from the PCM do not necessary arrive all at once. The data sits inside
a data buffer until the User Interface can verify that the entire response has arrived and it
can then be decoded and serviced by the User Interface.

5.3.3.1 J2190 Decoding

When a command has fully been received from the translator cable, the User Interface
can then decode the signal and interpret the data. The User Interface will follow the
appropriate error checking functions and communicate any problems with the translator
cable by re-requesting data that may have been incorrectly transmitted.

Copyright © 2003 NVision Technologies. Proudly sponsored by 24

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

6 Test Plan

Each of the three different components will be tested individually. Once each component
has been verified, system-wide testing will take place to make sure that interaction
between the various sub-systems is co-ordinated and efficient. These test plans detail
some of the testing that will be completed. As the design process proceeds, additional
tests will be appended to this list.

6.1 Hardware Test Plan

The hardware testing begins as soon as the parts arrive. Each of the parts will need to be
tested to ensure that they operate as specified. The following tests will be used to ensure
the quality of the hardware.

6.1.1 Power Supplies

Because three different voltage levels will be used to power the different components in
the automotive diagnostic tool, it is important to maintain consistent and uniform power.
The power that will feed the microprocessor, the RS-232 transceiver and the J1850
module will be fully tested to make sure that the power being supplied remains within the
specified tolerances under full load conditions (transmitting at full data rate on both
interfaces) and under idle conditions (the microcontroller is in sleep mode).

6.1.2 Translator Cable Interfaces

Every connection to the translator cable will be tested to ensure the following:

1. The in-circuit programming connection is working properly, and the PIC is able to
accept programming. Loading code and verifying its operation, as well as reading the
code from the chip, will accomplish this test.

2. The J1850 VPW Transceiver is functioning correctly, and the Translator Cable is able
to send and receive signals to the J1850 VPW Transceiver port. This will be tested
by configuring a constant pulse-width output from the microcontroller, and measuring
voltage levels, and rise and fall times on the J1850 connection, via an oscilloscope.

3. The RS-232 module is functioning correctly, and the Translator Cable is able to send
and receive serial signals through the RS-232 UART. This test will be performed by
echoing bytes received from a test computer and verifying their values.

Copyright © 2003 NVision Technologies. Proudly sponsored by 25

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

6.2 Firmware Test Plan

The testing of the firmware will be on a continual basis, as soon as the hardware has been
implemented and tested. Tests will need to be run to ensure that the firmware is able to
handle the various amounts of information at both the PCM and iPaq interfaces.

6.2.1 J1850 and NVision Header Byte Encoding/Decoding

Tests will need to be done to make sure that the translator cable correctly decodes and
encodes the headers to and from the PCM via the J1850 bus. Similar tests will be
performed on the encoding and decoding of the NVision header byte. Tests will be also
run to ensure that the CRC checking is performed correctly, and that the information sent
from the iPaq is the same information requested from the PCM.

6.2.2 RS-232 and J1850 VPW Timing Testing

Part of the firmware testing will be to ensure that the transmission of signals between the
PCM and Translator Cable and the User Interface and Translator Cable occur correctly.
Special attention will need to be paid to the timing issues of the VPW transmissions as
well as the transfer rates of the serial connectors.

6.2.3 Stack Errors and Buffer Overflow Issues

Because the firmware needs to perform in real-time, there is the chance that stack errors
and buffer overflows may occur. Testing will need to be done to ensure that the system
correctly handles the data associated with these problems.

6.3 Software Test plan

Testing of the User Interface will occur on several levels. Tests will need to be run to
confirm that User Interface and all its sub-systems are running as expected.

6.3.1 Window Layout, Buttons and Menus

Test will be run by several user to confirm that traversing through the windows is
efficient and error free. As well, users will check all the buttons and menus to make sure
there are no broken links and all actions are correct and expected.

6.3.2 J2190 Standard Encoding and NVision Header Byte Testing

Tests will be done in software to confirm that the classes that are used to create the J2190
command codes and NVision Header Byte run as expected. Various benchmark
commands will be compiled by hand and verified with the commands constructed in
software.

Copyright © 2003 NVision Technologies. Proudly sponsored by 26

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

6.3.3 Serial Communication Testing

Testing of the serial communication links will be done by sending out simple commands
of various lengths to the translator cable in order to verify that the commands are being
sent properly. Faulty transmissions will be deliberately sent to investigate whether or not
the User Interface is able to recover from a serial communications error.

The tests to check the reception of the serial communications will include sending simple
commands of various lengths from the translator cable in order to verify that the serial
connection on the User Interface is operating correctly. Faulty transmissions will also be
sent from the translator cable to the User Interface to ensure that the User Interface is
correctly able to handle errors.

6.3.4 J2190 Standard Decoding and Data Handling Testing

Testing will be done to ensure that the User Interface is able to handle the different types
of data being received from the PCM. Not only will the User Interface need to be able to
decode the signals to gain access to the car’s data, but depending on the type of data, the
User Interface must also know how to respond and interpret it.

Some types of data will be stored in memory; other types will be used to create charts and
graphs. The testing of the data decoding and handling will reflect this.

6.4 System-Wide Test Plan

System-wide testing will first be run solely with a PCM, and then with a PCM within a
car.

A PCM compatible with the J1850 standard was purchased for proof-of -concept testing,
to ensure that connecting to a live car would not be immediately necessary. NVision
Technologies will connect the appropriate connectors to the external PCM and use a DC
power supply to generate the required 12 Volts for this discrete device. The automotive
diagnostic tool will then proceed through all levels of system wide testing.

After having ensured that the automotive diagnostic tool runs connected to the PCM, the
tool will then be connected to an appropriate car. At this time, the tool will be feeding off
of the 12 Volts coming from the car’s OBD-II port.

6.4.1 Physical Requirements Test

Several tests must be performed to verify that our system has met the desired physical
requirements. While the hand held device is being accessed everywhere inside the car,
the power and the performance of the device is being monitored to make sure that the
Translator Cable is long enough and the plug is secured enough to withstand some
amount of external force. The device will also undergo driving conditions to be tested for
its ability to withstand shock and vibration. The automotive diagnostic tool’s

Copyright © 2003 NVision Technologies. Proudly sponsored by 27

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

performance during driving conditions will be compared to its performance in its
stationary state.

6.4.2 System Communications Test

The overall system communications will be tested by two main stages. First stage
involves hooking up the device with a test PCM that is not physically attached to the car.
The test PCM has dummy sensor values that will be referred to for comparison and
verification. The second stage will be hooking up the device to the actual car and
perform data acquisition from the car’s sensors during driving.

The first stage test can be broken into the following steps:

1. Connect the PCM, the Translator Cable and the User Interface correctly.

2. Power up the system properly.

3. Verify that the User Interface has detect a connection to the Translator Cable.

4. In the User Interface, choose “sensor display” mode.

5. Request some specific sensor data from the PCM.

6. Verify that requested information is displayed.

7. Compare the displayed information to the actual information of the PCM.

8. Repeat steps 5) and 6) as many times as needed to request various sensor data

In the second stage, all the testing procedures used in stage 1 will be repeated with the
following additional steps:

9. Request data from the speed sensor and compare results to the speedometer during
driving and stationary conditions.

10. Request data from the speed sensor at a different driving speed. Use the information
to calculate the speed/horsepower curve and compare it to the expected resuts.

Copyright © 2003 NVision Technologies. Proudly sponsored by 28

nvision-tech@sfu.ca

Design Specification
for an Automobile Diagnostic Tool

October 27, 2003

7 Conclusion

This document has outlined the design specification for the proof-of-concept automotive
diagnostic tool. Based on these specifications, we will continue to develop our
technology to fulfill a mid-December 2003 completion. This design specification
provides us with a clear path to implementing our proposed system.

This design specification is well planned and researched. We have defined specific goals
and have a plan to achieve them. NVision Technologies has the goals, skills set, and
funding to meet these commitments.

Copyright © 2003 NVision Technologies. Proudly sponsored by 29

	Executive Summary
	Table of Contents
	List of Figures
	Glossary
	Introduction
	Scope
	Referenced Documents
	Intended Audience

	System Requirements
	System Overview
	Reliability and Autonomy

	System Hardware Design
	User Interface Module
	Microcontroller
	RS232 Transceiver
	J1850 VPW Transceiver
	In-Circuit Programming
	Power Supplies

	System Firmware Design
	Firmware Design Overview
	Interfaces with the Translator Cable
	Real-Time Considerations

	Communications with PCM
	Pre-Transmission and Post-Reception
	CRC Checking
	Arbitration

	Transmission and Reception

	Communications with User Interface
	Universal Asynchronous Transmitter Receiver
	Command Decoder

	Data Buffers
	Real-Time Considerations

	Application Software Design
	Platform
	System Features
	High Level Implementation
	Graphical User Interface
	Main Software Functions
	Graphical Features
	Dynamic Command Structure

	Data Transmission
	NVision Header Byte
	J2190 Encoding

	Data Acquisition
	J2190 Decoding

	Test Plan
	Hardware Test Plan
	Power Supplies
	Translator Cable Interfaces

	Firmware Test Plan
	J1850 and NVision Header Byte Encoding/Decoding
	RS-232 and J1850 VPW Timing Testing
	Stack Errors and Buffer Overflow Issues

	Software Test plan
	Window Layout, Buttons and Menus
	J2190 Standard Encoding and NVision Header Byte Testing
	Serial Communication Testing
	J2190 Standard Decoding and Data Handling Testing

	System-Wide Test Plan
	Physical Requirements Test
	System Communications Test

	Conclusion

