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Abstract

With the growing DRAM capacity and core count in modern servers, database systems are
becoming increasingly multi-engine to feature a heterogeneous set of engines. In particular,
a memory-optimized engine and a conventional storage-centric engine may coexist to satisfy
various application needs. However, handling cross-engine transactions that access more than

one engine remains challenging in terms of correctness, performance and programmability.

This thesis describes Skeena, an approach to cross-engine transactions with proper isolation
guarantees and low overhead. Skeena adapts and integrates past concurrency control theory to
provide a complete solution to supporting various isolation levels in dual-engine systems, and
proposes a lightweight transaction tracking structure that captures the necessary information
to guarantee correctness with low overhead. Evaluation on a 40-core server shows that
Skeena only incurs minuscule overhead for cross-engine transactions, without penalizing

single-engine transactions.
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Chapter 1

Introduction

Traditional database engines are storage-centric: they assume data is storage-resident and
optimize for storage accesses. Modern database servers often feature large DRAM that could
fit the working set or entire databases, enabling memory-optimized database engines [29, 39,
54, 35, 34, 37, 22, 52, 33, 5] that perform drastically better with lightweight concurrency
control, index and durability designs.

Now suppose you are a database systems architect, and inspired by recent advances,
built a new memory-optimized engine. But soon you found it was very hard to attract
users: some do not need such fast speed; some say “I want it only for some tables or part
of my application.” A common solution is to integrate the new engine into an existing
system, side-by-side with the traditional engine, resulting in a dual-engine database system
(Figure 1.1). The application can judiciously create and access tables in both engines.
Although engines share certain services (e.g., SQL parser, networking, schema management),
they are autonomous, each implementing its own indexes, concurrency control, etc. Some
systems (e.g., SQL Server [20], MySQL [42] and PostgreSQL [46]) already take this approach

for easier migration and backward compatibility.

1.1 Cross-Engine: Poorly-Supported Necessity

As an experienced architect—perhaps even before a user did—you realized it was necessary
to support cross-engine transactions that use multiple engines. For example, a finance
application may use a memory table for fast trading and keep other data in the traditional
engine for low cost; some transactions need to access both engines [19]. The application
may use a unified SQL interface to access all engines, but internally, because of engine
autonomy the system has to employ each engine’s own transaction abstractions to access
data; we refer to them as sub-transactions. A transaction then consists of one or multiple
sub-transactions. In Figure 1.1, S is single-engine with S, while T is cross-engine with

T; (memory-optimized) and T» (storage-centric). Cross-engine transactions can be very
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Figure 1.1: Dual-engine database system. Data accesses are routed to the corresponding

storage engines.

useful, but existing support is inadequate and leaves non-trivial challenges in correctness,
performance and programmability.

Although it suffices to simply start and commit sub-transactions to support single-engine
transactions, doing so does not guarantee correct cross-engine execution. As we elaborate later,
cross-engine transactions over two engines that both implement correct snapshot isolation
(SI) [6] can still end up using inconsistent data and run under a lower-than-SI isolation
level. Even if both engines guarantee serializability, the overall execution is not necessarily
serializable. Simply committing sub-transactions also risks durability and atomicity if any sub-
transaction commit failed. Similar issues were also found in federated and distribute systems
where each “engine” is a full system. But prior solutions [47, 31, 50, 25, 18, 51, 11, 8, 48] do
not consider the characteristics of modern dual-engine systems.

Modern dual-engine systems often exhibit the fast-slow structure where a memory-
optimized engine and a conventional engine coexist in a single node. The former can
outperform the latter by orders of magnitude, so it is vital for the cross-engine solution
to impose low (if any) overhead, especially for the faster engine. Previous solutions were
not designed in this context, by integrating systems interconnected via a network, and
two-phase commit (2PC) was widely used for atomicity. However, fast-slow systems allow
engines to communicate via fast shared memory and some designs explicitly avoid 2PC for
scalability [62], calling for new solutions.

These problems become more challenging when it is desirable to (1) keep engine auton-
omy for maintainability as engines are usually developed by different teams, and (2) ease
application development. Prior solutions often require non-trivial changes to the application,
by requiring users to declare whether a transaction is cross-engine upon start, and forcing
the application to use particular isolation levels [20], which can be complex and affect

performance.



1.2 Skeena

We present Skeena, an efficient approach to consistent cross-engine transactions that solves
the aforementioned problems in the context of multi-versioned, fast-slow systems: multi-
versioning is widely used and as evidenced by real use cases, cross-engine transactions can
be very useful in fast-slow systems.

We make two key observations to guide Skeena’s design. First, as noted by prior work [8],
inconsistent snapshots can be avoided by carefully selecting a snapshot in each engine. This
requires efficient tracking of snapshots whose results can be safely used by later transactions.
Second, since engines are developed and/or well understood by the same vendor, it is usually
feasible to make non-intrusive changes to engines, allowing more optimizations.

Based on these observations, we design Skeena to consist of (1) a cross-engine snapshot
registry (CSR) and (2) an extended pipelined commit protocol. The former ensures efficient
and correct snapshot selection, and the latter ensures atomicity and durability without
expensive 2PC. Both building blocks can be easily plugged into an existing system without
much engine-level change (if any).

Conceptually, CSR maintains mappings between commit timestamps (therefore snapshots)
in one engine and those in another. A transaction may start by accessing any engine using
the latest snapshot s. Upon accessing another engine F, it queries CSR using s as the key to
select a snapshot in E using which would avoid incorrect executions. Further, with CSR, one
only needs to set each engine to use a serializable protocol that exhibits commit ordering
to guarantee serializability. Later, we discuss the detailed algorithms to realize this idea
and techniques that make it lightweight and easy to maintain. In fast-slow systems, CSR
incurs negligible overhead as the storage accesses in the traditional engine present a bigger
bottleneck, and single-engine transactions do not need to access CSR at all.

Leveraging the fact that engines can communicate via fast shared memory (e.g., by
sharing the same process address space), Skeena extends the widely-used group/pipelined
commit protocols [32, 56, 60] to ensure atomicity and durability. Upon commit, the worker
thread detaches the transaction and places it on a commit queue, before continuing to
work on the next request. Meanwhile, a background committer thread monitors the queue
and durable log sequence numbers in both engines, to dequeue transactions whose sub-
transactions’ log records have been fully persisted. This way, Skeena ensures cross-engine
transactions are not committed (i.e., with results made visible to the application) until all
of its sub-transactions are committed, while avoiding expensive 2PC.

We adopted Skeena in MySQL to enable cross-engine transactions across its default
InnoDB engine and ERMIA [34], an open-source main-memory engine.! This required < 100
LoC changes (out of its over 200k LoC) in InnoDB and no change in ERMIA. Evaluation

"Downloaded from https://github.com /sfu-dis/ermia/releases/tag/alphal.
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using variants of YCSB [17] microbenchmarks and TPC-C [53] on a 40-core server shows that
Skeena retains memory-optimized engine’s high performance without impacting single-engine
transactions, and incurs up to 5% overhead for cross-engine transactions.

Note that our goal is not to build faster database engines, nor to invent new concurrency
control protocols for cross-engine transactions; both are well studied by prior work. Instead,
our goal is to (1) enable cross-engine transactions without unnecessary overhead and (2)

explore system designs that fit modern fast-slow systems.

1.3 Contributions and Thesis Organization

This thesis makes four contributions. @ We analyze the correctness requirements of cross-
engine transactions under various isolation levels, ranging from read committed to snapshot
isolation. @ We distill a set of desirable properties and design principles to be followed by
dual-engine systems. @ We design Skeena to enable consistent cross-engine transactions
by leveraging the properties of the fast-slow architecture. @ We show Skeena’s feasibility
and explore practical design issues by integrating an open-source memory-optimized engine
(ERMIA [34]) into MySQL alongside its storage-centric engine (InnoDB), and conduct a
comprehensive evaluation using microbenchmarks and TPC-C variants.

Next, we describe background in Chapter 2, design principles and details of Skeena in
Chapter 3—4, and how Skeena works in real MySQL in Chapter 5, followed by evaluation
results in Chapter 6. We survey related work in Chapter 7 and conclude in Chapter 8. t



Chapter 2

Background

In this chapter, we give the necessary background for cross-engine transactions and motivate

our work.

2.1 Modern Fast-Slow Systems

We have described the basic ideas of multi-engine systems in Chapter 1. Several production
systems already adopt the fast-slow architecture: SQL Server supports memory-optimized
tables managed by its Hekaton main-memory engine [22, 41]; PostgreSQL supports additional
engines through foreign data wrapper [46], which is used by Huawei GaussDB to integrate a
main-memory engine [5].

Multi-engine systems bear similarities to distributed and federated database systems [51,
11, 47, 31, 38, 8, 25, 9, 18], but are unique in several ways. As Table 2.1 summarizes, a
multi-engine system typically integrates engines developed and/or understood by the same
vendor, instead of opaque systems developed by different vendors in federated systems.
Distributed systems typically involve a set of nodes that run the same engine carefully
designed to support distributed transactions, exhibiting low autonomy. Fast-slow systems
integrate different engines that vary in performance, so an inefficient cross-engine solution
would penalize single-engine transactions, defeating the purpose of using a memory-optimized
engine; mitigating such overhead is the major goal of our work. Note that multi-engine
systems often allow slightly trading autonomy for performance and compatibility, e.g., some
systems manage schemas in all engines centrally. However, federated systems allow little
room to do so as each system can be a proprietary package. Multi-engine systems can scale
up and scale out, whereas the other two types of systems mainly scale out. We focus on

fast-slow, dual-engine systems and leave systems with three or more engines to future work

2.2 Database Model and Assumptions

Now we lay out the preliminaries for analyzing cross-engine transactions in fast-slow systems.



Table 2.1: Multi-engine vs. distributed and federated systems.

Multi-Engine Federated Distributed
Engine Internals Transparent Opaque Transparent
Engine Types Heterogeneous Heterogeneous Homogeneous
Autonomy Almost full Full Low
Scalability Up and/or out Out Out

Multi-Versioning. Many fast-slow systems are multi-versioned, including all those
mentioned previously. Following prior work [13, 8, 57, 2, 1], we model databases as collections
of records, each of which is a totally-ordered sequence of versions. Updating a record appends
a new version to the record’s sequence. Inserts and deletes are special cases of updates that
appends a valid and special “invalid” version, respectively. Obsolete versions (as a result of
deletes) are physically removed only after no transaction will need them, using reference
counting or epoch-based memory management [34, 10].

Reading a record requires locating a proper version; this is dictated by the concurrency
control protocol. We base our discussion on a common design [22, 34, 37, 59] where the
engine maintains a global, monotonically increasing counter that can be atomically read and
incremented. Note that in a multi-engine system, engines maintain their own timestamp
counters, i.e., each engine maintains its own internal “timeline” invisible to other engines;
for now we assume single-engine transactions and expand to cross-engine cases later. Each
transaction is associated with a begin timestamp and a commit timestamp, both drawn
from the counter. Upon commit, the transaction obtains its commit timestamp (which
determines its commit order relative to other transactions) by atomically incrementing the
counter. Each version is associated with the commit timestamp of the transaction that
created it. Transactions access data using a snapshot (aka read view), which is a timestamp
that represents the database’s state at a particular point in (logical) time.

Isolation Levels. Various isolation levels can be implemented under this database
model. Read committed translates into always reading the latest committed version. The
transaction refreshes its read view by reading the counter upon each record access. Under
snapshot isolation, the transaction uses its begin timestamp (obtained upon the first data
access or transaction creation) as its read view and is allowed to access the latest versions
created before its read view. A transaction can update a record if its read view is newer
than (i.e., it can “see”) the latest committed version of the record. Serializability can be
achieved by various approaches, such as locking [15, 16, 23] and certifiers [13, 57, 36]. The
goal of our work is to ensure these isolation levels are properly enforced in the presence of

cross-engine transactions.



Engine £, 1000 3000 4000 5000
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Figure 2.1: Inconsistent snapshots. (a) S uses an older (newer) snapshot in E; (Es). (b)
U sees partial results (U sees T7’s results, Us does not see T»’s). Both also happen under
distributed SI [8], but isolation failure affects all isolation levels.

Cross-Engine ACID Properties. Analogous to individual engines that run ACID
sub-transactions, a cross-engine system must maintain ACID properties for single- and

cross-engine transactions:

e Atomicity: All the sub-transactions should eventually reach the same commit or abort
conclusion, i.e., either all or none of the sub-transactions commit in their corresponding

engines.

o Consistency: All transactions (single- or cross-engine) should transform the database from

one consistent state to another, enforcing constraints within and across engines.

e Isolation: Changes in any engine made by a cross-engine transaction must not be visible

until the cross-engine transaction commits, i.e., all sub-transactions have committed.

e Durability: Changes made by cross-engine transactions should be durably persisted while

guaranteeing atomicity.

Enforcing cross-engine ACID mandates careful coordination of sub-transactions to avoid

anomalies, as we describe next.

2.3 Cross-Engine Anomalies and Motivation

To access data records, cross-engine transactions rely on engine-level sub-transactions, which
may begin and commit in any order depending on the workload. The relative ordering and
timing of sub-transaction commit and begin events directly determine correctness, as certain
ordering may lead to anomalies and violate ACID requirements. We summarize the issues
below.

Issue 1: Inconsistent Snapshots. There are two cases where a transaction may be
given an inconsistent view of data. As Figure 2.1(a) shows, S started in E; with a snapshot
1000, while T started in Fy with snapshot 100. Suppose another transaction in F; committed

by incrementing F;’s timestamp counter to 3000. Then, T" accesses E1, which assigns 77 its

7
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Figure 2.2: Non-serializable execution of cross-engine transactions when each engine guar-
antees serializability. (a) Each engine executes a serializable schedule (b) without cyclic
dependencies. (c¢) Overall cyclic dependency between 7" and S.

latest snapshot 3000, and S5 obtains snapshot 200 in E,. Compared to S, T sees a newer
version of the database in F1, but an older version in F5. This would require S and T to
start before each other, which is impossible in a correct SI schedule [2]. This is the same as
the “cross” phenomenon in distributed SI [8].

Another anomaly (isolation failure) may allow partial results to become visible earlier
than they should be. In Figure 2.1(b), T first commits 7} with timestamp 4000. Until T,
is fully committed, T is still in-progress, so none of its changes should be visible to other
transactions. Meanwhile, U starts in Fo with timestamp 250, and continues to open U;:
since U; started after T7 committed, by definition its read view should include T'1’s changes.
Thus, U sees partial results: T’s results are visible in U’s snapshot in Fy, but not Fy. This
anomaly corresponds to the serial-concurrent phenomenon in distributed SI [8]. Compared
to skewed snapshots which concern the order in which sub-transactions are opened, isolation
failure arises when sub-transaction begin and commit actions are interleaved and inflict a
different write-read dependency per engine.

Issue 2: Serializability. Snapshot isolation may lead to non-serializable results with
the write-skew and read-only anomalies [27, 28]. Various approaches can forbid them [26,
36, 57, 13, 22|, however, in a multi-engine system, even if both engines guarantee full
serializability, the overall execution may not be serializable. As Figure 2.2(a) shows, S
and T are concurrently executing in two engines that offer serializability. Each engine
runs a serializable schedule, with an anti-dependency shown in Figure 2.2(b).! However, as
shown in Figure 2.2(c), the overall execution exhibit write skew with cyclic dependencies
(T'— S — T), indicating non-serializable execution.

Issue 3: Atomicity and Durability. Similar to single-engine transactions, a cross-
engine transaction needs to be committed in its entirety, i.e., either all sub-transactions are
successfully committed with their changes persisted, or none of them. This means the system

needs to commit each sub-transaction in its corresponding engine. Should any sub-transaction

!Unlike 2PL and OCC, some serializable SI schemes allow safe anti-dependencies to improve concurrency
and lower abort rate [13, 57, 14].



fail to commit (e.g., due to serializability violations), other sub-transactions must also abort.
The dominant solution in distributed systems has been 2PC, but it may not be the best
choice for single-node multi-engine systems. Unlike distributed systems where each node
often has baked-in 2PC support, engines in a multi-engine system may not directly support
2PC: many newer main-memory systems explicitly avoided 2PC by design [7, 62]. Moreover,
2PC can be unnecessarily complex to implement and heavyweight for a shared memory
System.

Summary and Motivation. As noted earlier, the issues identified here also arise in
distributed SI and federated systems, and prior work has laid the foundation in concurrency
control theory for solving these problems [48, 8] (described later). In practice, however,
existing approaches targeted distributed environments without considering the character-
istics of single-node, fast-slow systems. For example, incremental distributed SI [8] allows
transactions to acquire consistent snapshots as needed following a set of rules, but uses
global IDs across all participating nodes that require engine-level changes, as well as a central
coordinator node. Prior solutions relied on 2PC for atomicity, which as we mentioned does
not suit single-node systems. Finally, although serializability and concurrency control has
been discussed extensively [12, 48, 31, 47|, there has been little focus on consolidating these

results to devise an efficient solution for various isolation levels in fast-slow systems.



Chapter 3

Design Principles

We distill a set of desired properties and design principles that a cross-engine mechanism
like Skeena should follow:

e Low Overhead. The mechanism should introduce low overhead. Especially, it should
not penalize single-engine transactions, especially those running in the faster engine; only

cross-engine transactions should pay the extra cost (if any).

e Engine Autonomy. Engines should be kept as-is, or be modified in non-intrusive ways
to cope with the cross-engine mechanism and/or optimize for performance, leveraging

the fact that engines are typically developed by the same vendor.

e Full Functionality. The mechanism should support various isolation levels for both

single- and cross-engine transactions, unless it is limited by individual engine capabilities.

e Transparent Adoption. The application should not be required to make logic changes.

Rather, it should only need to declare the “home” engine of each table in database schema.

10



Chapter 4

Skeena Design

We start with an overview and transaction workflow, and then describe its design in detail. For
clarity, we base our discussion on two engines that use snapshot isolation, before expanding

to other isolation levels and supporting more than two engines.

4.1 Overview

Skeena’s key functionality is to ensure correct snapshot selection and atomic commit with
proper ACID guarantees. It can be thought as a global “snapshot provider” and commit
protocol that engines use to handle cross-engine transactions. Figure 4.1 gives an overview of
Skeena with its key building blocks: (1) the cross-engine snapshot registry (CSR) and (2) a
pipelined commit protocol that is aware of cross-engine transactions. The former tracks recent
valid cross-engine snapshots as a result of starting and committing cross-engine transactions.
The latter is an adaptation of the well-known pipelined group commit protocol [32] to support
atomically committing cross-engine transactions that consist of multiple sub-transactions.
As Chapter 5 shows, adopting neither in a real system requires intrusive changes (if any) to
engines. We briefly describe how transactions are handled under Skeena.

Initialization. Transactions (single- or cross-engine) can keep using the APIs (e.g.,
SQL) provided by the database system. Skeena does not require additional hints from the
application (e.g., whether a transaction will be cross-engine). Figure 4.1 shows an example
of a SQL program, which is written in the same way without Skeena.

Skeena does not restrict transactions to run under specific isolation levels. However,
the system may provide additional commands to set the desired isolation level (e.g., SET
TRANSACTION ISOLATION LEVEL in MySQL [43]). Each individual engine then would be set
to use the specified isolation level. As part of the integration effort, Skeena can detect such
settings and enforce the corresponding isolation levels across all engines (Chapter 4.2).

Data Accesses. Upon receiving a data access request, the system routes it to the proper
engine which uses a sub-transaction access data. We expect the routing mechanism is given

as multi-engine systems already implement them; Skeena requires no change to it. Upon

11



Cross-engine transaction T: Engine E,
@BEGIN @ _y T
@SELECT .. FROM Orders ..  ==="" E
@SELECT .. FROM Products .. ___@¢@
© UPDATE Products SET .. - Engine E,
@ COMMIT —

. . = [ Froducs ]
Cross-Engine Snapshot Registry >
E, Snapshot E, Snapshot @/\’;e\ Commit Queue H

’ - 1

40 (S) 1200 ,606‘* R: 50, nil 0,
80 (T) ? T:90,2000 | Enqueue/
160 (U) 3000 U: 200, 4000 dif',“eue

Figure 4.1: Skeena overview. @@ Transactions access data without explicitly declaring
whether they are cross-engine. @ Upon accessing an additional engine, the transaction @
consults CSR to obtain a proper snapshot. @ Cross-engine transactions use CSR for commit
check and if passed, goes through the pipelined commit protocol to conclude.

start or accessing the first record, the sub-transaction obtains a snapshot. Depending on
whether the transaction is single- or cross-engine, the system may directly obtain the latest
snapshot in the underlying engine, or consult CSR to obtain a proper snapshot that would
not cause anomalies (steps @@ Query/set). As we will see later, such a snapshot may
not always exist due to necessary trade-offs for performance and easier implementation. In
this case, the transaction will be aborted; we quantify the impact on realistic workload in
Chapter 6.

Finalization. Upon commit, the cross-engine transaction consults CSR to verify that
committing all sub-transactions would not cause future transactions to obtain inconsistent
snapshots; if such commit check fails, the transaction is aborted.! Single-engine transactions
commit directly without going through Skeena mechanisms. Transactions that passed CSR
verification are marked as pre-committed and placed on the commit queue. Once their log
records are persisted, we dequeue it and notify the application of a successful commit (step
@ Enqueue/Dequeue). If the verification failed, we abort the transaction by rolling back all
sub-transactions.

In the rest of this chapter, we describe how Skeena facilitates snapshot selection, atomicity
and recovery, beginning with the high-level functionality and algorithms that CSR should
support.

! An alternative is to adjust the commit timestamps of cross-engine transactions until they can pass the
commit check. However, this may require intrusive changes to other subsystems, such as logging and recovery,
violating our design principle to maintain engine autonomy.

12



Algorithm 1 Snapshot selection for cross-engine transactions.

1 def select_snapshot(el_snap, engine &e2):
# Find existing snapshots that could be used
3 candidates[] = CSR.forward_scan_1st(el_snap)
if candidates is empty:

) # No existing mapping, obtain the latest from e2
e2_snap = e2.timestamp_counter

7 else:
# Use the latest snapshot mapped to el_snap

9 e2_snap = max(candidates)

CSR.map(el_snap, e2_snap)
11  return e2_snap

4.2 Basic Cross-Engine Snapshot Registry

The key to avoiding inconsistent snapshots is ensuring the sub-transactions of different
cross-engine transactions follow the same start order in each engine [8]. That is, if 77s
sub-transaction 77 uses an older snapshot than S; does in engine Fy, then 75 should also
use an older snapshot compared to So in the other engine, F». For example, in Figure 4.1, T’
first started as a single-engine transaction accessing Orders in F1, using snapshot 80. When
T starts to access Products in Eg, T" needs to find a snapshot (s) in F2 in CSR such that s
falls between the snapshots being used by its “neighbor” transactions in F1, i.e., S1 and Uj.
Therefore, T' may use any valid Fy snapshot between 1200 and 3000 (inclusive), although
using 3000 would allow it to see fresher data.

To facilitate such snapshot selection process, CSR tracks valid snapshots (i.e., commit
timestamps of recent cross-engine transactions) that can be safely used by cross-engine
transactions. Conceptually, it is a table that supports point and range queries, where each
“row” (CSR entry) is a pair of snapshots (i.e., commit timestamps), one from each engine
as depicted by Figure 4.1. When a transaction crosses to access an additional engine, it
uses the current engine’s snapshot as the key to query CSR for a snapshot in the target
engine. As shown in Algorithm 1, to access a new engine e2, the worker thread issues a
non-inclusive forward scan over CSR using the snapshot in the current engine el as the
key (el_snap) to obtain a set of candidate snapshots. The scan returns once a first key
greater than el_snap is met or no such key is found. If the scan returned an empty set, then
no past transaction has set up any mapping or the current transaction is using the latest
el snapshot. Then we proceed to use the latest e2 snapshot (lines 4-6). However, if any
candidate is found, we must take an e2 snapshot that is already mapped to el_snap to avoid
anomalies (lines 7-9). Finally, we setup the new mapping for future transactions to avoid
anomalies. Under snapshot isolation, the algorithm is executed only once per transaction

when it becomes cross-engine. Subsequent accesses continue to use the previously acquired
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Algorithm 2 Commit check for cross-engine transactions.

1 def cross_engine_commit_check(sub_t1&, sub_t2&):
# Obtain lower and upper bounds for sub-transaction t2
3 low = -inf
candidates[] = CSR.reverse_scan_1st(sub_tl.commit_ts)
5 if candidates[] is not empty:
low = max(candidates)

high = +inf

9 candidates[] = CSR.forward_scan_1lst(sub_tl.commit_ts)
if candidates[] is not empty:

11 high = min(candidates)

13 # Check if committing t2 would cause future anomalies
if low > sub_t2.commit_ts or high < sub_t2.commit_ts:

15 return false
else:
17 # Check passed, setup mapping and return
CSR.map(sub_tl.commit_ts, sub_t2.commit_ts)
19 return true

snapshots. Following the above process, a cross-engine transaction should always be able to
obtain a valid timestamp using CSR.

In addition to acquiring snapshots, committing a cross-engine transaction implicitly
limits the ranges of snapshots a (future) cross-engine transaction may use: recall that the
commit timestamp of a previous transaction T in fact is the begin timestamp (i.e., snapshot)
of a future transaction that reads the results generated by T'. We therefore also track commit
timestamps of cross-engine transactions in CSR. Algorithm 2 describes the process at a high
level. Here, we assume the sub-transaction commit timestamps are already available (as the
commit_ts member in each sub-transaction); we revisit this assumption later in more detail.
The idea is to ensure that committing a cross-engine transaction—i.e., adding a new mapping
entry to CSR—would not cause the new table to exhibit skewed snapshots. To achieve this,
upon commit, we issue a reverse scan and a forward scan over CSR using a sub-transaction’s
(sub_t1) commit timestamp to obtain the lower and higher bound for the other commit
timestamp (lines 4-11 in Algorithm 2). Then, if sub_t2’s commit timestamp falls between
the higher and lower bounds, we can safely commit this cross-engine transaction and setup
a new mapping in CSR (line 18). Otherwise, the transaction must abort. Note that the
mapping process in Algorithm 1 is still necessary because (1) single-engine commits are not
covered by CSR to avoid unnecessary overheads, and (2) a cross-engine transaction may
access data generated by single-engine transactions and form new cross-engine snapshots.

Since a transaction may access engines in any order (e.g., from the storage-centric engine
and crosses over to the memory-optimized engine, and vice versa), CSR needs to support

queries from either engine. CSR may be easily implemented using a ordinary relational table
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in one of the supported engines with full-table scan or two range indexes, each of which is
built on a “column” of the CSR table to allow queries originated from both sides. However,
this can create dependency on a particular engine and incur much overhead of keeping two
index structures consistent, as well as possible overhead of maintaining extra (meta)data of a
full-fledged relational table. The snapshot selection algorithms and CSR structure discussed
so far assumed single-threaded execution; a practical design must also support concurrent

accesses for reasonable performance. We address these issues next.

4.3 Lightweight Multi-Index CSR

We take advantage of the unique properties of fast-slow systems to devise a lightweight
CSR that mitigate the above issues. In a fast-slow system, compared to the storage-centric
engine, it is typically very cheap to obtain a snapshot in the memory-optimized engine. For
example, in most engines this is as simple as reading the timestamp counter which is an
8-byte integer, without even having to enter a critical section. However, obtaining a snapshot
in a storage-centric system can be much more complex, e.g., the process in MySQL InnoDB
involves taking multiple mutexes and computing multiple watermark values. Therefore, we
simplify our cross-engine mechanism to always follow the snapshot order by one of the
engines, removing the need and possibility of querying the CSR using a snapshot from the
storage-centric engine. We call this engine the anchor engine which typically is the engine
where it is cheaper to acquire a snapshot; it can be designated at system initialization time.
This way, transactions always start by acquiring the latest snapshot from the anchor engine,
and use it as the key to query the CSR when it extends to the other engine. At a high
level, this allows us to simplify the design of CSR to be a single range index structure. Our
current implementation uses Masstree [40], a high-performance in-memory index, but any
concurrent data structure that supports range queries would suffice.

A side effect is that any transaction that accesses the “slower” engine now becomes
cross-engine and is subject to go through Algorithms 1-2 even if they do not access any record
in the anchor engine. As we show later in Chapter 6, the overhead is minuscule: compared
to actual data accesses (which may go through the storage stack), the extra steps required
are very lightweight and even negligible because the entire CSR is an in-memory structure.
For clarity, in the rest of this thesis, we define transactions to be single- or cross-engine from
the user’s perspective: if the user application only accesses the non-anchor engine—although
internally it accesses both engines—we refer to it as “single-engine.”

Because CSR tracks past cross-engine snapshot and commit histories, its size can grow
quickly over time and entries that are no longer useful should be properly cleaned up. As the
CSR index structure grows, querying it may become slower, limiting system performance. We
solve these problems by partitioning the CSR, by snapshot ranges, reminiscent of multi-rooted

B-trees [45]. The result is a “multi-index” design shown in Figure 4.2 where each partition is
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Figure 4.2: Multi-index CSR.

a standalone index (Masstree in our case) and covers a range of snapshots. Depending on the
requesting transaction’s snapshot from the anchor engine, we use the corresponding index
partition for snapshot selection and commit check. As shown by Figure 4.2, the first two
indexes cover snapshot mappings whose snapshots from the anchor engine are in the ranges
of [30, 400] and [401, 500], respectively. Note that each index here covers a unique range,
such that a transaction only needs to work on a single index. Each partition has a fixed
capacity and new indexes (partitions) are created when the current open index is full. A full
partition becomes read-only once a newer index is created. As a result, we maintain one
and only one open index that accepts new mappings; the other indexes become read-only
and can continue to serve existing transactions for snapshot selection. The rationale behind
maintaining multiple read-only indexes and allowing only one read-write index is to avoid
skewed snapshots more easily: if new mappings were allowed in an inactive index I, then a
transaction that is using a very old anchor snapshot may setup a new mapping that uses
a very recent snapshot from the other engine that is newer than the most recent snapshot
in I. The mapping may potentially conflict with mappings in other indexes. Avoiding this
problem in turn would require transactions to check more than one index which increases
the overall overhead. We therefore keep the inactive indexes read-only for simplicity and
efficiency. The drawback is that abort rate may increase, but we find it rare in practice; we
show details in Chapter 6.

The multi-index design allows us to easily recycle stale snapshot mappings: an inactive
index is deleted as a whole once its snapshot range is no longer needed even by the oldest
transaction running in the system. The recycling procedure first iterates over all the running
transactions to obtain the oldest anchor-engine snapshot being used (min_snap), and then
goes through the list of indexes to bulk delete any index whose snapshot range is below
min_snap. Our current implementation triggers recycling work in between CSR accesses
based on a user-defined threshold (e.g., once every 10000 accesses); this could also be
delegated to a background thread.

We maintain a list to track all indexes. Upon snapshot selection or commit check, the
accessing thread traverses the list to find the appropriate index to work on. We protect

the list using a reader-writer lock that provide mutual exclusion between threads that only
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query an index (without modifying the index list) and those that may add (e.g., growing
the CSR by creating a new index) or remove (garbage collection) an index.

An important trade-off brought by the multi-index design is that unlike the basic
mechanism described in the previous section, a cross-engine transaction may have to be
aborted if it fails to find a proper snapshot (e.g., because its partition index is already

read-only). In practice, as we show in Chapter 6, such aborts are rare.

4.4 Commit Protocol

Once all accesses are done, we need to ensure both sub-transactions are committed or none
of them. In order to conduct the commit check mentioned earlier, for each sub-transaction
Skeena needs to obtain its commit timestamp. However, we must not commit the sub-
transaction as a result of obtaining a commit timestamp. This is usually straightforward for
memory-optimized engines as they often use optimistic flavored concurrency control methods.
In these engines, the commit process involves a “pre-commit” phase first that obtains a
tentative commit timestamp. Then it uses the obtained timestamp to verify the transaction
can commit safely without violating serializability or other correctness criteria [22, 34]). For
the storage-centric engine, Skeena requires a similar pre-commit phase which may not be
already available. However, note that the different engines in a multi-engine systems are
typically developed and well understood by the same vendor. This justifies simple surgical
changes to expose such a pre-commit interface that only obtains commit ordering without
actually committing the sub-transaction. Chapter 5 describes our experience of exporting
this interface for InnoDB, where we only needed to change fewer than ten lines of code. As
a result, we break the monolithic commit process into two phases, including pre-commit
and post-commit which finishes up committing a sub-transaction after pre-commit. The
post-commit process is expected to succeed except for disastrous events (e.g., disk full,
crash or power failure), i.e., after pre-commit and CSR commit check, the cross-engine
transaction can safely commit. Single-engine transactions directly execute the two phases
without intermediate steps and bypass the cross-engine commit protocol below.

With the pre-commit interfaces, the first step to commit a cross-engine transaction is to
pre-commit both sub-transactions. Then, using the commit timestamp obtained from the
anchor engine, Skeena queries the CSR to finish the commit check following Algorithm 2.
If the commit check passes, we need to finish the post-commit phase for both engines,
before which the new results by the cross-engine transaction (i.e., from any sub-transaction)
should not be made visible. However, from the perspective of an individual engine, a
post-committed (sub-)transaction is fully “committed” with its results visible to future
transactions. Therefore, Skeena must ensure the partial results are not visible until all

sub-transactions are post-committed.
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Skeena solves this problem by adapting pipelined/group commit [32, 56] which is already
in use in many real systems [55, 21].2 In a single-node, single-engine setting, transactions may
be detached from threads so that log flushing does not block the underlying thread, which
can continue to process other transactions while log I/0 is in-progress. Upon commit, instead
of directly issuing a log flush, the thread detaches the transaction and appends it to a global
commit queue (or a partitioned, distributed queue to avoid introducing a central bottleneck).
A dedicated committer thread (which sometimes can be the log flusher thread) then tracks
transactions awaiting log durability on the commit queue, and dequeues transactions whose
log records have been persisted. Results by these transactions are immediately visible
internally to other transactions, however, the results are not returned to the client application
until the transaction’s log records have been persisted. This approach has been used by
several systems to improve throughput without sacrificing correctness [32, 58, 56].

We adapt this approach to solve the partial result issue: sub-transactions are pushed on
the commit queue as shown by Figure 4.1 during post-commit. The underlying thread then
continues to execute other transactions, while log flushes are happening in the background.
The commit daemon thread then only dequeues transactions once their log records are
persisted. While sub-transactions are on the commit queue, their results are already visible
to other transactions. However, same as the single-node case, any results depending on these
in-progress results will not be returned to the client application until the log records are
persisted, maintaining correctness for client applications. Moreover, if one or more engines
already implements commit pipelining, Skeena can directly piggyback on it to realize the
aforementioned functionality. Note that single-engine and read-only transactions must also
go through the above protocol to ensure correctness, because they might read changes that

are generated by cross-engine transactions; we quantify its effect in Chapter 6.

4.5 Durability and Recovery

In multi-engine systems, each engine implements its own approach to durability and crash
recovery. Therefore, sub-transactions still follow their corresponding engines’ approach to
persist data and generate and persist log records. Checkpoints can be taken as usual inde-
pendently by each engine for its own data. To ensure atomicity of cross-engine transactions,
Skeena maintains a lightweight log to denote the pre-commit and post-commit of cross-
engine transactions. This can be done by maintaining a standalone log or piggybacking
on individual engines. The latter can be easier to implement: upon starting pre-commit a
sub-transaction the engine appends a commit-start record, and after post-commit finishes,

the engine appends a commit-end record. This way, upon recovery, each engine executes

2 Aurora and Taurus DB also refer to it as “asynchronous commit” which is different compared to academic
definition of “asynchronous commit” that allows a transaction to commit (with results returned to clients)
without persisting the log.
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its recovery mechanism to redo/undo log records, and then rolls back any changes done
by cross-engine transactions whose sub-transactions are not all fully committed, using the
additional log information. Alternatively, the recovery procedure may first inspect the logs
of each engine, and simply truncate it at the first “hole” where only one sub-transaction
of a cross-engine is recorded as committed. This is safe because the commit pipelining in
Skeena ensure that the results of a transaction are only released when all of its depending log
records are persisted [32]. Later transactions that depend on partially committed cross-engine
transactions will wait on the commit queue and therefore can be safely discarded in case of

a crash as they were never made visible to the client application.
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Chapter 5

Skeena in MySQL

With the design of Skeena laid out, now we describe our experience of using it to realize
cross-engine transactions in MySQL between its default InnoDB storage-centric engine and
ERMIA [34], an open-source main-memory engine. To start with a fair, up-to-date baseline,
we modify the community version of MySQL by adding commit pipelining and thread pool
support, as they are used by industry-strength MySQL variants by major vendors (such as
Amazon Aurora [55] and Huawei Taurus [21]). As a result, each client connection is served
by a thread drawn from the thread pool. The thread then uses a routing mechanism (which
is already part of original MySQL) to access the corresponding engine based on the data
request. Upon commit, the thread detaches the transaction to place it on the commit queue
maintained by the pipelined commit protocol. The thread is then returned to the thread
pool to continue to handle the next request.

Skeena selects ERMIA as the anchor engine. The snapshot mechanism is implemented in a
more lightweight fashion in ERMIA than in InnoDB. For ERMIA, acquiring a snapshot does
not need any latches. For InnoDB, acquiring a snapshot may require taking a system-wise
mutex if the transaction is not read-only. We identified three challenges.

The first challenge is the conversion from conceptual CSR. snapshot to the InnoDB read
view. To approach this, the CSR stores the high watermark of a read view. An InnoDB read
view consists of a low watermark, a high watermark, and an active transactions list. The
current transaction should not see any transaction with transaction ID (trx_id) greater
than or equal to the high watermark, and can see those with trx_id strictly smaller than
the low watermark. A transaction with trx_id in between the two watermarks is not visible
if it is also in the active transactions list. This list contains currently active read-write
transactions. Therefore, to make the read view compatible for cross-engine transactions, we
only need to further adjust the low and high watermarks based on the CSR snapshot after
they are first prepared by the original InnoDB MVCC logic. The high watermark stored in
the CSR is from a history read view such that it is no larger than the one before adjustment.
Because the active transaction list remains unchanged after adjustment, the invisibility of

the transactions in the list is still guaranteed.
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The second challenge is the acquisition of InnoDB LSN in pre-commit. Skeena commit
protocol requires both engines to obtain the pre-commit LSN for commit check before the
actual commit. For ERMIA, it already has a pre-commit interface. For InnoDB, the commit
LSN is generated when a log is written to disk, making it impossible to get the commit LSN
before commit. The commit LSN indicates the order of commits, so it is also feasible to use
an equivalent counter that indicates the same order in InnoDB. We discover that during
the commit, InnoDB acquires a serialization number (serialisation_no) before writing
the log. The serialization number is acquired from the same counter that generates trx_id,
and follows the same order of the commit LSN. So instead of acquiring the commit LSN,
the pre-commit interface simply takes the serialization number from this counter. After
commit check, the commit entry with commit LSNs from both engines will be inserted to
CSR. For ERMIA, it is safe to do so since the ERMIA commit LSN is the begin LSN of the
next transaction. For InnoDB, the serialisation_no comes from the same monotonically
increasing counter that generates the read view watermarks, so the serialisation_no is
the high watermark of the next transaction at the same time.

The last challenge is the implementation of the commit pipelining. Original MySQL
worker threads wait for the transaction to become durable and then return the results in
a synchronous fashion. Now the pipeline breaks the MySQL commit logic into two stages.
The first stage ensures the transaction is committed. Once a transaction is committed, the
worker thread enqueues the commit entry into the commit queue in ERMIA and then can be
detached to process another new transaction. The commit entry consists of ERMIA commit
LSN, InnoDB commit LSN, and a callback function. The dedicated dequeuer thread will
not invoke the callback function and dequeue the entry from the commit queue until both
commit LSNs are smaller than the durable LSNs in their respective engines. This callback
function can be treated as the second stage where MySQL returns the results to the user,
and performs clean-ups. The single-engine transactions also go through this commit pipeline

mechanism to prevent users from reading partial results.
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Chapter 6

Evaluation

In this chapter, we empirically evaluate Skeena in the MySQL environment described in
Chapter 5 to understand its performance impact and explore the potential of cross-engine

transactions under realistic workloads. Through experiments, we show the following:

o Skeena retains the performance benefits of memory-optimized engines by incurring no

overhead over single-engine memory-optimized transactions;

e Only cross-engine transactions and single-engine transactions that access the “slow” engine

need to pay additional costs, which however is also very small;

e By judiciously placing tables in different engines, Skeena can effectively improve transac-

tion throughput;

o Skeena realizes cross-engine transactions without mandating fundamental changes to the

application, which only needs to declare the table’s home storage engine.

6.1 Experimental Setup

We run experiments on a dual-socket server equipped with two 20-core Intel Xeon Gold
6242R processors (80 hyperthreads in total), 384GB of main memory, and a 400GB Micron
SSD with peak bandwidth of 2GB/s. Each CPU has 35.75MB of cache and is clocked at
3.1GHz.

We conduct experiments in the aforementioned MySQL environment that integrates
ERMIA and its default InnoDB engine. The MySQL version used is 8.0." We use the standard
SysBench [44] tool to issue database benchmarks (described later). Since MySQL employs
a client-server architecture, to reduce the impact of network latency, we run the database
server on one CPU socket, and the client on another socket; because our server and client are
on the same machine, we directly use a Unix Domain Socket (instead of TCP/IP) for faster

communication between the server and client (SysBench) [61]. We use snapshot isolation

'Downloaded from https://github.com/mysql/mysql-server.
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(repeatable read in InnoDB) to run all experiments and report the throughput and latency,
each run lasts for one minute. All queries are interpreted without compilation, however, one
could still employ it to achieve even better performance for the memory-optimized engine;
we leave it as future work.

To stress test Skeena and both engines, we store persistent data (such as data files and
logs) in tmpfs so that all storage accesses in fact go through main memory. ERMIA is
memory-optimized so all records are in heap memory. For InnoDB we test three different

storage settings:

« memory-resident: The database fits in the buffer pool to avoid accessing storage

and file system stack.

o storage-resident(tmpfs): It uses a small buffer pool that would mandate accessing

the storage stack, the storage back-end is tmpfs and all data is stored in DRAM.

o+ storage-resident(ext4): It uses a small buffer pool that would mandate accessing the
hard disk below ext4 file system. The data is stored in the storage device mentioned

above.

In all cases, we reinitialize the database for each run which then starts with a warm buffer
pool.

To further investigate the overhead introduced by CSR multi-index design, we conduct a
set of experiments varying different CSR index capacity and recycle threshold parameters.

We describe the detailed experimental setup later.

6.2 Benchmarks

We first run YCSB-like [17] microbenchmarks to stress test Skeena, and then explore the
usefulness and behavior of cross-engine transactions in realistic scenarios with TPC-C [53].

Microbenchmarks. We devise three microbenchmarks based on access patterns: read-
only, read-write and write-only. Each transaction accesses ten records uniform randomly
chosen from a set of tables. Out of the ten accesses, for read-write transactions, eight are
point reads and two are updates. For each engine, we create 250 tables, each of which
contains a certain number of records depending on whether the experiment is memory- or
storage-resident for InnoDB. Each record is 232-byte, consisting of two INTEGER and one
VARCHAR fields. For memory-resident experiments, each table contains 25000 records which
brings the total data size of 250 tables to ~1.35GB; the buffer pool size in InnoDB is set
to 32GB. For storage-resident (both ext4 and tmpfs) experiments, we set each table to
contain 250000 records, and the total data size is ~13.5GB; we set the buffer pool to be
2GB. Under both settings, ERMIA is populated with the same amount of data, which is

all stored in memory. For each transaction, we further vary the percentage of InnoDB and
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ERMIA accesses (0%, 30%, 50%, 80%, and 100% InnoDB accesses out of the ten accesses).
For example, under the 30% InnoDB setup, 30% of (i.e., three out of ten) record accesses per
transaction will happen in InnoDB, the remaining seven accesses will happen in ERMIA.
TPC-C.2 We use TPC-C for the dual-purpose of (1) understanding Skeena’s performance
under non-trivial transactions, and (2) exploring the potential benefits and trade-offs of
cross-engine transactions in realistic scenarios. Similarly, we run the experiments under three
different storage settings: memory-resident, storage-resident (tmpfs) and storage-resident
(ext4). The memory-resident one uses a scale factor which is the same as the number of
concurrent connections and the storage-resident (both tmpfs and ext4) experiments use 200
warehouses. For memory-resident experiments, each connection works on a different home
warehouse but the 1% of New-Order and 15% of Payment transactions may respectively
access a remote warehouse; we set InnoDB buffer pool to be 32GB which is large enough to
hold all the data (~14GB). With 200 warehouses, the total data size is ~55GB, for which
we set InnoDB to use a buffer pool of 5GB and set each thread (connection) to always pick a
random warehouse as its home warehouse to ensure the footprint covers the entire database.
Again, any table stored in ERMIA is full in-memory and accessing them does not involve
the storage stack. Finally, we adapt selected TPC-C transactions to become cross-engine by
changing table placement. This allows us to further explore the effectiveness of cross-engine
transactions in realistic workloads, and distill useful suggestions. We discuss the detailed

setup later.

6.3 Single-Engine Performance

Microbenchmark. We evaluate the single-engine performance in microbenchmarks and
TPC-C. As shown in Figure 6.1, InnoDB is the more heavyweight one out of the two
engines. Besides, the performance of single-engine transactions with CSR turned on, i.e., “0%
InnoDB” and “100% InnoDB”, is comparable to the performance of those with CSR turned
off, which means that CSR incurs minuscule overhead to the single-engine transactions. The
throughputs of pure InnoDB experiments on tmpfs and ext4 are very different, but show
the same trend. This is because logging is a bottleneck for the storage-resident (ext4) case,
and the write-intensive microbenchmarks such as read-write and write-only transactions
require more I/O than read-only transactions by persisting log records. Therefore, the
system is bottlenecked by storage I/O. But even under extreme cases that storage becomes
the bottleneck, our experiments still show that the CSR does not incur high overhead to
single-engine transactions.

TPC-C. As shown in Figure 6.3 and Figure 6.2, pure-innodb is the “lower bound” across

all the types of transactions, while pure-ermia is the “uppper bound”. The performance of
*Implementation adapted from https://github.com/Percona-Lab/sysbench-tpcc.
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Figure 6.1: Microbenchmark.
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most types of transactions become flat since the system is fully saturated on 40 threads. For
the memory resident Delivery transaction, the latency increases as the worker threads grows,

leading to a performance decrease because of the thread context switching and high latency.

6.4 Cross-Engine Performance

Microbenchmark. Since InnoDB is more “heavyweight”, with the increasing percentage of
ERMIA accesses in a transaction, the performance is expected to grow, e.g., 30% InnoDB
should yield higher TPS than 100% InnoDB, yet the 100% InnoDB outperforms 30 - 80%
InnoDB in Figure 6.1a and Figure 6.1c. The reason for this counter-intuitive finding is
two-fold. First, for the read-only sub-transactions, ERMIA still generates a fixed-size commit
record. In other words, with more ERMIA accesses, the CSR tree structure becomes bigger,
requiring more operations on the tree to be done for each access, which is non-negligible for
the read-involved workloads in the main-memory environment. Second, and more importantly,
with 100% InnoDB, no ERMIA accesses are ever done, so the CSR is very small, with simply
one key (ERMIA LSN) inserted, making it very cheap to query, and no tree recycling is
ever needed. However, with other percentages, such as 30 - 80% InnoDB, more ERMIA
accesses results in more LSN-TID mappings being stored in the CSR, as LSNs (keys) are
inserted to the tree when ERMIA sub-transactions commit, thus it is more expensive
to query the CSR, and garbage collection becomes necessary in this case. The memory-
resident write-only workload exhibits more of expected trends in Figure 6.1e. The throughput
is negatively correlated with the InnoDB percentage, since write-only transactions only
execute updates, which translates to InnoDB holding exclusive locks under the hood, thus
making the performance worse with higher InnoDB percentage despite all the data being
memory-resident.

The memory-resident InnoDB is an extreme configuration, due to the fact that, in real
life, a storage-based DBMS may store up to terabytes of data, thus the performance gains
brought by lightweight ERMIA accesses cannot be easily canceled out as they are in the
aforementioned cases. As the storage subsystem accounts for the biggest proportion of the
overhead in the storage-resident version, the overhead incurred by CSR becomes negligible,
with the expected behavior across all the cases: the higher ERMIA percentage, the higher
TPS is. Figure 6.1b and 6.1f respectively show that “30% InnoDB” is up to 75% faster
than “100% InnoDB” for read-only, and up to 40% faster for write-only. For read-write,
cross-engine transactions have a 4% abort rate in average that comes from commit checks
compared to 0% for single-engine transactions, and InnoDB rollback is non-trivial effort,
making the cross-engine throughput less distinguishable from that of pure InnoDB. More
details of abort rates are discussed next against TPC-C results.

TPC-C. We run the following TPC-C experiments:

e Pure-ermia: Single-engine setting with all the TPC-C tables in ERMIA.
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e Pure-innodb: Single-engine setting with all the TPC-C tables in InnoDB.

Optimize-payment: Cross-engine setting aiming at optimizing the performance of

“Payment” transaction, which involves intensive access for the Customer table. With this
setting, the Customer table is stored in ERMIA, other tables are stored in InnoDB.

e Optimize-new-order: Cross-engine setting aiming at optimizing the performance of
“New Order” transaction. With this setting, the Customer and Item tables are stored in
ERMIA, other tables are stored in InnoDB.

¢ Archive-only: Cross-engine setting with a more aggressive use of main memory engine.
With this setting only the history data in History table is stored in InnoDB, all the other

tables are stored in ERMIA for faster transaction processing.

The six workload types, combined with two InnoDB buffer pool settings and the five different
table distribution scenarios make a total of 60 benchmark schemes.

Figure 6.2 and Figure 6.3 show that as the TPC-C tables are moved to ERMIA gradually,
the performance of all types of TPC-C transactions increases and gets closer to pure-ermia
performance. The observation matches the expectation that pure-ermia TPC-C has the best
performance and act as the “upper bound” among all different engine schemes. However, the
trend is different from the microbenchmark result. The reason is that the microbenchmark
workload is simple, while the TPC-C workloads are more complex which includes SQL
operations such as range scan and aggregation. The CSR overhead therefore becomes
relatively low compared to the actual TPC-C workload. Another observation is that in both
memory-resident and storage-resident TPC-C experiments, archive-only achieves almost
the same performance regardless of InnoDB is storage-resident or memory-resident. Since in
archive-only scheme, only the History table is stored in InnoDB. For the 200-warehouse
setting of the storage-resident experiments, the total size of the history table is less than
600 MB, which means the whole table will be cached in buffer pool, so the performance is
expected to be similar. The storage-resident (tmpfs) and storage-resident (ext4) experiments
show similar throughput for most TPC-C transactions because logging is usually not a
bottleneck, especially for those that are read-intensive. For write-intensive transactions,
New-Order writes more log records than Payment does and logging becomes a bottleneck
for New-Order. Therefore, performance of storage-resident (ext4) New-Order transactions is
lower than the that of storage-resident (tmpfs). Nevertheless, we note that in either case

they exhibit the same trend.
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Figure 6.4: Storage-resident(ext4) TPC-C.

6.5 CSR Overhead

Now we study how multi-index CSR may impact the abort rate of different transactions by
varying its parameters (the capacity of each index and the number of indexes before recycling
is triggered). We conduct experiments using 50 connections under optimize-payment and
run the TPC-C full mix. The reason we choose this setting is because the default Mix is
representative that contains all TPC-C transactions, and 50 connections can fully saturate
the server.

Figure 6.5 shows the throughput and abort rate numbers under both storage- and
memory-resident configurations, with a varying number of CSR index capacity and recycling
threshold settings. As shown by the figure, under extreme cases where CSR, Index Capacity is
set to 1, i.e., only one entry can be inserted to a CSR index, the abort rates are significantly
higher than other cases (at around 4%). This is because more cross-engine transactions
are aborted since the entries are recycled frequently and the anchor snapshot is often old,
making it likely for transactions to intend to insert into a read-only index and subsequently
abort. Note the two different CSR configurations here: (1) CSR Index Capacity = 1 and
Recycle Threshold = 5000; (2) CSR Index Capacity = 5000 and Recycle Threshold = 1.

28



10000 [EEOEEA 451 74547 13 16 15 16 [460 |ENEEENEEE 16 15 16 15 761 766 0.71 0.66 0.67 0.65
5000 455 PEEN 450 447 15 16 16 14 |45 452 457 453 14 16 15 15 788 [EE) 064 07 07 057
1000 427 459 WIEH 450 15 15 1.4 1.7 |G 442 445 452 13 1.7 13 14 764 744 0.66 064 0.6 0.7
100 437 443 450 448 15 16 15 1.7 454 446 17 17 19 16 744 730 0.83 072 0.79 0.8
50 453 449 439 1.8 18 2 18 452 445 447 465| 2 17 19 2 781 749 X 0.97 091 0.93 0.85

1 430 435 439 444 NECEENCEEWENNN 456 457 426 463 NAWANNCEN/ VRN RE 763 787 743 753 4 4 37 39

1 100 1000 5000 1 100 1000 5000 1 100 1000 5000 1 100 1000 5000 1 100 1000 5000 1 100 1000 5000

CSR...Index...Capacity

Recycle...Threshold Recycle...Threshold Recycle...Threshold Recycle...Threshold Recycle...Threshold Recycle...Threshold
...(a)...Throughput(TPS) ...(b)...Abort...rate(%) ...(c)...Throughput(TPS) ..(d)...Abort...rate(%) ...(e)...Throughput(TPS) ...(f)...Abort...rate(%)
ext4 ext4 tmpfs tmpfs DRAM DRAM

Figure 6.5: Throughput(TPS) and Abort Rate(%) of TPC-C Default Mixed Transaction
with Table Scheme Optimize-payment.

Table 6.1: Abort rate comparison between single-engine and cross engine TPC-C transactions

Pure-ermia 0.43%
Pure-innodb 0.47%
Optimize-new-order | 0.61%

cross-engine | Optimize-payment 0.54%
Archive-only 0.45%

single-engine

Both of them have the same “total” CSR capacity (5000), while their abort rates differ by a
lot. This is because the overhead of creating a new index is much higher than adding an
entry into an existing index. As a result, when a cross-engine transaction is about to find a
valid snapshot, the entry is more likely to be recycled in CSR configuration (1) compared to
CSR configuration (2). As shown by the figure, we observed the similar trend for all storage
setups. Overall, under non-extreme configurations (e.g., 50 index capacity), the multi-index
CSR exhibits very low overhead. the overhead of CSR recycle mechanism remains low.
Table 6.1 further shows the abort rates for single-engine TPC-C vs. cross-engine TPC-C.
under the memory-resident case since under this setup the contention is low (using equal
numbers of warehouses and connections) and so aborts are mainly caused by CSR. The table
shows that CSR only aborts less than 0.3% of transactions. We expect this to be tolerable

in real world scenarios.

6.6 Latency

To explore the impact of CSR on transaction latency, we collect the results from the storage-
resident microbenchmarks done in Chapter 6.2. As shown in Figure 6.6, besides the latency
at single connection, the one at 80 connections is also chosen here for analysis because
we can infer from Figure 6.1 that the throughput always peaks at 80 connections on our
machine. With 80 times more connections, latency unavoidably increases. However, it is still
within an acceptable range. The latency remains consistent across all three workloads at

single connection (Figure 6.6a); and it increases in proportion to the number of InnoDB
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Figure 6.6: 95th percentile latency of microbenchmarks at single connection and 80 connec-
tions under varying storage-resident workloads.

sub-transactions at 80 connections (Figure 6.6b). Note that even the latency of 100% InnoDB
transactions, which is the worst case, is still comparable to that of 100% InnoDB transactions

bypassing CSR. Thus, we conclude that CSR, does not significantly impact latency.
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Chapter 7

Related Work

Our work builds upon a rich literature in federated and multi-database systems, distributed
and replicated SI systems, and modern database engines.

Federated, Multi-database (MDBS) and Polystore Systems. These systems are
mostly deployed in a distributed environment, where each DBMS is heterogeneous and resid-
ing in different hosts, assuming that, e.g., local databases do not know the existence of each
other, no extra information exported for coordination etc. The autonomy and heterogeneity
of local database systems (LDBS) make it difficult to enforce the serializability of global
transactions in MDBS than in homogeneous distributed database systems. Georgakopoulos
et al. [30] focus on enforcing the serializability of global transactions in MDBS by using
ticket methods. Superdatabase [47] addresses the consistent update issue by exporting serial
order information from element databases at commit time via the commit vote message.
Breitbart et al. [12] propose a consistency protocol, which detects cycles in the site graph,
where the absence of cycles guarantees the correctness of any execution mix, to resolve
consistency and deadlock issues in MDBS. Myriad [31, 38] is a federated database prototype
which uses 2PL as local concurrency control scheme, 2PC to ensure serializability, timeout to
resolve deadlocks, and SQL for querying. Recent polystore systems [24, 3, 4] are dedicated
to supporting cross-model query in the data analytic ecosystem, while Skeena focuses more
on transaction-oriented tasks.

Distributed SI and Replication. Prior work on federated snapshot databases identified
the anomalies that would lead to inconsistent read views [49]. Binnig et al [8] further
identified the cross phenomena under distributed snapshot isolation and proposed incremental
distributed SI to correctly support snapshot isolation in a distributed setting. We base our
analysis of multi-engine transactions on these results. Compared to prior work, we further
extended these results to supporting various isolation levels, including serializability using
commit ordering [48]. Elnikety et al. [25] present Generalized Snapshot Isolation (GSI)
for replicated databases. GSI differs from the conventional SI in the begin phase where a
transaction now uses the older (i.e., latest local) snapshot instead of the latest snapshot,

and in the commit phase where an update transaction now checks if there are conflict writes
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between its snapshot (rather than start) and commit times. In Skeena, transactions may get
an older snapshot from CSR as well, but the commit check only compares commit times.
Modern Database Engines. These engines benefit from the high parallelism that
today’s multi-core hardware promises, yet still struggles to scale well in presence of bottlenecks
like a centralized log buffer. A scalable logging technique [32] that Johnson et al. introduce
is a solution tailored to addressing the problem of logging contention by using a combination
of early lock release and log flush pipelining, which is applied to our work. SQL Server
2016 [20] supports cross-container transactions, which touch both memory-optimized and
disk-based tables, and users are unaware of the table types they are working with in most
cases. Nevertheless, with respect to the isolation level schemes, SQL Server does not allow

adopting SI uniformly in both engines like what we do in Skeena.
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Chapter 8

Conclusion and Future Work

Cross-engine transactions can be very useful. However, prior work does not consider the
characteristics of modern “fast-slow” systems. Skeena is an efficient approach to consistent
cross-engine transactions in modern fast-slow systems. It consists of a lightweight transaction
snapshot tracking and pipelined commit protocol for obtaining consistent snapshots and
ensuring atomic commit. Our experience of integrating a memory-optimized engine (ERMIA)
into MySQL shows that Skeena can enable cross-engine transactions with few or no changes
to core engine code. Experimental results further confirm that the overhead of the whole
mechanism is low. And the mechanism is applicable to complex workload such as TPC-C.
Future work includes exploring ways to support cross-engine transactions across more than

two engines and serializability.
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