

March 11, 2005

Mr. Lakshman One
School of Engineering Science
Simon Fraser University
Burnaby, British Columbia
V5A 1S6

Re: ENSC 440: Design Specification for a P300 Spelling Device for the Completely Disabled

Dear Mr. One:

Please find the attached document, Design Specification for a P300 Spelling Device for the Completely
Disabled, briefly outlining our chosen design. As you know, we are currently in the process
of implementing an operational prototype of a brain computer interface that uses the P300
brain response to allow completely disabled persons, such as those suffering from late-stage
Amyotrophic Lateral Sclerosis, to communicate.

In the attached document we give a brief system overview and we outline the system’s
design.

ThinQ Innovation is comprised of five senior-level engineering students, each with unique
strengths to complement the group and a common trait in determination. We are Jack Cha,
Jae-Seok Jeon, Brian John, Min Seo and Jyh-Liang Yeh. ThinQ Innovation looks forward to
consulting with you on any concerns you may have. Should you have any questions, please
feel free to contact us at ensc440-project@sfu.ca.

Best Regards,

Brian John
Project Lead

Enclosure: Design Specification for a P300 Spelling Device for the Completely Disabled

Design Specification for a
P300 Spelling Device for the Completely
Disabled

Project Team Members: Jack, Cha
Jaeseok, Jeon
Brian Henry, John
Min, Seo
Jyh-Liang, Yeh

Contact: ensc440-project@sfu.ca

Submitted to: Mr. Lakshman One – ENSC 440
Mr. Mike Sjoerdsma – ENSC 305

Issued date: March 11, 2005

Revision: 1.0

mailto:ensc440-project@sfu.ca

 ii

Executive Summary

ThinQ Innovation is currently developing a P300 Brain Computer Interface (BCI) spelling
device prototype intended to provide a communication medium for completely disabled
persons, such as those suffering from late-stage Amyotrophic Lateral Sclerosis (ALS).
Ultimately, our system may allow late-stage ALS patients to lead a more fulfilling life and
may also help researchers and medical doctors to gain further insight in the patient’s
physiological and psychological state.

The overall development of our system consists of 3 phases. After the first phase, we will
have a prototype with essential functionalities. Once we are satisfied with the performance
of our prototype, we will move into phase 2 to further improve the performance towards a
production system. In the third phase, we will develop our system to include features
necessary for commercial deployment. Phase 1 completion is scheduled for April, 2005 and
will have the following main features:

1. Offline P300 detection accuracy of 99% in fewer than 10 trials using 10 data
channels.

2. Online data collection and detection accuracy of 99% in fewer than 40 trials using 10
data channels.

3. Enhanced word selection using word prediction feature that will increase speed.
Word selection will be available after the first target letter is decoded.

From a design point of view, our system can be broken down into four main modules: data
acquisition module, output and control module, P300 detection module and word prediction
module. As well, our P300 spelling device can operate in both real-time (online) and non-
real-time (offline) modes. The remainder of this document further details our design for
P300 Spelling Device.

 iii

Table of Contents

EXECUTIVE SUMMARY ... II

1. INTRODUCTION .. 1
1.1. SCOPE .. 2
1.2. INTENDED AUDIENCE... 2
1.3. LIST OF ACRONYMS ... 2

2. SYSTEM OVERVIEW ... 3

3. DATA ACQUISITION MODULE.. 6

3.1. DATA COLLECTION MODULE HARDWARE ... 6
3.2. DATA COLLECTION MODULE SOFTWARE .. 8

3.2.1. Data Collection Module Software—Online System.................................... 9
3.2.2. Data Collection Module Software—Offline System.................................. 10

4. CONTROL AND OUTPUT MODULE.. 11
4.1. CONTROL AND OUTPUT MODULE HARDWARE... 11
4.2. CONTROL AND OUTPUT MODULE SOFTWARE .. 12

5. P300 DETECTION MODULE ... 15

5.1 SUPPORT VECTOR MACHINE ALGORITHM ... 15

6. WORD PREDICTION MODULE .. 19

7. TESTPLAN ... 20

7.1. DATA COLLECTION MODULE TESTING .. 20
7.2. CONTROL AND OUTPUT MODULE TESTING.. 21
7.3. P300 DETECTION MODULE TESTING.. 22
7.4. WORD PREDICTION MODULE TESTING .. 22

8. CONCLUSION ... 23

9. REFERENCES... 24

List of Figures

Figure 2.1: System Overview..3
Figure 2.2: (Left) Display matrix currently flashing the second row, (right) first column4
Figure 2.3: High-level system design overview. Arrows indicate direction of data flow..........5
Figure 3.1: Data Acquisition Module Flow..6
Figure 3.1.1: DAQ Hardware Block Diagram ...7
Figure 3.2.1.1: Data Overlapping in P300 Response ..9
Figure 3.2.1.2: Data Flow in Online Data Collection Module ..10
Figure 4.1.1: Row or column intensification and de-intensification for display output12
Figure 4.2: Pattern for intensification and de-intensification timing..13
Figure 4.3: Pattern for data acquisition timing...13
Figure 4.4: Functional and signal dataflow flowchart for control and output modules14
Figure 5.1.1: Optimal Hyperplane using SVM algorithm...15
Figure 5.1.2: Training Data Set ..16
Figure 5.1.3: Variables after Training ..17
Figure 5.1.4: Variables after Testing..18
Figure 6.1: A database showing top 20 common used words...19
Figure 7.1.1: Graphing GUI for displaying Testing Result..20
Figure 7.2: Output status messages for control timing testing..21

List of Tables

Table 4.1.1: Table of timer API functions..12
Table 5.1.1: Variable Description ..17

iv

 1

1. Introduction

The P300 Spelling Device is a communication system for completely disabled persons. The
device uses visual stimuli in the form of flashing alphanumeric characters to invoke a
response from the user’s brain to determine the intended character and display on a screen
for others to see. The system can be divided into four design modules: data acquisition
module, output and control module, P300 detection module and word prediction module.

The development of our system consists of 3 phases. Our immediate goal is to develop a
phase 1 prototype system to achieve fast (within 10 trials) and accurate (better than 99%)
spelling using offline data. Because of uncertainties in regards to the performance of the
available amplifier, we aim to utilize this system in a real-time implementation that can
produce similar, but not identical, results as our offline system. Hence, we have broken
phase 1 into two stages. In the first stage, we will analyze offline data in order to ensure that
the detection of known results is accurate. The second stage will involve equipping the
offline system with data acquisition capabilities and running it in a real-time fashion.

Once a prototype is developed and if we are sufficiently satisfied with its performance, we
will move into phase 2 prototype development to improve the characteristics in preparation
for a production system. Finally, once we have sufficiently improved our prototype such
that it is suitable to enter the production phase (phase 3), we will further enhance the
spelling device to prepare it for commercial deployment. Phase 1 is slated for completion in
April, 2005.

 2

1.1. Scope

This document outlines the design of our P300 Spelling Device. The remainder gives
sufficient design detail so that ThinQ Innovation will be able to use it as a reference
document during implementation.

For a more general overview of the system, including financing and marketability, refer to
our project proposal, Proposal for a P300 Spelling Device for the Completely Disabled [1].

For functional specifications, please refer to Functional Specification for a P300 Spelling Device for
the Completely Disabled [2].

1.2. Intended Audience

This document is not intended for external release and does not represent a finalized design.
Until the design is finalized this document is intended as a reference document for ThinQ
Innovation during implementation. The intended audience includes members of the design
team, management and marketing persons who may need more detailed information of the
system beyond the functional specifications.

1.3. List of Acronyms

ALS Amyotrophic Lateral Sclerosis
API Advance Programming Interface
BCI Brain Computer Interface
CPU Central Processing Unit
CRT Cathode Ray Tube
DAQ Data Acquisition System
EEG Electroencephalograph
GUI Graphic User Interface
LCD Liquid Crystal Display
MND Motor Neuron Disease
PC Personal Computer
PCI Peripheral Component Interconnect
SVM Support Vector Machine

 3

2. System Overview

This section outlines the basic configuration of our P300 Spelling Device. It is intended to
give the reader a better understanding of the overall system operation.

In a working P300 Spelling Device, shown below in figure 2.1, a monitor is placed in front
of a user who is fitted with a head cap containing probes to detect brain activities. The
probes, each one of which represents a “channel”, are connected to a biomedical amplifier,
which then feeds the signals into a processor via an analogue to digital converter. During
operation, we ask the user to focus on a target letter and count the number of times the
letter flashes. During this time, rows and columns on the monitor will flash in random
fashion, separated by approximately 300ms. When the target letter flashes, the user’s scalp
will develop a P300 response. By keeping track of when particular rows and columns flash,
accompanied with the response that the user gave after such flashes, our detection software
will be able to determine the target letter. That is, a target letter will occur at the intersection
of the row and column that gave positive P300 responses.

Figure 2.1: System Overview

Our system utilizes the fact that under certain circumstances, rare events elicit P300
potential. Flashing of target letters on the monitor evokes these rare events. A sample
monitor output, taken at different times, is shown in figure 2.2. In the left case, the row G-
H-I-J-K-L is highlighted, and a P300 response would be evoked on the user’s scalp if he or
she had either of G, H, J, K, L, or I as the chosen target. All rows and columns are flashed
in random sequence. On the right of Figure 2.2, the column A-G-M-S-Y-5 is highlighted.
If, for this trial, a P300 was detected by our system directly after the flashing of highlighted
row and column in figure 2.2, we could deduce that the user was trying to communicate the
letter ‘G’.

 4

`
Figure 2.2: (Left) Display matrix currently flashing the second row, (right) first

column

The time required between flashing rows or columns, denoted as a single “epoch”, lasts
approximately 300ms. For the display matrix depicted above, it would require a total of 12
epochs (6 rows + 6 columns) to constitute as a single trial. The P300 will appear
approximately 300ms after the intensification of a target letter and is characterized by a
prolonged positive change in scalp potential. The system’s task then reduces to the
detection of which row and which column that has elicited a P300 on a given trial.

Because the P300 is substantially smaller than the continuous EEG activities on the scalp, it
is very difficult to detect it on a single-trial basis. Thus, the detection of the P300 within a
noisy EEG environment will require a series of trials averaged together to obtain more
accurate detection. The distinguishing feature of any BCI is the ability to communicate
efficiently and therefore it is clearly desirable to minimize the number of trials in the P300
Spelling Device.

After successful detection of a target letter, the user’s monitor will be updated to reflect the
choice of letter. To increase the communication rate of our system, we intend to
incorporate a word prediction function feature. It involves developing a database of
commonly used words, ranked based on the frequency of usage. When our system is able to
make a guess as to the target word, it will display it on the screen as a possible user input.

Based on rank and previously chosen letters, the word prediction feature will output
probable word choices. Thus, the six most common words matching a partially typed word
will be displayed on an additional row of the matrix screen.

From a design point of view, our system can be broken down into four categorical modules:
data acquisition module, output and control module, P300 detection module and word
prediction module. As shown in figure 2.3, data flows from the data acquisition module to
the control and output module, which passes it to the P300 detection module. The P300
module then gives back to the control and output module a score indicating the possibility

 5

of P300 absence/presence, so that the control and output module may display the chosen
character on the display. Correctly decoded words are also passed to the word prediction
module so that the control and output module may also display possible word choices to the
monitor.

Control and
Output
Module
(software plus
interface to
monitor)

Data
Acquisition
Module (data
acquisition
card plus
software)

P300
detection
Module
(software)

Word Prediction
Module (software)

Figure 2.3: High-level system design overview. Arrows indicate direction of data

flow.

An important function of our P300 Spelling Device is to be able to operate in offline mode
as well as in online mode. Offline mode allows the processing of pre-collected data and is
necessary for both design development and further optimization. We anticipate that we will
continue to operate our P300 Spelling Device in offline move even after the completion of
prototype development thereby making it necessary to integrate offline mode into our
design. Hence, where online and offline mode differ, we have included separate sections
outlining their design. Subsequent sections of this document will describe the design of each
of these modules and briefly illustrate the corresponding test plans.

 6

3. Data Acquisition Module

We use NI-6220 Data Acquisition (DAQ) system by National Instruments for analogue to
digital conversion. Figure 3.1 illustrates how the data is acquired from user’s brain and
reaches the processor (Personal Computer in figure 3.1).

Figure 3.1: Data Acquisition Module Flow

The data acquisition module consists of an amplifier, a personal computer, DAQ
software/hardware and cables that connect to and from NI-6220.

For both offline and online operation, the data collection module is responsible for data
partition and data filtration for processing, this is what we call pre-processing. The
aforementioned pre-processing is done through the DAQ software. Online operation, in
particular, requires the DAQ hardware to collect and condition real-time signals that come
from the user’s scalp.

The following sections outline the design of our data collection module hardware and
software.

3.1. Data Collection Module Hardware

The DAQ hardware is responsible for A/D conversion of the input signals to fit input signal
profile. Figure 3.1.1 shows the DAQ hardware block diagram.

 7

Figure 3.1.1: DAQ Hardware Block Diagram

The DAQ hardware has maximum sample rate of 250 kilo-samples per second and features
Common Mode Rejection Ratio (CMRR) of 95dB in the range between DC and 60Hz. Since our
P300 Spelling Device requires sampling rate of 240 samples per second and CMRR greater
than 80dB in the range between 0.5Hz and 15Hz, both characteristics satisfy the system
requirements. Furthermore, due to the inherent noise accompanied by EEG signals, it is
desirable to have input impedance of greater than 100MΩ, which is well below the DAQ
input impedance of 10,000MΩ.

The following figure 3.1.2 shows the pin-out of the DAQ hardware connector

 8

Figure 3.1.2: NI-6220 Data Acquisition System Pin-out

Our P300 Spelling Device, which will be using 10 channels, requires 11 I/O pins.
Specifically, analog input channels from zero to nine (AI <0...9>) and analog input sense (AI
SENSE) need to be connected to a shielded cable box (NI SCB-100) since each channel
requires one analog input voltage channel for the single-ended measurements. In non-
referenced single-ended (NRSE) mode, AI SENSE acts as the reference for each of AI <0…9>
signal because the DAQ hardware measures the voltage of an analog input signal (AI
<0…9>) with respect to AI SENSE.

3.2. Data Collection Module Software

There are two types of data that our P300 Spelling Device can process, i.e. pre-collected data
from saved into a .mat file format (offline) or real-time data acquired from the user’s scalp
(online). Hence our data collection software must be able to accommodate both the online

 9

and offline operation. Subsequent sections describe the online and offline software
operation, including what they do and how they interface to the control module.

3.2.1. Data Collection Module Software—Online System

The online implementation of data collection module software interface with NI-6220 DAQ
system via a driver called NI-DAQmx which provides NI-DAQmx library functions that can
be used to develop instrumentation amplifications, data acquisitions and control applications.
It carries out three essential tasks: initialization (init() function), conversion of input data into
meaningful data block for specified channels (Trigger() function) and finally making these data
available to the rest of the software (getNextDataEpoch(Channel Number) function).

Implementation of aforementioned task is heavily dependent on the overlap of subsequent
P300 responses. Hence the data blocks would share data with another stimulus. The
overlap is shown in figure 3.2.1.1.

Figure 3.2.1.1: Data Overlapping in P300 Response

The online software module collects the most recent data collected in the previous 600ms.
However, because of the overlapping in P300 response time, we must avoid deleting data in
the buffer. Hence, we keep the data in the buffer so that specifying the collection mode to
group the data by the channel number can access data blocks for each of the 10 channels.
Figure 3.2.1.2 illustrates this concept.

 10

Figure 3.2.1.2: Data Flow in Online Data Collection Module

3.2.2. Data Collection Module Software—Offline System

In contrast to the online operation, the offline operation uses pre-collected data stored in
.mat files. In the testing of our offline system, we used to the data available from BCI
Competition 2003 [3]. Data collection module is responsible for extracting appropriate data
and returning them to the control module when requested. Implementation is done entirely
in MatLab because of its efficiency in dealing with matrix-based computations.

Access to the offline data collection block is achieved in two steps: 1) init() and 2)
getNextDataEpoch(). init() initializes the data collection block to set appropriate parameters.
getNextDataEpoch() returns the data epochs in the sequence of recorded values as well as the
coordinates of the letter that was flashed.

 11

4. Control and Output Module

The control and output module acts as the main control of the P300 spelling device. In
particular, it coordinates flow of data between the data acquisition module and the P300
detection module. Also, it controls the timing of row or column flashing on the main
display monitor.

4.1. Control and Output Module Hardware

The control and output module controls the flashing of letters on the output monitor. The
monitor we will use is a generic 19-inch CRT monitor. In order to control the flashes, we
require hardware timers that are provided with the Pentium 4 CPU. These hardware timers
are essential to our software display controller and data acquisition module, which are all
timing dependent.

There are different hardware timers that differentiate themselves based on their resolution,
interrupt priority, and accessibility. Some of these timers also depend on the make of the
CPU such as between an Intel or AMD manufacturer [4]. Since our functional specification
states that our system is designed for a Pentium-based PC, we will discuss hardware timers
applicative only to Intel Pentium processors.

The first class of hardware timers is a 32-bit, 1 ms maximum resolution counter that wraps
around in 49.7 days. This timer is readable as well as accessible such that an event can be
instantiated to evoke and interrupt [4]. The interrupt occurs when the counter matches a
user-defined delay and is set at the highest possible Windows system priority. The accuracy
of these timers is fairly accurate since a kernel call to set these timers will create a separate
thread independent of our parent program [4]. Once the timer elapses and interrupts, the
timer thread executes a callback function, which will be the address of one of our timer
functions located in our program. Furthermore, the timer events can be set as one-shot or
periodic firing. These kernel calls are located the Windows Multimedia library (winmm.dll).
The library was originally created for critical graphic applications [4]. Thus, our program
utilizes these high-priority timers for flashing letters generated by the display output module.

The second class of timers used in our system is of higher resolution. More specifically, this
is a 64-bit counter with an approximate 0.8µs resolution [4]. However, the high resolution
trades off on the interrupt and event capabilities. These timers can only be read but cannot
be instantiated. Furthermore, these timers are only available in the Windows kernel32 library
(kernel32.dll). Hence, we only use these Kernel calls to profile our software to accurately
time the execution overhead for certain sections of our source code. The purpose is to
pinpoint computational bottlenecks located in our software. As a result, we can further
optimize our code or explore alternate computation algorithms.

The following table lists the API functions available in their respective Windows library,
which are used in our software to read or instantiate an event on the hardware timers [5].

Table 4.1.1: Table of timer API functions
Windows’ Multimedia Library (winmm.dll)
API Function Parameters API Description
timeGetTime None To read the timer counter value
timeSetEvent (delay, counter increment resolution,

address of callback function, timer ID,
event firing flags)

To instantiate a timer event
thread based on the delay and
event firing type

timeKillEvent (timer ID) To properly kill the timer thread

Windows’ Kernal32 Library (kernel32.dll)
API Function Parameters API Description
QueryPerformanceCounter (Counter value) Reads the high-resolution

counter
QueryPeformanceFrequency (Counter frequency) Checks the counter frequency as

it is CPU-make dependent

4.2. Control and Output Module Software

The display output of our design requires intensification and de-intensification of certain
row or column of characters. Initially, we set the intensification and de-intensification
period to 100 ms and 200 ms respectively. Thus, the total duration between consecutive
flashes is 300 ms. This complete duration is considered as one epoch. It should be noted
that these timing figures are not hard-coded but rather flexible numbers that can be set by
the developer. But, based on the characteristics of the P300 response and pass researches,
we chose these standard figures as initial settings for our system [6]. Figure 4.1.1 depicts the
timeline of our display output.

I DI D

. . .

300ms, 1 epoch
. . .

I D

300ms, 1 epoch

 200ms100ms200ms100ms

I

I = Intensification
D = De-intensification

Figure 4.1.1: Row or column intensification and de-intensification for display output

There are several approaches to implement a timing controller that confirm to the timing
diagram shown above. The first solution is to instantiate two timers, one for 100ms and the

12

 13

other for 200 ms. The disadvantage is that these timers can only be one-shot events
instantiated and killed consecutively. As a result, this method has excessive API overhead
that increases CPU usage and decrease dataflow output. Thus, our design resorts to another
method which requires 3 timers, but 2 are set to periodic-event firing. Figure 4.2.1 is
another representation of figure 4.1.1 depicted above but with a timing pattern that allows us
to create periodic timers.

. . .

I DI D . . .I D

Periodic 300ms
de-intensification Next fire

100ms
ffset

O

I

Periodic 300ms
intensification

Next fire

I = Intensification
D = De-intensification

Figure 4.2: Pattern for intensification and de-intensification timing

Based on the new figure, one timer has the task of intensifying a certain row or column and
one timer has the task of de-intensifying the already intensified row or column. The third
timer is a one-shot event to setup the first 100ms de-intensification offset. Once the third
timer elapses, the two remaining timers will continue firing without excessive API overhead.
The timers will be killed only at the end of user training or spelling.

More must be said about the data acquisition timers. Signal data from the DAQ A/D card
must be collected 600 ms after a flash of certain row or column. A positive P300 response
to that flash will have a positive signal within the 600 ms of data. Thus, the controller will
require 2 more timers to accomplish this. The logic of 2 timers is the same as for the display
timers. One is set as periodic and the other is set as one-shot for the initial offset. This
manner again reduces API overhead. The following timeline illustrates the data acquisition
trigger by calling the getNextDataEpoch function from the data acquisition module.

I1 I2 I3
C for I1

600ms

. . .300ms, 1 epoch 300ms, 1 epoch

I4

C for I2

I = Intensification
C = Data acquisition by calling getNextDataEpoch

600ms

Figure 4.3: Pattern for data acquisition timing

 14

The core module for coordination is the timing controller of our program. It coordinates
the timing aspects of our system such as flashing the display, intermittently triggering the
DAQ to collect data, and communicating with Windows APIs. Hence, the timing controller
module is comprised of all timers mentioned above. The timing controller also facilitates
dataflow of signal data, which will be passed to the SVM module for further processing.
The following illustrates the coordination flowchart of the controller system and its
associates. The black arrows indicate functional calls and the blue arrows indicate signal
dataflow between two modules. Note that these modules can also be referred to as objects
from a programming standpoint.

Timing Controller
enable

cntTimer1_TimerFired
cntTimer2_TimerFired
cntTimer3_TimerFired

cntTimer4_TimerFired
cntTimer5_TimerFired

Windows APIs

Display Module
deIntensify
intensifyCol
intesnifyRow

refreshDisplay
setDisplayMatrixSize

OS Kernel

Executes
callback
address

SVM Module
runTraining
runTestData

getDiscriminateScore

Monitor

Interrupt

Data acquisition
initialize
trigger

getNextDataEpoch

Timer Hardware

Legend
Gray blocks = OS level or hardware
Red blocks = Our software modules
Black arrows = functional calls
Blue arrows = dataflow

Figure 4.4: Functional and signal dataflow flowchart for control and output modules

The functional calls indicate normal method calls without transmitting signal data or SVM
results. On the other hand, dataflow involves signal transmissions such as collecting raw
data and passing off to other modules for processing. Within each module is a listing of
descriptive object methods that are called by other modules to perform certain tasks. For
example, when the de-intensification timer has fired and the appropriate callback function
within the controller has been called, the controller will then call the deintensify method
in the display module to clear the row or column currently intensified. Similarly, when one
of the data acquisition timers has elapsed, it will call the trigger method and
getNextDataEpoch method to prompt the DAQ to collect data from the A/D card and
return the signal data back to the controller respectively. Another example is when the
controller instantiates its timer by calling API methods which ultimately accesses the kernel
and hardware timers. When, the hardware generates an interrupt, it will fire and jump to the
callback address within our program for interrupt processing.

 15

5. P300 Detection Module

The P300 detection module is responsible for detecting the P300 signal acquired from the
user’s brain. Because of the inherent noise associated with brain signals, it is difficult to
isolate the P300 response. The advantage of our P300 detection module is that, it uses a
machine-learning algorithm called Support Vector Machine (SVM), which allows a customized
training profile for each individual. As such, P300 detection module works in two modes: 1)
training mode and 2) testing mode.

5.1 Support Vector Machine Algorithm

The SVM algorithm is a machine-learning algorithm used for binary classification of the
presence or the absence of P300 response. In order to accurately classify the input signals, it
first needs to be trained with a large set of training data (sample data streams) with
corresponding class labels (labels which indicate whether a P300 is present or not present).
Using these two variables, the SVM algorithm constructs a hyperplane described by the
weight vector w and the bias term b as illustrated in Figure 5.1.1 [7]. The sign of this
projection gives the prediction, positive indicating the presence of a P300 and negative the
absence.

Figure 5.1.1: Optimal Hyperplane using SVM algorithm

 16

Both the training data and class labels are in the form of .mat format used in MatLab and are
acquired through the controller module. Figure 5.1.2 shows screen capture of the workspace
containing training data sets.

Figure 5.1.2: Training Data Set

Referring to figure 5.1.2, columns (2340 of them) of the Samples and Labels indicate the
number of training data vectors and corresponding class labels (1 for P300 presence and -1
for P300 absence). The row (1440) of the Samples refers to the number of attributes in 10-
channel implementation; each channel contributing 144 attributes. Once these two variables
are put into MatLab workspace, run_train script is executed which accesses the SVM library
[8]. run_train uses Parameters variable which defines options to be used in mex library
including statistical distribution (Gaussian), classification type (linear), regularization
parameter (20.007) and variance (27.359)1. It also searches for absolute maximum and
minimum values in the training data in order normalize the entire set thereby normalizing
the statistical distribution and filter output between 0.5 Hz and 15 Hz.

1 Note that the values used for Regularization Parameter and the Variance are excerpt from Kaper et al. [7].
Values subject to change upon further investigation.

 17

Variables Description
Labels Class labels corresponding to the data vectors (1 label by 2340 samples)
Parameters Defines options to be used in mex library
Samples Data vectors (144 attributes by 2340 samples)
minRecordValue Absolute maximum value for normalization
maxRecordValue Absolute minimum value for normalization

Table 5.1.1: Variable Description

Once the normalization is complete, run_train calls the mexSVMTrain function in the mex
library within which the SVM parameters AlphaY, SVs and Bias are returned as shown in
Figure 5.1.3.

Figure 5.1.3: Variables after Training

The variables AlphaY, SVs, Bias, maxRecordValue, minRecordValue are saved as a model to be
used in the test mode.

In test mode, which can be done in either offline or online scheme, the controller module
places data vectors with unknown class labels and executes run_test script. The run_test script
implementation follows the run_train script very closely except for the fact that it calls
mexSVMTest instead of mexSVMTrain. mexSVMTest returns number of variables, one of
which, is DecisionValue. DecisionValue is the variable, which represents the score for particular
data vector(s) that were processed in the test mode. It is this variable that determines the
presence or absence of P300 response for the corresponding data vector(s). Figure 5.1.4
shows the workspace after testing one data vector from 10-channel implementation.

 18

Figure 5.1.4: Variables after Testing

Note that both run_train and run_test script interfaces with controller module via workspace
only. All necessary input data must be present before executing either script.

 19

6. Word Prediction Module

The word prediction module receives chosen letters from the control module and it returns
a list of probable target words that the patient is trying to spell. When the word prediction
module receives a letter, it appends the letter to the current letters in the word and searches
through SQL database to find the most probable words that the patient is trying to spell.
The SQL database is a list of the 1000 most commonly used words and is sorted according
to rank. A sample of the 1000 most commonly used words is shown below in figure 6.1.

Figure 6.1: A database showing top 20 common used words

 20

7. Testplan

The sections below outline how we will go about testing the individual blocks of our system
to ensure that they function correctly. Once testing of all the blocks is complete, we can
integrate the system and test with pre-collected sample data or with a user.

7.1. Data Collection Module Testing

Online Data Collection Module needs to be tested on its three functionalities which are to
collect data, organize the data, and return the data (refer to section 3.2.1 for details).

Our test plan is to feed a sinusoidal signal to the DAQ Analog Input pins and display the
data read by graphing them. The result of the testing will be shown by a graph interface as
shown in Figure 7.1.1

Figure 7.1.1: Graphing GUI for displaying Testing Result

Once single channel testing is done, we will display all of 10 channels simultaneously to test
the software’s ability to return correct data blocks for all different channels.

The issue of overlapping data will be also tested which will be done by observing a sinusoidal
signal at a sufficiently low frequency and observe the correct delay in each channel.

 21

In order to test the offline data collection module, we will request data back from it and then
visually inspect to see that it returned the correct values. Here, we will need to ensure that
all border cases are covered.

7.2. Control and Output Module Testing

An indication of working operation by the control and output module is to test the timer
firing events and execution of the callback procedure. Also, we can test if the timers fired at
the delay specified by our system requirements. So, the 3 timers associated with the output
display should fire either within 100 ms and 300 ms. Similarly, the 2 timers associated with
data acquisition should fire within 600 ms. The testing for the controller module is fairly
simple. We will place output status messages onto the GUI when any of the timer fires
along with their timer IDs. Also, the interrupt controller within Windows kernel keeps track
of firing delay referenced to when the timer was instantiated or reset. In other words, the
kernel will jump to our callback procedure and pass an extra parameter that indicates the
delay, in milliseconds, of when the timer fired since it was last instantiated for one-shot firing
or reset in the case of periodic firing. Thus, just by looking at the status message, we can
find out which timer fired and delay duration of the firing event. Figure 7.2 is a sample
output of the status messages.

Figure 7.2: Output status messages for control timing testing

Again, these timing events are flexible and can be set by the user. But, the testing procedure
remains the same and the only difference would be the returned delay parameter set by the
kernel’s callback handler.

 22

7.3. P300 Detection Module Testing

To test the P300 detection module we will input known pre-collected data into the module
and observe the output. In particular, we can train the module using pre-collected training
data for which we know the correct response (i.e. P300 or no P300). Then we can input
individual data epochs for which we also know the values. In general, the module will not
return 100% accuracy; however, since we know the expected output (i.e. P300 or no P300),
we can compare the actual result of our testing data with the expected result and be satisfied
that we are getting the correct result when the correlation between the expected output and
actual output is significant.

7.4. Word Prediction Module Testing

To test the word prediction module we will input a sequence of letters and verify that it
returns the most commonly used words containing the input sequence according to rank.
Verification can be done by visually inspecting the table of most commonly used words.

 23

8. Conclusion

The design for our P300 BCI Spelling Device prototype is defined throughout this document,
including the Data Collection Module, Control and Output Module, P300 Detection
Module, and Word Prediction Module. We are currently in the process of implementing our
spelling device and anticipate a functional prototype by April, 2005. During this time and
possibly thereafter, we may choose to change certain aspects of the design in order to
incorporate new functionality or technology.

 24

9. References

1] Proposal for a P300 Spelling Device for the Completely Disabled. ThinQ Innovation.

[2] Functional Specification for a P300 Spelling Device for the Completely Disabled. ThinQ
Innovation.

[3] http://ida.first.fhg.de/projects/bci/competition/. Set IIb data collected from the
Wadsworth Center, NYS Department of Health.

[4] A. Bestavros, A. Prezioso, “Windows Timing and Event Scheduling”, Windows SRMS
Service, http://www.cs.bu.edu/groups/realtime/SRMS-NT/event_scheduling.htm.

[5] Microsoft, “Platform SDK Windows Multimedia”, Microsoft Development Network, July
2001.

[6] V. Bostanov, “BCI competition 2003—Data sets Ib and IIb: Feature extraction from
event-related brain potentials with the continuous wavelet transform and the t-value
scalogram,” IEEE Trans. Biomed. Eng., vol 51, pp 1057-1061, June 2004.

[7] M. Kaper, P. Meinicke, U. Grossekathoefer, T. Lingner, and H. Ritter, “BCI competition
2003—Data Set IIb: Support Vector Machines for the P300 Speller Paradigm”, IEEE Trans.
Biomed. Eng., vol 51, pp 1073-1076, June 2004.

[8] LIBSVM, open source found at http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

http://ida.first.fhg.de/projects/bci/competition/
http://www.cs.bu.edu/groups/realtime/SRMS-NT/event_scheduling.htm
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

	Design Specification for a
	Executive Summary
	Introduction
	Scope
	Intended Audience
	List of Acronyms

	2. System Overview
	3. Data Acquisition Module
	Data Collection Module Hardware
	Data Collection Module Software
	Data Collection Module Software—Online System
	Data Collection Module Software—Offline System

	Control and Output Module
	Control and Output Module Hardware
	Control and Output Module Software

	5. P300 Detection Module
	Support Vector Machine Algorithm

	Word Prediction Module
	Testplan
	Data Collection Module Testing
	Control and Output Module Testing
	P300 Detection Module Testing
	Word Prediction Module Testing

	Conclusion
	9. References

