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Executive Summary 
 
ThinQ Innovation is currently developing a P300 Brain Computer Interface (BCI) spelling 
device prototype intended to provide a communication medium for completely disabled 
persons, such as those suffering from late-stage Amyotrophic Lateral Sclerosis (ALS).  
Ultimately, our system may allow late-stage ALS patients to lead a more fulfilling life and 
may also help researchers and medical doctors to gain further insight in the patient’s 
physiological and psychological state. 
 
The overall development of our system consists of 3 phases.  After the first phase, we will 
have a prototype with essential functionalities.  Once we are satisfied with the performance 
of our prototype, we will move into phase 2 to further improve the performance towards a 
production system.  In the third phase, we will develop our system to include features 
necessary for commercial deployment.  Phase 1 completion is scheduled for April, 2005 and 
will have the following main features: 
 

1. Offline P300 detection accuracy of 99% in fewer than 10 trials using 10 data 
channels.  

2. Online data collection and detection accuracy of 99% in fewer than 40 trials using 10 
data channels. 

3. Enhanced word selection using word prediction feature that will increase speed.  
Word selection will be available after the first target letter is decoded. 

 
From a design point of view, our system can be broken down into four main modules:  data 
acquisition module, output and control module, P300 detection module and word prediction 
module.  As well, our P300 spelling device can operate in both real-time (online) and non-
real-time (offline) modes.  The remainder of this document further details our design for 
P300 Spelling Device.     
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1. Introduction 
 
The P300 Spelling Device is a communication system for completely disabled persons.  The 
device uses visual stimuli in the form of flashing alphanumeric characters to invoke a 
response from the user’s brain to determine the intended character and display on a screen 
for others to see.  The system can be divided into four design modules: data acquisition 
module, output and control module, P300 detection module and word prediction module.   
 
The development of our system consists of 3 phases.  Our immediate goal is to develop a 
phase 1 prototype system to achieve fast (within 10 trials) and accurate (better than 99%) 
spelling using offline data.  Because of uncertainties in regards to the performance of the 
available amplifier, we aim to utilize this system in a real-time implementation that can 
produce similar, but not identical, results as our offline system.  Hence, we have broken 
phase 1 into two stages.  In the first stage, we will analyze offline data in order to ensure that 
the detection of known results is accurate.  The second stage will involve equipping the 
offline system with data acquisition capabilities and running it in a real-time fashion.   
 
Once a prototype is developed and if we are sufficiently satisfied with its performance, we 
will move into phase 2 prototype development to improve the characteristics in preparation 
for a production system.  Finally, once we have sufficiently improved our prototype such 
that it is suitable to enter the production phase (phase 3), we will further enhance the 
spelling device to prepare it for commercial deployment.  Phase 1 is slated for completion in 
April, 2005.  
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1.1. Scope 
 
This document outlines the design of our P300 Spelling Device.  The remainder gives 
sufficient design detail so that ThinQ Innovation will be able to use it as a reference 
document during implementation.   
 
For a more general overview of the system, including financing and marketability, refer to 
our project proposal, Proposal for a P300 Spelling Device for the Completely Disabled [1]. 
 
For functional specifications, please refer to Functional Specification for a P300 Spelling Device for 
the Completely Disabled [2].  
 

1.2. Intended Audience 
 
This document is not intended for external release and does not represent a finalized design.  
Until the design is finalized this document is intended as a reference document for ThinQ 
Innovation during implementation.  The intended audience includes members of the design 
team, management and marketing persons who may need more detailed information of the 
system beyond the functional specifications.  
 

1.3. List of Acronyms 
 
ALS   Amyotrophic Lateral Sclerosis  
API  Advance Programming Interface 
BCI   Brain Computer Interface 
CPU   Central Processing Unit 
CRT   Cathode Ray Tube 
DAQ   Data Acquisition System 
EEG  Electroencephalograph 
GUI  Graphic User Interface 
LCD   Liquid Crystal Display 
MND   Motor Neuron Disease 
PC   Personal Computer 
PCI   Peripheral Component Interconnect 
SVM  Support Vector Machine 
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2. System Overview 
 
This section outlines the basic configuration of our P300 Spelling Device.  It is intended to 
give the reader a better understanding of the overall system operation.   
 
In a working P300 Spelling Device, shown below in figure 2.1, a monitor is placed in front 
of a user who is fitted with a head cap containing probes to detect brain activities. The 
probes, each one of which represents a “channel”, are connected to a biomedical amplifier, 
which then feeds the signals into a processor via an analogue to digital converter.  During 
operation, we ask the user to focus on a target letter and count the number of times the 
letter flashes.  During this time, rows and columns on the monitor will flash in random 
fashion, separated by approximately 300ms.  When the target letter flashes, the user’s scalp 
will develop a P300 response.  By keeping track of when particular rows and columns flash, 
accompanied with the response that the user gave after such flashes, our detection software 
will be able to determine the target letter.  That is, a target letter will occur at the intersection 
of the row and column that gave positive P300 responses.   
 

 
Figure 2.1: System Overview 

 
Our system utilizes the fact that under certain circumstances, rare events elicit P300 
potential. Flashing of target letters on the monitor evokes these rare events.  A sample 
monitor output, taken at different times, is shown in figure 2.2.  In the left case, the row G-
H-I-J-K-L is highlighted, and a P300 response would be evoked on the user’s scalp if he or 
she had either of G, H, J, K, L, or I as the chosen target.  All rows and columns are flashed 
in random sequence.  On the right of Figure 2.2, the column A-G-M-S-Y-5 is highlighted.  
If, for this trial, a P300 was detected by our system directly after the flashing of highlighted 
row and column in figure 2.2, we could deduce that the user was trying to communicate the 
letter ‘G’.   
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`  
Figure 2.2: (Left) Display matrix currently flashing the second row, (right) first 

column 
 
The time required between flashing rows or columns, denoted as a single “epoch”, lasts 
approximately 300ms. For the display matrix depicted above, it would require a total of 12 
epochs (6 rows + 6 columns) to constitute as a single trial. The P300 will appear 
approximately 300ms after the intensification of a target letter and is characterized by a 
prolonged positive change in scalp potential.  The system’s task then reduces to the 
detection of which row and which column that has elicited a P300 on a given trial.  
 
Because the P300 is substantially smaller than the continuous EEG activities on the scalp, it 
is very difficult to detect it on a single-trial basis.  Thus, the detection of the P300 within a 
noisy EEG environment will require a series of trials averaged together to obtain more 
accurate detection.  The distinguishing feature of any BCI is the ability to communicate 
efficiently and therefore it is clearly desirable to minimize the number of trials in the P300 
Spelling Device. 
 
After successful detection of a target letter, the user’s monitor will be updated to reflect the 
choice of letter.  To increase the communication rate of our system, we intend to 
incorporate a word prediction function feature.  It involves developing a database of 
commonly used words, ranked based on the frequency of usage.  When our system is able to 
make a guess as to the target word, it will display it on the screen as a possible user input.   
 
Based on rank and previously chosen letters, the word prediction feature will output 
probable word choices.  Thus, the six most common words matching a partially typed word 
will be displayed on an additional row of the matrix screen.  
 
From a design point of view, our system can be broken down into four categorical modules:  
data acquisition module, output and control module, P300 detection module and word 
prediction module.    As shown in figure 2.3, data flows from the data acquisition module to 
the control and output module, which passes it to the P300 detection module.  The P300 
module then gives back to the control and output module a score indicating the possibility 
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of P300 absence/presence, so that the control and output module may display the chosen 
character on the display.  Correctly decoded words are also passed to the word prediction 
module so that the control and output module may also display possible word choices to the 
monitor.   
 
 

 

Control and 
Output 
Module 
(software plus 
interface to 
monitor) 

Data 
Acquisition 
Module (data 
acquisition 
card plus 
software) 

P300 
detection 
Module 
(software) 

Word Prediction 
Module (software) 

 
Figure 2.3: High-level system design overview.  Arrows indicate direction of data 

flow.   
 
An important function of our P300 Spelling Device is to be able to operate in offline mode 
as well as in online mode.  Offline mode allows the processing of pre-collected data and is 
necessary for both design development and further optimization.  We anticipate that we will 
continue to operate our P300 Spelling Device in offline move even after the completion of 
prototype development thereby making it necessary to integrate offline mode into our 
design.  Hence, where online and offline mode differ, we have included separate sections 
outlining their design.  Subsequent sections of this document will describe the design of each 
of these modules and briefly illustrate the corresponding test plans. 
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3. Data Acquisition Module 
 
We use NI-6220 Data Acquisition (DAQ) system by National Instruments for analogue to 
digital conversion.  Figure 3.1 illustrates how the data is acquired from user’s brain and 
reaches the processor (Personal Computer in figure 3.1).   
 

 
Figure 3.1: Data Acquisition Module Flow

 
The data acquisition module consists of an amplifier, a personal computer, DAQ 
software/hardware and cables that connect to and from NI-6220.   
 
For both offline and online operation, the data collection module is responsible for data 
partition and data filtration for processing, this is what we call pre-processing.  The 
aforementioned pre-processing is done through the DAQ software.  Online operation, in 
particular, requires the DAQ hardware to collect and condition real-time signals that come 
from the user’s scalp. 
 
The following sections outline the design of our data collection module hardware and 
software. 
 

3.1. Data Collection Module Hardware 
 
The DAQ hardware is responsible for A/D conversion of the input signals to fit input signal 
profile.  Figure 3.1.1 shows the DAQ hardware block diagram. 
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Figure 3.1.1: DAQ Hardware Block Diagram 

 
The DAQ hardware has maximum sample rate of 250 kilo-samples per second and features 
Common Mode Rejection Ratio (CMRR) of 95dB in the range between DC and 60Hz.  Since our 
P300 Spelling Device requires sampling rate of 240 samples per second and CMRR greater 
than 80dB in the range between 0.5Hz and 15Hz, both characteristics satisfy the system 
requirements.  Furthermore, due to the inherent noise accompanied by EEG signals, it is 
desirable to have input impedance of greater than 100MΩ, which is well below the DAQ 
input impedance of 10,000MΩ. 
 
The following figure 3.1.2 shows the pin-out of the DAQ hardware connector 
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Figure 3.1.2: NI-6220 Data Acquisition System Pin-out 

 
Our P300 Spelling Device, which will be using 10 channels, requires 11 I/O pins.  
Specifically, analog input channels from zero to nine (AI <0...9>) and analog input sense (AI 
SENSE) need to be connected to a shielded cable box (NI SCB-100) since each channel 
requires one analog input voltage channel for the single-ended measurements.  In non-
referenced single-ended (NRSE) mode, AI SENSE acts as the reference for each of AI <0…9> 
signal because the DAQ hardware measures the voltage of an analog input signal (AI 
<0…9>) with respect to AI SENSE.   
 

3.2. Data Collection Module Software 
 
There are two types of data that our P300 Spelling Device can process, i.e. pre-collected data 
from saved into a .mat file format (offline) or real-time data acquired from the user’s scalp 
(online).  Hence our data collection software must be able to accommodate both the online 
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and offline operation.  Subsequent sections describe the online and offline software 
operation, including what they do and how they interface to the control module. 
 

3.2.1. Data Collection Module Software—Online System 
 
The online implementation of data collection module software interface with NI-6220 DAQ 
system via a driver called NI-DAQmx which provides NI-DAQmx library functions that can 
be used to develop instrumentation amplifications, data acquisitions and control applications.  
It carries out three essential tasks: initialization (init() function), conversion of input data into 
meaningful data block for specified channels (Trigger() function) and finally making these data 
available to the rest of the software (getNextDataEpoch(Channel Number) function). 
 
Implementation of aforementioned task is heavily dependent on the overlap of subsequent 
P300 responses.  Hence the data blocks would share data with another stimulus.  The 
overlap is shown in figure 3.2.1.1.   
 

 
Figure 3.2.1.1: Data Overlapping in P300 Response  

 
The online software module collects the most recent data collected in the previous 600ms.  
However, because of the overlapping in P300 response time, we must avoid deleting data in 
the buffer.  Hence, we keep the data in the buffer so that specifying the collection mode to 
group the data by the channel number can access data blocks for each of the 10 channels.  
Figure 3.2.1.2 illustrates this concept. 
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Figure 3.2.1.2: Data Flow in Online Data Collection Module 
 

3.2.2. Data Collection Module Software—Offline System 
 
In contrast to the online operation, the offline operation uses pre-collected data stored in 
.mat files.  In the testing of our offline system, we used to the data available from BCI 
Competition 2003 [3].  Data collection module is responsible for extracting appropriate data 
and returning them to the control module when requested.  Implementation is done entirely 
in MatLab because of its efficiency in dealing with matrix-based computations.  
 
Access to the offline data collection block is achieved in two steps: 1) init() and 2) 
getNextDataEpoch().  init() initializes the data collection block to set appropriate parameters.  
getNextDataEpoch() returns the data epochs in the sequence of recorded values as well as the 
coordinates of the letter that was flashed.   
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4. Control and Output Module 
 
The control and output module acts as the main control of the P300 spelling device.  In 
particular, it coordinates flow of data between the data acquisition module and the P300 
detection module.  Also, it controls the timing of row or column flashing on the main 
display monitor.   
 

4.1. Control and Output Module Hardware 
 
The control and output module controls the flashing of letters on the output monitor.  The 
monitor we will use is a generic 19-inch CRT monitor.  In order to control the flashes, we 
require hardware timers that are provided with the Pentium 4 CPU.  These hardware timers 
are essential to our software display controller and data acquisition module, which are all 
timing dependent. 
 
There are different hardware timers that differentiate themselves based on their resolution, 
interrupt priority, and accessibility.  Some of these timers also depend on the make of the 
CPU such as between an Intel or AMD manufacturer [4].  Since our functional specification 
states that our system is designed for a Pentium-based PC, we will discuss hardware timers 
applicative only to Intel Pentium processors. 
 
The first class of hardware timers is a 32-bit, 1 ms maximum resolution counter that wraps 
around in 49.7 days.  This timer is readable as well as accessible such that an event can be 
instantiated to evoke and interrupt [4].  The interrupt occurs when the counter matches a 
user-defined delay and is set at the highest possible Windows system priority.  The accuracy 
of these timers is fairly accurate since a kernel call to set these timers will create a separate 
thread independent of our parent program [4].  Once the timer elapses and interrupts, the 
timer thread executes a callback function, which will be the address of one of our timer 
functions located in our program.  Furthermore, the timer events can be set as one-shot or 
periodic firing.  These kernel calls are located the Windows Multimedia library (winmm.dll).  
The library was originally created for critical graphic applications [4].  Thus, our program 
utilizes these high-priority timers for flashing letters generated by the display output module. 
 
The second class of timers used in our system is of higher resolution.  More specifically, this 
is a 64-bit counter with an approximate 0.8µs resolution [4].  However, the high resolution 
trades off on the interrupt and event capabilities.  These timers can only be read but cannot 
be instantiated.  Furthermore, these timers are only available in the Windows kernel32 library 
(kernel32.dll).  Hence, we only use these Kernel calls to profile our software to accurately 
time the execution overhead for certain sections of our source code.  The purpose is to 
pinpoint computational bottlenecks located in our software.  As a result, we can further 
optimize our code or explore alternate computation algorithms. 
 



 

 

The following table lists the API functions available in their respective Windows library, 
which are used in our software to read or instantiate an event on the hardware timers [5]. 
 
Table 4.1.1: Table of timer API functions 
Windows’ Multimedia Library (winmm.dll) 
API Function Parameters API Description 
timeGetTime None To read the timer counter value 
timeSetEvent (delay, counter increment resolution, 

address of callback function, timer ID, 
event firing flags) 

To instantiate a timer event 
thread based on the delay and 
event firing type 

timeKillEvent (timer ID) To properly kill the timer thread 
   
Windows’ Kernal32 Library (kernel32.dll) 
API Function Parameters API Description 
QueryPerformanceCounter (Counter value) Reads the high-resolution 

counter 
QueryPeformanceFrequency (Counter frequency) Checks the counter frequency as 

it is CPU-make dependent 
 

4.2. Control and Output Module Software 
 
The display output of our design requires intensification and de-intensification of certain 
row or column of characters.  Initially, we set the intensification and de-intensification 
period to 100 ms and 200 ms respectively.  Thus, the total duration between consecutive 
flashes is 300 ms.  This complete duration is considered as one epoch.  It should be noted 
that these timing figures are not hard-coded but rather flexible numbers that can be set by 
the developer.  But, based on the characteristics of the P300 response and pass researches, 
we chose these standard figures as initial settings for our system [6].  Figure 4.1.1 depicts the 
timeline of our display output. 
 

I DI D 

. . .

300ms, 1 epoch 
. . .

I D

300ms, 1 epoch 

  200ms100ms200ms100ms

I 

I   = Intensification 
D = De-intensification 

Figure 4.1.1: Row or column intensification and de-intensification for display output 
 
There are several approaches to implement a timing controller that confirm to the timing 
diagram shown above.  The first solution is to instantiate two timers, one for 100ms and the 

12
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other for 200 ms.  The disadvantage is that these timers can only be one-shot events 
instantiated and killed consecutively.  As a result, this method has excessive API overhead 
that increases CPU usage and decrease dataflow output.  Thus, our design resorts to another 
method which requires 3 timers, but 2 are set to periodic-event firing.  Figure 4.2.1 is 
another representation of figure 4.1.1 depicted above but with a timing pattern that allows us 
to create periodic timers. 
 

. . .

I DI D . . .I D

Periodic 300ms  
de-intensification Next fire

100ms
ffset 

 
O

I 

Periodic 300ms 
intensification 

Next fire

I   = Intensification 
D = De-intensification 

Figure 4.2: Pattern for intensification and de-intensification timing 
 
Based on the new figure, one timer has the task of intensifying a certain row or column and 
one timer has the task of de-intensifying the already intensified row or column.  The third 
timer is a one-shot event to setup the first 100ms de-intensification offset.  Once the third 
timer elapses, the two remaining timers will continue firing without excessive API overhead.  
The timers will be killed only at the end of user training or spelling.   
 
More must be said about the data acquisition timers.  Signal data from the DAQ A/D card 
must be collected 600 ms after a flash of certain row or column.  A positive P300 response 
to that flash will have a positive signal within the 600 ms of data.  Thus, the controller will 
require 2 more timers to accomplish this.  The logic of 2 timers is the same as for the display 
timers.  One is set as periodic and the other is set as one-shot for the initial offset.  This 
manner again reduces API overhead.  The following timeline illustrates the data acquisition 
trigger by calling the getNextDataEpoch function from the data acquisition module. 

I1 I2 I3
C for I1

600ms 

. . .300ms, 1 epoch 300ms, 1 epoch 

I4

C for I2

I   = Intensification 
C = Data acquisition by calling getNextDataEpoch 

600ms 

Figure 4.3: Pattern for data acquisition timing 
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The core module for coordination is the timing controller of our program.  It coordinates 
the timing aspects of our system such as flashing the display, intermittently triggering the 
DAQ to collect data, and communicating with Windows APIs.  Hence, the timing controller 
module is comprised of all timers mentioned above.  The timing controller also facilitates 
dataflow of signal data, which will be passed to the SVM module for further processing.  
The following illustrates the coordination flowchart of the controller system and its 
associates.  The black arrows indicate functional calls and the blue arrows indicate signal 
dataflow between two modules.  Note that these modules can also be referred to as objects 
from a programming standpoint. 
 

Timing Controller 
enable 

cntTimer1_TimerFired 
cntTimer2_TimerFired 
cntTimer3_TimerFired 

 
cntTimer4_TimerFired 
cntTimer5_TimerFired 

Windows APIs 

Display Module 
deIntensify 
intensifyCol 
intesnifyRow 

refreshDisplay 
setDisplayMatrixSize 

OS Kernel 

Executes 
callback 
address 

SVM Module 
runTraining 
runTestData 

getDiscriminateScore 

Monitor 

Interrupt 

Data acquisition 
initialize 
trigger 

getNextDataEpoch 

Timer Hardware 

Legend 
Gray blocks = OS level or hardware 
Red blocks = Our software modules 
Black arrows = functional calls 
Blue arrows = dataflow 

Figure 4.4: Functional and signal dataflow flowchart for control and output modules 
 
The functional calls indicate normal method calls without transmitting signal data or SVM 
results.  On the other hand, dataflow involves signal transmissions such as collecting raw 
data and passing off to other modules for processing.  Within each module is a listing of 
descriptive object methods that are called by other modules to perform certain tasks.  For 
example, when the de-intensification timer has fired and the appropriate callback function 
within the controller has been called, the controller will then call the deintensify method 
in the display module to clear the row or column currently intensified.  Similarly, when one 
of the data acquisition timers has elapsed, it will call the trigger method and 
getNextDataEpoch method to prompt the DAQ to collect data from the A/D card and 
return the signal data back to the controller respectively.  Another example is when the 
controller instantiates its timer by calling API methods which ultimately accesses the kernel 
and hardware timers.  When, the hardware generates an interrupt, it will fire and jump to the 
callback address within our program for interrupt processing. 
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5.  P300 Detection Module 
 
The P300 detection module is responsible for detecting the P300 signal acquired from the 
user’s brain.  Because of the inherent noise associated with brain signals, it is difficult to 
isolate the P300 response.  The advantage of our P300 detection module is that, it uses a 
machine-learning algorithm called Support Vector Machine (SVM), which allows a customized 
training profile for each individual.  As such, P300 detection module works in two modes: 1) 
training mode and 2) testing mode. 
 

5.1 Support Vector Machine Algorithm 
 
The SVM algorithm is a machine-learning algorithm used for binary classification of the 
presence or the absence of P300 response.  In order to accurately classify the input signals, it 
first needs to be trained with a large set of training data (sample data streams) with 
corresponding class labels (labels which indicate whether a P300 is present or not present).  
Using these two variables, the SVM algorithm constructs a hyperplane described by the 
weight vector w and the bias term b as illustrated in Figure 5.1.1 [7].  The sign of this 
projection gives the prediction, positive indicating the presence of a P300 and negative the 
absence. 
 

 
Figure 5.1.1: Optimal Hyperplane using SVM algorithm 
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Both the training data and class labels are in the form of .mat format used in MatLab and are 
acquired through the controller module.  Figure 5.1.2 shows screen capture of the workspace 
containing training data sets. 
 

 
Figure 5.1.2: Training Data Set 

 
Referring to figure 5.1.2, columns (2340 of them) of the Samples and Labels indicate the 
number of training data vectors and corresponding class labels (1 for P300 presence and -1 
for P300 absence).  The row (1440) of the Samples refers to the number of attributes in 10-
channel implementation; each channel contributing 144 attributes.  Once these two variables 
are put into MatLab workspace, run_train script is executed which accesses the SVM library 
[8].  run_train uses Parameters variable which defines options to be used in mex library 
including statistical distribution (Gaussian), classification type (linear), regularization 
parameter (20.007) and variance (27.359)1.  It also searches for absolute maximum and 
minimum values in the training data in order normalize the entire set thereby normalizing 
the statistical distribution and filter output between 0.5 Hz and 15 Hz. 
 
 

                                                 
 
 
 
 
 
1 Note that the values used for Regularization Parameter and the Variance are excerpt from Kaper et al. [7].  
Values subject to change upon further investigation. 
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Variables Description 
Labels Class labels corresponding to the data vectors (1 label by 2340 samples) 
Parameters Defines options to be used in mex library 
Samples Data vectors (144 attributes by 2340 samples) 
minRecordValue Absolute maximum value for normalization 
maxRecordValue Absolute minimum value for normalization 

Table 5.1.1: Variable Description 
 
Once the normalization is complete, run_train calls the mexSVMTrain function in the mex 
library within which the SVM parameters AlphaY, SVs and Bias are returned as shown in 
Figure 5.1.3. 
 

 
Figure 5.1.3: Variables after Training 

 
The variables AlphaY, SVs, Bias, maxRecordValue, minRecordValue are saved as a model to be 
used in the test mode. 
 
In test mode, which can be done in either offline or online scheme, the controller module 
places data vectors with unknown class labels and executes run_test script.  The run_test script 
implementation follows the run_train script very closely except for the fact that it calls 
mexSVMTest instead of mexSVMTrain.  mexSVMTest returns number of variables, one of 
which, is DecisionValue.  DecisionValue is the variable, which represents the score for particular 
data vector(s) that were processed in the test mode.  It is this variable that determines the 
presence or absence of P300 response for the corresponding data vector(s).  Figure 5.1.4 
shows the workspace after testing one data vector from 10-channel implementation. 
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Figure 5.1.4: Variables after Testing 

 
Note that both run_train and run_test script interfaces with controller module via workspace 
only.  All necessary input data must be present before executing either script. 
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6.  Word Prediction Module 
 
The word prediction module receives chosen letters from the control module and it returns 
a list of probable target words that the patient is trying to spell.  When the word prediction 
module receives a letter, it appends the letter to the current letters in the word and searches 
through SQL database to find the most probable words that the patient is trying to spell.  
The SQL database is a list of the 1000 most commonly used words and is sorted according 
to rank.  A sample of the 1000 most commonly used words is shown below in figure 6.1.   
 

 
Figure 6.1: A database showing top 20 common used words 
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7. Testplan 
 
The sections below outline how we will go about testing the individual blocks of our system 
to ensure that they function correctly.  Once testing of all the blocks is complete, we can 
integrate the system and test with pre-collected sample data or with a user. 
 

7.1. Data Collection Module Testing 
 
Online Data Collection Module needs to be tested on its three functionalities which are to 
collect data, organize the data, and return the data (refer to section 3.2.1 for details). 
 
Our test plan is to feed a sinusoidal signal to the DAQ Analog Input pins and display the 
data read by graphing them. The result of the testing will be shown by a graph interface as 
shown in Figure 7.1.1 
 

  
Figure 7.1.1: Graphing GUI for displaying Testing Result  

 
Once single channel testing is done, we will display all of 10 channels simultaneously to test 
the software’s ability to return correct data blocks for all different channels.  
 
The issue of overlapping data will be also tested which will be done by observing a sinusoidal 
signal at a sufficiently low frequency and observe the correct delay in each channel.  
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In order to test the offline data collection module, we will request data back from it and then 
visually inspect to see that it returned the correct values.  Here, we will need to ensure that 
all border cases are covered.   
 

7.2. Control and Output Module Testing 
 
An indication of working operation by the control and output module is to test the timer 
firing events and execution of the callback procedure.  Also, we can test if the timers fired at 
the delay specified by our system requirements.  So, the 3 timers associated with the output 
display should fire either within 100 ms and 300 ms.  Similarly, the 2 timers associated with 
data acquisition should fire within 600 ms.  The testing for the controller module is fairly 
simple.  We will place output status messages onto the GUI when any of the timer fires 
along with their timer IDs.  Also, the interrupt controller within Windows kernel keeps track 
of firing delay referenced to when the timer was instantiated or reset.  In other words, the 
kernel will jump to our callback procedure and pass an extra parameter that indicates the 
delay, in milliseconds, of when the timer fired since it was last instantiated for one-shot firing 
or reset in the case of periodic firing.  Thus, just by looking at the status message, we can 
find out which timer fired and delay duration of the firing event.  Figure 7.2 is a sample 
output of the status messages. 
 

 
Figure 7.2: Output status messages for control timing testing 

 
 
Again, these timing events are flexible and can be set by the user.  But, the testing procedure 
remains the same and the only difference would be the returned delay parameter set by the 
kernel’s callback handler. 
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7.3. P300 Detection Module Testing 
 
To test the P300 detection module we will input known pre-collected data into the module 
and observe the output.  In particular, we can train the module using pre-collected training 
data for which we know the correct response (i.e. P300 or no P300).  Then we can input 
individual data epochs for which we also know the values.  In general, the module will not 
return 100% accuracy; however, since we know the expected output (i.e. P300 or no P300), 
we can compare the actual result of our testing data with the expected result and be satisfied 
that we are getting the correct result when the correlation between the expected output and 
actual output is significant.   
 

7.4. Word Prediction Module Testing 
 
To test the word prediction module we will input a sequence of letters and verify that it 
returns the most commonly used words containing the input sequence according to rank.  
Verification can be done by visually inspecting the table of most commonly used words.   
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8. Conclusion 
 
The design for our P300 BCI Spelling Device prototype is defined throughout this document, 
including the Data Collection Module, Control and Output Module, P300 Detection 
Module, and Word Prediction Module.  We are currently in the process of implementing our 
spelling device and anticipate a functional prototype by April, 2005.  During this time and 
possibly thereafter, we may choose to change certain aspects of the design in order to 
incorporate new functionality or technology.   
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