

Auto-Conforming Ergonomic Chair

Product Presentation and Demo

Accomodar i olucions

September 29, 2006

Introduction

- Meet our team
- Why use an ergonomic chair?
- The problem and current solutions
- The ACE Chair solution
- Our design
- Conclusion
- Things we learned
- Q&A
- Demo

The Accomodarsi Team

Eric Lee – CFO Eric Leung – CTO Jennard Dy – COO Stephanie Fung – CEO

What is an Ergonomic Chair?

- "...exhibits good design so as to maximize productivity by reducing fatigue and discomfort."
- Supports body when seated
- Dimensions are adjustable to fit user and workspace
- Better fit than a nonadjustable chair

Why Should I Use an Ergonomic Chair?

- Office jobs → sitting at a desk for long periods
- Work-related musculoskeletal disorders cost over \$45 billion to employers annually
- "An ounce of prevention is worth a pound of cure"

The Problem

Ergonomic chair users continue to experience discomfort

The Problem

- Adjusting chairs is prone to user error
 - 1. Could forget to adjust
 - 2. Difficult to find adjustments
 - 3. Complex adjustment process
 - 4. Fit could still be improved
- → Improper fit of ergonomic chairs

The Market

- Multi-user desk environments
 - Home office
 - Call centres
 - Conference rooms
- \$3 billion/year spent on office chairs in the US

Current Solutions

Leap chair by Steelcase

Aeron chair by Herman Miller

September 29, 2006

Current Solutions

Hire an ergonomist

Current Solutions

The ACE Chair

- Auto-Conforming Ergonomic Chair
- On demand, one-touch adjustment
- Intelligent feedback-controlled movements
- Electronic user-sensing

Prototype Features

- 3 electronic adjustments
 - Lumbar height
 - Lumbar size
 - Armrest height
- 2 mechanical adjustments
 - Seat height
 - Footrest

Prototype Features

- 2 modes: Automatic and manual
- Contour seat with waterfall edge
- One-handed adjustment
- Simple, easy-to-use interface
- Safety mechanisms
- Firmware upgradeable

User Interface

Power button on the side minimizes accidental toggling

Using the ACE Chair

- 1. Sit down and power on
- 2. Make sure back is straight and forearms are above the armrests
- 3. Press Mode button to enter auto mode
- 4. Relax as the chair moves to home position and then auto-adjusts.
 - After homing, armrests will rise.
 - Lumbar support will rise and inflate
 - Takes about 2 minutes
- 5. Enjoy the comfort of the ACE Chair

Benefits

- One size fits all
- Save time
 - 2 min auto-adjust
- Work in comfort
- Good for posture and health
- It's cool!

System Components

Lumbar Size Subsystem

Armrest Height Subsystem

Lumbar Height Subsystem

Safety Mechanisms

- Hardware
 - Pressure safety valve
 - Fuses and circuit breakers
 - Limit switches
 - Brownout reset
- Software
 - Pressure monitoring
 - Current sensing
 - Emergency shutdown
 - Watchdog timer

Software

- RTOS running 13 concurrent tasks
- Algorithms
 - Determine correct lumbar and armrest height
 - Determine correct lumbar size
 - Equalize armrest height
 - State machine to handle transitions between adjustments
- Error logging to EEPROM

Pricing

Projected cost per unit

Mechanical parts	\$350
Electronics	\$250
Air system	\$100
Manufacturing	\$200
Total	\$900

Suggested retail price: \$1800

Product Comparison

	Existing ergonomic chairs	ACE Chair
Auto-adjusts	×	\checkmark
Invites user to adjust	×	\checkmark
Prior training required	Yes	Little to none
Time required to make adjustments	Depends on experience	Short
Price	\$600 - \$1400	\$1800
Coolness factor	Low to medium	Very high!

Conclusion

- Buy an ergonomic chair
- Need an easier way to adjust chairs
- Buy <u>our</u> ergonomic chair
- Proof-of-concept prototype demonstrates
 - Short learning time
 - Quick and easy to adjust

- Ergonomics
- How to adjust a chair properly

Computer and Physics engineering students

Mechanical design

- Using machine shop tools
- Metal and woodworking
- Air systems and solenoids

- Precautions against EM noise
- Optocouplers
- Designing for safety
- Team software development
- RTOS on a
 microcontroller

Sourcing parts cheaply

Soldering surface mount components

Prototyping using chips with many pins

What We Learned ...the Hard Way

- Trying to do a project while everyone
 is on coop → ⊗ ⊗ ⊗ ⊗
- Scoping out the project
- Time estimation
- Staying on budget

Stats

- 3120 person-hours
- 20 000 lines of code
- 101 sleepless nights
- > 70m of wire
- 700 solder joints
- 24 deferral forms submitted
- Number of times friends have asked "Is the chair done yet?" ...too many.

Acknowledgements

- Dr. Andrew Rawicz
- Mike Sjoerdsma
- Brad Oldham
- Saeed Hamid

- Daphne Leung (SFU Kinesiology)
- Russell Booth (Emily Carr Institute)
- Mrs. Leung
- The elves who magically fixed things while we slept

Acknowledgements

- Ergonomics advice
 - Anne-Kristina Arnold (SFU Kinesiology)
 - GF Strong Clinic
- Mechanical design input
 - Gary Houghton (SFU Engineering)
 - Hendrik Van Der Wal (SFU Science Machining Centre)
- Electronics advice
 - Derek Pyner and Henry Leung (Pacific Design Engineering)
- Financiers
 - ESSEF
 - Wighton Fund

Acknowledgements

- Parts and equipment
 - Ashkan Ziabakhshdeylami
 - Chris Martens
 - Wayne Chen
 - Bob Eakin and Westmark Electronics
 - Texas Instruments
 - Maxim Integrated Products
 - Freescale Semiconductor
 - Arrow Electronics
 - FreeRTOS
 - HCCC

Questions?

Demonstration

- Manual mode
- Auto mode
- Safety features
- Questions