

Octophonic Guitar Pickup

Eli Gibson

Kamil Kisiel

Derek Sahota

Introduction

Outline

The Need

- Hydra: The Solution
- Applications
- 4 C's: Connectivity, Control, Creativity, Cost
- Development Process
- Scheduling Report
- Budget Report
- Demonstration

The Need

- Keyboardists had greatest freedom
- Keyboard playing easier to detect
- Guitar is more expressive
- Each string recorded individually
- Existing systems expensive, complicated, and limiting

Hydra: The Solution

- Maximum flexibility
 High quality sound
 Compact
 Easy to use
- Low cost

Applications

Home recording
Sound synthesis
Advanced effects
Acoustic modelling
Transcription
Instruction

Connectivity

The 4 C's

Creativity

Cost

Connectivity

- USB 2.0 High Speed
- Simplicity
- No additional hardware
- Compatibility

Control

Octophonic output

2 channels for magnetic pickups
6 piezoelectric pickups measure vibrations

Professional audio quality (24-bit, 96kHz)
Early digitization

Creativity

Non-linear processing
Acoustic modelling
Selective transformation
Real-time pitch detection

Cost Advantages

No additional hardware required
Uses any guitar body
All forms of processing done on one PC

Design Process

Design Process

Requirements gathering
Functional Specification
Modularization
Iterative Design

Design Specification
Implementation

Design Constraints

- Professional level audio
- Octophonic output
- Latency
- Ease of use
- Size
- Power
- Cost

Design Considerations

- Piezoelectric transducers
- Analog to digital converters
- Power supply
- PC interface (USB 2.0 High Speed)
- System on Chip (SoC)

Development Reports

Scheduling Report

Scheduling Report

Scheduling Report

GXS DIGITAL HYDRA

Scheduling Report Summary

- Iterative design
- Ongoing market research
- Ongoing development
- Ongoing promotion
- Hit critical marketing deadline

Budget Report

ltem	Budgeted	Cost	Difference
Guitar Pickups	\$195	\$485	-\$ 290
Guitar	\$150	\$150	+\$ 0
Prototyping	\$310	\$845	-\$ 535
Signal Electronics	\$60	\$63	-\$ 3
Soldering Equip	\$0	\$140	-\$ 140
PCB Fabrication	\$300	\$0	+\$ 300
Misc Electronics	\$65	\$63	+\$ 2
Net	\$1080	\$1746	-\$ 666

Team Dynamics Issues

This page intentionally left blank

Conclusion

- Digital Revolution Digital Expression
- The Hydra
- Connectivity Control Creativity Cost
- Metrics for Success

Questions

Demonstration

Pitch detection
MIDI control
Speed
Polyphonics
Pitch bending
transcription

Questions

Technical Slides

SNR Calculation

Steps:

- 1. Autocorrelation function
- 2. Difference
- 3. Cumulative Mean Normalized Difference
- 4. Absolute Thresholding
- 5. Parabolic Interpolation
- 6. Best Local Estimate

Our additions to the algorithm

- 1. Statistical analysis of error rates
- 2. Development of confidence measures
- 3. Implementation of heuristics for stable output

Input Signal:

Autocorrelation Function:

Difference Function:

Cumulative Mean Normalized Difference Function:

