Ricochet Systems Ltd

Hockey Puck Tracking System

ENSC 305/440

Ashkan Tehrani-Nejad Imran Dewji Kelsey James Regan

> Simon Fraser University April 2007

Today's Agenda

- Group introduction
- Project overview
- Puck Subsystem
- Receiver Subsystem
- Software Subsystem
- Business Case
- Experimental Results
- Conclusion

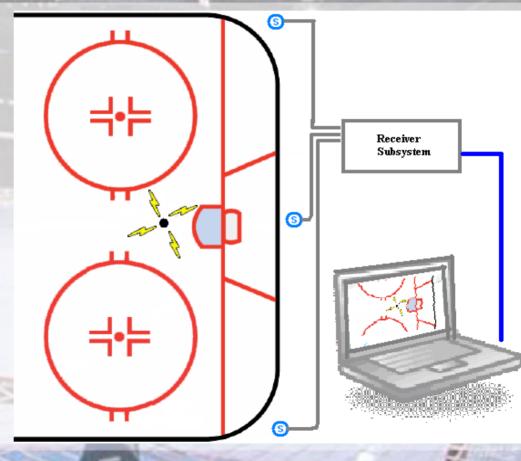
Ricochet Team

Ashkan Tehrani-Nejad (CEO) Imran Dewji (COO) Kelsey James Regan (CTO)

Project Overview

- A ultrasonic tracking system designed for hockey puck.
- Aimed to detect passing of the puck over the goal line.

Why Ricochet Tracking System?


- Inconclusive goals
- Inconsistent goal judgments
- Wasted time for goal judgments
- Added broadcast features
- Happier fans

Ricochet Subsystems

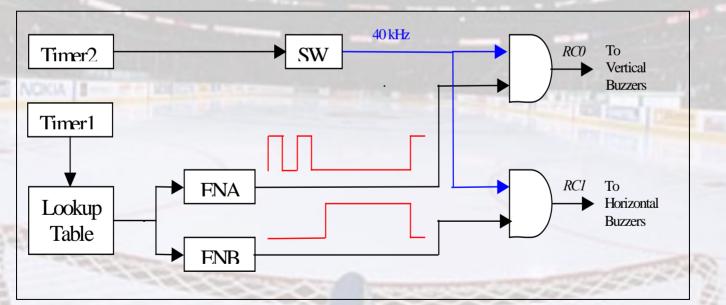
• Puck

UE.

- Receiver
- Software

150 - 211

Puck Subsystem

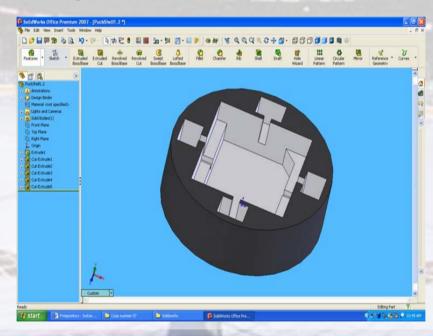

-

- Generating Signal
- Circuitry Housing
- Prototype Puck

Generating Signal

• PIC microcontroller to create periodic ultrasonic bursts.

60.7 m 2 m


Circuitry Housing

• SolidWorks design

TA'O'

60.7 m 2 m

• CAMworks to generate NC machine code

Circuitry Housing

• Milling an official hockey puck

UE.

Prototype Puck

- PIC Microcontroller
- Battery

UE.

• Ultrasonic Buzzers

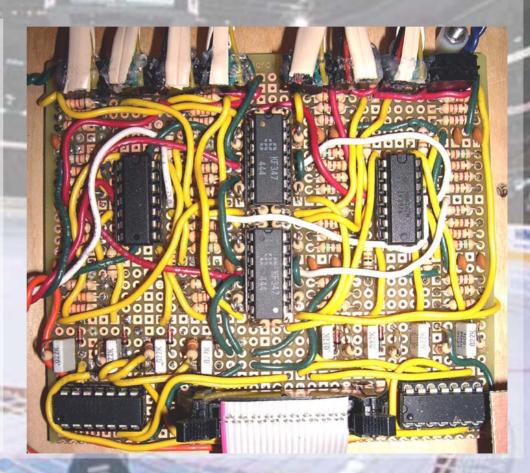
Receiver Subsystem

- Collect Transmitted Signal
- Filtering and Data Recovery
- Time of Flight Measurement

Collect Transmitted Signal

Reverse the operations of the transmitter
 – First collect the ultrasound signal

Filtering and Data Recovery


Reverse the operations of the transmitter
Then filter out noise, and recover the pulses

Receiver

Circuit

Filtering and Data Recovery

- The receiver circuit
 - 88 resistors
 - 24 capacitors
 - 16 op-amps
 - 12 inverters
 - 8 diodes
 - -90 cm^2

Time of Flight Measurement

- Now measure the time of arrival on each sensor
 - HC12 has eight Input Capture channels, we are using seven
 - Interrupt driven, plus a data transfer routine
 - Data transfer via serial port

Software Subsystem

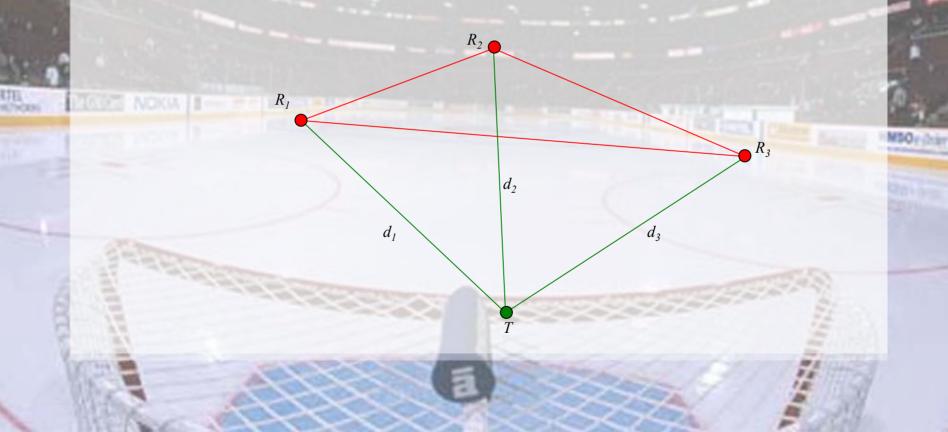
- Serial Communication
- Calculating Position
- Graphical User Interface

Serial Communication

- Data is communicated from the HC12 board
- Sent to the PC via RS232
- RS232 to USB converter is used on laptop
- Decoded on the PC for sensor measurements

Serial Communication

• Message


- The message begins with a '\$' character
- Each data segment is sent in binary and is decoded on the PC as a double
- The data segments are then separated by commas to be parsed by the PC
- Message format:

\$,<data1>,<data2>,<data3>,<data4>,<data6>,<data7>

- Multilateration (hyperbolic positioning)
 - A method of locating an object by computing the time difference of arrival (TDOA) of an emitted signal from three or more sensors.
 - Different form triangulation which used the absolute times of arrival.

- Data is sent relative to the shortest time of arrival
- The shortest time received is sent as a zeroWhy?
 - Slight drift in crystal synchronization
 - Makes for a more robust system
 - Removes any error consistent with all sensors

• The problem:

- Firstly, three sensors are taken into consideration, then
- A value is added to each of the measurements so that there is a solution, and from this
- A solution is calculated.
- This is repeated for another group of three sensors and the results are compared
- The difference is applied to the algorithm to reiteratively improve the result.

• To calculate the position of the puck from three sensors, a vector analysis is done on the figure below:

 R_2

0

 d_{2}

NOKA | I --- I HI

 R_1

A

di

• To improve the accuracy, the difference of two results is analyzed:

 R_3

 $d_3 + \varepsilon$

T

 $|T_1T_2|$

 R_2

 $d_2 + \varepsilon$

 $d_1 + \varepsilon$

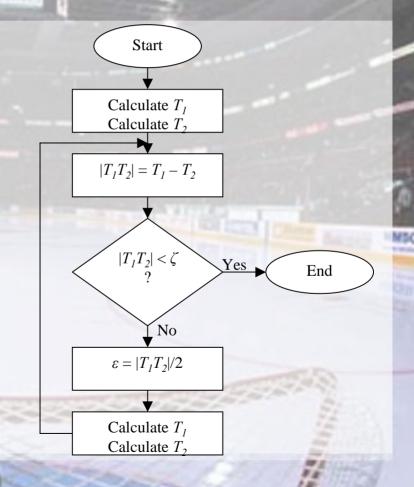
 R_1

OCCUPATION NAMES

 R_5

 $d_5 + \varepsilon$

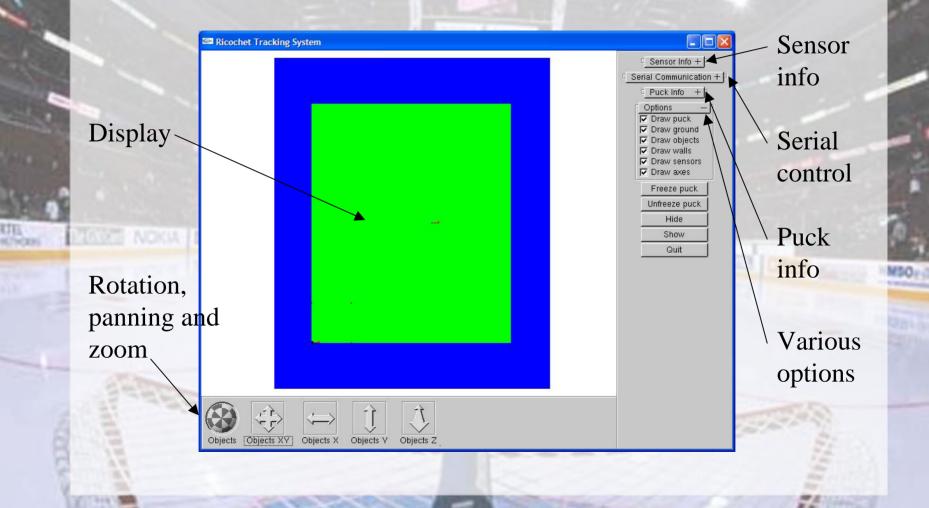
 $d_4 + \varepsilon$


 R_6

 $d_6 + \varepsilon$

 R_{Λ}

 T_{2}

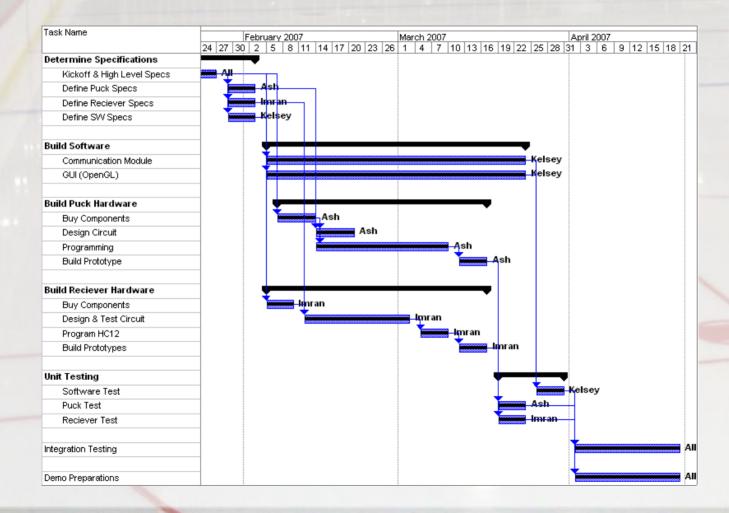

- Algorithm:
- As stated before:
 - Two positions are calculated
 - The error is checked against a threshold
 - The error is then applied to the measurements and the process is repeated

Graphical User Interface

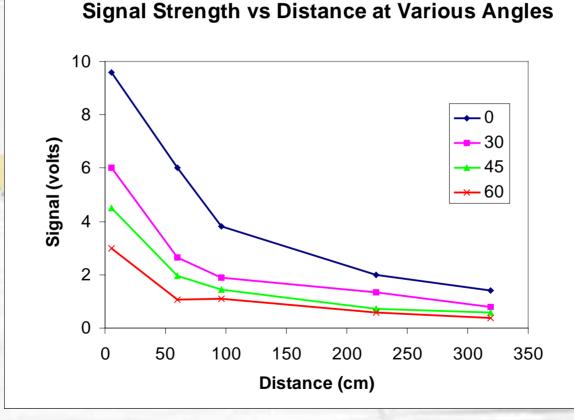
- Done in OpenGL
- Allows user to view the movement of the puck
- The position, velocity and acceleration are readily available
- The camera can be adjusted to any angle, zoom or position

Graphical User Interface

Business Case


- Positional tracking a desired technology
- Other applications:
 - Other sports applications such as football and soccer.
 - Indoor tracking applications.
- Low cost tracking system

Budget & Expenses


AND ADDRESS OF A DESCRIPTION OF A DESCRI

Item	Budget	Actual
Accelerometer	\$60	-
Ultrasonic Transmitter & Receiver	\$150	\$84.30
Circuit components	\$50	\$33.90
Miscellaneous	\$30	\$15.25
Total	\$290	\$133.45

Schedule

Experimental Results

IU

Difficulties encountered

erizonwh

- Hardware issues:
 - PIC limitations
 - HC12 limitations
 - Circuit issues
 - Software issues:
 - Complex mathematics

Acknowledgements

Our special thanks to:

- Lucky One and Steve Whitmore
- Gary Houghton, Fred Heep and Gary Shum
- Our TAs Vinay, Brad and Amir
- And all the companies that sent us free samples

Conclusion

- If Luongo is in goal, there is no need for Ricochet Tracking System.
- Otherwise, due to frequent goal disputes, NHL requires a tracking system for hockey puck.
- Through this project we have recognized a need for tracking in sports.
- We have demonstrated that such system can be implemented using ultrasound.

Questions?

HEFT

Pomoral

Demo time!

HTTT

Pomosia