November 03, 2008

Dr. Andrew Rawicz

School of Engineering Science
Simon Fraser University
Burnaby, British Columbia
V5A 1S6

Re: ENSC 440 Project Design Specifications for a Patient Comfort System

Dear Dr. Rawicz:

The attached document is a Design Specification that provides design details on how the
product will actually be designed. This document will cover the system overview, system
hardware, GUI software design, and testing plans to actually test the product.

We are currently working on the GUI design as it is the most critical part of our project. Also, we
have ordered some third-party hardware components which will be used to execute the
commands released from the GUI.

MeteorCare consist of four committed, innovative and business-focused engineering students:
Aidin Mirsaeidi, Ashkan Z. Deylami, Siavash Rezaei, and Nuisha Nikkholgh. We are committed to
build an innovative product that will gain a unique status in the health care industry.

If you have any concerns about our proposal or if you require more details about our product,
please feel free to contact me at (604) 312-4346 or by email at amirsaei@sfu.ca.

Sincerely,
Aidin Mirsacidi
Aidin Mirsaeidi

President and CEO
MeteorCare Inc.

Enclosure: Design Specification for Patient Comfort System

Patient Comfort System

Team:

Aidin Mirsaeidi

Niusha Nikkholgh

Ashkan Ziabakhsh Deylami
Siavash Rezaei

Submitted to:

Dr. Andrew Rawicz

Mike Sjoerdsma

Issued date: Nov/03/2008
Revision: 1.0

Table of Contents

INEFOAUCTION . e b e s e e e sbee e sbe e e sabee e 5
Yoo o1 B T O P O O O U O PO PP P PP PP PP P PP PPUPPPPPPPPPPPPPPPPN 5
FANol 0101V 0 o L PP PP PP PP PP PP PPPPPPPPPPPPPPPPPPPPRS 4
INEENAEA AUGIENCE. ..ottt s e s st e s bt e e sbbeesbeeesbeeesaneeeas 5
SYSTEM OVEIVIBW ..t et e aeaeaeaeaaens 6
SYSTEM HarAWare. ..o 8
LigNt DIMIMEE SYSTERIM ceeiiiiiiiiiitteeeee et eeer e e e e e e eesbbbbr e e e e eeeeesasstbaeereeesseessstrrrereseeenns 8
LY = o USSPt 11
MCISOBAWE0 MICrOCONTIOIIET ..o 12
Universal REMOte CONTIOL......coouuiiiiiiiiiie ettt 14
Microcontroller ComMmMUNICAtION.......ciiiiiiiiie et 14
QUICK SEEUP .eeeiiiiiiite ettt ettt e e e sttt e e s st e e s ettt e e e s abaaeessasbaeeeeanssaeeesnsbaeeessnsneeesnnes 14
Protocol DEFiNITIONeiiieiieeieee et 15

GUI SOFEWAIE ...ttt st et e s e e s e e e b e s me e e b e e smne e st e snneeneennneens 16
INEFOAUCTION. ...eieiie et e e snee e 16
ArCNItECTUTAl STEAtZIES .. uvviiieiiei ettt e e e e e e eseb b e e e e e eeesesesbsbeneeeeessennanes 16
INEEraction WIth GUI....c...uiiiiiiiiie e s e e s e e snee e 16
IVTUSIC: ettt et e e s s s s e e e e e e s s s e b a et e e e e e s s s anrraaee s 17

N =TS PP PP PP PPPP 18
IVIOVIES: ettt e e s s e e e e e s s s r et e e e e e s s e aa s 19
UL o] (U PP PSP 19
PICEUN e 19
NUTSE: ittt b e e s a e e s s e e e s s a st e s s a e e e s aa e e e s 19
TESt PRASES AN CYCIES......coiiiiriieeiei ettt et e e e e e e bbbar e e e e e e sesessbbbereeeeesssesassrerareeeeenns 19
Project INTEZIratioN TeST.... .. e ittt esaeeeeeseaesetesesssesesssesesnsnnnnnnes 20
Operation ACCePtanCe TSt ..o 20
SOTEWAIE TEST ...ttt ettt et e et e st e e b bt e s bt e e sbee e sabbeesbeeesabeeesaneeas 20
[NV ==)] o USSR 21
HArdWare TESE .. .oeiiiieiiee e s 21

S F=T =T o Tol =TRSO PSR 23

List of Tables

Table 1: Message Format transmitted to the receiver (iii)......ccccooeeeeeiieeiieiiiiei e, 9
Table 2: Unit codes and ON/OFF fUNCLIONS (i1i) cvvveeeerreeeeeeiriie e e e 10
Table 3: Command names and corresponding codes (iii)ccooevvvrveeiieiiiiiiiiiieeeee e 11

Table 4: Mapping table for microcontroller output pin and remote control button connections

... 12
Table 5: ANIMation SNAPSNOTS.....ciiiiiiiiie e e e e s s e e e e e s aaees 18
List of Figures

Figure 1: Entire embedded system diagram for Patient Comfort Systemcccccceevvviieeeininnennn. 7
Figure 2: Embedded system diagram for light dimmer module.........ccccoevvmreeriiiiiiiiiiiiieeeiee s 8
Figure 3: Embedded system diagram for IR SYSTEMeevveiiiiiiiiiiieiiiicc e 12
Figure 4 Simple Mental Image of How Dispatcher Work.........occvvvvveeiiiiiiiiiiiiieeeeeccc e, 14
FIGUIE 5: IMAIN IMIBNU....eeiiieieieeeieeee ettt sttt et s st tsss et s sssssesesnsnsnsnnnnnnes 16

Acronyms

COO Chief Operating Officer

IR Infrared

PC Personal Computer

] User Interface

I/0 Input/output

RTS Request to Send

DTR Data Terminal Ready

WPF Windows Presentation Foundation
MCU Microcontroller

Introduction

MeteorCare product (i.e., Patient Comfort System) is a state-of-the-art device intended to
empower elderly and hospital patients to have control over certain activities. One of the major
fears of the elderly from aging is loss of independence; losing independency is emotionally
overwhelming and depressing. This device not only improves the quality of life of the patients
and elderly population by giving them ability to control certain behaviours but also provides
help and support to nurses and caregivers by preventing unnecessarily calls.

The Patient Comfort System is consists of a user friendly interface that runs on a computer and
a hardware application. The hardware application is connected to the PC and interfaces with
Meteor Care applications. The product helps patients with various activities such as controlling
lights, curtains, TV as well as adjusting the bed, etc.

In the initial phase of this project, a proof of concept will be developed which will be deliverable
in December 2008, followed by commercial product release.

Scope

The scope of this document is to provide design details/specification on the Patient Comfort
System. In other words, this document will cover the measurements and characteristics which
would produce a workable, sustainable, and pleasing product. The design specifications stated
in this document are meant for the Proof of concept or the prototype. After gaining more
insight in design requirements while building the product, the specifications might change.

Intended Audience

This document is intended to be used by Meteor Care design team members to build the
product. The document shall be used as a guideline in developing the Patient Comfort System
for the personnel of the company. Company members shall use this document to evaluate their
product development progress and to keep track of their goal.

This document shall also be used as a management tool; the COO will refer to this document to
ensure that the product possesses all intended functionalities.

System Overview

This section explains the general system overview of the Patient Comfort System.

Meteor care device provides the luxury of carrying out certain activities to the patients and
enables them to overcome dependency problems. Bedridden patients and senior people
gradually lose their independency and feel lonely resulting in depression. The Patient Comfort
System helps them to regain their independency and connect.

The system composed of the Meteor Care GUI application which runs on the computer. The
GUI has been developed to have simple and insightful interface so bedridden patients, older
adults, and physically challenged people are able to use it without any training.

In addition to the GUI, A specialized hardware has been used so the system can integrate with
the home automation hardware. The Meteor Care hardware is connected to the PC via a serial
port that communicates with the Meteor Care application. The device includes a touch screen
monitor along with a bed mounting pedestal to support it. Moreover, the patient’s comfort
level has been carefully investigated; the product enables patients to control various devices
such as the light, curtains, TV and to adjust the bed and etc. The entire embedded system
diagram is shown in Figure 1.

X10 Wireless Module X10 Lamp Module

\
| =
. {3 __Powerlines | O
! X10 O
V\ﬁre‘less —_ e > Lamp
‘sgwins of oo @B

Serial Port 2
Port A |

Serial Port1: Port B_|

e TX

e RX N

Computer Microcontroller Universal TV Remote

InfraRed

*proportions are not preserved

Figure 1: Entire embedded system diagram for Patient Comfort System

System Hardware

The two parts of the product design that require hardware modules are the light dimmer for
controlling the light dimness in the room and the IR transmitter required to control the TV.

Light Dimmer System

In order to design the light dimmer module, the X10 FireCracker Kit from X10 Industries has
been chosen. The FireCracker is a matchbox sized unit (i.e., transceiver) that plugs into a serial
port of a PC and transmits commands wirelessly one-way to a receiving unit that's plugged into
an AC outlet, which then sends the same signal through the home's AC wiring to the lamp
module. An embedded system diagram is shown below that illustrates how the light dimmer
system is constituted. The modules provided by X10 Industries are treated as black-boxes; the
learning objective to build the light dimming system is to learn the protocol. Furthermore, the
system design involves developing a software solution in .NET platform (using C# language) to
send commands through the serial port to the transceiver.

Wireless Module Lamp Module
__ Wireless » mg ___Power Lines (@}
X10 O
o R

senins ot o @

Computer

Figure 2: Embedded system diagram for light dimmer module

The lamp module is recognized with a house code, and a unit code. The lamp module/controller
can be set to a particular house and unit code by rotary switches. Since this product will be
designated for one room and one lamp, then the house and unit code will be fixed in the
commands sent. However, there can be more lamp controllers plugged into the AC line which
would have different unit numbers but the same house number. There are several different
commands that can be sent out: on, off, dim, brighten, all lights on, all lights off and all
controllers off. The on and off signals are sent to a house and unit code. This causes that
controller to go into a listen mode after which it will respond to dim and brighten commands.
Each dim or brighten command causes about a 5% difference in the dimness or brightness

respectively. The all lights on and all lights off are targeted to only a house code which would
cause all light controllers (up to the max of 16) with that house code to respond appropriately.
Finally, the all units off will turn off all light modules off on the designated house code.

The Firecracker does not rely on normal serial communication; instead it is driven by the RTS &
DTR signal serial lines which also provide its power. The command frame is pretty simple,
consisting of only 5 bytes. Table 1: Message Format transmitted to the receiver outlines the
message layout. A couple of tricky areas are initialization of the device and clocking out the
signals to the RTS/DTR lines with appropriate delays between bits. Initializing the device is
achieved by setting the RTS/DTR lines low for a short time and then bringing them both high
with another delay before commencing a message.

Table 1: Message Format transmitted to the receiver (iii)

Header House code Unit code, Footer
Function/command

0xD5,0xAA / 01100000 Refer to tables 3 and 4 OxAD /
11010101,10101010 or 10101101
01100100

Sending out bits consists of starting out with both lines high and setting DTR low for an on bit
and setting RTS low for an off bit. In both cases, there must be a delay of at least 500
microseconds before setting that same line high again. This process continues until the entire 5
bytes are sent out. The house code that we will use will be “01100000” for units 1-8 and
“01100100” for units 9-16. Table 2: Unit codes and ON/OFF functions lists the byte to send to
turn a controller either on or off. Note that controllers 9-16 have the same code as 1-8.

Table 2: Unit codes and ON/OFF functions (iii)

Unit # ON OFF
Hex Binary Hex Binary
1 0x00 | 00000000 | 0x02 | 00000010
2 0x10 | 00010000 | 0x12 | 00010010
3 0x08 | 00001000 | Ox0A | 00001010
4 0x18 | 00011000 | Ox1A | 00011010
5 0x40 | 01000000 | 0x42 | 01000010
6 0x50 | 01010000 | 0x52 | 01010010
7 0x48 | 01001000 | Ox4A | 01001010
8 0x58 | 01011000 | Ox5A | 01011010
9 0x00 | 00000000 | 0x02 | 00000010
10 | Ox10 | 00010000 | 0x12 | 00010010
11 | 0x08 | 00001000 | Ox0A | 00001010
12 | 0x18 | 00011000 | Ox1A | 00011010
13 | 0x40 | 01000000 | 0x42 | 01000010
14 | 0x50 | 01010000 | 0x52 | 01010010
15 | 0x48 | 01001000 | Ox4A | 01001010
16 | 0x58 | 01011000 | Ox5A | 01011010

Finally, Table 3 lists the commands that could be sent to the lamp module for turning on/off or

adjusting the dimness/brightness of the lamp.

10

IR System

Table 3: Command names and corresponding codes (iii)

Command | Hex Binary
Dim 0x98 | 10011000
Brighten 0x88 | 10001000
All light on | 0x90 | 10010000
All light off | OxAO | 10100000
All units off | 0x80 | 10000000

The IR system is solely used to control the TV in the patient’s room. The hardware components

used in this system are a universal remote control, and a MC9s08AW60 microcontroller. In

order to make the implementation of the IR system easier, a universal remote control is going

to be used for IR signal transmission instead of building an IR transmitter from scratch. An

embedded system diagram that illustrates how the system components are connected is shown

below.

11

Port A
Serial Port: Port B

o TX ><TX
e RX RX

Computer Microcontroller Universal TV Remote

*proportions are not preserved

Figure 3: Embedded system diagram for IR system

MC9S08AW60 microcontroller
The microcontroller is connected to a PC via the RS-232 serial port to receive commands from
the .NET platform, the platform used to design the software portion of the product.

Since the MC9S08AWG60 microcontroller has 54 general purpose I/0 pins, the internal circuitry
of each button of the remote control is going to be connected to an output pin of the
microcontroller. For example, if the channel 1 command is received by the microcontroller,
then the corresponding output pin connected to the channel 1 circuitry of the remote control
would be set high for appropriate IR signal transmission. Table 4: Mapping table for
microcontroller output pin and remote control button connections illustrates the connections
between the microcontroller output pins and the buttons of the remote control. Table 4:
Mapping table for microcontroller output pin and remote control button connections is only
used to help the reader understand the detailed design specification; hence there could be
more output pin-to-button connections if more TV control is required.

Table 4: Mapping table for microcontroller output pin and remote control button connections

Button Microcontroller Output Pin

ON PTAO

12

OFF PTA1

0 PTA2

1 PTA3

2 PTA4

3 PTAS

4 PTAG6

5 PTA7

6 PTBO

7 PTB1

8 PTB2

9 PTB3
volume down PTB4
volume up PTB5
channel down PTB6
channel up PTB7

For sending commands from the PC to the microcontroller, a dispatcher unit has been
developed that acts as a serial port interface between the microcontroller and the PC.

Protocol needs to be formulated so that any valid command sent to the microcontroller could
be decoded and the corresponding output pin of the microcontroller would be set high which in
turn would trigger the appropriate action on the remote control for IR signal transmission.
These protocols, and the way of implementation is described in proceeding section titled
Microcontroller Communication.

13

Universal Remote Control

As mentioned before, a universal remote control is being used in the IR system design as to
make the implementation easier. This way, the IR transmitter IC is ready for use and only the
circuitry paths of the different buttons on the remote need to studies so that the output pins of
the microcontroller are connected to the right junctions on the remote control circuitry. This
will be accomplished by purchasing and opening a universal remote control and by using a volt
meter, determine where the right junction is for each button so by sending a high voltage signal
to that junction, the corresponding IR signal would be transmitted to the TV.

Microcontroller Communication

The low level functions in the microcontroller would implement the hardware level interactions
required by our project. In order for us to reach and call these functions from the GUI which
runs on the main PC, we need to implement a message handling system.

We call this message handling system the “Dispatcher”. Dispatcher is basically a protocol layer
over the R$232 communication. Here is a simple visualization for the MCU part of the

dispatcher:
Dispatcher
——————————————————————————————— |
. | .
Incoming Message | ¢ ger Function ADDRESS i {F“"Ct'°" !
| .
|
\ | }
; Header 1 Function 1 Address |
| Header 2 Function 2 Address ‘
} \3\‘ Function 2
| A
|
O B
Figure 4 Simple Mental Image of How Dispatcher work
Quick Setup

A function in the microcontroller registers itself as the handler of specific header. For example,
we have a function that is called THEFUNC, and it should handle the messages with header of
“LIGHTS”.

We register the function as:

dispatcher_addFunction("LIGHTS", & THEFUNC);

From now on, every incoming message with the Header of LIGHTS would make dispatcher call
“THEFUNC”, and pass on all the consequent arguments to that function.

The function of THEFUNC can be implemented as simple as:

void THEFUNC(byte * structure) {

14

temp_cheragh = structure[0];
PWM1_SetRatio8(temp_cheragh); //Set the pulse width modulation Ratio

Protocol Definition
On the low level the dispatcher’s protocol is pretty simple, it is:

/,[FUNCTION HEADER],[FUNCTION ARGUMENTS],/

There are only two things in there:

1. Function Header: Represents the header of the following arguments. Dispatcher decides
which function to call based on the registered Headers in its table.

2. Function Argument, can be any number of bytes. Ideally, we create a structure which is
a collection of those bytes, and then the function that handles the dispatched message
would treat the received bytes as one structure.

Obviously the functions in the GUI level don’t need to take care of this protocol. A simple
Dispatcher function on the GUI side, would convert the given structure to match the protocol

then send it to the microcontroller through RS232.

15

GUI Software

Introduction

Most dominant feature of a product such as ours should be its ease of use and interface.
Therefore a lot of thought and consideration has gone into designing the user interface. The
GUI does not necessarily have to pack a lot of features and functionalities; however, it should
be very good at what it does. To achieve our goal we had to give the user clear visual feedback
for his/her actions. Since we perceive the world in 3D, the decision was made to organize the
menus in 3D in a smart manner. This helps the user to easily see the relation between menus
and icons. Moreover, this method delivers very useful information yet keeps the screen visually
clear and uncluttered.

Architectural Strategies

C# and XAML are selected as the languages of choice for developing the GUI and the business
logic behind it. Since ease of use and great user interface is the primary feature of our product,
WPF is employed to enhance the graphical tools available to the programmer to develop the
GUL. In a nutshell, WPF is a graphical subsystem of the .NET frame work 3.0 and 3.5, which uses
a mark-up language, known as XAML for rich user interface development (i) (ii). After choosing
WPF, the choice of C# as the programming language is the next logical step because of its
integratability with XAML code.

Interaction with GUI
The main menu of the GUI is depicted in Figure 5.

a8 &

MUSIC MOYIES SUDOKU

et q\ h?
-

PICTURE NURSE

Figure 5: Main Menu

16

User can trigger the icons by touching them. In the case of patients without the ability to use
touch screen, the GUI can be configured so the icons enlarge as the patient tabs through them
to give visual feedback to see which item is currently focused.

The following goes to describe different scenarios when the patient selects each of these icons
on the main menu.

Music: When Music icon is pressed an animation is played which displays Artist icons jumping
out of the Music icon and settling in the screen. At the same time, main menu icons shrink and
their opacity decreases. That gives the feeling that the main menu icons are pushed back in
space. So the user can focus on the icons that are on the top. The table of figures below is
sequence of snapshots taken from the animation.

17

Table 5: Animation snapshots

PPt J J’ s

BAR:
pETHOWEEN PETHOWEEN g

*,
kY

Shot 1 Shot 2

S S PP S S PSS

BETHOWEEN EFARA KARAM PINK FLOYD
BETHOWEEN PABA KARAM pINK FLOYD

d 7 S &

JAVAD YASARI TIESTO
JAVAD YASARY

Shot 3 Shot 4

When the artist icons are pressed, the songs pop up in the same manner that the artists
appeared, and the artist’s icons are pushed back in the same manner the main menu was
pushed back. When a song icon is clicked the song starts to play and the appropriate controls
(i.e. Play, Stop, Next Song, Previous Song, and Volume) slide up from the bottom of the screen.

News: When News icon is pressed an animation is played which displays news headlines
jumping out of the News icon and settling in the screen. After reading the headline, if the user

18

is interested to know more about the subject, they can touch the headline and a new window
will pop out that contains the detailed story of the headline.

Movies: When Movies icon is pressed the movie icons (each representing a movie) will pop out
of the Movies icon. Pressing the movie icons results in another window popping out which
shows the movie and contains the appropriate controls such as Play, Pause, Stop, Fast Forward,
Reverse, and Volume.

Sudoku: When Sudoku icon is pressed a window pops up from the Sudoku icon which displays
the Sudoku grid with appropriate control.

Picture: When Picture icon is pressed, Album icons pop out of the picture icon. When each
Album icon is pressed picture thumbnails pop out of the Album icon. User can browse through
the thumbnails by touching the screen and sliding them past. If the user touches a thumbnail, it
will enlarge so he/she can see the picture in greater detail.

Nurse: When Nurse icon is pressed, it gives the user a visual feedback to let him/her know that
a call is being made. Behind the scene it sends a message to the appropriate X10 module that
alerts the nurse.

In all the cases explained above when an icon is touched that triggers another menu or window
to open, the parent menu is pushed back in the space (as illustrated in Table 5: Animation
snapshots). Furthermore, to go back to the parent window, the user could touch anywhere on
the screen (except on the icons of course). Doing so triggers an animation showing the child
icons to jump back into their parent and the parent menu is brought forward in space.

Test Phases and Cycles

When it comes to luxury products or products that their audience are technically challenged, a
simple product error would mean that user would abandon using the product. The main issue
arises from the fact that user is unable to determine whether the problem is initiated by
him/her or from the software.

Consequently, a considerable amount of thought and ingenuity should go toward the test
processes to make sure the product is in fact close to bug free.

Here we state two general types of tests that seem mandatory for our product: Project
Integration Test, and Operation Acceptance Test. In the proceeding text, we discuss each type
of test accompanied by their detailed algorithms and schedules.

19

Project Integration Test
When the project parts are assembled together, a series of tests should be done to ensure that

they function correctly together. Here we present some general roots of errors in the project

integration test:

1.

3.

Two components that normally function well independently, malfunction together due
to miscommunication

Two stable components placed in a feedback loop function in an oscillatory or unstable
manner

A component is dependent on another component which is faulty

Here is our test plan in order to identify each of those integration errors:

1.

We write a software code that generates a table of all possible communication
commands for the components that talk to each other. The test code would loop
through the table in a random fashion, to test each command. The results of the test
would then be written in a log file categorized by satisfactory and non-satisfactory.

In our case there is no feedback system, as there are no sensors implemented anywhere
in this current version of the product.

In order to have a robust system, the protection against wrong inputs from other faulty
components should be implemented in the component level.

Afterwards in the system level, we would then generate a table similar to the table
mentioned in point #1, with faulty data. If a part of the program crashes, then the
component responsible should be fixed in a component level. This test should cover the
errors which arise from Faulty Components or missing components or faulty
communication lines.

Operation Acceptance Test

Software Test

For details on what the components are for the software please refer to

20

GUI Software section. In this section we discuss the parts of the operation acceptance test for
the software. We note here that our software is created by integration of classes that each
takes care of one functionality of the program. If the program is to work flawlessly, each
component should work seamlessly with others.

This in return means that all the rules of Object Oriented Programming should be followed, and
we need to ensure that each function can handle wrong inputs in a descent manner.

The test algorithms written in this part is generally simple and very straightforward. You call the
functions of the program with null referenced objects and see if they break down or not. In the
case they breakdown, a record should be written down with details of the inputs and the
problem. This way we can address the problems in a systematic way.

This approach both applies to the code written with C# for the GUI, and C++ functions written
in CodeWarrior environment for the embedded system.

Navigations
The user should be able to go through the menus and reach his/her objectives with no problem.
This test is a test for human interaction simplicity rather than a software challenge or design.

In order to test this part of the program, we need to create simple case studies with specific
objectives, and ask a participant to do the specific required task. The participant should be
chosen carefully to represent the target market and audience.

If a desired task is carried out with no problem, then it means the designer has done a decent
job. If the task is accomplished with a certain level of difficulty, then the designer needs to go
back and redesign the process.

Through this re-design cycle, our product can achieve a better usability.

Hardware Test
The hardware test generally should contain couple of aspects such as:

1. durability
2. functionality
3. error handling margins

In our case, as we are not mass producing the product, we don’t need to worry about the
hardware test systems implemented automatically.

21

Also, the general trend of technology shows most technological products such as cameras and

TVs go out of style much sooner than they start malfunctioning. Consequently, here we only

need to worry about the functionality of the hardware components.

Most of our hardware components are black boxes, bought from reputable manufacturers.

Those products obviously have gone through cumbersome tests before being on the shelves of

the stores. Consequently, we won’t be testing them for their product specifications. Here we

would take the manufacturer’s word for what the product is and what it does.

However, for the components made by our group we need to test for:

1.

2.

Soldering

Connections

Wiring

Ground protections if the powered by high power voltages

Dropping them. Running over them. Putting them through the spin cycle.

22

References

i. http://en.wikipedia.org/wiki/Windows_Presentation_Foundation
ii. http://msdn.microsoft.com/en-us/netframework/aa663326.aspx
iii. http://www.codeproject.com/KB/library/x10Demo.aspx

23

