
 RockIt Design Specification

March 10, 2008

Mr. Patrick Leung

School of Engineering Science

Simon Fraser University

8888 University Drive

Burnaby, British Columbia

V5A 1S6

Re: ENSC 440/305 Design Specification for RockIt

Dear Mr. Leung,

The enclosed document is entitled Design Specification for Motion-Control Guitar Effects. The document

will further outline the design details of our capstone ENSC 440/305 project, entitled RockIt.

Currently, our prototype is in the development stage with several key elements complete. The

remaining elements have been designed and the algorithms are awaiting implementation, barring some

minor details and testing. Upon completion, our product will broaden the ranges of guitarists’

capabilities by creating sounds based on the musicians’ motions.

The design specification will outline details of our user interface and physical packaging with well-

illustrated algorithms of the processing. Power consumption and component selection are also detailed

in this document. Further details can be found in the appendix that specify component specifications,

source code, and circuit schematics.

Perceptum Technologies consists of four engineers: Kyle Huffman, Daniel Galeano, Paul Carriere, Ben

Shewan. Each team member is a well-accomplished engineer. If you have any questions or concerns

about our product, please contact us through our email address: ensc440-spring08-perceptum@sfu.ca

Sincerely,

Kyle Huffman

Director of QA, Perceptum Technologies

 RockIt Design Specification

RockIt Design Specification

Project Members: Kyle Huffman

 Paul Carriere

 Ben Shewan

 Daniel Galeano

Contact Person: Kyle Huffman

 ensc440-spring08-perceptum@sfu.ca

Submitted To: Steve Whitmore, ENSC 305

 Patrick Leung, PEng, ENSC 440

 School of Engineering Science

Simon Fraser University

Issued: March 10, 2008

Version: A.1

 RockIt Design Specification

Executive Summary

To further musicians’ capabilities and stage theatrics, Perceptum Technologies aims to create a new

motion-controlled sound effects system entitled RockIt. By placing sound controls directly on the guitar,

the restriction of floor pedals is eliminated. By having an accelerometer placed on the neck of the

guitar, musicians motions can be correlated to adjustable sound effects; this will better convey emotions

and nuances from music.

RockIt will be built in two stages. Stage 1 is the functioning prototype whereas Stage 2 is the refined and

streamlined product for sale. Stage 1 will have the following features:

1. 3D Output ADXL330 accelerometer controlling variable levels of two adjustable sound

effects via MIDI signals

2. 4 Force Sensing Resistors (FSRs) controlling the accelerometer state and toggling sound

effects

3. Two PIC18F2420 processors. One processor accepting user inputs from the

accelerometer and FSRs and a second processor receiving commands to control the

PODXT Live via MIDI signals while updating the user through an LCD display

Stage 2 of the project will have the following elaborated features in addition to the Stage 1 design:

1. Wireless communication between the two processors

2. Streamline housing for the FSRs, accelerometer, and pre-processor

Stage 1 will be completed by April 15
th

, 2008 where a demonstration will occur. This document focuses

solely design issues surrounding on Stage 1.

 RockIt Design Specification

Table of Contents

1 Introduction .. 7

1.1 Scope ... 7

1.2 Intended Audience .. 7

2 System Overview... 7

3 Microcontroller ... 8

3.1 Pin-Out .. 9

3.2 PIC18F2420 hardware highlights .. 10

3.2.1 Analog comparator ... 10

3.2.2 Analog-to-Digital Converters .. 10

3.2.3 Memory ... 10

3.3 PIC18F2420 Programming .. 10

3.3.1 In-Circuit Programmer/Debugger ... 10

4 MIDI ... 10

5 Accelerometer ... 13

5.1 Physical Issues ... 14

5.1.1 Placement ... 14

5.1.2 Package ... 14

5.1.3 Cabling ... 15

5.1.4 Power .. 16

5.2 Signal Processing ... 16

5.2.1 Precision and Bandwidth .. 17

5.3 Tilt Sensing .. 18

5.4 Dynamic Motion .. 20

5.5 Optimization and Simulation .. 23

5.6 Potential Issues ... 24

6 Force Sensitive Resistors ... 25

 RockIt Design Specification

6.1 Theory of FSR .. 25

6.2 FSR Detection .. 26

6.3 Algorithm .. 28

6.4 Physical Package ... 29

6.5 Potential Problems .. 30

7 Microcontroller Communication .. 31

7.1 Communication Protocol .. 31

7.1.1 Baud Rate .. 31

7.1.2 Frames ... 31

7.1.3 Packets .. 32

7.2 Hardware .. 35

7.3 Software .. 36

8 User Interface ... 36

9 Power Management ... 41

10 Conclusion ... 42

11 Appendix ... 43

11.1 Glossary ... 43

12 Bibliography .. 44

List of Figures

Figure 1: High Level Overview of Rockit System ... 8

Figure 2 Microcontroller Pin-Out .. 9

Figure 3: A typical MIDI message .. 12

Figure 4 Placement of accelerometer ... 14

Figure 5 Accelerometer Enclosure .. 15

Figure 6 Ribbon Cable Configuration .. 15

Figure 7 Accelerometer Signal Flow Diagram ... 17

Figure 8 Tilt Sensing Usage ... 19

Figure 9 Theory for Determining Gravity Projection .. 19

Figure 10 Tilt Sensing State Diagram .. 20

Figure 11 Dynamic Motion Sensing Axis ... 21

Figure 12 Dynamic Motion State Diagram .. 22

 RockIt Design Specification

Figure 13 MATLAB Equivalent of Accelerometer .. 23

Figure 14 Debugging Platform .. 24

Figure 15 FSR Composition ... 26

Figure 16: FSR Force to resistance diagram .. 26

Figure 17 FSR Comparator Simulation Circuit ... 27

Figure 18 FSR Subsystem Signal Flow Diagram ... 28

Figure 19 PIC comparator and external input schematics .. 28

Figure 20 Flow Chart of FSR Timer Interrupt Algorithm ... 29

Figure 21 FSR Housing and Location ... 30

Figure 22 Frame format .. 32

Figure 23 FSR packet ... 33

Figure 24: Reset Packet ... 33

Figure 25 Accelerometer packet ... 34

Figure 26 Header frame in Accelerometer packet .. 34

Figure 27 Data frame in accelerometer packet .. 35

Figure 28 Microcontroller communication ... 35

Figure 29 Receiver State Diagram ... 36

Figure 30: User Interface .. 39

Figure 31: User Interface (continued) ... 40

Figure 32 Power Management Diagram ... 42

List of Tables

Table 1: PIC Pin-out Table ... 9

Table 2 FSR Simulation Comparator Component Details ... 27

Table 3 Framing Bits .. 32

 RockIt Design Specification

1 Introduction

This document details our Design Specifications for RockIt, a motion-controlled sound effects system.

Our product is being prototyped for a guitar, but the idea can be adapted for many uses. There are

certain key restrictions existing for guitarists today that can be eliminated with our new sound control

system and there are key advances that our new system allows. These advances are centred on the

control of sound effects for better stage performance and enhanced freedom of expression.

1.1 Scope

This document specifies the proof-of-concept version of RockIt. An overview of the system is detailed

with supporting sections to describe the exact design choices and reasons for those design choices. For

highly documented information, the appendix contains more detailed specifications.

1.2 Intended Audience

This document is intended for the design team responsible for creating the RockIt prototype. It will

serve as a reference for design decisions and testing procedures. Engineers will use this document

during the prototype, optimization and final design phase, ensuring that the intended functionalities are

achieved.

2 System Overview

RockIt consists of seven main parts:

� Four FSRs (Force Sensing Resistors)

� One accelerometer

� Pre-processing PIC

� MIDI controlling PIC

� Wall-mount Power

� LCD Display

� POD XT Live effects processor

As outlined in Figure 1, RockIt can be broken into two key sub-systems; the pre-processor and the MIDI

controller. The pre-processor handles the logic from the FSRs and accelerometer. Using the processed

accelerometer data, the guitarists’ motions will update status memory to send to the MIDI processor.

The four FSRs will toggle on/off the polling of the accelerometer in addition to toggling requests for

sound effects. Both sets of sensors, FSRs and accelerometer, will have their statuses updated in the pre-

processor and requests will be sent to the MIDI processor to control the POD XT Live.

The MIDI processor receives the status of sensors and simply generates MIDI signals to communicate

with the POD. In addition, there exists an LCD display to update the user of the current sensor setting.

 RockIt Design Specification

Figure 1: High Level Overview of Rockit System

(Interlink, 2008),(Dimension Engineering, 2008), (Microchip, 2007), (Line 6, 2007), (Netmedia , 2008)

3 Microcontroller

At the core of the Pre-Processor and MIDI Controller subsystems lies a dedicated microcontroller. The

PIC18F2420 from Microchip was found to be the most appropriate microcontroller to be used in both

subsystems; its selection was based on several hardware and software features required by RockIt.

PIC 18F2420

Wallmount
DC power

supply

Legend

Power

Analog
Signal
Digital
Signal

Live 6 POD XT Live Guitar Effects processor

Interlink Force
Sensing Resistor

x4

Dimension Engineering
Buffered +-3g, 3 axis accelerometer
based on Analog Devices ADXL330

X Y Z

Interface Buttons

LCD Screen

User InterfacePIC 18F2420

PreProcessor

Midi Controller

 RockIt Design Specification

3.1 Pin-Out

The PIC18F2420 has 28 pins, including three power pins and a master reset. The following diagram

shows the pin distribution for each subsystem.

Figure 2 Microcontroller Pin-Out

(Microchip, 2007)

Pins 9 and 10 in both microcontrollers are used to configure a 10 MHz external oscillator. Pins 29 and 27

also have the same functionality in both microcontrollers; they are dedicated to the in-circuit

programmer/debugger ICD2. The following table presents the pin-out on the microcontrollers.

Microcontroller Pin Name Description

MIDI-controller

2,3,4 BUTTON1,2,3 User interface buttons

14 I2C_SCL LCD control signal

15 I2C_SDA LCD control signal

18 RX_HUART Hardware UART receiver

25 TX_SUART Software UART transmitter

Pre-processor

2,3,4,5 FSR1,2,3,4 FSR signals

11,22,23 ACC1,2,3 Accelerometer signals

15,16,25,26 LED_FSR1,2,3,4 FSR status LEDs

17 TX_HUART Hardware UART transmitter

Table 1: PIC Pin-out Table

 RockIt Design Specification

3.2 PIC18F2420 hardware highlights

The following subsections outline the main product-specific features that make the PIC18F2420 optimal

for this project. These specifications are taken from (Microchip, 2007)

3.2.1 Analog comparator

An important peripheral highlight of the PIC18F2420 is the dual analog comparators that allow the

digitization of the FSR data by comparing their analog signal with a reference voltage. This feature is

implemented in the pre-processor microcontroller and permits a more integrated design.

3.2.2 Analog-to-Digital Converters

The analog-to-digital converter module in the PIC18F2420 allows processing of the signals from the

accelerometer. This module provides up to 10 dedicated analog input pins to allow conversion with 10-

bit precision. Unimplemented analog input pins can be used to add a second accelerometer in future

designs.

3.2.3 Memory

The data memory of the PIC18F2420 has 768 bytes of SRAM that provides enough data storing capacity

for both the pre-processor and the MIDI-controller. In the pre-processor subsystem, the microcontroller

uses the SRAM memory for data processing. The MIDI-controller uses the SRAM for the LCD strings and

MIDI commands supported by RockIt.

3.3 PIC18F2420 Programming

MPLAB is an IDE from Microchip that is compatible with the PIC18F2420 and which also offers important

debugging and programming tools. MPLAB is compatible with a student edition C-compiler called C18,

which is also provided by Microchip. The main motivation for programming in C is to take advantage of

the development libraries. The chosen C compiler (C18) provides software libraries that simplify the

programming of UART, A/D conversions and timers. The math library provided in C18 also simplifies the

coding of signal processing algorithms that are needed in the pre-processing subsystem.

3.3.1 In-Circuit Programmer/Debugger

The use of an in-circuit programmer greatly simplifies the code development by allowing a step-by-step

debugging of the program. ICD 2 from Microchip is the in-circuit programmer/debugger we used. It’s

important to note that this in-circuit programmer uses some of the microcontroller resources such as

two I/O pins (pins 28 and 27), stack space, and program and data memory (Microchip, 2007) . The design

of the RockIt already accounts for these trade-offs.

4 MIDI
Perhaps the most fundamental part of the RockIt system is the ability to control a wide range of

commercially available music effects. The Musical Instrument Digital Interface (MIDI) is an industry

standard protocol which allows electronic music instruments and other equipment to synchronize and

communicate with each other. First introduced in the early 80’s, this highly successful protocol has

 RockIt Design Specification

remained almost entirely unchanged and been adopted by most major brands in the electronic music

industry. While many people associate MIDI with poor quality video game music, it is actually the music

synthesis equipment that limited the capabilities of these early MIDI applications. MIDI is simply a

protocol for asynchronous serial digital communications between different devices. As such, the

interpretations and actions taken in response to MIDI signals are entirely dependent upon the device

receiving these messages. Aside from the more conventional applications of the protocol (such as

keyboard controllers), MIDI has been utilized for the control of lighting and other stages effects, as well

as the synchronization, composition and recording of music in a studio environment. (Borg, 2002)

MIDI signals are based upon a current loop connecting the transmitting and receiving devices. This

current loop provides a one-way communications path between two devices; thus, to realize two-way

communications, a path must be provided for both MIDI IN and MIDI OUT signals. The flow of current in

the signal path is nominally between 5 and 10mA, indicating a digital 0, whereas the absence of current

indicates a digital 1. Because MIDI does not utilize a common clock signal between devices, it is

necessary to frame a data byte with start and stop bits. A start bit is defined as a digital 0, and will allow

the receiving device to prepare for incoming data bits. Since the idle state of the line is a digital 1, the

presence of the start bit will unambiguously inform the receiving device of the impending transmission.

Following the start bit, a byte of data will be transmitted, followed by a stop bit indicating the end of the

transmission. MIDI data is transmitted at a baud rate of 31250 (alternatively, the duration of a single bit

is 32μS) and is generally composed of one, two, or three data bytes. To prevent ground loops and

undesirable signal coupling, optical-isolators are used to receive a MIDI signal. (Borg, 2002)

Since the current driving a MIDI communications circuit is generally less than 10mA, the physical length

of cabling is limited without the use of repeaters. MIDI controllable devices are also capable of being

daisy-chained together to allow information to propagate between multiple devices. The maximum

number of devices connected in this fashion is ultimately limited by the propagation delay incurred at

each node. (Borg, 2002)

Up to 16 different devices are able to be controlled with MIDI messaging, and the specification of a

channel number (0-15) will serve as a form of addressing to a specific device. Some MIDI messages are

intended for a certain receiver, so the transmitter must specify the channel number this receiver has

been set to. Other messages may be addressed to all connected devices, and MIDI is therefore provided

with a broadcast message type that will be received regardless of channelization. Since we only need to

control a single device in the RockIt system, the MIDI protocol will be more than adequate in this

respect.

The parameters of the PODxt Live are able to be dynamically controlled in real time via MIDI messages.

In this way the musician will be able to utilize sensor signals to control their desired effects. The various

effects implemented on the PODxt are all associated with a unique MIDI control code that allows this

effect to be changed via MIDI commands. There are 128 unique control codes (0-127) that may be sent

in the MIDI protocol and each of the PODxt`s effects is assigned to one of these codes. The

 RockIt Design Specification

interpretation of a received control code is dependent on the manufacturer’s specification and generally

varies from product to product.

A typical MIDI message that may be sent to the PODxt is presented below.

Figure 3: A typical MIDI message

The above message sets the device volume to maximum and consists of 3 bytes of information. The first

byte represents status and serves to specify the channel and message type. Since we are sending a

control message on channel 0, this byte will have a value of 176 or B0 in hexadecimal. The 8 bits of

information in each byte are framed by start and stop bits. The second and third bytes respectively

select the volume as the control parameter and set the volume level. Since volume is control code 25 on

the PODxt Live, the 2
nd

 byte will contain a 19 in hexadecimal. The 3
rd

 byte will set the volume to some

value between 0 and 127. Since we wish to maximize the volume, a value of 127 (or 7F in hex) is sent in

the last byte. It should also be noted that the binary representation of these values is always sent with

the least significant bit first.

The generation of MIDI messages using the PIC18F2420 microcontroller is a reasonably straightforward

process. Since MIDI is an asynchronous serial communication protocol, it is practical to use the USART

(Universal Synchronous Asynchronous Receiver Transmitter) module provided with the PIC18F series. By

setting onboard control registers, we are able to setup the desired baud rate and framing bit

information. The use of pre-compiled C libraries makes the task of outputting bytes onto the USART

transmit-pin very simple. Since we are only transmitting commands to the effects device, there is no

need to read MIDI messages at any time. The I/O pins on the PIC18F series are capable on sourcing

0

1

Start
bit

Stop
bit

Byte 1 = 0xB0Idle Byte 2 = 0x19 Byte 3 = 0x7F Idle

Start
bit

Stop
bit

Start
bit

Stop
bit

 RockIt Design Specification

25mA of current, which makes them suitable for directly driving a MIDI circuit. Because we do not need

to use buffering circuits or amplifiers, the system simplicity is maintained and the cost is minimized.

5 Accelerometer
At the heart of the RockIt system lays an analog sensor which transforms motion into modulated guitar

effects like wah-wah or delay. To implement this functionality, the use of gyroscopes, strain gauges and

exotic potentiometers was considered; all of which have been used in electro-musical

systems.(SensorWiki, 2008) But considering the constraints on the user while playing guitar, we decided

that our best solution would be the use of an accelerometer.

Having selected a sensor type, various MEMS-based accelerometers are offered by Analog Devices,

Freescale and MSI were researched. The sensor must provide:

� Analog Output, as ‘analog accelerometers are usually preferred for music interaction systems’

(SensorWiki, 2008)

� Sensitivity in the 5g range. This value was corresponds to limits of human motion, defined

(SensorWiki, 2008)

� Bandwidth which is tuneable using off-chip bypass capacitors

� Low costs

� A readily available development package which is simple to interface and implement

� 3 measurement axes

When we measured these criteria against possible choices, the Analog Devices ADXL330 accelerometer

packaged by Dimension Engineering (DE) was the obvious choice. The device includes analog output,

sensitivity of ±3g, tuneable bandwidth and 3 measurement axes. The chip is wrapped in a DIP package

along with an on-board power regulator and output impedance buffer. These added features are

essential to the proper operation of accelerometer, as the PIC cannot process the native output

impedance of the accelerometer, and power regulation is crucial to accurate reading of the

accelerometer (Texas Instruments, 2004). Also, this accelerometer is used in the Nintendo Wii Nun-

Chuck, confirming its applicability to the RockIt system.

The ADXL330 implements a capacitive sensing output dependent on the distance between two planar

surfaces. (ADXL330, 2007)This method of sensing is known for its high accuracy and stability(SensorWiki,

2008). The output is represented by a voltage between 0 and Vcc where Vcc/2 represents the zero g

position. The accelerometer is capable of sensing both the effects of gravity and the effects of dynamic

motion. The DC value of the sensor represents the effects of gravity, whereas dynamic motion is

represented by an AC waveform. While using the on-board regulator, we expect a sensitivity of 333mV/g

(Dimension Engineering, 2008) Note: the accelerometer convention is to use g as the unit of

acceleration. This unit represent acceleration normalized to earth’s gravity, which is 9.81m/s
2

 RockIt Design Specification

5.1 Physical Issues

 The following section presents a short discussion of the physical issues and design solutions regarding

the accelerometer, including placement, packaging, cabling and power.

5.1.1 Placement

Using the simple rules of levers, we can maximize our acceleration signal by placing the sensor on the

head of the guitar. Besides an amplified movement-to-acceleration ratio, placing the sensor on the

head of the guitar makes the sensor transparent to the user, since the head is seldom touched during a

performance. Placing the sensor on the head is intuitive for the user, since most guitarists already tilt

and shake their guitars during performances.

Considering how the guitar is operated, we matched the sensor axes with the guitars natural axes. An

image of the accelerometer orientation is shown in Figure 4 below:

Figure 4 Placement of accelerometer

(jtxdriggers, 2004)

5.1.2 Package

The DE development board can be easily soldered to a thru-hole break-out PCB. For early prototyping

purposes, this board is mounted in a DIP socket. It is crucial that the accelerometer is securely fastened

(Texas Instruments, 2004). This requirement forces us to solder the development board directly to the

break-out PCB as the accuracy requirements increase.

The entire accelerometer sensor will be housed in a standard electronics enclosure, which can be

purchased through many local hobby shops. This enclosure will provide protection while allowing the

accelerometer to be fastened to the head. The PCB will be mounted within the enclosure using machine

screws and stand-offs, such that breakout PCB is lifted yet secured. The enclosure will then be mounted

to the head using a combination of double sided tape, and zip ties. This redundancy will guarantee that

our sensor is securely fastened to the guitar. A rough hand sketch of the package is shown below in

Figure 5

 RockIt Design Specification

Figure 5 Accelerometer Enclosure

5.1.3 Cabling

In order to reduce clutter and improve signal fidelity, the accelerometer will connect to the

microprocessor using an 8-channel ribbon cable. The ribbon cable configuration is shown in Figure 6

below:

Figure 6 Ribbon Cable Configuration

Isolating each signal with ground paths will reduce the crosstalk. This configuration also reduces the

conductor loop area, thereby minimizing magnetic pickup. If noise/precision becomes an issue, we can

incorporate a larger ribbon cable and reduce crosstalk by placing 2 ground channels between each signal

Pwr GND Z Y XGND GND GND

Ribbon Cable Configuration

 RockIt Design Specification

channel. We can also reduce the capacitive pickup by wrapping the ribbon cable in a grounded

conductor like tinfoil.

The ribbon cable will run along the guitar strap since the strap already connects the user to the guitar

head. This will result in an unobtrusive connection between the accelerometer and the pre-processor.

5.1.4 Power

A major advantage of the DE package is the on-board power regulator. The power regulator has an

operating voltage of 3.5-15V(Dimension Engineering, 2008) implying that we can power the

accelerometer using the microprocessor voltage plane.

It is important to note that the operating voltage of the regulated accelerometer is a unipolar 3.33 volts.

Matching voltage with the ADC is desirable since it will maximize our readout precision. Unfortunately,

we are using the ADC Vref+ pin of the microprocessor for the FSR sensors, with no pin flexibility.

Therefore, the ADC operating voltage is defined by the operating voltage of the PIC and should be set to

the minimum 4.2 volts (Microchip, 2007). This solution maximizes our precision by not introducing

additional amplify-and-offset circuitry.

5.2 Signal Processing

With three orthogonal sensor axes each capable of outputting a DC and AC value, the follow-up question

is: what does that information do? The signal processing must account for issues like aliasing, noise,

scaling and precision; making it a crucial component of RockIt.

For our prototype system, we will implement 2 motion-to-music processes: tilt sensing and dynamic

sensing. Each of these processes is discussed in the following sections. A generalized signal processing

flow diagram for each sensor is shown in Figure 7 below. The sole difference between the tilt sensing

and the motion sensing is the last 2 blocks of the signal flow diagram.

 RockIt Design Specification

Figure 7 Accelerometer Signal Flow Diagram

As Figure 7 shows, we will not require additional signal conditioning circuitry. Although shown in Figure

7, it is important to highlight the following details:

� 40Hz Low-pass analog filter implemented with bypass capacitors on the DE dev. board

� ADC samples at 80Hz

� Human motion has a maximum frequency component of 12Hz (SensorWiki, 2008) therefore we

are over-sampling the desired signal

� Further bandwidth reduction and tuning will be implemented in the digital domain

It should be noted that sensor output should be scaled as a percentage of the voltage input for

maximum accuracy. (Texas Instruments, 2004)

Also, the maximum possible precision using MIDI is 7 bits, and therefore all our signal processing should

not exceed this limitation. From the perspective of signal processing, every effect output only has 2

parameters: On/Off (defined by the touch sensors), and value between 0-127 (defined by our sensing

algorithms).

5.2.1 Precision and Bandwidth

A discussion of precision, noise and bandwidth must be presented, as these factors determine the

limitations of the RockIt motion-sensing system. As defined in the accelerometer specification sheet

(ADXL330, 2007), the worst case noise density is 350µg/√��. Therefore, using an analog bandwidth of

Accelerometer
Analog Devices

ADXL330

Low Pass Filter
f
o
= 40Hz

Impedance
Buffer

Dimension Engineering
Development Package

To Midi
ControllerAnalog to digital

Converter
Sampling @

 80Hz

Level
Shifter

Digital
FIR filter

Cut-off dependent
on application

Motion Sensing
Algorithm scaled

for
 MIDI output

PreProcessor- 18F2420

Ribbon Cable

Accelerometer Signal Flow Diagram

 RockIt Design Specification

40Hz, along with peak-to-peak versus RMS ratio of 4:1 (which corresponds to the noise exceeding the

nominal peak-to-peak only 4.6% of the time), we can calculate the RMS noise as defined in(ADXL330,

2007) to be:

��� �	
�� < µ� > = 4 ∗ �	
�� ����
�� ∗ √�� ∗ 1.6 (1)

Using equation 1, we have calculated the noise strength to be 11.2mg. Using the accelerometer

sensitivity of 333mV/g (Dimension Engineering, 2008),we can transform the RMS noise to a

corresponding voltage of 3.73mV.

In terms of tilt sensitivity, it is important to highlight that the acceleration-to-tilt relationship is non-

linear, since gravity is projected onto the measurement axes. Practically speaking, the acceleration-to-

tilt ratio is a minimum when the measurement axis is parallel to gravity. In this worst case scenario, we

expect one degree of tilt to correspond to approximately 15mg of acceleration (or 5mV). (Texas

Instruments, 2004)

Lastly, the voltage sensitivity of the PIC 10-bit ADC operating at 0->4.2V is 4.08mV.

The figures presented above highlight the importance of properly selecting our bandwidth.

Unfortunately, the RMS noise is approximately equal to our worst-case readout sensitivity and our ADC

capabilities. Therefore, we must reduce our bandwidth in either the analog or digital domain.

Considering that our microcontroller possesses an 8x8 bit hardware multiplier, we have opted to reduce

this bandwidth using finite impulse response (FIR) digital filters. These filters are easily designed using

the MATLAB DSP toolbox. Using a FIR solution reduces our circuit complexity; and allows simple

bandwidth modification during testing and optimization.

A digital low-pass filter with a bandwidth of approximately 0.7 Hz would correspond to a 4:1 RMS noise

of approximately 0.5mV. We believe that this value would give us sufficient accuracy to read 1 degree of

tilt in the worst-case scenario.

For the types of effects we wish to control with dynamic motion (wah-wah and delay), we are confident

that we can easily reduce the MIDI accuracy to 5 or 6 bits. Reproducibility is crucial for any musical

performance, and we believe the maximal 7-bit precision could compromise this requirement.

Referencing the frequency of human movement, (SensorWiki, 2008) we will design a band-pass filter

with cut-offs at 1Hz and 15Hz. DC rejection will negate any effects of gravity being projected onto our

measurement axis and therefore will make the system more robust against un-wanted triggering. Using

this bandwidth, we can expect an RMS noise of 2.2mV.

5.3 Tilt Sensing

Because of their change-and-hold nature, effects like volume, pan, and gate decay time are best

implemented using the tilt sensors. For the purpose of this discussion, we are only concerned with how

 RockIt Design Specification

the MIDI value is modulated between 0 and 127. The below discussion relates to the accelerometer

signals after they have been low-pass filtered.

The images in Figure 8 below shows how the X and Y sensor axis will be used to determine tilt.

Figure 8 Tilt Sensing Usage

(Time, 2006)

Once the zero-g voltage level is determined (see section: Possible Issues), it is mathematically simple to

determine the projection of gravity onto each axis. This is shown in the Figure 9 below.

��	����
	� 	 ��!"
��#,% = &'����� ()�!�� − +��	 , ")�!��

Figure 9 Theory for Determining Gravity Projection

Once the projection of gravity onto each axis is known, we will take the arctangent of y/x to find the

corresponding angle of the guitar tilt with respect to the x-axis. The MPLab C library supports 2

arctangent functions with a range of [–π, π] and [–π/2,π/2]. For our purposes, the former range is

appropriate.

Y
X

Y
X

Y

X

Y

X

G
ra

vi
ty

 RockIt Design Specification

Once the angle has been determined, it will be used in the following state diagram detailed in Figure 10.

Figure 10 Tilt Sensing State Diagram

For simplicity, certain details in the above diagram have been left out which include:

� Only one conditional statement will be evaluated per sample

� [stored] represents the average angle over the past 40 cycles

� [current] represents the most recent sampled angle

� [Unscaled MIDI Output] represents a value which will have to be processed according to user

preference and the 7-bit range of MIDI. Precision in MIDI output might be sacrificed depending

on precision of readout, arctangent function, noise, etc.

� Lock-in tilt setting implies that the most recent MIDI value will be stored and no longer updated.

The above discussion assumes that gravity will always be in the plane of the guitar. This assumption

depends on the mounting of the accelerometer along with the user’s posture. This assumption is

strengthened by a simple geometrical fact: that the effects of gravity are minimal when the axis of

measurement is in plane with gravity. This effect led to the worst-case sensitivity discussed in the

Precision and Bandwidth section and is discussed in (Texas Instruments, 2004). This fact implies that a

small angle between the x-y plane and gravity should have negligible effects on the output. Also, the

effects of tilt between the x-y plane and gravity will be mitigated by the common mode rejection,

implicit in subtracting the stored value from the current value.

5.4 Dynamic Motion

Effects like wah-wah are generally used in a pulsed fashion. These types of effects are a perfect match

for our dynamic motion sensor. Our measurement axis and orientation is shown in Figure 11 below.

Tilt Sensing State Diagram

Is corresponding FSR
button active?

Update [stored] tilt position

No

 [Unscaled MIDI output] =
[current] – [stored]

Is corresponding FSR
button deactivated?

Yes

Yes
No

Lock-in tilt setting

Dynamically Updates MIDI Value Static MIDI value

 RockIt Design Specification

Figure 11 Dynamic Motion Sensing Axis

(Falling Pixel, 2007)

The above diagram shows that rocking the guitar back and forth will modulate the effects. As discussed

in the human motion. Bandwidth and precision section, the signal will be band-pass filtered with corner

frequencies at 1Hz and 15Hz. The lower cut-off frequency should cancel out any influence of gravity

while the upper cut-off frequency is chosen to minimize bandwidth while maintaining the ability to

monitor

The state diagram for band-pass filtered signals used in the dynamic sensors is shown in Figure 12

below.

Dynamic motion Sensing Axis

 RockIt Design Specification

Figure 12 Dynamic Motion State Diagram

For simplicity, certain details in the above diagram have been left out, which include:

� Only one conditional statement will be evaluated per sample

� [threshold] will be determined experimentally

� [step] and [quantized Midi amplitude] and number of steps [n] will depend on our detection

accuracy and MIDI restrictions

� [Unscaled MIDI Output] represents a value which will have to be processed according to user

preference and the 7-bit range of MIDI. Precision in MIDI output might be sacrificed depending

on precision of readout, arctangent function, noise, etc.

� The dotted boxes are provisions that may be implemented depending on the results of

experimentation

Dynamic motion state diagram

Is corresponding FSR
button active?

Is corresponding FSR
button deactivated?

Yes No

Case Statement:
 case([acceleration] < [threshold])

nothing happens
case([acceleration] > [threshold] + step)

effect implemented with quantized amplitude 1
case([acceleration] > [threshold] + 2*step)

effect implemented with quantized amplitude 2
.
.
.
case([acceleration] > [threshold] + n*step)

effect implemented with quantized amplitude n

Apply delay
function

to negate multiple
triggerings

Sample over peried to ensure
highest amplitude acceleration is detect

ie: windowing

Yes No

Static MIDI Value

Dynamically updated MIDI

 RockIt Design Specification

The motion sensing algorithm will be robust against the effects of gravity. Even though gravity is normal

to the z-axis, we cannot assume that gravity’s effects will be negligible. Because the sensors are most

responsive to gravity when the z-axis is normal, we must have a bandpass filter to reject effects of

gravity (which are represented by a DC value).

5.5 Optimization and Simulation

The algorithms suggested in the tilt and motion sensing sections were motivated by an Analog Devices

design reference. (Weinberg, Using the ADXL202 accelerometer as a multifunciton sensor, 2002). Even

with these references, many revisions will be made and a great deal of experimentation will be required.

This is because music is a very delicate system which requires a good deal of tweaking to get ‘just right’.

Also, algorithm debugging in MPLab is nearly impossible since the program does not support analog

signal simulation. Therefore, if the system does not operate as expected, it will be difficult to track the

reason for failure.

These reasons have motivated our decision to mimic the motion sensing system in MATLAB. Using

MATLAB, we will simulate the accelerometer using stimulus signals which mimic gravity and motion

projected onto the measurement axes. This approach is demonstrated in Figure 13 below.

Figure 13 MATLAB Equivalent of Accelerometer

The above functional block will mimic our accelerometer. An analog-to-digital converter is easily created

in MATLAB, along with the corresponding FIR filters. Cascading these blocks together while using

Z-Axis

X- Axis

Y-Axis

Y
-P

ro
je

ct
io

n

Z-P
ro

je
ct
io
n

X-Projection

G
ra

v
ity V

e
c
to

r

-Acceleration Stimulus applied in real time
-Projected onto axis

Z-Axis

X- Axis

Y-Axis

Y
-P

ro
je

ct
io

n

Z-P
ro

je
ct
io
n

X-Projection

G
ra

v
ity V

e
c
to

r
X

Y

Z

Motion-to-voltage transducer
-Sensitivity of 333mV/g
-Implements 'clipping'

-Can measure effects of
unwanted projections

(like gravity)

Covolution
-implements

low pass filter
in time domain

MATLAB equivalent of accelerometer

 RockIt Design Specification

MATLAB’s animation capabilities will give us an identical platform to the RockIt system. The MATLAB

simulation platform is shown below in Figure 14

Figure 14 Debugging Platform

By taking advantage of MATLAB’s advanced capabilities, we will be better equipped to debug and tweak

our algorithms. And since MATLAB and MPLab C18 are both C-based programming languages, codes can

be easily ported.

Using MATLAB, we will be able to observe and account for issues like:

� Dynamic level shifting

� Time delay

� Appropriate MIDI scaling

� Off-axis acceleration vectors(like gravity)

� System accuracy

It will be crucial to maintain the limited computational power of the microprocessor when simulating

our signal processing algorithms in MATLAB.

5.6 Potential Issues

Besides the issues discussed above, there are a few other problems that might arise during the

implementation of RockIt. A brief list of possible motion sensing problems is listed below:

� Temperature drift: according to the ADXL330 datasheet, the accelerometer can suffer zero-g

drift of 1.0mg/
o
C and sensitivity drift of 0.015%/

o
C.(ADXL330, 2007) Adequate sampling and

calibration techniques can remedy this issue.(Weinberg, Temperature Compensation

Techniques for Low g iMEMS® Accelerometers, 2007)

MATLAB
accelerometer

emulator
10-bit ADC FIR Filter

Sensor
Algorithm

MIDI-Like Output

DeBugging Platform

y t MIDI

t

 RockIt Design Specification

� Acoustic noise: It is possible that the accelerometer could pick-up the acoustic signal generated

by audio equipment. Choosing a very low cut-off frequency limits this effect, and damping foam

incorporated into the accelerometer enclosure would solve this issue.

� Processing Time: If the motion sensing algorithms become too lengthy to implement in 1/80

seconds, we can: reduce the algorithm accuracy, utilize look-up tables for functions like

arctangent, increase the microprocessor clock, or distribute the processing between the Pre-

Processor and the MIDI controller.

� Precision: If experimentation shows that we need to increase the precision of the accelerometer

read-out, we can: improve ribbon cable shielding, increase the operating voltage of the

accelerometer or optimize the sensor bandwidth.

It is our hope that none of these issues will become detrimental to our system. We have already

considered these issues and how to remedy them.

6 Force Sensitive Resistors

To toggle sound effects, RockIt has four FSRs (Force-Sensitive Resistors). Each FSR can be programmed

to control four user-chosen effects. An important component of the FSR system is the housing which

will be mounted on the guitar for easy-use. Each FSR will drive a variable-force threshold switch circuit

with buffered output. This output will connect to the analog I/O pins on the PIC18F2420.

6.1 Theory of FSR

We ordered our FSRs from National Ergonomic Supply Inc., a supplier located in Penticton, BC. The cost

of the sensors was comparable between suppliers but we chose to order from National Ergonomic

based on their close proximity. Delivery from Penticton to Vancouver was promised within 5 business

days. The sensors would allow room for elaboration that a simple toggle-switch cannot. Since the FSRs

are thin (~0.46mm) (Interlink, 2008), they can be mounted easily on a guitar without hindering the

guitarists’ freedom to play.

Force Sensing Resistors are made from a Polymer Thick Film that exhibits a decrease in resistance when

the force upon the sensing area is increased. The specified resistance can vary up to 25%. (Interlink,

2008)This is not a problem since we are using the sensors simply as lighter and thinner toggle switches.

The fact that these FSRs can detect amounts of variable pressure is a secondary reason for not choosing

toggle switches or buttons. FSRs can detect amounts of pressure and this will allow for further

elaboration of our product in the future. Each FSR is made of four layers(SensorWiki, 2008)

� A layer of electrically insulating plastic

� An active area consisting of patterned conductors

� A plastic spacer

� A flexible substrate coated with a thick polymer conductive film, aligned with the active area.

An image of this layout is shown in

The FSR force-to-resistance relationship approximately exhibits a 1/R relationship as shown in

Figure

6.2 FSR Detection

 RockIt Design Specification

An image of this layout is shown in Figure 15 below:

Figure 15 FSR Composition

(SensorWiki, 2008)

resistance relationship approximately exhibits a 1/R relationship as shown in

Figure 16: FSR Force to resistance diagram

Design Specification

(SensorWiki, 2008)

resistance relationship approximately exhibits a 1/R relationship as shown in Figure 16.

(Interlink, 2008)

 RockIt Design Specification

Since human touch tends to be inaccurate and inconsistent, we use a threshold detection circuit that

only detects actual ‘touching’, with a Schmitt Trigger circuit. The conceptual schematic is shown in

Figure 17.

Figure 17 FSR Comparator Simulation Circuit

R2 is a hysteresis resistor and U2 is an output buffer to strengthen the signal and reduce output

impedance to an acceptable value. This is a simple comparator circuit with U1 acting as the comparator,

driven by the voltage divider to the negative input terminal(Interlink, 2008). The basic functions are

outlined below in table 2.

Table 2 FSR Simulation Comparator Component Details

 U1 outputs high or low (0V or 5V)

 U1 and U2 are LM324N op-amps

 The parallel combination of R2 and RM is approximately 47kΩ

 R1 is the threshold adjustment sink

 R2 is the hysteresis resistor

To date, we are testing our system with this external circuitry but hysteresis and Vref will be handled

internally by the microcontroller. These details are further outlined in the “Algorithm” section. The

general FSR subsystem signals will operate as illustrated in Figure 18.

Figure

6.3 Algorithm

The touch detection will be sampled at 80Hz.

this frequency is reduced to 40Hz. This is because our PIC can receive four inputs for comparison, but

not without cycling the Comparator Input Switch (CIS) which acts 4

Vref can be set in software, and is currently defined as 3.125V.

Implementation of FSR Circuit

Figure 19

At the analog input pins (RA0 to RA3), the voltage source impedance should not exceed 10k

2007) Thus, when selecting RM, the value will be less than 10k

in the C source code. However, our PIC does not have

17. Therefore, we implement a counting scheme within the

detailed in Figure 20.

FSR Pressed Creating
5V at Input Compare

Amp

MIDI Controller Signals
POD XT Live and
Outputs to LCD

 RockIt Design Specification

Figure 18 FSR Subsystem Signal Flow Diagram

The touch detection will be sampled at 80Hz. Because of the nature of the comparator input to the PIC,

this frequency is reduced to 40Hz. This is because our PIC can receive four inputs for comparison, but

not without cycling the Comparator Input Switch (CIS) which acts 4-2 MUX. This is shown in

can be set in software, and is currently defined as 3.125V.

Implementation of FSR Circuit PIC internal Comparator Circuit

19 PIC comparator and external input schematics

At the analog input pins (RA0 to RA3), the voltage source impedance should not exceed 10k

, the value will be less than 10kOhm. The Vref and hysteresis are handled

in the C source code. However, our PIC does not have the hysteresis R2 resistor as illustrated in

. Therefore, we implement a counting scheme within the Timer ISR. The FSR sampling algorithm is

C1OUT Signal Triggers
High in PIC

LED illuminated for User
Feedback

Status Memory Updated
For MIDI Controller

MIDI Controller Signals
POD XT Live and
Outputs to LCD

Design Specification

of the comparator input to the PIC,

this frequency is reduced to 40Hz. This is because our PIC can receive four inputs for comparison, but

2 MUX. This is shown in Figure 19.

(Microchip, 2007)

PIC internal Comparator Circuit

At the analog input pins (RA0 to RA3), the voltage source impedance should not exceed 10k (Microchip,

ysteresis are handled

as illustrated in Figure

. The FSR sampling algorithm is

LED illuminated for User
Feedback

Status Memory Updated
For MIDI Controller

 RockIt Design Specification

Figure 20 Flow Chart of FSR Timer Interrupt Algorithm

Figure 20 illustrates the polling algorithm for one FSR but in reality, exists in the source code as being

capable of handling four FSRs. The basic idea of the algorithm is to toggle pre-set effects with each push

of the FSR. If the FSR is held, no action will occur until the FSR is released; concurrently, the FSR needs

to be pressed for a time greater than a set threshold. It is necessary to check the output of the

comparator for an input ‘high’ and subsequently an input ‘low’ for reducing hysteresis. If the FSR is not

pressed for a set time and subsequently released, the algorithm will revert back to its constant polling

stage. It is important to note that the threshold count is equivalent to 0.05s. Further testing is being

done to determine the optimal threshold count.

6.4 Physical Package

The four FSRs will be packaged in a casing which is mounted on the face of the guitar body as shown in

Figure 21. Within the FSR housing will be the connections from the FSRs to the ribbon cable. The

ribbon cable will be extended from the housing to the pre-processor enclosure located on the guitarist.

Is compare
high?

Begin count

Is count >
 threshold?

Increment
count

Is compare
high?

Is compare
high?

Invert Effect State and
Invert LED

Yes

Yes

No

Yes

No

Yes

Reset Count

Start

No

No

 RockIt Design Specification

Figure 21 FSR Housing and Location

(MusiciansFriend, 2008)

The FSR enclosure is specially designed for streamlined fitting on the guitar. It is thin enough to fit on

the guitar without impeding the musicians’ ability to play.

6.5 Potential Problems

A list of potential issues related to FSR usage is listed below:

 RockIt Design Specification

� Breakage The radius of curvature is very small and allows for great flexibility. The maximum

radius of curvature is approximately 2.5mm (Interlink, 2008). If the tail is bent too far, the

conductive leads inside the active area can break and the air vent could deform (SensorWiki,

2008) It is recommended that the sensor be mounted on a firm and flat surface; this is no

problem for our intended use but limits the FSRs in functionality of other potential designs if

placed on fingertips, for example. It is important to note that the tail can be bent, but it cannot

be creased or kinked (SensorWiki, 2008).

� Repeatability With varying resistance from sensor to sensor, high repeatability and accuracy can

be a problem. For our use as a threshold detect, these manufacturing variations should not be

noticeable especially due to the lifetime of the sensors (approximately 10 million actuations)

(Interlink, 2008)

� Adhesives It is not recommended to solder directly to the pins of the FSR. The heat could melt

the substrate. It is also not recommended to use cyanoacrylate adhesives such as Krazy Glue

because the substrate could degrade(Interlink, 2008).

7 Microcontroller Communication
The communication between the pre-processor and the MIDI-controller is achieved through UART. This

one-way data transfer allows the pre-processor to send the current status data of the sensors to the

MIDI-controller. The simplicity of this communication allows us to avoid hand shaking and therefore

speed up the data transfer. Even though the communication between these two microcontrollers in the

proof of concept is wired, having an asynchronous communication will open the possibility to

implement a wireless connection between the pre-processor and the MIDI-controller in the commercial

design.

7.1 Communication Protocol

A set of rules has been developed in order to characterize the format of the data frames transmitted

from the pre-processor to the MIDI-controller. This communication protocol assumes that the

transmission link uses UART.

7.1.1 Baud Rate

The baud rate is set to 4800 and which is supported by the microcontroller hardware UART. This baud

rate is extensively supported by wireless link modules.

7.1.2 Frames

Each frame is 10 bits long and uses a logic low and logic high as starting and stopping bits respectively.

Idle state is represented by logic high in order to make this protocol consistent with the MIDI protocol

used to interact with the stomp box. Figure 22 presents this frame format.

 RockIt Design Specification

Figure 22 Frame format

This figure will be referenced throughout this section as a naming convention for the different bits in a

frame.

7.1.3 Packets

A packet contains the information required by the MIDI-controller to generate a MIDI messages. There

are three types of packets: FSR, Accelerometer and Reset. While the FSR and accelerometer packets

contain updating data for the sensors, the reset packet is generated every time users want to turn off all

the effects that are currently being implemented. The following table shows the logic used to identify

the packet type.

Data bit Name Logic high Logic low Packet

0 ACC ACC packet Reset or FSR packet All of them

1 RESET RESET packet FSR packet FSR and RESET

Table 3 Framing Bits

7.1.3.1 FSR packet

FSRs packets are one frame long and contain status information about the four FSRs. Data bits 2,3,4 and

5 contain the status of the four FSRs. Logic high indicates that the FSR is on, while logic low indicates

that the FSR is off. The remaining data bits in the packet are unimplemented. The following figure

shows the format of the FSR packet.

 RockIt Design Specification

Figure 23 FSR packet

7.1.3.2 Reset packet

The reset packet is sent to the MIDI-controller to suppress all the sound effects that are being

implemented. The following figure is the format of the reset packet

Figure 24: Reset Packet

7.1.3.3 Accelerometer packet

The format of the accelerometer packet is more elaborated due to the higher complexity of the status

data. The data bits in this packet contain the MIDI control amplitude (a number between 0 and 127) for

either: the tilt in the x-y plane, or the position in the z-axis. Since the precision of the MIDI control

amplitudes is 7 bits, the accelerometer packet requires two frames. The first frame contains header bits

and the second frame contains a MIDI value between 0 and 127.

7.1.3.3.1 Header frame

Data bit 1 in the header frame is name

control amplitude of the tilt or the position in the z

MIDI control amplitude corresponds to the

in the z-axis is being updated. The remaining 6 bits in this header frame are unimplemented.

Figure

7.1.3.3.2 Data frame

The data frame contains the MIDI control amplitude defin

are used to represent this amplitude

 RockIt Design Specification

Figure 25 Accelerometer packet

Data bit 1 in the header frame is named ‘T/Z’ and is used to indicate if the data frame contains

or the position in the z-axis. If set to logic high, the T/Z bit

MIDI control amplitude corresponds to the tilt in the x-y plane; otherwise it corresponds to the

axis is being updated. The remaining 6 bits in this header frame are unimplemented.

Figure 26 Header frame in Accelerometer packet

the MIDI control amplitude defined by the header frame. Data bits from 0 to 6

amplitude and data bit 7 is unimplemented.

Design Specification

contains a MIDI

 indicates that the

nds to the position

axis is being updated. The remaining 6 bits in this header frame are unimplemented.

. Data bits from 0 to 6

 RockIt Design Specification

Figure 27 Data frame in accelerometer packet

7.2 Hardware

As explained in section 3, the chosen microcontroller has a dedicated hardware EUSART module that can

be configured to transmit and receive data asynchronously. Implementing UART with hardware instead

of software allows us to buffer data at both the transmitter and the receiver sides. This feature is

essential to minimize data loss while achieving a more robust communication for a potential wireless

implementation. Another hardware feature of the microcontroller is the capability to auto-awake upon

character reception. Auto-awake is essential to reducing power consumption by eliminating the need

for continuous polling.

As shown in Figure 28, only one pin is used in each of the microcontrollers in order to facilitate a one-

way data transfer. Pins #17 and #18 are the dedicated UART transmitter and receiver ports respectively.

Figure 28 Microcontroller communication

(Microchip, 2007)

7.3 Software

The microcontroller communication is coded using the UART functions library of the Microchip

MPLAB C18. A state machine is implemented to control the transmission and reception of the packets.

The following diagram presents the state machine algorithm of the receiver

The receiver stays in idle state until a starting bit is received. Once a starting bit is detected, the ACC bit

is checked and if found to be high, the packet contains information about the Accelerometer.

program goes into the “Wait” state

have two frames. A timeout is used in this waiting state in case the second frame is never received. If

the timeout is triggered, the accelerometer packet is assumed to be lost and the sys

idle state. If a starting bit is received before the timeout is set, then the system goes into the

“Accelerometer status update”, where the data frame of the accelerometer packet is mapped

MIDI command. The system returns to idle

If the ACC bit contains a logic low, then RESET bit determines whether the received packet is a RESET or

a FSR packet. After the MIDI-controller handles the reset or the FSR packet, the system goes back to i

state.

8 User Interface
The RockIt system is meant to be used with a wide variety of commercially available effects

As there is no universally accepted MIDI signal interpretation,

 RockIt Design Specification

The microcontroller communication is coded using the UART functions library of the Microchip

MPLAB C18. A state machine is implemented to control the transmission and reception of the packets.

The following diagram presents the state machine algorithm of the receiver/MIDI controller

Figure 29 Receiver State Diagram

The receiver stays in idle state until a starting bit is received. Once a starting bit is detected, the ACC bit

is checked and if found to be high, the packet contains information about the Accelerometer.

” state to wait for the next frame as accelerometer packets are expected to

have two frames. A timeout is used in this waiting state in case the second frame is never received. If

the timeout is triggered, the accelerometer packet is assumed to be lost and the system returns to the

idle state. If a starting bit is received before the timeout is set, then the system goes into the

, where the data frame of the accelerometer packet is mapped

MIDI command. The system returns to idle state once the accelerometer data is processed.

If the ACC bit contains a logic low, then RESET bit determines whether the received packet is a RESET or

controller handles the reset or the FSR packet, the system goes back to i

system is meant to be used with a wide variety of commercially available effects

As there is no universally accepted MIDI signal interpretation, the system must be capable of allowing

Design Specification

The microcontroller communication is coded using the UART functions library of the Microchip complier

MPLAB C18. A state machine is implemented to control the transmission and reception of the packets.

/MIDI controller side.

The receiver stays in idle state until a starting bit is received. Once a starting bit is detected, the ACC bit

is checked and if found to be high, the packet contains information about the Accelerometer. The

to wait for the next frame as accelerometer packets are expected to

have two frames. A timeout is used in this waiting state in case the second frame is never received. If

tem returns to the

idle state. If a starting bit is received before the timeout is set, then the system goes into the

, where the data frame of the accelerometer packet is mapped into a

state once the accelerometer data is processed.

If the ACC bit contains a logic low, then RESET bit determines whether the received packet is a RESET or

controller handles the reset or the FSR packet, the system goes back to idle

system is meant to be used with a wide variety of commercially available effects-processors.

the system must be capable of allowing

 RockIt Design Specification

the user to select the specific effects (i.e. MIDI control codes) that the sensor signals will control. There

are many available devices that will accept MIDI messages as control information, although the

interpretation of a given MIDI message may vary widely between different brands and models. Also,

since there are many controllable effects available on a device such as the PODxt Live, it is desirable to

allow user control of the sensor functionality. Suppose that the musician wishes to control a delay effect

for a specific performance; the “on/off” functionality of this effect could be controlled with one of four

FSR sensors, while the amount of delay time could be controlled via the tilt of the guitar body. Providing

the flexibility to allow a musician this level of control necessitates the development of a simple user

interface.

There are 128 different MIDI control codes that may be assigned to the control of a device specific

effect. Some of these effects will have a simple “on/off” functionality, while others will be modulated

over some range. Because the RockIt system could be used with any effects or DSP module capable of

MIDI communications, it will be necessary for the user to specify the MIDI code that they wish to

associate with a given guitar sensor. So long as a value between 0 and 127 is specified, the MIDI

controller PIC will send the selected MIDI command whether it is recognized by the receiving unit or not.

It may be that the selected MIDI control code is not utilized in a certain device and will not result in any

action upon receipt. It will be the responsibility of the user to look up device specific MIDI codes in the

manufacturer’s user manual, and to ensure that they are sending MIDI commands appropriate for a

given device. To overcome this lack of standardization, a commercially available version of the RockIt

system would have a wide variety of pre-programmed settings that would allow the user to select their

desired device from a menu. If supported, the unlabelled control codes will be replaced by the name of

their device dependant functionality. Should the desired device not be supported, the system will revert

to the basic programming method.

Another consideration will be the type of effect the user is assigning a certain sensor to control. For

example, volume control is an inherently “analog” type of signal in that it is altered in a series of

quantized steps. The RockIt system will not prevent the user from attempting to control a volume

parameter with an FSR sensor, an inherently “on/off” control mechanism. Rather, the system will simply

associate the minimum and maximum volume settings as the “on” and “off” states. Although this type

of control will not be particularly practical, it will still generate valid MIDI messages that can be

interpreted by a connected device. In this way, the oversight of the user should become readily

apparent upon use of the system in this configuration. This basic form of feedback will allow for

straightforward analysis and debugging of unintended behaviours. The converse of the previous error

may be encountered as well; a user may attempt to control an inherently “on/off” effect with an analog

parameter. Since MIDI scale “analog” signals range from 0 to 127 (in integer steps), the MIDI controller

will associate values 0-63 with the “off” state and values 64-127 with “on”. Again, the error will be

easily diagnosed upon use of the system.

The proposed user interface will be a part of the MIDI controller and will consist of an LCD and three

buttons. The Modtronix 2S-162YGN LCD has 2 lines at 16 characters per line, and is an ideal candidate

 RockIt Design Specification

for a basic interface. The LCD can be controlled via I2C, a serial communications protocol supported by

the PIC18F2420 and many other peripheral devices. Requiring only two pins, the Master Synchronous

Serial Port (MSSP) module found on the PIC18F series can be easily configured to act as an I2C master.

User menus will be navigated with a simple, three button interface. Connected to digital I/O pins

available on the microcontroller, these buttons will be labelled as “back”, “select” and “next”.

A start menu will appear upon power up to indicate that the device is operational, and will prompt the

user to press the “select” button. After pressing “select”, the user will be presented with an available

sensor list that will allow the selection of guitar sensors to be mapped to MIDI control codes. Different

sensor options can be cycled through by pressing the “back” or “next” buttons, while the “select” button

will display the sensor settings screen. Once the user has accessed the sensor settings screen, it will be

necessary to select the desired MIDI control code to associate with that sensor. These codes range from

0 to 127 and will be selected by using the “back”, “next” and “select” keys. Should the user attempt to

enter an invalid MIDI control code, an error message will be presented and the user will be returned to

the sensor settings screen. Once the control code has been properly set, the user will be directed to a

confirmation screen where the setting will be verified by pressing “select”. The user will then be

returned to the available sensor list, and may proceed to assign control codes to the remaining sensors.

All menus will display a blinking cursor to indicate that the device is active and running correctly.

An overview of the menu system is presented in Figure 30 and Figure 31 below. These figures

incorporate the actual LCD display, along with the effect of each button being pressed.

 RockIt Design Specification

Figure 30: User Interface

 RockIt Design Specification

Figure 31: User Interface (continued)

 RockIt Design Specification

9 Power Management
The power management of the RockIt will be broken into three separate sub-systems. Each of these sub-

systems will be powered with a dedicated regulator IC that takes its input from the unregulated voltage

rail. The unregulated voltage will be provided by a wall mount AC/DC switching converter that can

provide a maximum of 1000mA without significant voltage drop.

The first regulator is a 3.3V IC that is included with the accelerometer development board. Since the

accelerometer is sensitive to variation in the supply voltage, the use of a dedicated regulator is justified.

Both the pre-processor and the MIDI controller will be powered by separate regulators outputting a

nominal 4.5V. The reason for this choice of VDD is that the pre-processor PIC should be powered as close

to 3.3V as possible to maximize the dynamic range of the onboard ADC. Since the PIC18F2420 cannot be

powered by a voltage lower than 4.2V (Microchip, 2007),a value of 4.5V is selected to ensure that the

PIC does not enter a “brown-out” state. Although the MIDI controller PIC is not subject to these

constraints, a 4.5V regulator is still used to ensure compatible signalling levels between the

microcontrollers.

The TK71645 regulator IC has been chosen to provide a 4.5V output from the unregulated voltage. The

justification for this regulator choice is that the IC provides a high efficiency with an output voltage that

is not strongly dependent upon the current draw.

The power management scheme for RockIt is shown in Figure 32 below

 RockIt Design Specification

Figure 32 Power Management Diagram

10 Conclusion
The above document outlines our technical design details for implementing the RockIt effects system.

We discussed our microcontroller choice, MIDI protocol, user interface, FSR sensor, accelerometer

sensors, power management and communication protocol. The issues surrounding all these topics have

been addressed and possible problems have been identified.

Considering the complexity of our project, unforeseen problems might arise, which require us to change

the design outlined in this document.

 RockIt Design Specification

11 Appendix

11.1 Glossary

ADC: Analog to digital converter

DE: Dimension Engineering, the company that makes our accelerometer development board

FIR: finite impulse response

FSR: Force Sensing Resistor

g: a measure of gravity. 1g represents the earths gravitational acceleration, which is 9.8m/s
2

MIDI: Musical Instrument Digital Interface

I2C: Inter Intergrated Circuit. A 2-wire serial communication protocol

FSR: Force Sensitive Resistor

ICD2: In-Circuit Debugger. Created by Microchip, used to program and debugged PIC microprocessors

 RockIt Design Specification

12 Bibliography
ADXL330. (2007). Analog Devices-ADXL330. Retrieved from

http://www.analog.com/en/prod/0,2877,ADXL330,00.html

Borg. (2002). The MIDI Specification. Retrieved from http://www.borg.com/~jglatt/tech/midispec.htm

Dimension Engineering. (2008). RobotShop: ADXL330 development board. Retrieved from

http://www.robotshop.ca/PDF/DE-ACCM3D.pdf

Falling Pixel. (2007). 3D electric Guitar Image Gallery. Retrieved from

http://www.fallingpixel.com/product.php/744

Interlink. (2008). 400 Force Sensing Resistor 0.2" Circle. Retrieved from http://www.ergo-

tech.ca/frame.cfm?ProductID=457&CategoryID=19

jtxdriggers. (2004). Squier by Fender Master Series Chambered Telecaster HH. Retrieved from

http://jtxdriggers.com/guitar/head.jpg

Line 6. (2007). POD XT Live Photogallery. Retrieved from http://line6.com/podxtlive/photogallery.html

Microchip. (2007). PIC 18F2420 Datasheet. Retrieved from

http://ww1.microchip.com/downloads/en/DeviceDoc/39631a.pdf

MusiciansFriend. (2008). Gibson Les Paul Classic Electric Guitar with Antique Mahogany Top and Scroll

Logo. Retrieved from http://www.musiciansfriend.com/product/Gibson-Les-Paul-Classic-Electric-Guitar-

with-Antique-Mahogany-Top-and-Scroll-Logo?sku=514564&src=3SOSWXXA

Netmedia . (2008). Netmedia 4X20 ROHS Serial LCD. Retrieved from

http://www.robotshop.ca/home/products/robot-parts/electronique-lcd/netmedia-4x20-rohs-lcd-

blue.html

SensorWiki. (2008). Accelerometers. Retrieved from

http://www.sensorwiki.org/index.php/Accelerometer

Texas Instruments. (2004). Accelerometers and How they work. Texas Instruments PowerPoint Slides .

Time. (2006). Time web shopping 2006 recommendations. Retrieved from

http://www.time.com/time/2006/techguide/shoppingguide/webshopping/kids2.html

Weinberg, H. (2007). Temperature Compensation Techniques for Low g iMEMS® Accelerometers.

Retrieved from http://www.analog.com/UploadedFiles/Application_Notes/826890745AN598.pdf

Weinberg, H. (2002). Using the ADXL202 accelerometer as a multifunciton sensor. Retrieved from Analog

Devices:

 RockIt Design Specification

http://www.analog.com/UploadedFiles/Application_Notes/50324364571097434954321528495730car_

app.pdf

