

ENSC 440/305

School of Engineering Science Simon Fraser University

2009.05.15

© Copyright 2009 - TechStyles Inc.

Outline

- The TechStyles Team
- Roles in the Project
- Team Dynamic
- Motivation
- Technology
- Goal for ENSC 305/440
- Theory and Background
- System Overview
- The Hardware and Software
- Business Case
- Project Specifics
- What we learned...
- Problems & Challenges
- Conclusion & Future work

Team Members:

Techstyles Incorporated

Simran Sarai Zhen Gang Xiao Behzad Jazizadeh Unnati Sapre (sks17@sfu.ca) (zgx@sfu.ca) (bjazizad@sfu.ca) (uss@sfu.ca)

Roles in the project

• Two teams of two:

- Hardware design: Zhen & Behzad
 - HW/FW design & programming
 - Electrical design
- Software development: Simran & Unnati
 - User interface
 - HW/SW interface

As a team:

- Algorithm implementation
- HW & SW Integration
- Validation & testing

Team Dynamics

- Weekly Meetings
- Communication over internet
- Lab work at Burnaby Campus (Phase I)
- Lab work at Surrey Campus (Phase II)

Motivation

- Want pen that is more than just a pen
- Archive / Digitalize handwritten notes
- Portable
- Eco-friendly, "Go Paperless"

Existing Technology

• Ultra Sound Technology

• Capture the motion by detecting the reflective signature

- E.g. EPOS Digital Pen
 - Require a transmission base

Existing Technology

Optical Sensing Technology

Image Capturing

• E.g. LiveScribe Pulse

- A tiny camera is embedded in the tip of the pen
- Require special paper

Techstyles' Approach

New Approach:

 Capturing motion with Accelerometer

• Main Advantage:

- All components can be integrated inside an ordinary size pen
- Write on any surface

Goal for ENSC440/305

Proof of concept

- Research
- Experiment
- Analysis

Goal to achieve:

 To be able to display/save writing on the screen using accelerometer

NEXT...

...Technical

© Copyright 2009 - TechStyles Inc.

Writing on the 2D Surface

- Three main parameters:
 - X, Y for translation movement
 - Θ for the rotational movement

Move the Pen in the 3D Space

- 6 Degree of Freedom
- 6 Parameters
 - X, Y, Z
 - λ,φ,Θ

Sense the Motion

• One Three-Axis Accelerometer

- Sense the translational acceleration
- Receive the position data by double integration
- Three single axis angular rate sensors
 - Sense the angular velocity
 - Compute the angular movement by single integration

© Copyright 2009 - TechStyles Inc.

The Software

Features:

- Real-time Writing Display
- Acceleration and Angular Velocity Indicator
- Real-time Acceleration
 Plot
- Motion Data Capturing Tab
- Raw Data Import

NEXT...

...Business

© Copyright 2009 - TechStyles Inc.

Business Case

• Market:

- Market Target:
 - Students,
 - Managers/Execs
 - Professionals
- Marketing Plan:
 - Canada & U.S.A. (ages vary from 18 to 55)
 - Best Buy > Staples > London Drugs > Online
 Purchase > SFU Book Store

Out of 103 cases...

- 75%: Yes, they would buy the Nomad pen
- 22.1%: No, they are not interested in it
- 2.9%: Neutral, they were indecisive

Suggested Price: \$133.98 CAD

• Cost:

- Proof of concept: so far \$420.00 CAD
- Prototype: estimated to be above \$500.00 CAD
- Mass production: average of \$23.00 CAD (@ breakeven point)

Financing

- Proof of concept:
 - Group Members
 - ESSEF
 - Ken Spencer 2nd prize
- Prototype:
 - ESSEF
 - University Funding (Future proposal)
 - Angel investors

Competition

- Keep the vibe in the market and promote the brand
- Protect the Nomad Pen via patents and licenses
- Improve the Nomad constantly and add new features and sides

Project Specifics

10	Task Nerve				Feb 2009			e Line	Mir 2009				Apr 2909				May 2009	
n.		41	40.9	251	1.2	60 1	10 200	1944	82	450	25.0	28.7	- 44	AN .	rev.	294	3.5	194
+	Accelerometer, capturing digital data																	
2	Angular Sensor, Angular measurements											-						
n	Real-time display of data																	
4	Flash memory, installation and connection			í						ĺ								
6	Calibration, verification and final documentation																	

Project Specifics (Cont'd.)Timeline

- Ordered some of the components before the semester start
- Self-studied project related material
- Design from scratch
- Underestimated the levels of complexity
- Long shipment time periods

Project Specifics (Cont'd.)

Budget

- Ken Spencer 2nd prize
- ESSEF (ESSS fund)
- Free Samples

Project Specifics (Cont'd.)

Required Material	Estimated Cost (in Canadian)	Actual Cost (in Canadian)
Tri-Axis Accelerometer	\$50	\$132
Tri-Axis Gyro-meter	\$100	\$88
MCU	\$50	\$0
MCU Programmer	\$50	\$100
Cables/Connectors	\$100	\$30
Serial Interface chip	\$50	\$5
PCB/Signal Processing components	\$200	\$35
Other	\$500	\$22
Total	\$1100	\$412

...What we learned

© Copyright 2009 - TechStyles Inc.

What was learned.....

 Hardware coding two different models of MCUs from Microchip:

> PIC18F2550 PIC18F4685

Software coding:

RS232 Driver

GUI

Sensor applications:

Accelerometer Gyro-meter

What was learned... (Cont'd.)

• Hardware communication protocols:

SPI I²C RS232

- Analog to Digital converter
- SD-Memory Card
- A variety of compilers:

MPLAB MikroC

What was learned... (Cont'd.)

Console programming:

TurboC

CXL

• Windows programming:

API Visual C++

- Windows form design
- Schematics design
- Testing and Validation
- Soldering skills

What was learned... (Cont'd.)

- Time management
- Task division / Multi-tasking
- Team division
- Documentation
- Technical writing

Current Challenges

Poor sensitivity of accelerometer at low acceleration

- Proposed solution: replace acc. with higher sensitivity one
- Large change in acceleration when tilting, due to gravity
 - Proposed solution: replace gyro with magnetic sensor to detect the orientation with respect to the earth's reference
- Nonlinear relation between acc. Data and writing speed
 - Proposed solution: further investigate nonlinear characteristics of acc.

Future Work

- Continuing research
- Implementation of the USB or Bluetooth module
- Mechanical design for the compact NOMAD PEN
- Implementation of the first prototype for field trial

Conclusion

- Background and motivation
- Project goal
- What we learned
- Proved that concept is feasible
- Challenges
- Future work

Acknowledgement

- Prof. Patrick Leung
- Prof. Steve Whitmore
- Jason Lee
- Jamie Westell
- Prof. Albert Leung
- Mr. Khosrow Mossannen
- Mr. Fred Heep

Hardware Connection

Other Information

- Sampling Rate for real-time mode: 24 sample/sec
- Sampling Rate for memory mode: 6 sample/sec
- Operational velocity range: 0.13m/sec
- Sensitivity of the accelerometer: +/- 3g
- Sensitivity of the angular rate sensor: 100 degrees/sec
- Optimal operating voltage 3.4 V 3.6V

Resolved Challenges

Dependence of zero-acceleration on each trial

Solution:

