

i

November 14th, 2010

Dr. Andrew Rawicz

School of Engineering Science, SFU

8888 University Drive

Burnaby, British Columbia

V5A 1S6

Re: ENSC440 Design Specification for a Facial and Speech Identification System (FASIS)

Dear Dr. Rawicz:

The attached document, Design Specification for a Facial and Speech Identification System for Nokia Devices,
outlines the technical design goals and system behavior of our project for ENSC440/ ENSC305.
The purpose of this project is to implement a security system that provides secured mobile log-in
based on a combination successful facial match and speech recognition of the user. The project,
supported partially by Nokia by providing us with the device, will become a prototype system that
can provide one of the teams at Nokia Canada with expertise and insight for any future
implementation.

This design specification document will provide technical details of the three components: the
mobile application, the communication board, and the server which provides the facial matching
algorithm, and stores the database of users’ facial images. The parts and methods will be discussed in
detail, which are specific only to the proof-of-concept design. The test plan for each component, as
well as the integrated system, will be provided in this document as well.

Ztitch Solutions consists of three motivated fifth-year engineering students: Andrew Au (computer
engineering), George Liao (system engineering), and Ching-Hsin Chen (computer engineering). By
harvesting our skills and knowledge gained through our undergraduate careers and from industrial
co-op experiences, we will be tackling this problem of mobile security and bringing life to this
project. If you have any question or concern about our design specification document, feel free to
contact me by phone (778-322-7928) or by e-mail (aau1@sfu.ca).

Sincerely,

Andrew Au
Fifth-year Computer Engineering Student

Enclosure: Design Specification for a Facial and Speech Identification System for Nokia Devices

i

Design Specification for a

Facial and Speech Identification System (FASIS)

for Nokia Devices

Project Team: Andrew Au

George Liao

Ching-Hsin Chen

Contact Person: Andrew Au

aau1@sfu.ca

Submitted to: Dr. Andrew Rawicz – ENSC 440

Michael Sjoerdsma – ENSC 305

School of Engineering Science

Simon Fraser University

Issued date: November 14th, 2010

Revision: 6.2

ii

Executive Summary

This document will describe the Facial Identification System (FASIS) in detail as to its

design specification. The system can be divided into four main physical components,

which are the mobile device, the hardware transceiver, the microcontroller, and the PC

server. These components will be introduced along with their design details for the

proof-of-concept system. Thus, the I and II requirements from the functional

specification document will be discussed and used to guide through the development

process of the system.

The phone is a Nokia N96 running the Symbian S60 V3.2 operating system. The

development platforms available are Qt, Java ME, Symbian C++, Open C/C++, and

Python. The objective is to detect when the user wants to access secured data on the

phone, and then trigger FASIS to prompt the front-facing camera. In order for the

phone to be controlled remotely, i.e. to lock and unlock the phone via the server

(discussed later), the phone must house the software interface allowing this.

The hardware communication board is attached to the N96 device through the side of

the device. This hardware board is very simplistic, with the heart of it being a Maxim

MAX3222E EAP0647 chip which is a communications interface IC that has low power

consumption, high data rate, and enhanced electrostatic-discharge protection. The low

power consumption feature is important because we may want to power the entire

system using only the original battery source of the phone. This board will essentially

allow us to relay some information to the server, such as the user image or encrypted

key-codes for locking and unlocking the device. The microcontroller is built using the

Parallax education board kit, and will be wired to some buttons of the phone. This

essentially allows us to control the phone from the PC, though at a very limited level.

iii

The most important component of FASIS is the server, simulated in this proof-of-

concept by the PC, which provides the facial detection program and the facial matching

algorithm among other services required by FASIS. It should be noted that the facial

detection program is not the same as the facial identification program, because the

former is an algorithm which tries to find the location of the user’s face by sampling the

bitmap color information, while the latter is an algorithm which tries to determine

whether a face matches the one stored in the database. The facial recognition algorithm

used by Ztitch Solutions in this system is the Eigenface method.

This document will discuss the design choices, the processes, and the flow charts of

each of the component mentioned above. A test plan for each of the component and the

integrated system will be provided as well. It is expected that the final revision of the

proof-of-concept system can be demonstrated by the first week of December.

iv

List of Figures
Figure 1. High-level proof-of-concept system flowchart... 4
Figure 2. Logging into an HTTPS, such as PayPal.. 5
Figure 3. Procedures for face blob localization.. 8
Figure 4. The process of face detection using skin color.. 9
Figure 5. Some Eigenfaces from the AT&T Lab... 13
Figure 6. Eigenfeatures as a complement to Eigenfaces... 14
Figure 7. High level functioning principle of the Eigenface method............................. 16
Figure 8. An overview of the Speech API... 22
Figure 9. Diagram of a generic 4x4 keypad's circuit... 24
Figure 10. Image of the Parallax BOE without the MCU... 25
Figure 11. The BOE schematics.. 29
Figure 12. Circuit and coding for a light sensor using the Parallax kit.......................... 30
Figure 13. RS232 transmitters must swing at least +/- 5V... 32
Figure 14. RS232 application circuit for 3.6V using the MAX3222 chip......................... 33
Figure 15. Picture of the FASIS hardware inside a customized plastic case................... 34
Figure 16. The FASIS concept as a portable module... 35

List of Tables
Table 1: High-level proof-of-concept system flowchart... 15
Table 2: Budget Summary... 36

Glossary
2G Second-Generation Wireless
3G Third-Generation Wireless
BOE Board of Education
HSPA High Speed Packet Access
HTI Harmonized Test Interface
HTTPS Hypertext Transfer Protocol Secure

ISO International Organization for Standardization
KB Kilobyte (1024 bytes)
FASIS Facial and Speech Identification System
MCU Microcontroller Unit
OEM Original Equipment Manufacturer
PC Personal Computer
RS232 Recommended Serial 232
SDK Software Development Kit
UI User Interface
USB Universal Serial Bus
WEEE Waste Electrical and Electronic Equipment
Wi-Fi Wireless Fidelity

v

Table of Contents

Executive Summary….. ii

List of Figures….. iv

List of Tables……………………………………………………………………………... iv

Glossary….. iv

1. Introduction ….. 1

1.1. Scope ….. 2

1.2. Intended Audience... 2

2. The FASIS System ……... 2

2.1. Development Stages ….. 3

2.1.1. Client-Server Communication... 3

2.1.2. Speech Recognition ….. 3

2.1.3. Facial Recognition ….. 3

2.1.4. Phone Software …... 4

2.2. System Overview…. ….. 4

3. Face Localization ….. 6

3.1. Overview of Facial Localization ….. 6

3.1.1. Face Tracking Based on Depth Information….. 7

3.1.2. Face Blob Localization……………………………………………………………... 8

3.1.3. Skin Color Based Face Detection…………………………………………………. 8

3.1.4. Choosing the Localization Method………………………………………………. 9

3.2. Implementing Skin Color Based Face Detection…….. 10

4. Overview of Facial Recognition ………….. 12

4.1. Comparison of Different Facial Recognition Methods…………………………… 12

4.1.1. Eigenface……………………………………………………………………………. 12

4.1.2. Eigenfeatures……………………………………………………………………….. 14

4.1.3. Fisherface…………………………………………………………………………… 14

4.1.4. Eigenface vs. Fisherface Summary……………………………………………….. 15

vi

4.2. Implementation of Eigenface……………………………………………………….. 16

4.2.1. Calculating the Eigenfaces………………………………………………………... 16

4.2.2. Eigenvectors and eigenvalues…………………………………………………….. 18

4.2.3. Matching the Faces………………………………………………………………… 18

5. Secondary Preventative Measures…………………………………………………... 19

5.1. Solutions for Secondary Preventatives Measures………………………………… 19

5.1.1. Log-in using Password……………………………………………………………. 19

5.1.2. Fingerprint Identification…………………………………………………………. 20

5.1.3. Eye Iris Identification……………………………………………………………… 20

5.1.4. Speech Recognition………………………………………………………………... 21

5.2. Implementation of Speech Recognition……………………………………………. 22

6. Controller Module…………………………………………………………………….. 23

6.1. The Cell Phone Push Buttons……………………………………………………….. 23

6.2. Choosing a Microcontroller Module……………………………………………….. 25

6.3. Parallax Board of Education………………………………………………………… 25

6.3.1. Light Sensor Circuit using the BOE……………………………………………… 30

7. Client-Server Communication………………………………………………….…… 30

7.1. Transceiver Module………………………………………………………………….. 31

7.1.1. RS232 Transceiver………………………………………………………………….. 31

7.1.2. Power Supplies…………………………………………………………………….. 32

7.2. Minimizing Data Transfer…………………………………………………………... 33

8. Proof-of-Concept Integrated Hardware.. 34

9. System Test Plan………………………………………………………………………. 36

9.1. Unit Test………………………………………………………………………………. 36

9.2. Automated Tests……………………………………………………………………... 39

9.3. Integrated Test and Simulation…………………………………………………….. 40

10. References…………………………………………………..………………………… 42

Appendix…………………………………………………......…………………………… 44

1

1. Introduction

The Facial Identification System (FASIS) enables added security to the modern smart

phone by recognizing users with matching facial features and knowledge to a voice-

based password to access certain security sensitive features of the phone, while locking

unrecognized users out. FASIS consists of four main sub-systems: the microcontroller

which allows the PC to control the phone, a transceiver module to relay data back to the

PC, a facial localization and recognition system, and a speech recognition system.

This system comes in response to the growing need of enhanced security for mobile

phone users as more personal and confidential information are stored within the device.

This design specification document, together with the functional specification

documentation [1], will act as a major guideline for the development of the FASIS

proof-of-concept system.

Development of FASIS can be divided into four phases that are independent from each

other:

 1) Development of the microcontroller and transceiver wired to the phone such

 that it will allow it to be controlled (remotely) by the PC

 2) Integration of the speech recognition software to recognize a user's spoken

 password. This stage should be fairly simple as there are many open sources,

 such as Microsoft's Speech SDK.

 3) Development of the facial localization and facial recognition algorithm using

 C# and MATLAB, respectively.

 4) Development of the FASIS application on the phone

2

1.1. Scope

This document provides the design specification for the functional specification

document [1]. This document specifies the implementation of the functional

requirements, and outlines the design considerations. The document will mostly apply

only for the proof-of-concept system, therefore only the functional requirements

marked I and II will be considered. However, some end product requirements will be

considered to allow Nokia to the transformation of this proof-of-concept system into a

potentially commercialized product.

1.2. Intended Audience

This document is intended for the engineers at Ztitch Solutions to refer to, and is used

extensively for the development of the proof-of-concept system. The purpose is to

provide a unified vision for the team and to optimize development work and design

choices that will be involved with this project. By referring to this document, integration

of the sub-systems can be streamlined while minimizing conflicts. Furthermore, the test

plans must be followed thoroughly by all members of the team.

2. The FASIS System

This section provides a system overview of FASIS as a whole and will discuss the

following: the development stages, a flowchart of the system and its functional

operations. The subsequent sections will contain much more in-depth looks at each

component and its design - acknowledging the justifications of design choices. It should

be clear enough as to what features or components will be included in the proof-of-

concept system and which ones will not.

3

2.1. Development Stages

Development of the system can be broken into four stages, which are described in the

following subsections.

2.1.1. Client-Server Communication

The first stage is development of the link way between the device and the PC (server).

Since broadcasting a real HSPA signal would not be feasible in the scope of this project,

we will be using Bluetooth, USB, or simply a RS232 serial cable to simulate the over-the-

air (OTA) connection.

2.1.2. Speech Recognition

The second stage is the implementation of speech recognition. In the proof-of-concept

system, FASIS will attempt to verify that the user speaks the correct password to the

microphone (the owner of the device will initially configure this voice-based password).

For speech recognition, there are many open source libraries available; including

Microsoft's established Speech Recognition SDK5.1 as found in [11], and in the proof-of-

concept FASIS, we will not try to uniquely identify the user based on voice patterns, but

rather, we will try to verify that the spoken keyword is correct only (since speech

pattern recognition is a very in-depth subject on its own and none of the members in the

team have expertise in this particular area).

2.1.3. Facial Recognition

The third stage is the development of the facial detection algorithm on the PC which

simulates the service provided by the network server, which acts as the middleman that

grants or denies the user access to the service. The PC is constantly on standby for

receiving a request, which in this case, is a small bitmap stream. A unique key is

4

Device captures
user’s face using the
front-facing camera

returned if access is granted, or an instruction to lock the user out will be returned if

access is denied.

2.1.4. Phone Software

The fourth stage is the development of the application on the phone which sends the

bitmap stream and receives the key. Since the amount of data being transmitted goes up

with cost, we want to minimize the amount of data being transmitted. The bitmap

image will be encoded and transformed to grayscale (total size would be 2 to 4-kB in

size) and the returned key is 128-bit in size.

2.2. System Overview

The FASIS can be separated into smaller components: device/camera module, the facial

recognition module, and the relay of information between the server and the client.

Figure 1 provides a high-level overview of the system illustrating its proof-of-concept

flowchart and how the components interact with each other.

Figure 1. High-level proof-of-concept system flowchart

User requests access
to security-sensitive
information on phone

Microphone captures
voice-based keyword
from the user

The image bitstream
(compressed) is sent
to the server

Server processes
image and attempts to
match facial features
with database

Key is sent to the
phone if face is
successfully matched

Device processes the
key and unlocks the
phone

Device
module

Microphone

Data Relay
Module

Face Processor
Data Relay
Module

Device
module

Camera

5

When the user requests to access a secured item on the phone, such as logging into the

internet banking account, the phone should automatically run FASIS. The FASIS

application should launch, and when the user is ready, the user can press a button to

take the snap shot of his or her face. The application will return an image bitstream,

which should undergo image processing (compression and changing to grayscale) in

order to minimize the amount of data being transmitted over the network and to the

server. The data relay module is the network (i.e. 2G/3G/HSPA) protocol itself, but in

the proof-of-concept system, the data relay module is a RS232/USB/Bluetooth

connection.

Figure 2. Logging into an HTTPS, such as a PayPal account, would trigger

FASIS to activate [Source: Ztitch Solutions]

At the core of FASIS is the image processing system. For maximum security and to

reduce the amount of processing on the phone, the image processing step is taken care

of by the server. This image process will find facial features of the taken picture, and

compare them to the face of the authenticate owner (or owners). The method of facial

detection is based from the Eigenface method for facial identification.

6

Once the server is able to successfully match the user’s face with the database, a

standard 128-bit unique key is sent back to the client to unlock it. If the server is unable

to match the user’s face with the database, an instruction to deny access will be relayed

back to the device. Since facial identification is not 100% reliable, the device will not be

completely locked out, and there should be a total of three retries to access the secured

item. Under all circumstances, normal functions of the phone will be retained

(including the ability to dial and receive calls) – only the secured items will be locked

out from the user.

Due to limitation of time and resources, the proof-of-concept system (prototype) will

exclude several features of the production system. However, the overall operation

remains as described above.

3. Face Localization

Facial localization is the tracking of the human face, or computing the location of the

face in an image. There are a few numbers of established methods to detect the location

of the face in an image; for example, some algorithms use multiple cameras to track a

3D face based on depth information, some methods track for a set of facial features

based on interest points, and some very simple methods tracks the skin color. The next

section will discuss the various facial localization techniques and it will come to sense

as to which technique will be most suitable for our project.

3.1. Overview of Facial Localization

In the realm of computer vision, the human face is an extremely linked 3D model

because of the lacking of variation in the skin surface. There are not many unique

features that can be identified, and the problem is further amplified when the resolution

7

of the camera is low, as in the case with our project (the front facing camera has a

resolution of 320x240 only). Although facial features such as the eyes and mouth

different from the skin in terms of color, the hairless skin regions dominate the area,

and different lighting variations accentuates the contour of the face structure.

3.1.1. Face Tracking Based on Depth Information

The paper, "A simple 3D face tracking method based on depth information" presented

at the international conference on machine learning and cybernetics [3] describes a

simplified method of face tracking based on depth information. The following is its

abstract:

 'Most existing 3D face tracking methods employ multiple cameras and all

 cameras need to be calibrated first before tracking. The complexity of these

 methods restricts the applications of them. This paper presents a new simple face

 tracking method which is based on a stereo vision camera system. All cameras in

 this stereo vision camera system are pre-calibrated and the system can provide

 accurate depth information of the scene. The proposed tracking method adopts

 KLT and template matching to track 2D facial features. Then the stereo vision

 camera system is used to obtain corresponding depth information of these

 features. In order to achieve robust tracking, some spatial constraints of these

 features are employed. Experiment results indicate that the proposed method

 can achieve robust and accurate 3D face tracking.' [3]

While the method is robust and possibly very accurate, it works with multiple cameras,

and the cell phone is equipped with only one front facing camera; therefore, this

method of facial localization is out of the question. However, it is noteworthy that

researches such as these lead to the prospect that future mobile devices should come

equipped with multiple front facing cameras.

8

3.1.2. Face Blob Localization

One method, called Face Blob Localization, proposes that the face be considered as a

blob or a region with a certain amount of contour enclose. The face and the head behave

as blobs or symmetric enclosures surrounding a center point. The method operates on

edge maps so that it can locate the blob regardless of the blob's lighting and shadows

within the boundaries of the edge. The current drawback is that non-facial structures,

such as an over-shaped object in the background, could also trigger the interest map.

The author [2] begins with an image assumed to contain people, and then generate an

intensity image pyramid (figure 3a) and a corresponding edge map pyramid (figure 3b).

The multi-scale interest detection operation using annular sampling regions provides us

with a blob detection pyramid as displayed in figure 3c.

 (a) (b) (c)

Figure 3. Procedure for face blob localization

3.1.3. Skin Color Based Face Detection

Many face detection methods propose using skin color as a feature to track. The

argument for this method is that color processing is much quicker than processing any

other facial feature. Furthermore, treating the facial region as a color blob makes it

9

invariant to rotation, which makes it very robust. Examples of such methods can be

found in [4] and [5].

In general, the steps for skin color based face detection are as follows:

 1) Periodically capture an image from the camera

 2) Convert from RGB mapping to HSV mapping

 3) Filter the skin color to produce a binary image

 4) Noise reduction

 5) Dilation

 6) Locating the coordinate of the face

Figure 4. The steps involved in the process of face detection using skin color as a facial feature.

Images are taken from [4].

This type of face detection is very simple and fast, with the ability to process in close to

real-time. However, there are weaknesses to it. For example, if the background of the

image contains a skin color, then the algorithm fails to accurately localize the face.

3.1.4. Choosing the Localization Method

It has been decided among the members of Ztitch Solutions that skin color based

detection is the most suitable method for us, because of its ease of implementation and

ability to run quickly compared to the other methods described in section 3.1.1 and

10

3.1.2. However, we will also incorporate some of the ideas from section 3.1.2 into our

method, in particular, face blob localization. This is the dilation stage discussed in the

next section which outlines our implementation.

3.2. Implementing Skin Color Based Face Detection

The how-to steps for implementation that runs in real-time are as follows. The reader is

assumed to have some prior knowledge of object oriented programming:

1) Periodically capture an image from the camera

 Initialize the device as a new instance of an object, and then set this object as the

source of a Video Element (the class name depends on the framework we are

using. In Visual Basic, it is called a VideoBrush).

 Initialize an asynchronous timer such that it will periodically capture an image

from the Video Element. For example, set the timer that ticks every 50

milliseconds, and during each tick, grab a frame from Video Element which will

be used for the image processing (step 2). It is asynchronous because it is not

synchronized with the main UI thread, and must tick every 50 milliseconds

regardless of any other processes to ensure predictable performance. (In Visual

Basic, such a timer is called a DispatcherTimer).

2) Convert from RGB mapping to HSV mapping

 With the image frame at hand, initialize it as the source of a bitmap. The bitmap

provides us with the pixel color information that we need. The color information

is represented in the traditional Red Green Blue format (RGB). Each color (Red,

11

Green, or Blue) is defined by a value that ranges from 0 to 255. In Visual Basic,

the bitmap class is called WriteableBitmap.

 We transform the RGB mapping to the HSV (Hue, Saturation, Value) mapping

which allows us to define color based on Hue (color from 0° to 360°) and

Brightness. This allows us to define a skin color that is more invariant to different

lighting conditions by setting different thresholds for brightness.

3) Filter the skin color to produce a binary image

 Define the thresholds such that the range of colors between the thresholds

matches the user's skin color. Testing will need to be done to confirm the best

threshold values.

 Search all pixels in the bitmap and convert the pixels that fall within the

thresholds to white pixels, leaving the non-matching pixels black (zero value)

4) Noise reduction

 The noise reduction stage should filter out noise pixels. Usually, there will be

noise pixels scattered about the image which results from image noise or

background objects that have its color fall within the threshold range

 For each pixel, we check if nearby pixels are zeros. If yes, then the current pixel

should be eliminated to zero as well.

5) Dilation

 The noise reduction of the previous stage inevitably causes the image to shrink.

We now do a reverse of the previous stage. Iteratively check each pixel to see

whether or one more nearby pixels are white. If yes, then set the current pixel to

white as well.

12

6) Locating the coordinate of the face

 With a binary image, estimating the coordinate of the center face is easy. First,

add up all the white (non-zero) pixels of each row. Now, you have an array with

each value of the array corresponding to the sum of white pixels across each row.

The nth element in the array with largest value corresponds to your desired y-

coordinate.

 Similarly, add up all the white (non-zero) pixels of each column. Now, you have

an array with each value in the array corresponding to the sum of white pixels in

each column. The nth element in the array with largest value corresponds to your

desired x-coordinate.

4. Overview of Facial Recognition

There are currently at least five different methods for facial matching: eigenfeatures, the

Hidden Markov model, the neuronal motivated dynamic link matching, Eigenface, and

Fisherface. They all have their advantages and disadvantages, but all share the same

characteristic which is that they turn the human face into a mathematical space.

4.1. Comparison of Different Facial Recognition Methods

In this section, we will detail the five methods of facial recognition listed previously,

and in the next section (4.2.), we come to conclusion as to which method we should use

for the proof-of-concept FASIS.

4.1.1. Eigenface

Eigenfaces are a set of eigenvectors derived from the covariance matrix of the

probability distribution of the “high-dimensional vector space of possible human faces”

[7]. To generate a set of Eigenfaces, a set of digital images of the same human face must

13

be taken under the same or similar conditions (both lighting and position wise). The

images are then re-sampled to the same resolution, and the Eigenfaces can be extracted

using a mathematical tool called PCA (principal component analysis).

Figure 5. Some Eigenfaces from the AT&T Cambridge Laboratories

The steps to implement Eigenface are briefly listed below (excruciating details are

skipped for this proposal). After Eigenface is applied, the face is no longer recorded as a

digital photograph, but as a list of values.

1. Prepare a set of images, taken under the same lighting condition, and

aligned as best as possible in the same position. By concatenating the rows

of pixels, each image is seen as one vector. A grayscale image with r rows

and c columns is represented as a vector with r x c elements. All images are

stored in a single matrix, T, where each row of T is an image.

2. From matrix T, calculate an average image a, and subtract it from each

original image in T.

3. Calculate the eigenvectors and eigenvalues of the covariance matrix S.

The eigenvectors of S are called Eigenfaces. They are the directions in

which the images in the set differ from the mean image a. The challenge is

to efficiently find S without actually computing S explicitly.

14

4. Choose the principal components. The D x D covariance matrix will

result in D eigenvectors, each representing a direction in the image space.

Keep the eigenvectors with the largest associated eigenvalue.

4.1.2. Eigenfeatures

To complement eigenfaces, an approach called eigenfeatures has been developed. This

combines facial metrics (measuring distance between facial features) with the eigenface

approach. This method performs principal component analysis (PCA) of the matrix of

vectorized training samples for each feature of the face, such as the nose, eyes, and

mouth.

Figure 6. Eigenfeatures as a complement to Eigenfaces. Three sample images of eigeneyes from

different people are shown.

4.1.3. Fisherface

The Fisherface method is similar to the Eigenface method, but it is more successful and

requires more computation, as well as more image sets. Compared with Eigenface,

which extracts Most Expressive Features (MEFs), Fisherface is designed to extract

features more suitable for classification purpose, so called Most Discriminating Features

(MDFs). Therefore, Fisherface method is proved to outperform Eigenface method in

most cases. The major advantage of

Fisherface for the application of cell phone security is that it is much less sensitive to

lighting. For this proposal, we will skip the mathematical steps of Fisherface.

15

4.1.4. Eigenface vs. Fisherface Summary

Even though Fisherface yields better result, it has been decided that Eigenface is the

preferred choice for the proof-of-concept FASIS. We have very limited time to complete

this project, and we do not want to get bogged down by the more complex Fisherface

model. In the commercialized FASIS, Ztitch Solutions shall be able to upgrade to a more

accurate method of facial recognition, if the need is required.

Table 1. Comparison of Eigenface versus Fisherface [17]

 Fisherface Eigenface

Computational

Complexity

Slightly more

complex
Simple

Effectiveness

Across Pose

Good, even with

limited data

Good, with

enough data

Sensitivity to

Lighting
Less More

16

4.2. Implementation of Eigenface

Figure 7. High level functioning principle of the Eigenface-based facial recognition [7]

4.2.1. Calculating the Eigenfaces

Calculating the Eigenfaces is done by principal component analysis (PCA) [8]. We

prepare the images (Γi) by converting to PGM greyscale images, and then for each

17

image, we subtract the mean (average matrix). The average matrix is calculated using

the following formula

The result is stored in the variable where

We then calculate the covariance matrix using the formula

Next, we calculate the eigenvectors ui and the corresponding eigenvalues λi. The

eigenvectors are normalized to a unit length of 1. This step is easily done in MATLAB

or Maple with their math libraries.

Finally, from the M number of eigenvectors ui , only M' numbers of eigenvectors are

chosen. The M' eigenvectors have the highest eigenvalues, and therefore corresponds to

eigenvalues described by more facial characteristics. Eigenfaces that have low

eigenvalues are ignored as they explain only an insignificant amount of facial features.

The next section describes the relationship between eigenvectors and eigenvalues. Now,

the training stage is completed.

Unfortunately, the training stage described in this section is not computationally

efficient, as explained in [7]. Luckily, a solution to the problem is presented in [9].

18

4.2.2. Eigenvectors and eigenvalues

An eigenvector u of a matrix M is a vector that if multiplied with the matrix M, the

result is an integer multiple of that vector. This integer value is the corresponding

eigenvalue λ of the eigenvector. The relationship is therefore described by the equation

M × u = λ × u. Eigenvectors possess following properties [10]:

1) Eigenvectors can be determined only for n × n square matrices

2) There are n eigenvectors (and corresponding n eigenvalues) in a n × n matrix.

3) All eigenvectors are perpendicular, i.e. at right angle with each other.

4.2.3. Matching the Faces

 Matching a new, unknown face Γnew to one of the known faces Γi involves two steps.

1) Γnew is transformed to the Eigenface, then the weight is calculated as follows:

The weight vector, ΩnewT is

The Euclidean difference between two weight vectors, Ωx and Ωy, is a measure of

similarity between the two corresponding images x and y. If the Euclidean difference

between Γnew and other faces exceeds a certain threshold value, then the image is

probably not a face at all. The Euclidean difference is calculated using the following

equation:

19

5. Secondary Preventative Measures

A secondary preventative measure is required to prevent the determined hackers who

might be using a printed picture of the user to hack the system. This section describes

some of the different methods of security solutions that are possible, and some of them

have already been attempted in various fields. However, none of them prove to be

particularly successful in either preventing mobile phone theft, or stealing personal data

stored in a cell phone.

5.1. Solutions for Secondary Preventative Measures

This section will outline some of these major security systems by describing their

advantages and disadvantages.

5.1.1. Log-in using Password

A password-based login system already exists on most cell phones – it can be enabled

as an option. However, most phones have it disabled from the factory, knowing that

most users will not want to use it.

Advantages:

 Easy to implement, as the technology has been established for decades

 The least expensive authentication method available

Disadvantages:

 For a mobile phone with numeric keypad, only numerical passwords are

supported

 Not impossible to bypass, thieves can automate brute force attacks

20

 A hassle to use for mobile phones: defeats the purpose of ease and simplicity

 Alternate bypass needed for the forgetful users

5.1.2. Fingerprint Identification

Fingerprint authentication system is popular among laptop computers, but the

innovation has not made it to any cell phone on the market.

Advantages:

 A proven technology in both commercial and law-enforcement uses

 Impossible to reproduce fingerprint, except for genetically identical twins

 Quick and easy to gain access for mobile users

Disadvantages:

 Susceptible to the quality of the skin: dirty or marked is difficult to image

properly

 The scanner increases the size, weight, and cost of the mobile device

 The same fingerprint can be difficult to identify after years of certain types of

manual labor

 Not unique for about 0.2% of the human population with a genetically identical

twin

5.1.3. Eye Iris Identification

Eye iris authentication is possible, but it requires an iris scanner or a high-quality

camera with specific features. So far, this system has only been deployed to facilitate

airports, border crossings, and various high-security facilities around the world.

 Advantages:

 Extremely secure: even genetically identical twins have different iris textures

 Using John Daughman’s IrisCode, the false rate match is better than 10-11

21

Disadvantages:

 Still a new technology, it is expensive to implement in terms of both hardware

and software

 Difficult to perform at large distances; susceptible to poor image quality

5.1.4. Speech Recognition

Speech recognition is another alternative that can make use of the phone's existing

hardware, although the technology has not yet been received as a proven security

solution. However, it can be a good substitution as a secondary preventative measure.

 Advantages:

 No hardware modification required

 Looks for two things (1) a specific speech pattern based on the user's vocal

characteristics and (2) a specific spoken password from the user, so the false rate

match can be reasonably well depending on the algorithm

 Many open sources available, and easy to implement

 Quick to speak, ease of use for the user

Disadvantages:

 Not an established security solution in systems

 Susceptible to noise, low microphone quality, or any other interference

 A human voice can be digitally altered to produce that of another person's

Ztitch Solutions has decided to incorporate speech recognition as the secondary

preventative measure. The combination of facial and speech identification works well -

it is quick, seamless, and easy for the user. Furthermore, it is innovative and the

advantages, as listed above, are notable.

22

5.2. Implementation of Speech Recognition

Microsoft has provided a set of Speech API (SAPI) for 3rd party developers to

incorporate speech recognition in their applications. According to the Microsoft

Developers Network Library [11], the SAPI drastically reduces the code overhead

required and makes it very robust.

The Microsoft SDK is perfect for FASIS because SAPI provides a high-level interface

between an application and speech engines. SAPI implements all the low-level details

needed to control and manage the real-time operations of various speech engines. The

Speech SDK can be used in either C#, C++, VB, or any COM compliant language.

Figure 8. An overview of the Speech API. The two basic types of SAPI engines are text-to-

speech (TTS) systems and speech recognizers. TTS systems synthesize text strings and files into

spoken audio using synthetic voices (not used in FASIS). Speech recognizers convert human

spoken audio into readable text strings and files.

FASIS shall leverage the fact that speech is one of the most natural ways to interact (to

both humans and machine). Immediately after the user has captured the facial image,

the user must provide a spoken password. If the speech recognition is successful, the

system will then accept the face image for facial recognition.

23

6. Controller Module

One of the key goals of the commercialized FASIS is a simple hardware install for the

user, with no hardware modification required. Unfortunately, this can be achieved only

with permission from the OS maker, Symbian, because we need to be able to control the

phone (i.e. locking and unlocking it) remotely from the server. In other words, we need

special APIs from Symbian in order to actually create a socket between the server and

the device. It would be a major security issue if third party developers can actually

remotely control a phone. Therefore, in this proof-of-concept, we need to modify the

hardware so that we can control certain aspects of the phone in order to "simulate" the

lock and unlock events. We can do this most easily by controlling the hardware buttons

of the phone, but using a microcontroller to send small voltages to the buttons in order

to simulate the hardware button-push event.

Note: If this project actually proves itself as being significant and useful for the public,

we can collaborate with Nokia to gain access to the Symbian APIs that allow us to

remotely control a user's phone without adding the external hardware described in this

section.

6.1. The Cell Phone Push Buttons

All electrical circuits need a closed loop to work. The current needs to flow

uninterrupted through the wires and components. A switch is a component that breaks

this loop, and will complete the circuit whenever the switch is activated. There are two

kinds of push buttons: momentary, and non-momentary. The ones found in a phone,

24

typically, are momentary, and work only as long as you press on them. Non-

momentary switches take one push to turn on (i.e. elevator buttons).

When a switch is on, a small metal spring inside makes contact with two wires,

allowing current to flow. When it's off, the spring retracts, contact is interrupted.

Figure 9. Diagram of a generic 4x4 keypad's circuit [12].

It has 4 input lines, imagine four wires running vertically, and four output lines running

across the first. If some of the crossings are pressed, its wires are shortcut. The phone's

internal MCU cycles the input lines high and for each input line it reads the output

lines. The point where high lines cross indicates a pushed button. If you pull B1 High

(and the others low) if some key is pressed, the voltage is transferred to the

corresponding row wire, so if you get A1 as output you know that the buttons SW1 is

pressed.

We can easily simulate the act of a switch by sending a small current to trick the phone's

internal MCU to think that a particular switch has been activated. We do this by using

our own external MCU. We also use our external MCU to monitor the current light

level in the room to act as a feedback system for the image processing stage. This will

make FASIS less sensitive to varying lighting levels.

25

6.2. Choosing a Microcontroller Module

There are a variety of hobbyist and student microcontroller kits to choose from in the

market, and we have chosen to use the Parallax Board of Education Kit [13] for the

following reasons:

1. Includes the BASIC Stamp 2 microcontroller module, which is a robust and proven

microcontroller amongst enthusiasts and students like us.

2. USB connection for programming and communication during run-time.

Communication during run-time is absolutely crucial to this project, as we want to have

a GUI on the PC (server) to allow us to control the phone in close to real-time.

3. Provides a clean, efficient platform for the MCU, and also has a built-in breadboard

for our custom prototyping circuits.

4. Numerous resources, information, and tutorials for the Parallax kit are available

online.

6.3. Parallax Board of Education

Figure 10. An image of the Parallax BOE without the MCU (source: Parallax manual)

26

The following information is extracted directly from the Parallax BOE manual:

1. 9V Battery Clip: You can use alkaline or rechargeable 9 volt batteries. The battery clip

and barrel jack are intentionally positioned so you cannot use both at once.

2. Barrel Jack: This accepts a 2.1 mm center-positive barrel plug from a 6-9 V wall-

mount supply or from a battery pack. You cannot use the barrel jack and a 9 volt battery

at the same time.

3. Voltage regulator: Supplies regulated 5 V (up to 1 amp of current) for sockets and

pins labelled Vdd. Vdd sockets are convenient for supplying 5 V to circuits you will

build on the breadboard area.

4. Power Indicator LED: This LED will light up when power is supplied to your board

and the power switch is in position 1 or 2.

5. Servo headers (X4 and X5) and Power Select Jumper: These each have two 3-pin

connectors that bring power, ground, and I/O pin access together so you can easily

plug in servos or other 3-pin devices. The power connection is pre-set to Vdd (+5 V) but

you can set it to Vin (the board's supply voltage) by moving the shorting block on the

jumper between the headers. Each 3-pin row is labeled with an I/O pin number above

it. The 12, 13, 14, and 15 signal lines for the servo headers are also accessible as P12, P13,

P14, and P15 I/O pin sockets on the X1 and X2 headers. This can be useful for building

a servo signal indicator light on the breadboard as you may do in some Stamps in Class

activities. For independent projects, keep these shared connections in mind, especially

to avoid inadvertently connecting circuits with conflicting functions to the same I/O

pin.

27

6. Power header (X3): The sockets labeled Vdd connect to +5 VDC, Vin connects

directly to the power supplied to the board by the battery clip or barrel jack, and Vss

connects to 0 V (ground).

7. Breadboard: The breadboard has metal clips that run underneath the white plastic

board in a horizontal fashion. Each strip connects a 5-socket group, with two groups to

each row, separated by a center trench. Wires or legs of components plugged into the

same 5-socket group will be electrically connected. Components with many legs (such

as pushbuttons or ICs), are placed in the middle of the board so that half of the legs are

on the left side and half are on the right side of the trench. Note: Always disconnect

power before building or modifying circuits!

8. I/O Pin Access Header (X2): The BASIC Stamp module's 16 I/O pins, labeled 0 to 15,

are connected to this header. Its location adjacent to the breadboard makes it convenient

for connecting circuits to I/O pins. Keep in mind that I/O pin access is also brought to

the X4, X5, and X1 headers, so be careful not to build conflicting breadboard circuits if

you are using these other headers as well.

9. AppMod header (X1): The AppMod header provides power, I/O pins, Vdd, Vin, and

Vss access for any devices that are designed to use this 2x10 socket. Examples include

the LCD Terminal AppMod (#29121), CMUcam (#30051), Easy Bluetooth Module

(#30085), and Say It voice recognition module (#30080).

10. Reset Button: The reset button can be used to restart your BASIC Stamp without

having to cycle the power. This saves wear-and-tear on the power switch for simple

program restarts. Some advanced programming techniques use the reset button and the

BASIC Stamp EEPROM program and data storage as a way to toggle between different

program functions.

28

11. 3-Position Power Switch: The leftmost position (0) is OFF – all power is

disconnected. Always place the switch in this position when adding or changing

components on the breadboard. The middle position (1) provides Vin (unregulated

battery or power supply voltage) to the regulator, the BASIC Stamp socket, and to the

connectors marked “Vin.” This switch position also makes Vdd (5 volts) available to

Vdd sockets on the breadboard and AppMod connectors. The rightmost position (2)

also provides power to the servo connectors X4 and X5. Especially if your program

causes a robot with servos connected to X4/X5 to start moving immediately, you can

keep the 3-position switch in position (1) while loading the program, then switch to

position (2) when you are ready for the robot to start moving.

12. Socket for BASIC Stamp: This socket is compatible with all 24-pin BASIC Stamp

modules. It connects the BASIC Stamp to the programming connector, power, the

power indicator LED, reset button, and all I/O pin headers.

13. USB Programming Connector: This is a USB Mini B socket and USB to serial

(RS232) circuitry for programming and for two-way serial communication between the

BASIC Stamp and your computer. The required USB drivers for Windows were

included in the BASIC Stamp Editor

29

Figure 11. The BOE schematics (source: Parallax manual)

30

6.3.1. Light Sensor Circuit using the BOE

We shall also implement a light sensor to act as a feedback system for the image

processing stage to increase or decrease brightness/contrast level of the image. The

following circuit, along with the code, construct a simple light level monitor [13].

Figure 12. Circuit and coding for a light sensor using the Parallax kit

7. Client-Server Connection

This section will discuss the connection pathway between client and server. In

particular, this section will discuss the method Ztitch Solution will take in order to

establish a communication such that data can be relayed from the user to the server and

vice-versa.

31

7.1. Transceiver Module

By definition, a transceiver is any device that is both a transmitter and receiver of data,

electromagnetic signal, radio, television, or any other telecommunications.

As discussed in the functional specification document [1], the commercialized FASIS

uses the phone's internal wireless transceiver to transmit the image data and retrieve

the unlocking code to/from the server over the air (2G/3G, etc). In this proof-of-concept

system, however, we simulate this portion by simply using the serial port of the phone,

which is actually a RS232 debugger terminal attached to an external hardware module

(described in the next section).

7.1.1. RS232 Transceiver

At the heart of this module is the Maxim MAX3222E, which is a 'true' RS232 transceiver.

The datasheet of this chip can be found in [14]. The chip has the following properties:

1) Requires four 0.1μF external charge pump capacitors.

2) Guaranteed to run at data rates of 120kbps and maintaining RS232 output levels.

3) 2 receivers and 2 drivers

4) Low power consumption

Applications:

• Notebook, Subnotebook, and Palmtop Computers

• High-Speed Modems

• Battery-Powered Equipment

• Hand-Held Equipment

• Peripherals

32

7.1.2. Power Supplies

According to Maxim's website [15], RS232-compliant parts need a minimum of two

supply voltages, one that is greater than +5V and one that is less (more negative) than -

5V. These two supplies are needed to guarantee the minimum +/-5V output swings

required for the transmitters. See figure 13. In systems that already have +/-12V, this

isn't a problem. However, in systems being designed today, +/-12V (or other voltages)

aren't usually available. To solve this problem, Maxim has designed a wide array of

parts that can be powered from a single supply by including power-supply converters

built directly onto the IC.

Figure 13. RS232 transmitters must swing at least ±5V. This means that they must be powered

with supplies ±5V (source: Maxim's website [15])

Although single 5V-only parts are great in a lot of cases, an increasing number of

applications require parts that will run from a single 3.3V supply. For instance, the

battery voltage of a Nokia phone is 3.6V. Operation with 3.3V is not just important in

3.3V-only systems, but also where the RS232 parts must interface to 3V logic.

33

Figure 14. RS232 application circuit for 3.6V using the MAX3222E chip (source: Maxim's

website [15])

As shown in figure 14, the circuit has two charge-pump power supplies built on-board.

These RS232 parts are special because of their low-dropout transmitters. These

transmitters can meet the minimum-required +/-5V swings, while running from

charge-pump power supplies as low as +/-5.5V. This makes it possible for these parts to

run from a single 3.0V supply and still be fully compliant with the RS232 specification.

Although these parts will run on supplies as low as 3.0V, they have also been designed

to run as high as 5.5V.

7.2. Minimizing Data Transfer

Data compression is required to minimize the amount of data (particularly the size of

each image) so that the upload time is minimized. Furthermore, a shrunken image will

result in lower bandwidth costs and an overall better user experience. It also reduces

34

the amount of work the server needs to do. The task is to shrink the image at the client

side, immediately after the image is captured, and before the image is sent.

Luckily, some resources are available that delve in the topic of image compression on a

Nokia phone. One such example can be found in [16]. The code, which is open source

and suited for the Symbian S60V3 (N96's OS), can be found in Appendix I.

8. Proof-of-Concept Integrated Hardware

This section provides details pertaining to the near-completed proof-of-concept FASIS,

including pictures of our actual hardware, and summary of our total spending. Figure

15 is a picture of the system inside a customized plastic housing, and each individual

module highlighted in red.

Figure 15. Picture of the FASIS hardware inside a customized plastic case.

35

The modules highlighted in figure 15 are as follows:

 1 - Internet camera (for the purpose of debugging and testing the facial

 localization and recognition algorithms only)

 2 - Transceiver module (see section 7)

 3 - Parallax Board of Education (BOE) including breadboard* (see section 6)

 4 - Nokia N96 phone partially disassembled and wired to the BOE

 *Note: The breadboard circuitry is not yet completed.

 With the cables disconnected and internet camera removed, the FASIS prototype is

easily portable, as shown in figure 16.

Figure 16. The FASIS concept as a portable module.

Table 2 outlines our total spending for the project. All prices are approximate, and the

total cost is about $250 CAD, so we have successfully achieved our budget goal of less

than $800, thanks to Nokia who provided us with the device. Students also have access

to Visual Studio and Matlab for free which significantly reduced the total cost of this

project.

36

Table 2. Budget Summary

Item Cost (CAD, includes tax)

Nokia N96 smart phone unlocked $0 (provided by Nokia)

Active SIM card plus subscription $0

Transceiver module $60

Parallax BOE $160

Software Tools, SDKs, drivers, etc. $0 (free for students)

Cases, stands, and misc. accessories $30
Total Cost $250

9. System Test Plan

To ensure strong confidence and quality assurance of the system, comprehensive

testing will be performed at all stages of development. Tests will be performed on the

unit components, but a set of test cases (simulations) will also be developed to cover a

wide range of use-case scenarios in the final overall system. These tests are intended to

discover bugs so that they can be alleviated as early as possible. In the proof-of-concept

system, some testing of the hardware will also be required to ensure that project demo

will go flawlessly. However, the commercialized system will contain no such hardware

modification, since data is transferred over the network rather than an external

communications board, so the hardware test stage will not be as comprehensive as the

software test stage.

9.1. Unit Test

The proof-of-concept FASIS system can be divided into three sub-units: an application

on the phone, a hardware communication board to relay information between the

phone and the PC, and the server/PC providing the services.

37

The phone software can be tested by triggering FASIS by attempts to access secured

data. The expected response is the camera application opening up which also powers

up the front-facing camera. A button is then pressed (either the camera capture button

or the center push button). The image then awaits transfer to the PC. Fortunately, these

two steps can be automated using a USB connection controlled by Nokia’s HTI

(Harmonized Test Interface). The test will be running in loops that try to access

different secured data of the phones, and each time, FASIS is expected to fire up. Then,

in the second step, the automation should trigger the camera capture by simulating the

push of a button, and the expected response is an image now waiting to be transferred.

Testing of the hardware communication board can be done by sending data from the

phone to the PC, and vice-versa. We then verify that the data is sent successfully

without loss. FASIS will only relay data in two forms: an encoded bitmap image, and an

encrypted key. This sub-unit of the system will be tested manually only, because this

component will not appear in the final commercialized product, since data will actually

be relayed over the network rather than an external board.

The facial matching algorithm can be tested independently from the other sub-units,

with the only required input being a small image containing the face. The expected

response is an encrypted key which contains the instruction for the phone to either lock

or unlock the device. Testing of this sub-unit can also be automated, which is important.

The facial matching algorithm will most likely undergo many revisions, and if we

automate this step, it can save a lot of time by running the automated test after each

revision compared to manually testing the algorithm. During each cycle of the test, one

image will be chosen either randomly or from a consecutive list from a set of many

different images. The database of test images will be derived from many different faces

38

that exhibit a wide range of variations of facial features and skin color; this can ensure

accuracy for all types of faces.

Test cases for the individual modules will include, but not limited to, the following:

Microcontroller: HTI test

 - Connect the modules' ports; Parallax Board N96

 - Run HTI

 Expected result: A connection is established with expected code returned.

Microcontroller: Test the phone's controllability via PC

 - Launch HyperTerminal

 - Send instruction to launch the application

 Expected result: The application is launched

 - Repeat the previous step with all possible instructions and ensure that the

 phone behaves accordingly.

Transceiver: Test data being received from the phone

 - Send an image (jpeg) from the phone to the PC

 Expected result: Image is sent with no data loss

 - Repeat with various image file sizes (2kB, 4kB, 8kB, etc)

Facial Localization: Test that localization is successful in a variety of lighting conditions

 - Move the face around but maintain exposure to the webcam

 Expected result: The face is always tracked inside a marker

 - Repeat the previous step and vary the light level in the room

Facial Localization: Test that localization is successful with a wide range of skin colors

 - Use printed samples of skin colors on paper, repeat the previous test case

39

 Expected result: The piece of paper is tracked

 - If test fails, adjust the color threshold of the algorithm

 -If it still fails, fix the problem within the algorithm

Facial Recognition: Test different users

 - Attempt facial recognition with images of the known face

 Expected result: The user should be recognized

 - Attempt facial recognition with images of unknown faces (users that do not

 exist in the database)

 Expected result: The unknown users are not recognized

Facial Recognition: Add/Remove user in database

 - Delete the database, and add a new user

 - Attempt facial recognition

 Expected result: only the new user should be recognized

9.2. Automated Tests

Testing will be automated whenever possible. The software portion of the project will

be updated frequently, and these software components include the algorithm for facial

matching, the logic for locking/unlocking the phone, and the transfer of data between

the phone and the server/PC. Since they are updated frequently, we want to save time

by automating these tests rather than have a member of the group manually test them

each time they are updated.

The objective here is to test each component with a variety of input arguments to

validate that the returned results are correct. Automated tests can be executed using

batch files and with a free software test tool called AutoIt. These automated tests can be

prescribed to run a specific number of loops for stress testing.

40

9.3. Integrated Test and Simulation

After each component has satisfied its requirement, an integrated test will be performed

to ensure final product quality and that the performance meets the requirements.

Simulations will cover actual use-case scenario: each member of the team will act as the

owner of the device, and have his/her face data stored in the database. We will ask

people from around the campus to be part of the tests, and these unrecognized users

should not be authenticated. Furthermore, we will try to vary the lighting conditions by

switching to different environments during these tests. The success rate should be at

least 95%. Of course, the lighting conditions are assumed to be reasonable, both indoors

and outdoors. However, areas of complete darkness or extreme brightness will

probably not occur in practical situations, and would most likely cause the facial

matching algorithm to fail, so we will not test in these areas.

If a test fails during the integrated stage, we will try to fix the component causing the

failure and execute unit testing before repeating the integrated tests.

Simulation test cases for the integrated FASIS will include, but not limited to, the

following:

Integrated FASIS: Use-case scenario

 -Manually trigger FASIS on the phone by attempting to access secured storage.

 Expected result: FASIS application launches, front-facing camera fires up.

 -Snap a picture of the face.

 Expected result: The image is captured and shown.

 -Speak password to the microphone.

 Expected result: FASIS queries the spoken password.

41

 -If spoken password is recognized, FASIS facial recognition

 -If facial recognition is successful, the phone is unlocked.

 -If facial recognition is unsuccessful, the phone is locked.

 -If spoken password is not recognized, the facial image is NOT accepted.

42

10. References

[1] Ztith Solutions Inc., "Functional Specification for a Facial and Speech Identification
System for Nokia Devices", Simon Fraser University, Burnaby, BC, Canada, Oct 14 2010.

[2] Tony Jebara, "3D Pose Estimation and Normalization for Face Recognition",
Columbia University, Jun 2000. [Online]. Available:
http://www.cs.columbia.edu/~jebara/htmlpapers/UTHESIS/node32.html
[Accessed: Oct 1, 2010].

[3] Gang-Qiang Zhao et al, "A simple 3D face tracking method based on depth
information," in Proc. of the 4th International Conference on Machine Learning and
Cybernetics, Guangzhou,18-21 August 2005.

[4] Lamiaa Mostafa and Sherif Abdelazeem, "Face Detection using Skin Color Using
Neural Networks", Information Technology Institute, Giza, Egypt, Mar 26, 2006.

[5] Rene Schulté, "Real-Time Face Detection", Dresden, Germany, Mar 2010. [Online].
Available: http://blogs.msdn.com/b/coding4fun/archive/2010/03/24/9984015.aspx
[Accessed: Oct 5, 2010].

[6] Erik Hjelmås, "Recognizing Faces from the Eyes Only", University of Oslo, Oslo,
Norway, Jan 1999. [Online] Available:
http://www.ansatt.hig.no/erikh/papers/scia99/scia99.html [Accessed: Oct 14, 2010].

[7] SourceForge, "Eigenface-based facial recognition", 2003. [Online] Available:
http://openbio.sourceforge.net/resources/eigenfaces/eigenfaces-
html/facesOptions.html [Accessed: September 11, 2010].

[8] D. Pissarenko, Neural networks for financial time series prediction: Overview over recent
research. BSc thesis, Technical report, Austrian Partners, 2002.

[9] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive
Neuroscience, 3 (1), 1991a. Available: http://www.cs.ucsb.edu/ mturk/Papers/jcn.pdf.
[Accessed: November 27, 2002].

[10] E. Garcia , "Matrix Tutorial 3: Eigenvalues and Eigenvectors", Mi Islita, 2006.
[Online] Available: http://www.miislita.com/information-retrieval-tutorial/matrix-
tutorial-3-eigenvalues-eigenvectors.html [Accessed: Oct 18, 2010]

43

[11] Microsoft, "Speech API Overview (SAPI 5.4)", Redmond, USA, 2009. [Online]
Available: http://msdn.microsoft.com/en-us/library/ee125077%28VS.85%29.aspx
[Accessed: Oct 20, 2010]

[12] J. T. Barett, "How do Push Buttons Work in an Electrial Circuit?", eHow, date
unknown. [Online] Available: http://www.ehow.com/how-does_5030234_push-
switches-work-electrical-circuit.html [Accessed: Oct 21, 2010]

[13] Parallax, Manual for Board of Education Kit, Rocklin, California, USA, 2009. [Online]
Available: http http://www.parallax.com/dl/docs/prod/boards/28850-BOE-USB-
v1.4.pdf [Accessed: Oct 21, 2010]

[14] Maxim, MAX3222-MAX3241 True RS232 Transceivers Datasheet, 2007. [Online]
Available: http://pdfserv.maxim-ic.com/en/ds/MAX3222-MAX3241.pdf [Accessed:
Oct 22, 2010]

[15] Maxim, Selecting and using RS-232 Interface Parts for Your Power Supply Voltages,
Sunnyvale, Calfironia, Jan 2001. [Online] Available: http://www.maxim-ic.com/app-
notes/index.mvp/id/836 [Accessed Oct 25, 2010]

[16] Nokia, "Compressing and Decompressing Files Using CEZFileBufferManager",
Finland, 2008. [Online] Available:
http://wiki.forum.nokia.com/index.php/CS000950_-
_Compressing_and_decompressing_files_using_CEZFileBufferManager
[Accessed Nov 1, 2010]

[17] Daily Burito. 2004. Face Recognition: Eigenface and Fisherface Performance Across
Pose. http://dailyburrito.com/projects/facerecog/FaceRecReport.html#refs [Accessed:
September 14, 2010]

44

Appendix I

void CompressFileL(RFs &aFs, TInt aBufferSize, TInt aMethod, const TDesC& aFileName)

{

 TInt err(KErrNone);

 RFile input;

 RFile output;

 HBufC *compressedFile = HBufC::NewLC(aFileName.Length()+2);

 _LIT(KCompressedFileName,"%S.c");

 compressedFile->Des().Format(KCompressedFileName,&aFileName);

 User::LeaveIfError(input.Open(aFs,aFileName,EFileStream | EFileRead | EFileShareAny));

 CleanupClosePushL(input);

 err = output.Create(aFs, *compressedFile,EFileStream | EFileWrite | EFileShareExclusive);

 if (err == KErrAlreadyExists)

 User::LeaveIfError(output.Open(aFs, *compressedFile,EFileStream | EFileWrite |

 EFileShareExclusive));

 else

 User::LeaveIfError(err);

 CleanupClosePushL(output);

 CEZFileBufferManager *fileBufferManager = CEZFileBufferManager::NewLC(input,output,

aBufferSize);

 CEZCompressor *compressor = CEZCompressor::NewLC(*fileBufferManager, aMethod);

 _LIT(KCompressingFileText,"Compressing file %S to %S\n");

 console->Printf(KCompressingFileText,&aFileName,compressedFile);

 while (compressor->DeflateL())

 {

 // loop here until the file is compressed

 }

 CleanupStack::PopAndDestroy(5); //compressor,bufManager,output,input,compressedFile

}

void DecompressFileL(RFs &aFs, TInt aBufferSize, const TDesC& aFileName)

{

 TInt err(KErrNone);

 RFile input;

45

 RFile output;

 User::LeaveIfError(input.Open(aFs, aFileName,EFileStream | EFileRead | EFileShareAny));

 CleanupClosePushL(input);

 HBufC *decompressedFile = HBufC::NewLC(aFileName.Length()+2);

 _LIT(KDecompressedFileName,"%S.d");

 decompressedFile->Des().Format(KDecompressedFileName,&aFileName);

 err = output.Create(aFs, *decompressedFile,EFileStream | EFileWrite | EFileShareExclusive);

 if (err == KErrAlreadyExists)

 User::LeaveIfError(output.Open(aFs, *decompressedFile,EFileStream | EFileWrite |

 EFileShareExclusive));

 else

 User::LeaveIfError(err);

 CleanupClosePushL(output);

 CEZFileBufferManager *fileBufferManager =

CEZFileBufferManager::NewLC(input,output,aBufferSize);

 CEZDecompressor *decompressor = CEZDecompressor::NewLC(*fileBufferManager);

 _LIT(KDecompressingFileText,"Decompressing file %S from %S\n");

 console->Printf(KDecompressingFileText,decompressedFile,&aFileName);

 while (decompressor->InflateL())

 {

 // loop here until the file is decompressed

 }

 CleanupStack::PopAndDestroy(5); //decompressor,bufManager,output,input,decompressedFile

}

