Solar Panel Cubic Charger

OMG Studio

ENSC 440/305 Project SFU Engineering Science Dec 14, 2011

CEO – Michael Chen

- Majors in Electronics Engineering
- Third Year
- Group Leader
- Directions
- Programming

CFO – Shuyang Hou

- Majors in Electronics Engineering
- Third Year
- Testing
- Questioning
- Alternatives

VPM – Yu Bu

- Majors in System Engineering
- Fourth Year
- Research
- Marketing

VPO – Chris Chen

- Majors in Electronics Engineering
- Third Year
- Graphic Design
- Programming
- Hardware

Outline

- Motivation
- System Overview
- High Level System Design
- Business Case
- Project Specifics
- Experience
- Conclusion
- Acknowledgements
- Questions

How we came up with this idea

- Market Value
- Convenience
- Green
- Achievable

Market Value

- Student
- Fashion
- Small
- More Efficient

Convenient

- Easy to Carry
- Solar Energy

Green

• Environmental Friendly

Achievable

- 300-Level Courses
- Time Limits
- Budget

What does Solar Panel Cubic Charger do

- Charges Cell Phones
- Battery Level Indicator
 - o Bi-Color Built-in Battery Level Indicator
 - Red-Color Solar Power Indicator
- Button/Switch
 - Power Source Button
 - Parallel / Series mode

Charging

- Variety
- Portable
- Efficient

Battery Indicators

- Bi-Color LED
 - Green good working condition
 - Red need to be charged
- Solar Panel Power Indicator
 - Red If the light source is not enough to charge the built-in battery

Two Common Reference Comparators

Button / Switch

- Power Source ON/OFF Button
- Switch between Parallel / Series Modes
 - Parallel enough of light source
 - Series not enough of light source

Micro-Controller

- Brain of the System
- Controls LEDs
- Thermal Sensor

High Level System Design

How does it work

High Level System Design

Market Value of Solar Panel Cubic Charger

- Market
- Cost
- Competition

Market

- Students
- Hang on the Bag Pack
- Outstanding Looking

Cost

- Solar Panels \$24
- Micro-Controller \$5
- Red LED \$0.5
- Bi-Color LED \$0
- Socket \$0.25
- Circuit Board \$0
- Push-to-Make Switch \$0.6
- Mode Switch \$0.5
- 7-Segment LED \$2.8
- Built-in Battery \$0
- Resistors, Capacitors, Inductors \$0
- Zener Diode \$0.4
- Crystal \$1.5
- Thermal Sensor \$5.2
- Casing \$6
- Paint \$6.43
- Female USB Port \$0
- Labour \$0
- Total \$53.18

Cost

- Solar Panels \$24 \$4
- Micro-Controller \$5 \$1
- Red LED \$0.5 \$0.1
- Bi-Color LED \$0 \$0.1
- Socket \$0.25 \$0.1
- Circuit Board \$0 \$0.1
- Push-to-Make Switch \$0.6 \$0.1
- Mode Switch \$0.5 \$0.1
- 7-Segment LED \$2.8 \$0.2
- Built-in Battery \$0 \$1
- Resistors, Capacitors, Inductors \$0 \$0.1
- Zener Diode \$0.4 \$ 0.1
- Crystal \$1.5 \$0.1
- Thermal Sensor \$5.2 \$0.1
- Casing \$6 \$1
- Paint \$6.43 \$1
- Female USB Port \$0 \$0.1
- Labour \$0 \$1.5/hour
- Total \$53.18 \$10.9

Competition

- Better Solar Panels
- More Solar Panels
- Mode Switch
- Better Looking
- More Potential

How did we manage this project

- Timeline
- Budget
- Teamwork

Timeline

- Mostly on Schedule
- Design Specification

Timeline

Timeline

Budget

Unexpected

- Thermal Sensor
- Micro-Controller
- 7-Segment LED
- Push-to-Make Switch
- Diodes

Savers

- Built-in Battery
- Female USB Port

• Resistors

Teamwork

- No Fighting
- Good Tempers
- Discussion
- Suggestion
- No Dictators
- 3 EEs & 1 System

Experience What did we learn

- Time Management
- Outside Class
- Un-Expectations
- Plans vs. Realities
- Work as a Team

Time Management

- Plan Well
- Plan Ahead

Outside Class

So Much More Outside Class

Un-Expectations

- Plan B
- Solve it Fast
 - New programming for Micro-Controller
 - Components drain current from solar panels

Plans vs. Realities

- "It should" \neq "It will" for **B** real t
- Never Assume

Work as a Team

- Care about Others
- Be Prepared
- Try Hard

Conclusion

For this presentation

Conclusion

- Rich Experience
- Friendly Team
- Plan!!
- Future Development

Acknowledgement

Thanks!!

Acknowledgements

- Jamal Bahari
- Ali Ostadfar
- Dr. Ash M. Parameswaran
- Dr. Andrew Rawicz
- Moein Shayegannia
- Mike Sjoerdsma

Questions

Please!!