

13/12/2011 kaefi-support@sfu.ca

Office Automated Delivery Robot

Gyu Han David Choi Jin Sun Ahn Hongbae Sam Park Kyu Seo Sam Lee Yongho Choi

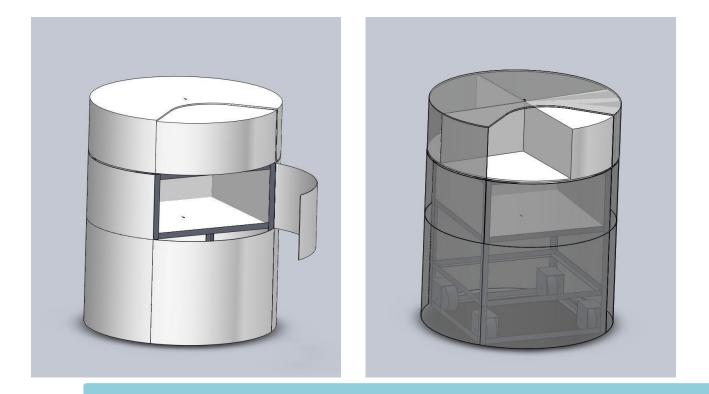
School of Engineering Science Simon Fraser University

Outline

- Introduction
- Hardware
- Software
- Business Aspects
- Future Developments
- Conclusion
- Review
- Questions
- Acknowledgements

Introduction - Our Team

- CEO Gyu Han David Choi
- CTO Jin Sun Ahn
- CFO Hongbae Sam Park
- CMO Kyu Seo Sam Lee
- COO Yongho Choi


Introduction – Objective

- To increase efficiency within office space.
- To save time thus cutting expenditures
- To aid in removing avoidable tasks such as delivering documents from department to department.
- Employees can focus on their tasks without leaving their stations.
- As a public secretary who can "run errands" for every worker.

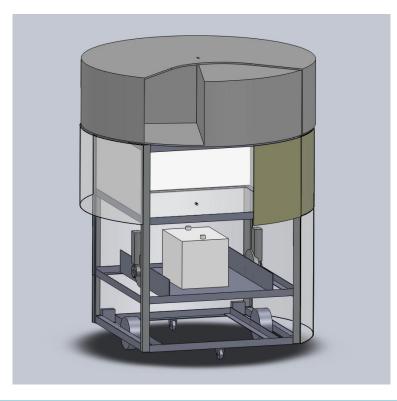
Introduction – Initial Goal

• Conceptual Diagram

Introduction – Actual Prototype

• Actual Picture

Hardware by Sam Park


Hardware Outline

- Chassis
- Drivetrain
- Lockable Door
- Proximity Sensor
- Microcontroller
- Power Supply
- Camera
- System Block Diagram

Hardware – Chassis

• Conceptual Picture

Hardware – Drive-train

- Motors (AME-214)
 - Automotive Windshield Wiper Motor
- Wheels
 - 4" heavy duty rubber wheels with ½" bearings, and 19-teeth sprocket
- Wheel Mounts
 - Custom made composite wood structure which can accommodate 1/2" axles
- Gears
 - 19 teeth sprocket linking wheels and Motors
- Chains

Hardware – Lockable Door

- Opens after arrival at the destination
- Locks during operation for safety and security

Hardware – Proximity Sensor

- LV-MaxSonar EZ1: MB1010
- Collision detection

Hardware – Microcontroller

- MICROCHIP dsPIC33FJ64MC802
- Serves as a drive motor controller, processes collision detection, communicates with database, also controls compartment door actuation motor

Microchip Microstick 2 (Part # DM330013-2)

Hardware – Power Supply

• 12 V Sealed Lead Acid Rechargeable Battery

Hardware – Camera

- Microsoft LifeCam HD-3000
- QR code scanning

Actual Picture

Software by Sam Lee Jin Sun Ahn Yongho Choi

Software Outline

- User Interface
- Database
- QR Code Scanner
- Routing Algorithm
- Motor controller
- UART
- System Flow Chart

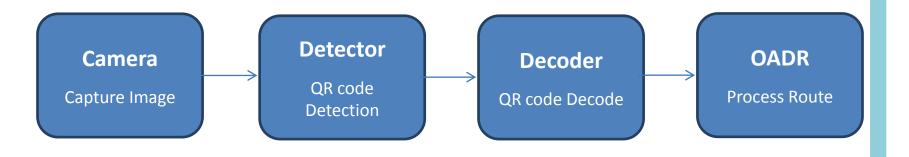
Software – User Interface

• Website UI

KAEFI!

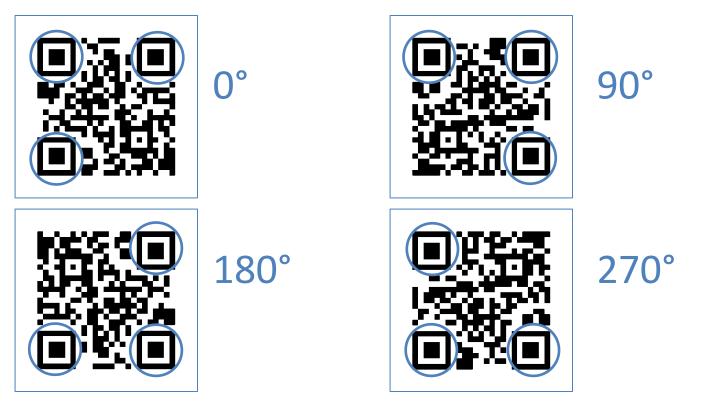
Start Point:	
Destination:	
	Submit

Software – Database


- Database structure
- Table Name : KAFEI_INFO

Column Name	Column Explanation
ORDER_NUM	Order sequence
ROBO_ARV	Starting station
ROBO_DES	Destination station
ROBO_STRT_DT	Order timestamp

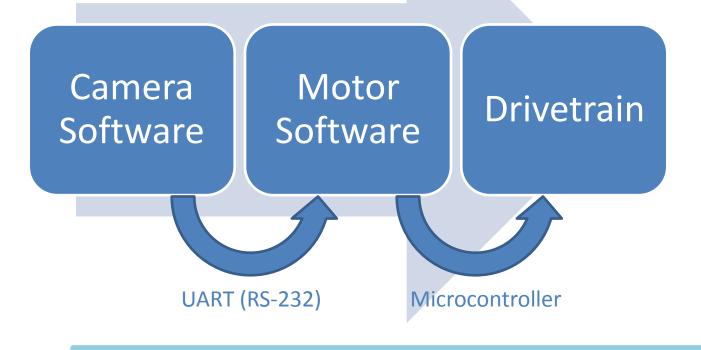
Software – QR Code Scanner


• QR Detecting + Decoding Process

Software – QR Code Scanner


• QR Orientation Determination

Software – Routing Algorithm


- Notation : (x,y)
- Destination Point -Starting Point
- i.e A -> B
 <0,1> -<0,0> = <0,-1>
 Move down to 1

Hardware + Software

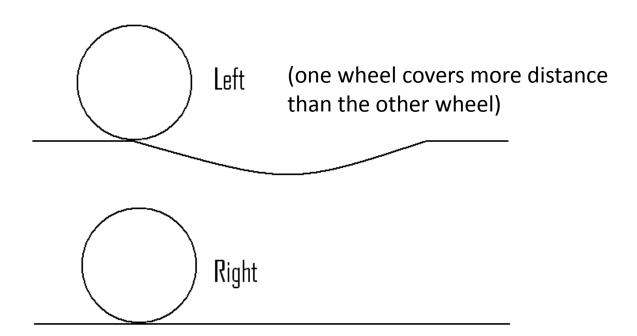
Communication Flow Chart

Software – UART

- Sparkfun FTDI Breakout 5V DEV-09115
- Communication between camera software
 and microcontroller
- USB (PC) to RS232 (MC)

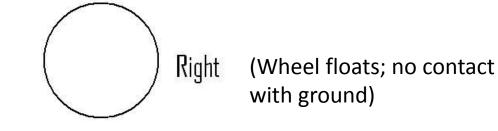
Software – Port Setup

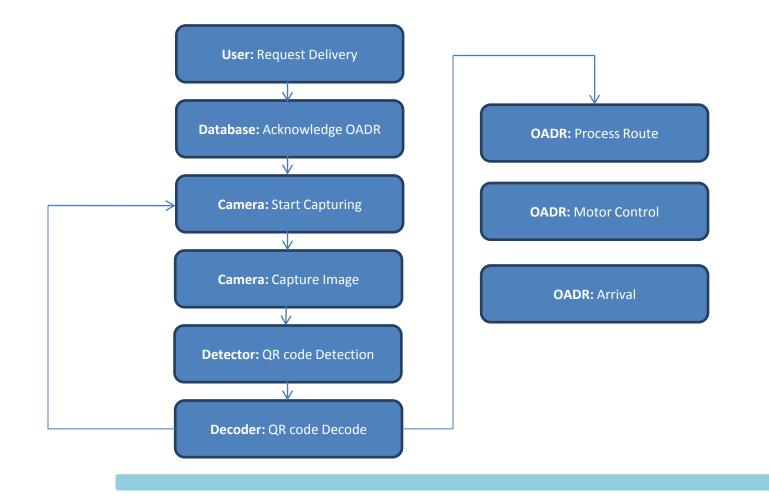
- PC (C++): "Boost" open source library to setup the serial port, send data to microcontroller using USB to RS232 breakout
- Ex) write(port, buffer(char[0], 1));
- MC (MPLAB): Register and port setup needed in order to receive the data
- Ex) RPINR18bits.U1RXr = 10; //U1RX pin setup
- U1MODEbits.UARTEN = 1; //Turn on UARTs



Software – Motor Controller

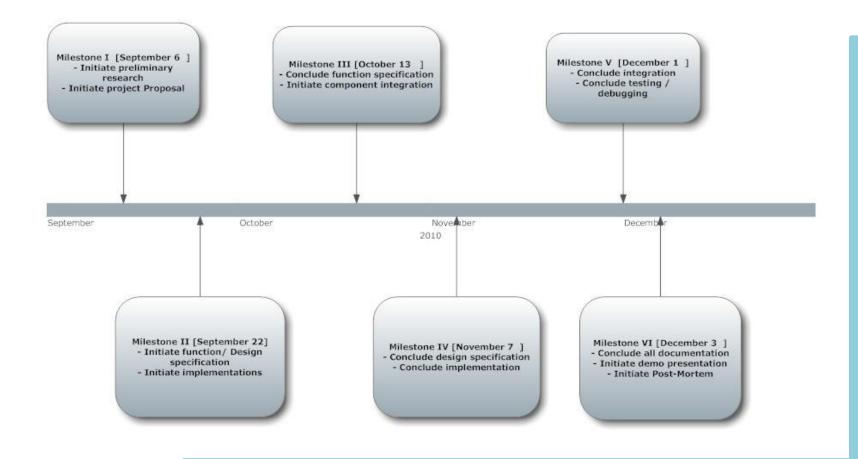
- Based on route vector and orientation given by QR Code Scanner
- Motor Control Command
 - Go : Proceed operation
 - Right : Take a right turn
 - Left : Take a left turn
 - Spin : Take 180 ° turn
 - Halt : Stop all operation


Situations where robot cannot go straight: Case 1



Situations where robot cannot go straight: Case 2

Software – System Flow Chart



Business Aspect

- Milestone
- Timeline
- Actual Cost

Business Aspect – Milestone

Business Aspect – Timeline

Task	5/9	12/9	10/9	26/9	3/10	10/10	17/10	24/10	31/10	7/11	14/11	21/11	28/11	5/12	12/12
Documentation	¢														
- Proposal			-						1						
- Functional Specification				-											
- Design Specification						-		-			and so the second		1		1
- Progress Report											-	-		_	1
- Demo Preparation														_	
- Research	•														
- Project Idea	_	-	_	_											
- Preliminary Research			-	112		_		_	-						
- Technical Research						_		_	_	-		and a	-		
- Hardware Implementation	•		-												
- Robot Base Module			_	-										-	
- Motor Module			-		-										
- Micro-Controller Module								-							1
- Secure Rotation Module													-		
- Software Implementation	•											1			
- Q-R Module			_	-											
- Database Module															
- Network Module					_										
- Secure Lock System				-										-	
- Integration				-									-	-	-
- Hardware Integration								_			-				
- Software Integration								-			_	-			
- Full Integration					-						_		_		-
- Testing										-					
- Debugging	-	-			200				-						
- Module Testing	-	-	-	-		-					-		-		
		-	-	-	-						-			_	
 Integration Testing 									_					_	

Blue Line: Proposed Timeline

Red Line: Actual Timeline

Business Aspect – Actual Cost

Equipment List1	Cost
Webcam : Microsoft LifeCam HD-3000	\$55
Microcontroller : MICROCHIP dsPIC33FJ64MC802	\$25
Proximity Sensor : LV-MaxSonar – EZ1: MB1010	\$30
Banebots FIRST CIM 12V 5280RPM Brushed DC Motor x 2	\$50
Wheels x 2	\$88
Motors	\$70
Aluminum Frame	\$120
12 V Sealed Lead Acid Rechargeable Battery	\$45
UART Sparkfun FTDI Breakout 5V DEV-09115	\$25
Misc. (including bolts, nuts, L-fame bridge, adapter)	\$150
Cosmetics	\$30
Total Cost	\$588

Future Development

- UI system on the robot
- Sensor inside Lockable door
- Password Keypad for manual disclose
- Rotating Compartment
- Extra items storage/delivery
 - (i.e. coffee, beverages)

Conclusion

- Is adoptable anywhere
- Easy to use
- Can deliver various items
- Meet safety requirements
- Can be applicable variously

Acknowledgements

- Thanks to
 - Andrew Rawicz
 - Shahram Payandeh
 - Gary Houghton
 - Patrick Cho

Review

- Introduction
- Hardware
- Software
- Timeline
- Future Development
- Conclusion
- Review
- Acknowledgements
- Questions

Questions ?

Demonstration

40