

introducing

FASM RYB Color Mixer

Outline

- Product Overview
- System Overview
- Hardware
- Software
- Business Aspect
- Complications
- Timeline
- Future Development
- Conclusion
- Questions
- Acknowledgements

Product Overview

Motivation

Problem

- > Lack of accessibility to desired color for painters.
- ➤ Limited mobility of color mixing devices.
- > Time consuming ordering process.

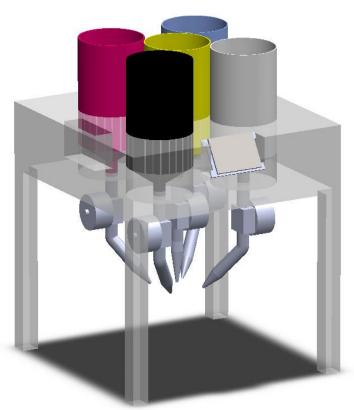
Solution

> FASM RYB paint mixer.

Existing Products

Advantages

- ➤ More accurate in color range
- More economical in high scale mixing

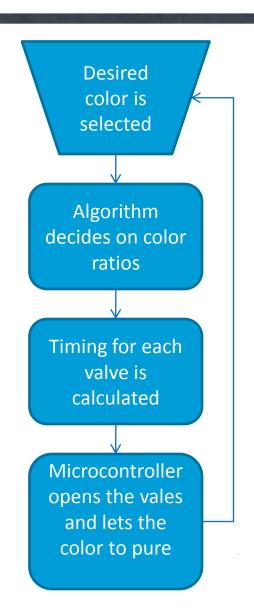

Disadvantage

- ➤ High purchasing price
- lack of portability
- > High maintenance cost

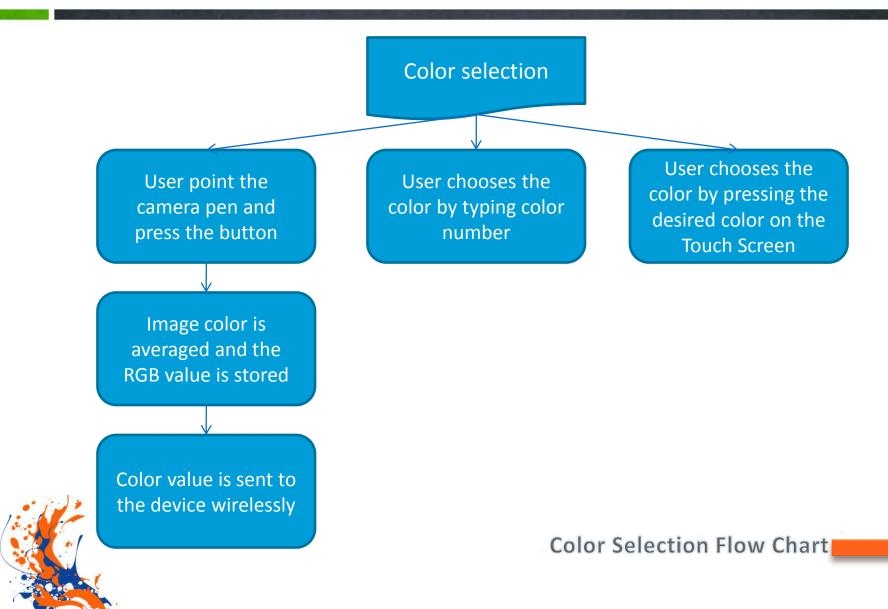
Our Product

Advantages

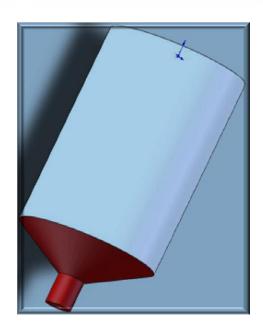
- > Small dimension
- Easy to use device
- > Portable
- > Accurate result
- > Environment friendly
- > Affordable


FASM Color Mixing Device

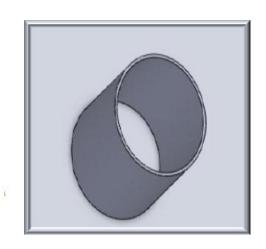
- User inputs a color wirelessly or through a touch screen.
- Systems converts RGB values to RYB color ratios.
- > LCD displays the currently dispensing paint.
- Values open to dispense the paints.
- User mixes the paints to get the desired paint.



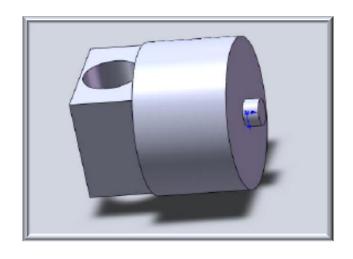
RYB Mixer Flow Chart



Hardware


Gravity Cup

- QUANTITY: 5
- Capacity 1000 ml
- Covered with snug fitting press fit lid
- Made up of Aluminum
- Rust free


Connector

- Quantity: 5
- Material : Stainless steel
- Connects Gravity Cups to the Solenoid valves

Solenoid valve

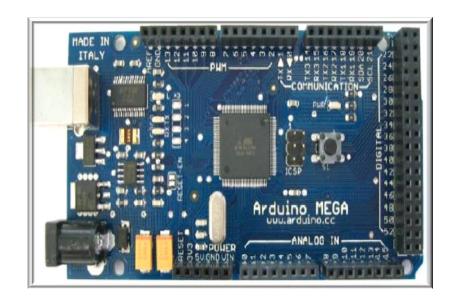
Model: 2W-040-10

Quantity: 5

> Controls the paint flow.

Operating voltage : 45 Volts.

Mosfets (IRF510) turn the valves on/ off .

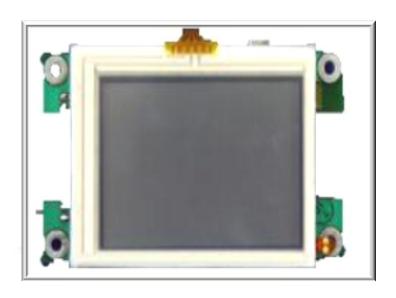

Arduino Mega 2560

Main part of control system.

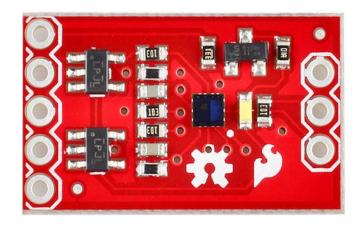

Controls the touch screen, valves, LCD display

Allows to use color mixing algorithms.

Flash memory 128 KB.



Arduino Uno


- Controls the wireless pen.
- Prepares the sensor values and transmit the data to the receiver.
- Digital i/o pins: 14
- > Flash memory 32 KB

Touch Screen

- ➤ Model: ezlcd-002
- Gathers the user input.
- Sends the color values to the microprocessor, which open the valves.

Color Sensor

- ➤ Model: Avango adjd color light sensor
- Senses the RGB values of the surfaces
- Operating voltage : 2.5 v
- Connected to Arduino UNO

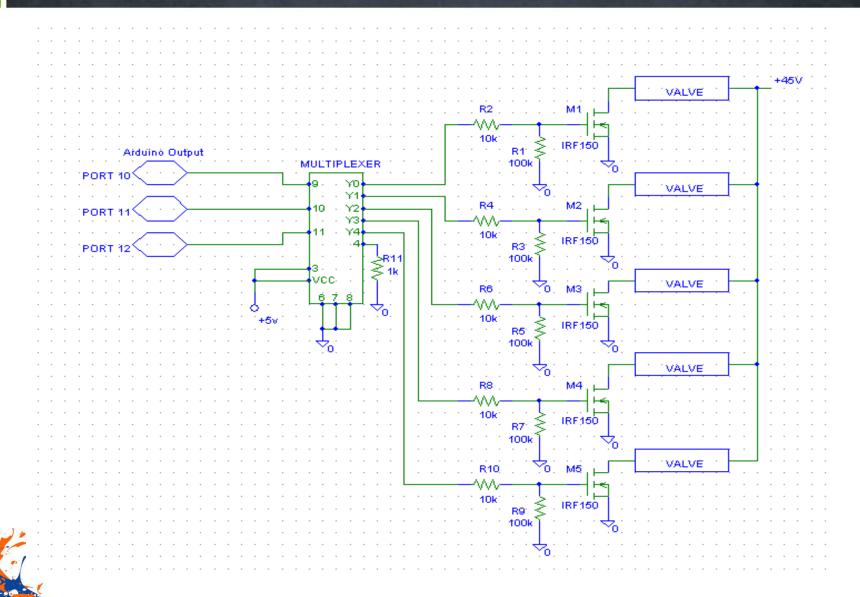
Receiver

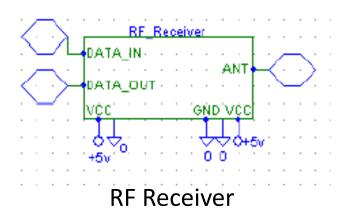
- ➤ Model: WRL-10533
- Operating voltage: 5 Volts
- ➤ Baud rate 4800 bps
- > Range: 500 ft

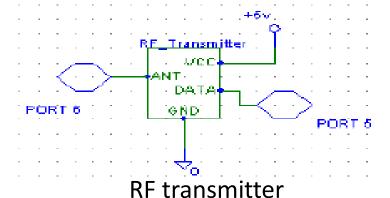
Transmitter

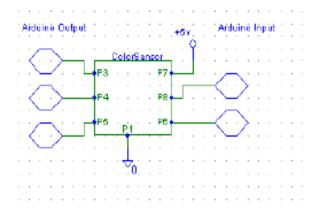
- ➤ Model: WRL-08945
- > Transmission frequency: 315 MHz
- Operating voltage: 5 VOLTS
- ➤ Baud rate 4800 bps
- > Range 500 ft

Power Source


- Connected five 9 volts batteries in series
- Powers the valves, and Microprocessors
- Portable

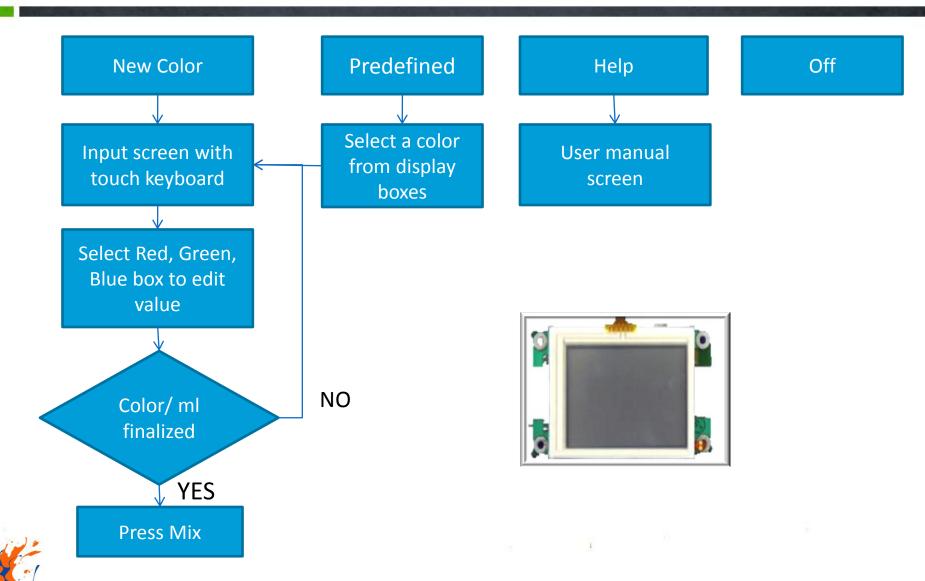

Valve Control Circuit



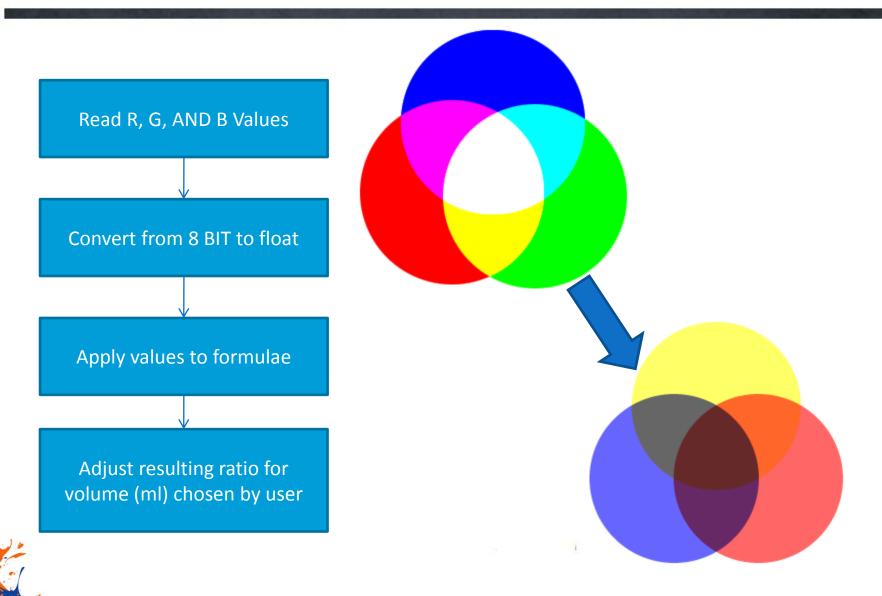


Circuit Design of Wireless

Color sensor



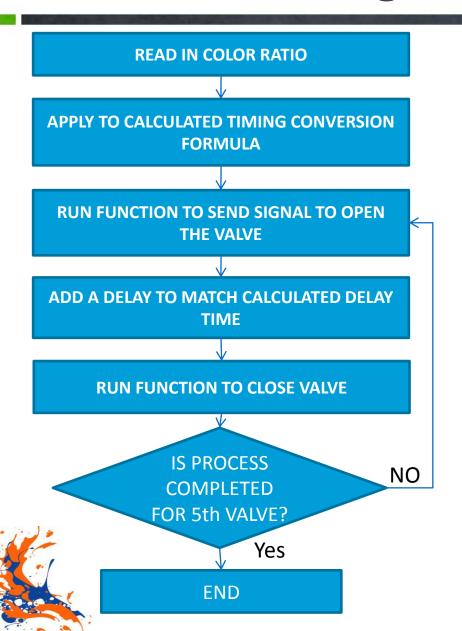
Software


Touch Screen User Interface

RGB Conversion

RGB Conversion

Formula


> RGB is additive.

- > Everything we see is subtractive.
- Need to change RGB into a new form for the paints.
- Mixture of RYB conversion with Black and White for the contrast.

Valve Control Algorithm

Wireless Algorithm

Transmitter

- RGB values are read from the sensor.
- ➤ Values are compressed into a single long integer.
 - \rightarrow Final Value = R + (G x 255) + (B x 255²)
- Checksum is made based on the final value
- Checksum and the value are sent using the RF transmitter

Wireless Algorithm

Receiver

- > System is constantly checking for a wireless signal until the correct start value is received.
- Checksum can be used to make sure of the validity of the values.
- Final received value is decrypted.
 - ightharpoonup R = (v%255)
 - \rightarrow G = (v/255) % 255
 - \rightarrow B = (v/255²) % 255

Business Aspect

Prototype Expenditures

Budget

> Estimated budget: \$1400

> Actual budget: \$670

Primary Source of funding

- > ESSEF \$500
- > FASM Solutions \$170

Cost breakdown

FASM Solutions	lutions											
Vancouver, Canada												
Product ID	Description	Seller	CA	Price	Quantity	Tax		Shi	Shipping		Total	
Touchscreen	TFT Resistive Touch Screen	ESSEF Loan		-	1		-		-		-	
Ardvino Uno	Microprocessing Unit	CanaKit	S	29.95	1	\$	3.59		-	S	33.54	
Plastic Baster	Paint syringe for trials	Dollar Store SFU	s	1.25	3		-		-		-	
Sewing organizer	Plastic holder to test paints	Dollar Store SFU	\$	1.50	1	\$	0.63		-	\$	5.88	
Gravity Cups	Paint Holders	NTXTods.com	s	9.79	5		-	S	37.25	S	86.20	
Battery	9V Attentine	R.P Electronics	s	3.29	1	\$	0.39			S	3.68	
DBM-09	9 PIN D-SUB Male	R.P Electronics	\$	1.35	1		-		-		-	
US-928	Mini USB 2.0 5POS Conn	R.P Electronics	S	3.95	1		-		-		-	
310-645	2.1 Plug - 9V Clip	R.P Electronics	S	3.30	1		-		-		-	
310-513	2.1 Jack - 1.3x3.5 Plug	R.P Electronics	s	2.60	1		-		_		-	
110-305-5	LED 3MM GRN 4-18MCD	R.P Electronics	S	1.69	1		-		-		-	
110-504-5	LED 5MM YLW 4-30MCD	R.P Electronics	s	1.69	1		-		-		-	
110-502-5	LED 5MM RED 1.8-5.0 MCD	R.P Efectionics	3	1.49	1		-		-		-	
30-11410	TACTILE Switch 5Pcs	R.P Electronics	\$	4.20	1		-				-	
425-8	Desolder Braid 2.9mm 1.5M	R.P Electronics	s	2.89	1		-		-		-	
SR-360	Solder Pack Lead Free SIL	R.P Electronics	\$	3.70	1	S	3.22		-	\$	30.08	
Paints	Water based paints	Home Depot	S	13.97	5	\$	9.79		-	\$	79.64	
Valve	3/8" Solenoid valve	Ebay	\$	9.95	5		-	S	26.95	S	76.70	
Avago sensor	Color light sensor	Sparkfun	S	4.95	1		-		-		-	
Header kit	Arduino Stackable	Sparkfun	S	1.50	2		-		-		-	
Shield	Ardvino Protoshield kit	Sparkfun	s	16.95	1		-	s	26.79	s	51.69	
Sensor mount	Color sensor mount kit	Sparkfun	\$	14.95	1		-			s	40.00	
Wood	Hayman Panels 24x48"	RONA	\$	4.96	2	S	1.19		-	\$	11.11	
Mounting Tape	Tape	Home Depot	s	2.98	1	s	0.36		-	S	3.34	
Nails	Nails set	Home Depot	s	4.19	1		-		-		-	
d21	d21	Home Depot	s	1.50	2		-		-		-	
Lumber	Lumber cut	Home Depot	\$	2.00	1	s	1.10		-	\$	10.29	
Total Inventory Value			\$ 2	260.25	65	\$	37.30	S	90.99	\$	670	

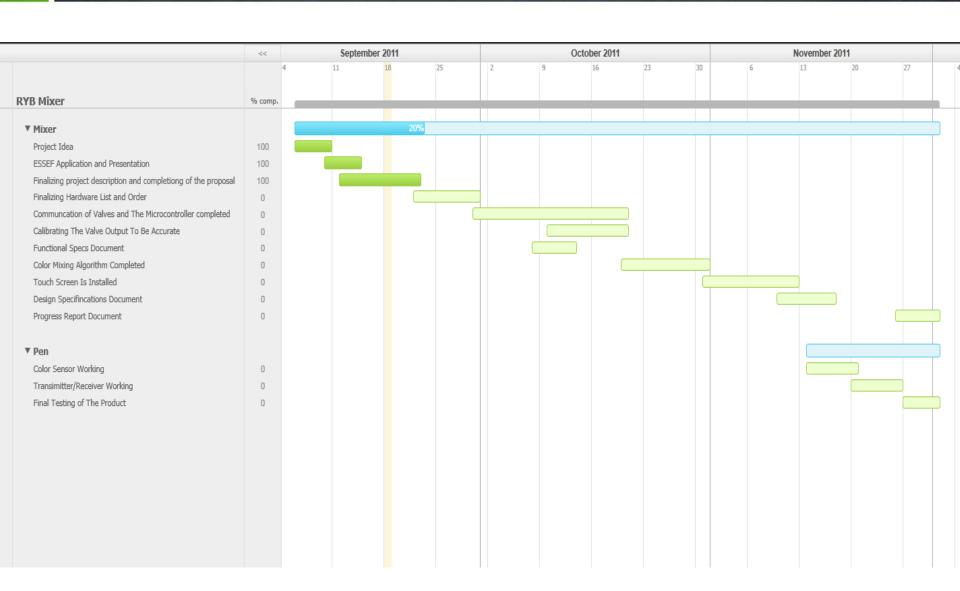
Complications & Difficulties

Complications

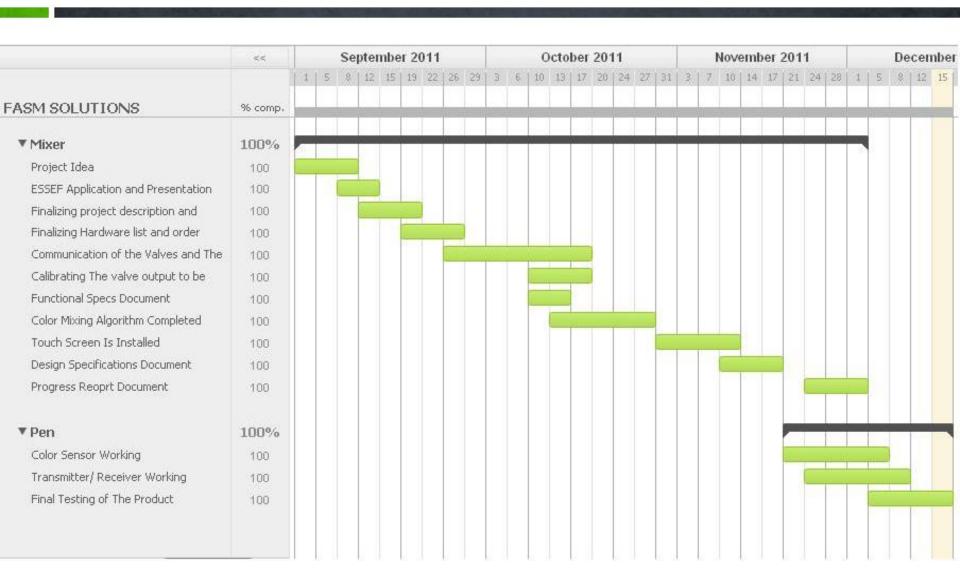
- Touch screen can break if the device falls.
- May have to use color thinner to clean the values.
- Color sensor may malfunction due to settled dust.
- Microprocessors can burn out.
- Batteries have to be replaced.
 - Paint can dry inside the gravity cups if they are left open.

Difficulties

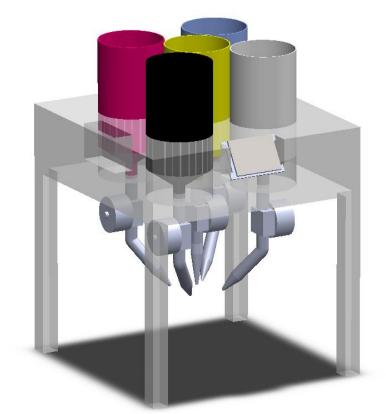
- Wireless communication
- Color code conversion.
- Solenoid valve timing and accuracy.
- > System cleaning.
- Color matching.
- Color sensor error .



Timeline


Predicted Timeline

Actual Timeline


Future Development

Future Development

- Fiberglass body.
- > Finished wireless pen.
- Improving accuracy of color mixing procedure.
- Case for the primary circuit.
- Product logo on the RGB paint mixer.
- More durable power supply.
 - Better mixing container.

Conclusion

Learning Experiences

Professionalism

- Planning and scheduling
- Time management
- > Team work
- Communication
- Improved research skills
- Product integration and troubleshooting

Business

- Manufacturer contacts
- Budgeting
- Product selection and price matching



Conclusion

- Mixing unit can receive the RGB values sent by the wireless pen.
- Touch screen can receive the user input and send RGB values to the microprocessor.
- Microprocessor can open the valves and dispense the desired color.
- No leakage in the system.
- > LCD displays the paint that is currently dispensing.
- Batteries can provide enough power to run the system
- System meets our safety requirements

Acknowledgments

We Would like to thank

- > Dr. Andrew Rawicz
- Mr. Mike Sjoerdsma
- Mr. Fred Heap
- **ESSEF** (Funding)
- Mr. Kousha Talebian

Questions?

Thank You