

Assisted Toilet Seat

Simon Fraser University 8888 University Drive Burnaby, Canada

A presentation for ENSC 440/305 April 14, 2011

Presentation Agenda

Slide	Section
3	IntroductionGroup MembersBackground
11	System DesignLift SystemControlsSeat
19	Business AspectBudget and FinancingSchedulingCurrent Competitors
27	SummaryLearning outcomesFuture PlansConclusionAcknowledgement

Introduction

ErgoForm Design Team Members

Introduction

Nick Cheng (CEO)

- User Interface
- Documentation

Abbas Jafari (CFO)

- Lift Implementation
- Lift Design

ErgoForm Design Team Members

Introduction

Faraz Khan (VP Operations)

- Electrical Design
- Electrical Implementation

Ashkan Mirnabavi (CTO)

- Seat Design
- Seat Implementation

ErgoForm Design Team Members

Introduction

Feifan Jiang (VP QA)

- Lift Design
- Lift implementation

Motivation

Introduction

Problem:

 Due to injury or illness, one's range of motion becomes limited and thus using the toilet becomes very difficult.

Solution:

 A device that allows one to be raised and lowered onto the toilet.

Motivation

Introduction

Who can benefit from our device:

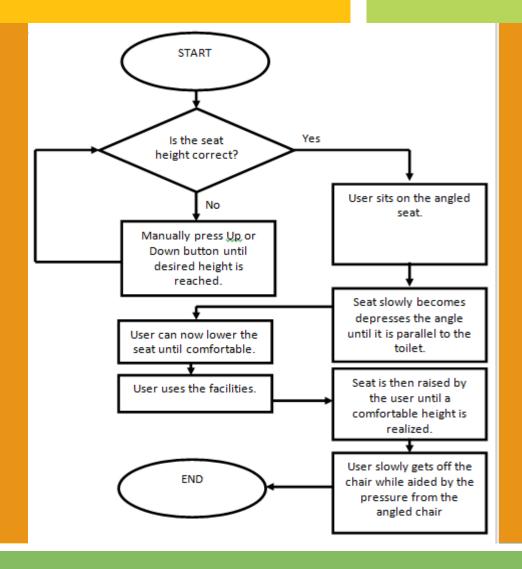
- Lost upper/low/lower body strength
- Lost of mobility due to:
 - 1. Muscular dystrophy
 - 2. Lou Gehrig's disease
 - 3. Degenerative joint disease (Arthritis)
 - 4. Parkinson's disease

Goal

Introduction

- Affordable
- Simple Installation
- Intuitive User Interface
- Universal Design

Our Product


Introduction

- The ability to control easily
- Install anywhere, using existing facilities
- Simplified design

System Overview

System Design

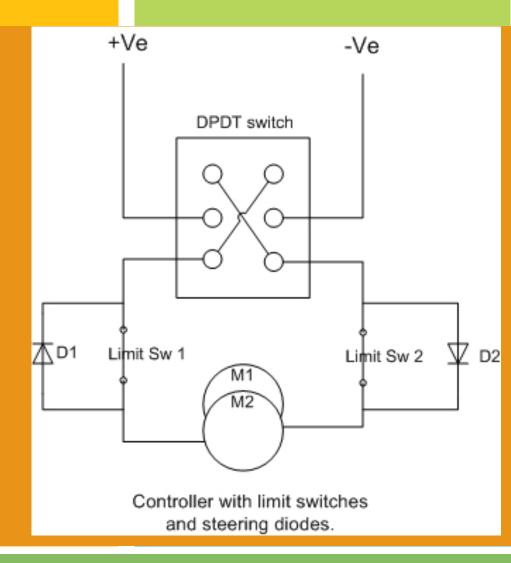
System Design

We Used:

• 2 x 1000lb (453.59 Kg)

Motors ratings:

- 12 volts
- <10 amps (runs at 2 A with a starting current of 2.4 A each)



The Lift

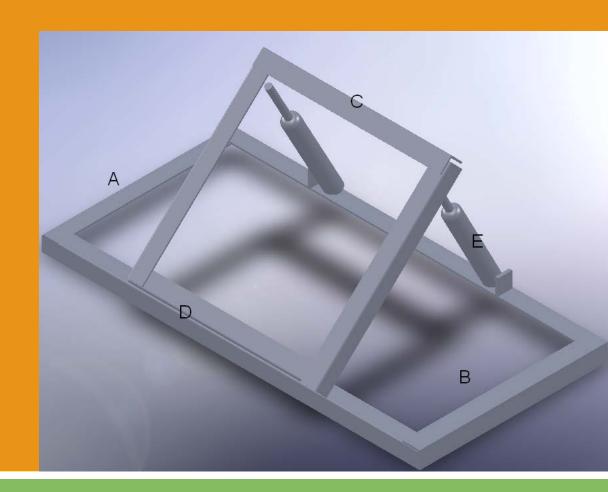
System Design

 Limit Switches integrated into the jack assembly

The Controller

System Design

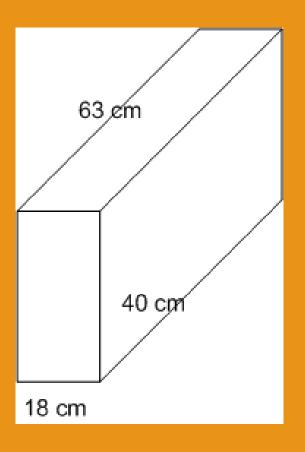
- Simple Design
- Intuitive controls
- One switch 3 position
- Ideal placement
- Allows for grabbing the handles



The Seat

System Design

- The Need
- For assisting in sitting and getting up
- Implementation
- Gas charged supports
- Mounted on angled iron



The Jack Housing

System Design

The Need

- Protect the jacks
- Reduce noise
- Provides a sturdy base
- Keeps dry and out of the way

The Seating Assembly

System Design

The Need

- Allows comfortable sitting
- Back rest
- Handles
- Manually adjustable height modules

Budget

Business Aspect

Primary Source of funding

• ESSEF - \$800

Proposed Budget

Equipment	Cost		
Fingerprint reader (Control)	\$90		
Linear Actuators (Motors)	\$400		
Power supply	\$100		
Microcontroller	\$140		
Construction materials	\$100		
15% Contingency Cost	\$150		
Total	\$980		

Actual Budget

Equipment	Cost		
Control	\$50		
DC Motors	\$180		
Power supply	\$0		
Construction materials	\$368		
Miscellaneous Cost	\$20		
Total	\$678		

Timeline

Business Aspect

Number	Task	Start	End	Duration	2011			
					January	February	March	April
1	Project Planning	1/8/2011	1/24/2011	10				
2	Research/Brainstorm	1/8/2011	4/6/2011	59				
3	Project Proposal	1/8/2011	2/2/2011	17				
4	Functional Specification	1/8/2011	2/24/2011	31				
5	Ordering of Parts/Hardware	1/26/2011	2/11/2011	13				
6	Progress Report Presentation	2/4/2011	2/16/2011	8				
7	Design Specification	2/16/2011	2/25/2011	7				
8	Assembly of Modules	2/16/2011	3/30/2011	29				
9	Actuators Working	2/2/2011	2/28/2011	17				
10	Software Developed for MCP	2/2/2011	2/28/2011	17				
11	Mechanical System Designed	2/2/2011	3/15/2011	28				
12	Integration/Prototype Testing	3/2/2011	4/1/2011	22				
13	Debugging	2/1/2011	4/1/2011	41		- 7		
14	Post-Mortem Report	3/18/2011	4/15/2011	21				
15	Project Presentation	4/12/2011	4/15/2011	4				
16	Documentation	1/1/2011	4/15/2011	71				

Market Analysis

Business Aspect

Primary users of assisted toilets

- The elderly
- Persons with disabilities

Primary locations

- Hospitals
- Care homes
- Personal homes

Competition

Business Aspect

Uplift Commode Assist

Advantages

- Small profile
- Portable
- No need for electricity

Disadvantages

- Height not adjustable
- Many interlocks/latches

Competition

Business Aspect

TOTO electric raise toilet

Advantages

- Automated
- Built-in bidet
- Seat tilts

Disadvantage

- Height not adjustable
- Overly complicated
- Maintenance

Competition

Business Aspect

Toilet seat accessories

Advantages

- Simple to install
- Cheap
- Many combinations

Disadvantages

- Serves specific function
- Fix height
- Fixed seat

Our Product

Business Aspect

The Assisted Toilet Seat

Advantages

- Simple controls
- Simple to install
- Wide verity of users possible
- Adjustable height
- Angled seat

Disadvantages

- Profile
- Horizontal rocking
- Motor Noise

Summary

Learning Outcomes

Summary

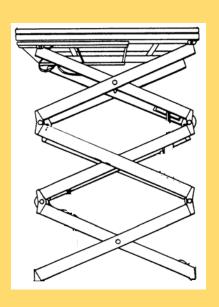
Professionalism

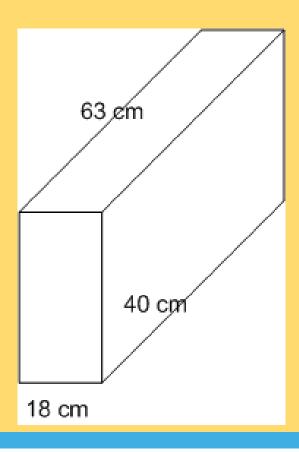
- Planning and Scheduling
- Teamwork
- Communications

Business

- Budgeting
- Part Procurement

Troubleshooting and project integration


Improved research skills


Future Improvements

Summary

• Smaller profile

Future Improvements

Summary

- Reduce horizontal rocking
- Quieter lifting mechanism
- Smaller power supply
- Uni-body construction

Conclusion

Summary

- Can lift and lower a person
- Can control the device
- Meets our safety requirements

Acknowledgements

Summary

ESSEF (Funding)

SFU Faculty of Engineering Science

- Mr. Fred Heap
- Mr. Ali Ostadfar
- Dr. Andrew Rawicz
- Mike Sjoerdsma
- Priyanka Deshmukh

Mr. Louis Capalbo (Materials Support)

