
July 11, 2021

Dr. Craig Scratchley
School of Engineering Science
Simon Fraser University
Burnaby, British Columbia
V5A 1S6

Re: ENSC 405W Design Specification for the Sheet Music Transcriber by HappyJam

Dear Dr. Scratchley,

As per the ENSC 405W Capstone A course Instructions, please find attached to this
letter the design specifications for the SMT (Sheet Music Transcriber) by HappyJam.
The SMT takes in an audio sample of music played on any instrument or a small group
of instruments and converts the music to a score ready to be played or further edited by
a musician.

The document below covers the outline and specifications for our proposed product.
The specifications are divided into sections and releases for a clear description of
different subsystems and for the timescale these systems will be developed across.
These sections include the algorithmic design, user interface design, program data
management design, and other design decisions.

HappyJam is a multinational, diverse, and multidisciplinary team of passionate senior
engineering students: Computer Engineers Matthew Marinets, Polina Bychkova, Haoran
Hu, and Avital Vetshchaizer; System Engineer Jaskirat Arora; and Electronics Engineer
Akaash Parajulee.

Thank you very much for your time and consideration. We truly appreciate your concern
and time investment. Please let us know if you have any questions or concerns. You
could contact our Chief Communications Officer Polina Bychkova anytime at
pbychkov@sfu.ca.

Regards,

Matthew Marinets
Chief Executive Officer
HappyJam

Design Specification by HappyJam

Design Specification for The Sheet Music
Transcriber

The Music Transcriber by HappyJam

Company 1

Authors:

Matthew Marinets (301311930)
Akaash Parajulee (301308798)
Polina Bychkova (301269789)

Avital Vetshchaizer (301301019)
Jaskirat Arora (301319559)

Haoran Hu (301350932)

1

Design Specification by HappyJam

Abstract
This document outlines the design specifications of the Sheet Music Transcriber (SMT)
as designed by HappyJam. The purpose of the product is to provide an analysis and
visualization tool for music recordings to convert them into piano roll and sheet music
formats. Design possibilities and decisions are outlined and justified for algorithms,
software architecture, user interface, and possible artificial intelligence components.
Supporting test plans are also included to ensure implementation satisfies design
requirements.

2

Design Specification by HappyJam

Change Log

Table 1: Change Log

Date Version Notes

2021-07-09 1 Completed first version

3

Design Specification by HappyJam

Table of Contents
Abstract 2

Change Log 3

Table of Contents 4

List of Tables 7

List of Figures 8

Glossary 10

1 Introduction 12
1.1 Scope 13
1.2 Design Item Identification 13

2 System Overview 14

3 Algorithm Design 16
3.1 Spectrogram Generation 16

3.1.1 Window Size 16
3.1.2 Window Function 17
3.1.3 Spectrogram Sharpening 20

3.2 POI Identification 21
3.2.1 Power Thresholding 22
3.2.2 Frequency-Axis Peakfinding 23
3.2.3 Onset Detection with Time-Axis Peakfinding 24
3.2.4 Wide-Peak Detection with a Modified Hough Transform 26
3.2.5 Full Spectrum Identification of Closed Hi-Hat Notes 28

3.3 Pitch Mapping 29
3.3.1 Logarithmic Mapping of POIs to Pitch 30

4 Software Design — Program State Management 31
4.1 Implementation Frameworks 31

4.1.1 Qt Framework 31
4.1.2 Project Layout Structure 32
4.1.3 Qt Event framework 33

4.2 Data management 34
4.2.1 User Adjustable Parameter Management 34
4.2.2 User Input Raw Music Data Management 35
4.2.3 Algorithm Post-Processed Data Management 36
4.2.4 Saving and Loading 36

4

Design Specification by HappyJam

5 Software Design — User Interface 38
5.1 Use Cases 39
5.2 Theme 41
5.3 Structure 42

6 Conclusion 45

7 References 46

Appendix A - Test Plan 48
A.1 Algorithm Testing 48
A.2 Project Manager Testing 50

Appendix B - Supporting Design Options 52
B.1 Algorithm Design Options 52

B.1.1 Window Function Options 52
B.1.2 POI Identification Alternatives 52
B.1.3 Onset Detection Alternatives 54
B.1.4 Note Mapping Enhancements 54

B.2 Technical Stack Selection 57
B.2.1 Implicit Requirements 57

B.2.1.1 Performance 57
B.2.1.2 Syntax complexity 57
B.2.1.3 Third-party and community support 57
B.2.1.4 Integrated development environment support and dev tooling 58
B.2.1.5 Cross Platform Compatibility 58
B.2.1.6 Software Distribution and Packaging 58

B.2.2 UI frameworks overview 58
B.2.3 Stack Comparison Matrix 60

Appendix C - User Interface and Appearance 63
C.1 Introduction 63

C.1.1 Purpose 64
C.1.2 Scope 64

C.2 Audience and User Analysis 64
C.3 User Interface Analysis 64

C.3.1 Visibility 65
C.3.2 Feedback 65
C.3.3 Constraints 65
C.3.4 Mapping 66
C.3.5 Consistency 66

5

Design Specification by HappyJam

C.3.6 Affordance 66
C.4 Engineering Standards 67
C.5 Audience Research 68

C.5.1 User Profile 1 68
C.5.2 User Profile 2 69
C.5.3 User Profile 3 70

C.6 Testing 72
C.7 Graphical Representation 73
C.8 Conclusion 75
C.9 References 76

6

Design Specification by HappyJam

List of Tables

Table 1: Change Log 3

Table 3.1.1 — Design Items Governing the Spectrogram Window Size 17
Table 3.1.2 — Design Items Governing the Spectrogram Window Function 20
Table 3.1.3 — Design Items Governing Spectrogram Sharpening 21
Table 3.2.1 — Design Items Governing the Power Thresholding Algorithm 23
Table 3.2.2 — Design Items Governing Frequency-Axis Peakfinding 24
Table 3.2.3 — Design Items Governing Onset Detection Hints 26
Table 3.2.4 — Design Items Governing Identification of Drum Hits 28
Table 3.2.5 — Design Items Governing Identification of Hi-Hat Hits 29
Table 3.3.1 — Design Items Governing Mapping POIs to Pitch 30

Table 4.1.1 — Design Items Governing the UI Framework 31
Table 4.1.2 — Design Items Governing project layout structure 33
Table 4.2.1 — Design Items Governing User Adjustable Parameters 35
Table 4.2.2 — Design Items Governing User Input Music Data 35
Table 4.2.3 — Design Items Governing Post-Processed Data 36
Table 4.2.4 — Design Items Governing Project Saving and Loading 36

Table 5.1 — Design Items Governing UI Use Cases 39

Table A.1.1 — General SMT Algorithmic Functionality Testing Plan 48
Table A.1.2 — Single Instrument Testing Plan 48
Table A.1.3 — Dual Instrument Testing Plan 49
Table A.1.4 — Multi-Instrument Testing Plan 50
Table A.2.1 — Project Manager Testing Plan 50

Table B.2.2.1 — Base Design Specification Table for the UI Framework 59
Table B.2.2.2 — Summary of Design Specification of the above frameworks 60
Table B.2.3.1 — Design Requirements that are fulfilled with the stack choice 61
Table B.2.3.2 — Stack Design Options 62
Table B.2.3.3 — Comparison Summary 63

Table C.1 — The Music Transcriber UI Goals 64
Table C.4.1 — Engineering Standards 68
Table C.5.1 — Michael’s Q&A 69

7

Design Specification by HappyJam

Table C.5.2 — Jane’s Q&A 71
Table C.5.3 — Alex’s Q&A 72
Table C.6.1 — UI Testing Plan 72

8

Design Specification by HappyJam

List of Figures
Figure 1.1 — An information flow diagram of what the SMT should accomplish 13

Figure 2.1 — A hierarchical model of the software, showing subsystem interactions 16

Figure 3.1 — Spectrogram of a recording playing middle C on a piano. 17
Figure 3.1.2.1 - The Rectangular window and its Fourier Transform, the sinc function 19
Figure 3.1.2.2 — A frequency spectrum plot of a piece of music created with a
rectangular window function. 19
Figure 3.1.2.3 — A frequency spectrum of the same audio sample created with a Hann
window function. 20
Figure 3.1.2.4 — The Hann window and its Fourier Transform 20
Figure 3.1.3.1 — A prominence kernel. 22
Figure 3.2.1.1 — A close up of a spectrogram generated from Top Gear Track 1, with
pixels above a threshold highlighted in purple. 23
Figure 3.2.2.1 — A close up of a spectrogram generated from Top Gear Track 1, with
frequency-axis peaks highlighted in green. 24
Figure 3.2.3.1 — A close-up of the spectrogram of the Skill Tree Song from the Rogue
Legacy OST with frequency-axis peaks highlighted in green. Note the chord at
frequency bucket 42 has no break when it is played again at time-sample 145. 26
Figure 3.2.3.2 — Close-up of the same spectrogram as Figure 3.2.3.2, this time with
points where the second derivative of power with respect to time is less than -2
highlighted in cyan. 27
Figure 3.2.4.1 Frequency responses of a drum, cymbal, and closed hi-hat 28

Figure 4.1.2: Layout Structure Example 33
Figure 4.1.3 Comparison Summary 35

Figure 5.1 User Interface Framework 39
Figure 5.2.1. Color Palette for UI theme 43
Figure 5.3.1 A scaled graph of the structure of user interface, which can be use as a
reference to Figure 5.1 44
Figure 5.3.2 scheme for menu bar 44
Figure 5.3.3 main windows including sidebar and Central Window, which displays sheet
music, audio waveform, audio spectrum and piano roll 45

Figure B.1.2.1 — An unwanted POI ridge that is part of the same connected region of
interest as the main ridge. Using a per-region maximum detection algorithm would keep
this unwanted ridge from being highlighted as a POI. 54
Figure B.1.3.1 — A thresholded spectrogram with peaks along the time-axis highlighted
in cyan. 55

9

Design Specification by HappyJam

Figure B.1.4.1 — A spectrogram of an acoustic bass playing a note around 73.4 Hz,
showing off the time-smearing with a normal spectrogram. Taken from A Unified Theory
of Time Frequency Reassignment [2] 56
Figure B.1.4.2 — Reassigned spectrogram of an acoustic bass playing a note around
73.4 Hz. Taken from A Unified Theory of Time Frequency Reassignment [2] 57

10

Design Specification by HappyJam

Glossary
12TET
Twelve-tone equal temperament. The standard tuning system in modern Western
music, organizing pitch into twelve equally-spaced tones in every octave. An octave has
a frequency difference of a factor of 2, and hence every tone in a 12TET system will be

times higher than the next-lowest tone.12 2

Chord
A group of notes played at the same time.

FFT
Fast Fourier Transform — a family of algorithms that quickly calculate a Discrete Fourier
Transform by taking advantage of properties of the Fourier Transform and reusing
intermediate values.

Harmonic
A component of a periodic signal or waveform at a particular integer multiple of the
fundamental frequency. The sinusoidal component with the same frequency as the
overall signal is the first harmonic; the component at twice the frequency of the signal
the second harmonic; and so on.

Note
The smallest unit of musical analysis. A note is a pulse of sound with a few properties:

● Timing: when the note is played
● Duration: How long the note lasts
● Pitch: the fundamental frequency of the sound
● Volume: the amplitude of the sound
● Timbre: waveform of the sound; timbre varies with instrument

Pitch
Pitch is the name musicians give to the fundamental frequency of a note. Pitches have
names that loop through [A, A#, B, C, C#, D, D#, E, F, F#, G, G#], sometimes notated
with a number following the pitch symbol to indicate which octave it falls in. Pitch names
are spaced logarithmically, so A4 (440 Hz) is twice as high as A3 an octave below (220
Hz).

POI
Point of Interest. Refers to locations in the spectrogram that may represent part of a
note or a harmonic of a note.

11

Design Specification by HappyJam

Score
A score is a document written in sheet music that describes how to play a song.

Sheet Music
Sheet music is the primary notation used in Western music to describe how to play a
particular part or song.

Spectrogram
A two-dimensional image acquired from an audio sample representing the relative
power carried by across time and frequency axes.

Transcription
The process of writing down music in sheet music notation.

Timbre
Timbre is the quality of a note that differs between instruments, manifesting physically
as a different waveform. As the wave is periodic, timbre may be described as the
relative power of a note’s harmonics — that is, the relative power present in frequencies
around integer multiples of the fundamental frequency.

Tempo
The speed by which a section of the music is played, expressed in beats per minute
(bpm).

12

Design Specification by HappyJam

1 Introduction
Musicians are trained to create music with their instruments, and often sheet music as a
written notation to record and communicate musical information. Performing a piece of
music from its score is a generally straightforward task and can be done in real-time by
a skilled performer. Converting information the other way, transcribing music into a
score, is much more difficult. This process requires repeated listening, trial and error,
and specialized training.

The Sheet Music Transcriber (SMT) is a program that eases the transcription process
by automating the transcription process, generating scores from audio recordings and
providing visualizations for the different stages of analysis.

Figure 1.1 — An information flow diagram of what the SMT should accomplish

13

Design Specification by HappyJam

1.1 Scope
This document specifies design specification items for each subsystem of the Sheet
Music Transcriber, with a preamble including justification and relevant background
information. Design items are stated for the prototype version of SMT currently under
development.

Appendix A additionally includes a testing plan for all design items. Appendix B includes
information on additional design options, including paths not followed and justification
for their exclusion. Appendix C includes design further decisions and justifications
describing the UI.

1.2 Design Item Identification
Each design item is given an identification code in the following format:

D-[Section].[Design item – Elaboration ID]-[Phase]

● [Section] is the section of this document the the design item falls under
● [Design item – Elaboration ID] is a dot-separated list of numbers providing a

unique identification for each design item. Following design items will increment
the first number, with secondary numbers used to elaborate on parent design
items

● [Phase] refers to which release phase the design item is a part of
○ A means the feature is required for alpha
○ B means the feature is required for beta
○ V1 means the feature is required for the first full release

14

Design Specification by HappyJam

2 System Overview
The SMT has three main subsystems to be designed:

● The algorithmic system
● The state manager
● The user interface

The algorithmic system identifies notes and musical properties such as tempo and time
signature. It includes several input parameters which the user may adjust to fine-tune
note detection and identification.

The state manager governs how data is organized and passed between the algorithmic
system and the user interface, maintains state, and saves project setting and progress
to disk. To allow for easier algorithm development and user modification, the system
architecture must be able to dynamically load different algorithms and input parameter
sets, and update the UI and intermediate data in storage to match.

The user interface includes all data input and visualization methods in the SMT,
including audio spectrogram display, data display, and algorithm parameter input
methods.

15

Design Specification by HappyJam

Figure 2.1 — A hierarchical model of the software, showing subsystem
interactions

16

Design Specification by HappyJam

3 Algorithm Design
Automated assistance in identifying notes is one of the key components of the SMT.
The general workflow of the assistance algorithms is to generate a spectrogram from
the audio sample, identify patterns and points of interest within the spectrogram, and
join or divide these points of interest into notes with properties pulled from the
spectrogram.

Figure 3.1 — Spectrogram of a recording playing middle C on a piano.

3.1 Spectrogram Generation
A spectrogram is generated by breaking an audio sample into smaller subsections and
taking the Fourier Transform of those sections with the Fast Fourier Transform. A
two-dimensional image is thus generated, with one axis representing the time at the
center of a window, and the other axis representing the frequency component of that
window. The magnitude at each pixel thus represents the power density at the pixel’s
time and frequency.

3.1.1 Window Size
Window size refers to the number of points used for each subsection’s Fourier
Transform. This generally presents a tradeoff — more points gives better frequency

17

Design Specification by HappyJam

resolution, but consumes more samples and hence gives poorer time resolution. While
there are ways to work around this tradeoff [1] [2], many of our other algorithms run
before these later cleanups.

A core problem in this tradeoff is that our frequency resolution requirements are not
linear — we need better resolution to differentiate bass note pitches compared with
treble note pitches. Note how in figure 3.1, the fundamental representing middle C —
the 40th note on the piano, is only about 50 pixels from the bottom edge of the
spectrogram. This comes about because musical pitches are logarithmically spaced;
lower pitches have much smaller differences in frequency compared with higher pitches.

The two lowest notes on a piano are A0 (27.5 Hz) and A#0 (29.135), with a frequency
difference a little over 1.5 Hz. With a standard sampling rate of 44.1 kHz, it would take

samples2(44100)
(1.5) = 58800

or about 1.3 seconds’ worth of recording to detect that difference. That would
completely eliminate any rhythmic information faster than that at all frequency levels,
which would render most note duration detection impossible.

With some experimentation, we’ve found that a window size of provides213 = 8192
reasonable frequency resolution for most bass notes. To stand with the secondary
purpose of the SMT — giving users visibility into the music and what the algorithms are
doing — we have also decided to give the user the option to adjust this window size for
the algorithm and for the spectrogram display.

Table 3.1.1 — Design Items Governing the Spectrogram Window Size

Design Item ID Description Requirement ID

D-3.1.1.1-A The SMT algorithm will generate a
spectrogram from the input audio sample

R4.5.4-B

D-3.1.1.2-A The spectrogram generator will take input
from the user governing the window size

R4.6-B

D-3.1.1.3-A The spectrogram window size parameter will
default to 8192 samples

-

18

Design Specification by HappyJam

3.1.2 Window Function
A spectrogram is generated by taking the Fourier Transform of only small sections of an
audio sample, but this has a major visibility drawback. Namely, taking these samples
unscaled and ignoring the others is the same as multiplying by a rectangular pulse in
the time domain. By the multiplication – convolution duality property of the Fourier
Transform, this is the same as convolving with in the frequency𝑠𝑖𝑛𝑐(𝑓) = 𝑠𝑖𝑛(π𝑓)

π𝑓

domain. These functions are shown in Figure 3.1.2.1 below.

Figure 3.1.2.1 — The Rectangular window and its Fourier Transform, the sinc function

Convolving with such a spread-out function serves to spread all peaks in the
spectrogram along the frequency axis, and creates a high effective noise baseline.
Notice how in Figure 3.1.2.2, there is a linear fall-off past about 1500 Hz that obscures
many harmonics in that frequency region. Compare that with Figure 3.1.2.3, which
shows the Fourier Transform of the same audio sample but using a window function to
block off that effect.

19

Design Specification by HappyJam

Figure 3.1.2.2 — A frequency spectrum plot of a piece of music created with a
rectangular window function.

Figure 3.1.2.3 — A frequency spectrum of the same audio sample created with a Hann
window function.

A window function is simply a vector of values to multiply the input audio sample values
by before calculating the Fourier Transform. The window function is chosen to have a
Fourier Transform that concentrates power near to prevent smearing peaks along𝑓 = 0
the frequency axis in spectrograms. For example, the Hann window which was used to
generate the spectrum in Figure 3.1.2.3 and Fourier Transform plot in Figure 3.1.2.4
below. It has a bell-curve-like shape, and its Fourier Transform falls off away from 𝑓 = 0
far more rapidly than the sinc function.

Figure 3.1.2.4 — The Hann window and its Fourier Transform

20

Design Specification by HappyJam

There are many other possible window functions to use, but the Hann window in
particular is used in [2] for an algorithm to more precisely place spectrogram pixel
coordinates. As such, we have chosen to use the Hann window when generating the
spectrogram

Table 3.1.2 — Design Items Governing the Spectrogram Window Function

Design Item ID Description Requirement ID

D-3.1.2.1-A The spectrogram generator will use a Hann
window when sampling points

-

3.1.3 Spectrogram Sharpening
Music recordings are generally composed of four kinds of sound:

● Harmonic notes
● Percussive notes
● Distortion
● Noise

Our primary goal in designing the SMT is to identify harmonic notes. Hence, we wish to
have a simple way to filter out the other kinds of noise while leaving harmonic notes
easy to identify.

As previously seen in Figures 3.1, 3.1.2.2, and 3.1.2.3, harmonics tend to show up as
particularly skinny peaks, in contrast with the other kinds of sound which tend to be
wider peaks or even flat baseline noise levels. Hence, we may try to dampen the
non-harmonic sound with a prominence filter.

A prominence filter simply subtracts the weighted average of the power in the region
around a pixel from that pixel’s value. It may be implemented as a convolution with a
kernel that is the sum of a negative gaussian and a dirac-delta. An example prominence
kernel is shown in Figure 3.1.3.1, where the gaussian has a standard deviation () of 21σ
and the kernel overall has a width of 63. Applying this filter along any axis has a
sharpening effect, attenuating pixels close to peaks while leaving peaks themselves
largely intact.

This filter is simple, but has two parameters that a user may want to control — the width
of the Gaussian and the ratio of the power of the Gaussian compared with the powerσ
of the delta . While we’ve had success experimenting with , this may𝑅 σ = 101, 𝑅 = 1
be a parameter users wish to change. It stands in line with our goal of providing
visibility, and as this is a simple convolution, calculating and displaying the resulting
sharpened spectrogram should be straightforward and fast enough to provide rapid

21

Design Specification by HappyJam

feedback to the user. Hence, we will provide the user with sliders to adjust these
parameters.

Figure 3.1.3.1 — A prominence kernel.

Table 3.1.3 — Design Items Governing Spectrogram Sharpening

Design Item ID Description Requirement ID

D-3.1.3.1-A The spectrogram will be sharpened with a
sharpening kernel defined as the sum of a
negative gaussian and a dirac-delta function,
applied along the frequency axis

-

D-3.1.3.2-A The spectrogram sharpening algorithm will
take input from the user specifying the
standard deviation of the filter’s gaussian
component

R4.6-B

D-3.1.3.3-A The spectrogram sharpening algorithm will
take input from the user specifying the power
ratio between the dirac-delta component and
the gaussian component

R4.6-B

3.2 POI Identification
After applying general processing to all pixels in the spectrogram, it is important to
identify POIs (Points of Interest). These may be possible notes or their harmonics.
While harmonics should not appear in the final score, it is still important to identify them

22

Design Specification by HappyJam

for timbral analysis; that is, to identify what instrument played a note. While most
algorithms outlined in this section deal with detecting harmonic notes, which tend to be
highly concentrated peaks in the frequency domain, we are also interested in detecting
notes played by percussion instruments. As such, this section includes discussion of a
modified Hough Transform algorithm that may detect a different class of POIs
representing percussive notes.

3.2.1 Power Thresholding
The simplest POI identification strategy is to simply filter and compare power at a
spectrogram pixel against a threshold value. When the threshold suits the recording, as
in Figure 3.2.1.1 below, note heads are highlighted with good accuracy and noise is
fairly well-filtered.

However, different recordings will have different background noise levels and different
levels of average power. Hence, there must be some method to adjust this threshold.
One possible method of deciding on the threshold is by placing it at a known percentage
of the spectrogram maximum pixel value. Unfortunately, as we have not tested this
process with a sufficiently large sampling of recordings, we are not entirely confident in
where this threshold may lie. In the name of providing the user visibility and control over
the note detection process, it is also necessary to give the user control over where this
threshold is. As such, the SMT will have a user-controlled input to decide where the POI
power threshold lies.

Figure 3.2.1.1 — A close up of a spectrogram generated from Top Gear Track 1, with
pixels above a threshold highlighted in purple.

23

Design Specification by HappyJam

Table 3.2.1 — Design Items Governing the Power Thresholding Algorithm

Design Item ID Description Requirement ID

D-3.2.1.1-A The POI identification algorithm will compare
spectrogram pixel values to a threshold to
obtain a more constrained list of POI
candidates.

R3.1-A

D-3.2.1.2-A The POI threshold will take input from the
user controlling what exactly that threshold is.

R4.6-B

3.2.2 Frequency-Axis Peakfinding
Once POI candidates are determined through thresholding, we must further filter the
points to obtain a list representative of note pitch information. As pitch is mapped from
frequency, this is the same as finding the most representative frequency coordinate
within the spectrogram of a thresholded region. However, as seen in Figure 3.2.1.1,
thresholded regions tend to take up a wide range in the frequency axis. For bass notes,
this wide range can bleed over note boundaries, resulting in POI candidates that can
map to many adjacent pitch identifications.

To get around this, the SMT looks for the most representative point along the frequency
axis within a thresholded region. This is most easily accomplished with peak-finding —
simply tagging points that have a greater magnitude than their adjacents. When
highlighted, this has the effect of creating horizontal lines in the spectrogram
representing power ridges along the frequency axis, as seen in Figure 3.2.2.1 below.

Figure 3.2.2.1 — A close up of a spectrogram generated from Top Gear Track 1, with
frequency-axis peaks highlighted in green.

24

Design Specification by HappyJam

This already generates a somewhat suitable list of POIs, though there are some
problems left to be resolved. First, and visible in Figure 3.2.2.1, are interference ridges;
ridges that are close to each other diagonally tend to curve toward each other in
diagonal patterns. Second, secondary ridges are detected running parallel to primary
ridges; these come about due to the window function’s Fourier Transform generally
having a secondary peak on either side of the primary peak, which is then copied into
the spectrogram due to convolution–multiplication duality. Third, some singular noise
points are propagated from the thresholding stage into single-point ridges in the
peakfinding stage. Additional filtering must be done to counter these effects

However, taking these points as our POI candidates already provides a solid baseline
for note detection. Noise and secondary ridges will often map to the same pitch as a
parent ridge, or will create a POI in the pitch domain that only lasts a single unit of time
and is thus easily filtered. Additionally, the detection of diagonal ridges in addition to
horizontal ridges leaves the future possibility of detecting and representing notes that
change in pitch over time. This may occur with certain string instruments, such as guitar
or violin, which can bend a string or slide along a string while playing on it to smoothly
vary pitch. It also happens in electronic music, which may use FM modulation to create
a unique sound.

Table 3.2.2 — Design Items Governing Frequency-Axis Peakfinding

Design Item ID Description Requirement ID

D-3.2.2.1-A The POI identification algorithm will detect
peaks along the frequency axis within the
thresholded spectrogram to be included as
POIs

R3.3-A

D-3.2.2.2-B The POI identification algorithm will filter ridges
that are too short

R3.1-A

D-3.2.2.3-B The POI identification algorithm will discount
ridges that are in the expected region of
secondary ridges to ridges with higher power

R3.1-A

D-3.2.2.4-V1 The POI identification algorithm may recognize
diagonal ridges as part of FM-modulated notes

R3.1-A

3.2.3 Onset Detection with Time-Axis Peakfinding
POIs as identified with frequency-axis peakfinding cannot be naively mapped straight to
notes while still detecting repeated notes at the same frequency. Observe, for example,

25

Design Specification by HappyJam

Figure 3.2.3.1, where a chord is played repeatedly and allowed to ring out long enough
to bleed into the next time the chord is played. With a naive frequency-ridge-to-note
mapping, this would be identified as a single chord held for the combined duration of
both real chords in the audio sample.

Figure 3.2.3.1 — A close-up of the spectrogram of the Skill Tree Song from the Rogue
Legacy OST with frequency-axis peaks highlighted in green. Note the chord at
frequency bucket 42 has no break when it is played again at time-sample 145.

To give downstream algorithms a hint that the single frequency ridge is composed of
multiple notes, the SMT algorithm must have some kind of onset detection. A simple
solution to detect likely onset points is to check the downward curvature of the power
when moving along the time-axis. A sharp downward curve in power over time indicates
that a POI is rapidly beginning to decay, which is most common at the beginning of a
plucked or percussive note. Figure 3.2.3.2 shows points in the same spectrogram as
Figure 3.2.3.1 where this downward curvature is below -2. Observe that these points
are most common around the beginning of notes.

This onset detection method requires another threshold parameter, which the user may
want to adjust. The threshold of -2 used in figure 3.2.3.2 below works fairly well, and so
we will have that as a default. This parameter may not be necessary for alternative
onset-detection algorithms which are highlighted in Appendix B, section B.1.3.

26

Design Specification by HappyJam

Figure 3.2.3.2 — Close-up of the same spectrogram as Figure 3.2.3.2, this time with
points where the second derivative of power with respect to time is less than -2

highlighted in cyan.

These onset points may be used as a hint in downstream algorithms for dividing
frequency ridges into multiple notes.

Table 3.2.3 — Design Items Governing Onset Detection Hints

Design Item ID Description Requirement ID

D-3.2.3.1-A The onset detection algorithm will take the
second derivative of the power spectrogram
along the time axis and tag all those pixels
with a resulting magnitude less than a
threshold value as onset candidates

R3.1.1-A,
R3.1.3-B

D-3.2.3.2-A The onset detection algorithm will take an
input from the user governing what curvature
threshold to use for onset detection

R4.6-B

D-3.2.3.3-A The onset detection algorithm will aggregate
onset candidate pixels into a most likely onset
instant

-

3.2.4 Wide-Peak Detection with a Modified Hough Transform
Detection of percussive notes in a portion of music is of particular interest because the
timbre of these instruments can be quite unique. In a standard drum kit, there are
typically 5 drums and 3 cymbals. The drums exhibit a different frequency response from
other instruments, with the logarithmic response on a graph resembling a normal

27

Design Specification by HappyJam

distribution. Cymbals (with the exception of a closed hi-hat) have a timbral profile that is
typical to other instruments, with a fundamental frequency and certain overtones that
can be identified.
The major exception is the hi-hat. A closed hi-hat has a frequency response similar to
that of white noise, producing frequency components across it’s spectrum. Below are
some examples of a typical frequency response from a drum, cymbal, and hi-hat.

Figure 3.2.4.1 Frequency responses of a drum, cymbal, and closed hi-hat.

Because drums can be tuned for different frequencies, and the recording environment
can influence the frequency captured in the audio sample, a more complex method for
detection is needed. A useful method for finding shapes in an image is through the use
of the Hough transform. This transform identifies primitive shapes within an image by
summing the probabilities of the existence of all possible primitives existing on that
particular pixel. While our application does not require the original Hough transform,

28

Design Specification by HappyJam

applying the concepts to the frequency response in one instance of time can help us
identify a percussive note.

In our particular application, the modified Hough transform is applied looking for a
normal distribution which is a similar shape to the frequency response of a drum at a
particular location along the frequency axis. A matrix representing every reasonable
normal distribution is created. The frequency response at a particular slice of time is
then collected and each data point in that response is compared to each normal
distribution that was outlined before. If the datapoint in question could be a part of a
normal distribution, it adds one to that cell of the matrix. This is done for every data
point and after which there should be a set of cells within the matrix that has a larger
sum than all the others, thus giving us the most likely normal distribution and in turn
giving us the frequency of the note played.

Table 3.2.4 — Design Items Governing Identification of Drum Hits

Design Item ID Description Requirement ID

D-3.2.4.1-B The percussion identification algorithm will be
able to distinguish which notes are percussion
instruments, e.g. Drums, Cymbals, Hi-hats,
etc.

R3.1.5-B,
R3.1.5.2-B

D-3.2.4.2-A The percussion identification algorithm will
use a modified Hough Transform in the
identification of drum notes

R3.1.2-A, R3.3-A

3.2.5 Full Spectrum Identification of Closed Hi-Hat Notes
One type of percussive instrument that can cause a lot of trouble is the closed hi-hat.
This instrument, as shown in figure 3.2.4.1 adds power across the spectrum, almost
similar to white noise. This can cause some of the previously mentioned algorithms to
produce unexpected results. The most obvious problem that can occur is the lifting of
bins that shouldn’t be above the thresholding limit, which can cause other algorithmic
processes to create false positives.

This however, can be very useful in trying to find the beat and tempo of a song. Hi-hat
notes are strong indicators of the beat, or some portion of the beat. Therefore,
identification of hi-hat notes provides a dual purpose, identifying hi-hat notes
themselves and identifying when the beat within a song.

There are two possible methods that are possible to implement for finding hi-hat notes
within a sample. The first method is counting the number of bins that are positive on the

29

Design Specification by HappyJam

frequency axis at each instance of time. If a certain number of bins are positive, then the
whole spectrum at that point in time can be subtracted by the lowest bin, and this
process is repeated until there are fewer than a threshold number of bins that are
positive. This would hopefully filter out enough of the hi-hat to be reasonably processed
by the rest of the algorithms. The threshold used would have to be adjustable by the
user however, as setting the threshold too low can lead to the inadvertent filtering out of
notes.

Another possible method would be to create a timbre profile for hi-hats and identify
when a hi-hat note is present, and thus filter it out according to the timbre profile. This is
the planned method for identification of other instruments. However, there is a problem
in that the spectrum of a closed hi-hat hit, as shown previously, has magnitude across
the spectrum similar to that of noise. Therefore, it can be hard to create a timbre profile
for this instrument. Hard enough that identification using this method could lead to a
very low accuracy during testing.

Table 3.2.5 — Design Items Governing Identification of Hi-Hat Hits

Design Item ID Description Requirement ID

D-3.2.5.1-A The percussion identification algorithm will be
able to Identify hi-hat notes

R3.1.5-B,
R3.1.5.2-B,
R3.2-B

D-3.2.4.2-A The overall algorithm will be able to filter out
hi-hat hits

-

3.3 Pitch Mapping
Once POIs are identified, getting a note’s timing and duration information is simply
collected from the start- and end-points of the POI ridge, but obtaining the note’s pitch is
not so linear.

In the frequency spectrum, the ideal from a processing perspective would be a delta
function indicating exactly where the fundamental pitch of a note would be. However in
reality this is not the case. As mentioned before in 3.2.2, when thresholding to obtain a
POI in the frequency direction, there are multiple bins that will be marked as positive. If
viewed in the log scale, this can cause different POIs to become ambiguous as to which
particular pitch they belong to. To increase the accuracy and clarity for pitch mapping
purposes, there are considerations that must be taken when dealing with the raw data
itself.

30

Design Specification by HappyJam

3.3.1 Logarithmic Mapping of POIs to Pitch
The Discrete Fourier Transform, and by extension the standard spectrogram,
categorizes power in linearly-spaced frequency buckets. However, pitch difference in
music and to a listener operates logarithmically rather than linearly. In Western music
theory, instruments are tuned using 12TET, with 12 tones in an octave equally spaced

such that every tone is time higher in frequency than the next-lowest tone.12 2

Hence, mapping POIs to note pitch involves taking the logarithm of the frequency,
finding the difference from a reference tone, and rounding to the nearest pitch
identification. The standard reference tone is A4, the 49th key on the piano, which has a
fundamental frequency of 440 Hz in concert tuning. Hence, the formula to map
frequency to the index of a pitch would look as such, where 1 represents A0, the lowest
key on the piano:

𝑛 = 12log
2

𝑓
440 𝐻𝑧() + 49

In the interest of giving users visibility into the music and the algorithm’s note
identification process, we have also decided to give users the option to display the
spectrogram with a logarithmic-scale frequency axis to match how pitch perception
actually works.

Table 3.3.1 — Design Items Governing Mapping POIs to Pitch

Design Item ID Description Requirement ID

D-3.3.1.1-A The SMT note detection algorithm will map
POIs to note pitches using a logarithmic
formula

R3.1.2-A

D-3.3.1.2-B The SMT will have an option to display the
spectrogram with a log-scale frequency axis to
match how listeners perceive pitch difference

R4.5.4-B

31

Design Specification by HappyJam

4 Software Design — Program State Management

4.1 Implementation Frameworks

4.1.1 Qt Framework
Qt is a cross platform, event driven framework with a broad list of built-in components
and responsive layout styling support [11]. The Qt Foundation maintains several
flavours of the framework with the main C++ implementation as well as an officially
supported python binding called pyside [11]. Both of these are included within an official
IDE called Qt Creator which comes with plugin support, syntax highlighting, debugger
and a built-in extensive layout designer [11].

Table 4.1.1 — Design Items Governing the UI Framework

Design Item ID Description Requirement ID

D-4.1.1.1-A The SMT UI will be implemented using the Qt
framework

R4.1-A
R4.2-A
R4.1.1-A

32

Design Specification by HappyJam

4.1.2 Project Layout Structure

Figure 4.1.2 — Layout Structure Example

Figure 4.1.2, provides an example of the layout structure that is implemented within our
project. The layout follows a tree like structure which is crucial for providing responsive
positioning [12]. Responsive positioning is required for supporting different form window
sizes as well as successfully adjusting to different screen sizes without compromising
on the overall readability and visibility.

33

Design Specification by HappyJam

Table 4.1.2 Design Items governing project layout structure

Design Item ID Description Requirement ID

D-4.1.2.1-A A user should be able to view program window
on different screen sizes without compromising
on the readability and visibility of the
application

R4.1-A

4.1.3 Qt Event framework
Qt is an event driven framework which means that elements are capable of generating
events that can be handled, based on predefined behaviour. In QT, these events are
referred to as “signals”[7]. Each built-in element class provides a basic set of signals
that can be emitted with various user interactions such as clicking, dragging, focus
acquisition, toggle, etc [7]. Signals must be connected to event handlers which are
called “slots” in Qt terminology, and they are just function definitions that are triggered
by connected signals that execute desired behaviour [7].

As parameters are being applied via UI elements, we will connect the “Apply” button
signal to a slot function that will act as the entry point for executing sound analyses
sub-routines. Assuming that sub-routine is synchronous, we will proceed loading the
results from the intermediate format to the UI presentation elements. Intermediate
format will be further processed by the algorithms and saved to disk to keep processed
output results. The described procedure is illustrated in the Figure 4.1.3 below.

34

Design Specification by HappyJam

Figure 4.1.3 Overall program workflow.
Note: the above diagram uses .wav as an example input file while the program itself is

not limited to this format

4.2 Intermediate Data Properties
There are 3 main types of data that needs to be passed the subsystems in the SMT:
parameters adjusted by the user, raw music data, and the processed data. The whole
project that the user is working on also needs to be able to be saved to the disk in some
format for later use by the user. The performance of this data is integral to the whole
operation of the whole program.

4.2.1 User Adjustable Parameter Management
Parameters being passed from the UI need to be read by the backend. These
parameters need to be saved in a readable format such that the algorithmic system
does not slow down. A bottleneck in this portion of the program would cause the user
experience to be hampered to a large degree, and as such should have very specific
design requirements related to it.

35

Design Specification by HappyJam

Table 4.2.1 Design Items Governing User Adjustable Parameters

Design Item ID Description Requirement ID

D-4.2.1.1-A The SMT backend should extract parameter
values from the UI when values are updated
by the user

-

D-4.2.1.2-A The SMT backend should save these
parameter values in a format that is readable
by the algorithmic subsystem

-

D-4.2.1.3-A The preprocessed music data should be able
to be read quickly by the algorithmic
subsystem

-

4.2.2 User Input Raw Music Data Management
The specifications related to this set portion of data should be fairly simple. An array of
magnitudes with a seperate array listing the relevant metadata of the music file (such as
length, sampling frequency, etc) would be sufficient enough for the algorithmic
sub-system to utilise. One feature that should be in this section however is a processing
stage, converting from different music files to the aforementioned arrays. This will
simplify the algorithmic processing and make for a much easier flow of data. This raw
music data should be easily readable by both the algorithmic subsystem and the UI
subsystem, as this data has to be processed by both. The algorithmic system has to
operate on this data in order to create spectrogram data, detect POIs, and detect the
beat within the music among other things. The UI will have an option to display the
waveform of the music, and thus will need access to the data as well in order to create
the corresponding waveform view should the user choose to view it. This portion of data
should also be very easily readable by both subsystems, otherwise the user experience
will suffer due to a large processing time.

Table 4.2.2 Design Items Governing User Input Music Data

Design Item ID Description Requirement ID

D-4.2.2.1-A The SMT should be able to pre-process
multiple music formats including: WAV, MP3,
FLAC

-

D-4.2.2.2-A The SMT should store the relevant metadata
in a standardized array for the use of both
subsystems

-

36

Design Specification by HappyJam

D-4.2.2.3-A The SMT should store the preprocessed
music data in an array for the use of the both
subsystems

-

D-4.2.2.4-A The preprocessed music data should be able
to be read quickly by both subsystems

-

4.2.3 Algorithm Post-Processed Data Management
This set of data will contain the data processed by the algorithmic subsystem. This data
should be similar to the raw music data provided by the user. This data contains the
spectrogram data, points identified as POIs, and any other processed data. This data
should also be easily readable by both subsystems, as this data needs to be displayed
by the UI subsystem, and the algorithmic subsystem might have to process portions of
this processed data in order to further produce more results.

Table 4.2.3 Design Items Governing Post-Processed Data

Design Item ID Description Requirement ID

D-4.2.3.1-A The SMT should store the relevant metadata in
a standardized array for the use of both
subsystems

-

D-4.2.3.2-A The SMT should store the processed music
data in an array for the use of the both
subsystems

-

D-4.2.3.3-A The processed music data should be able to
be read quickly by both subsystems

-

4.2.4 Saving and Loading
The whole project that a user is working on should be able to be saved for future use by
the user. This save state should not take too long to read from and write to, otherwise
the user experience will suffer. The SMT should also not re-write any user input music
data if possible, as this would lead to a significant increase in processing time.

Table 4.2.4 Design Items Governing Project Saving and Loading

Design Item ID Description Requirement ID

D-4.2.4.1-A The active SMT project should be able to be
written to a user specified location for future
use in the form of a save file

-

37

Design Specification by HappyJam

D-4.2.4.2-A The active SMT project should be able to store
project parameters in the save file

-

D-4.2.4.3-A The active SMT project should be able to store
preprocessed music data in the save file

-

D-4.2.4.4-A The active SMT project should be able to store
processed music data in the save file

-

D-4.2.4.5-A The SMT project state should be able to be
read from a user specified location

-

D-4.2.4.6-A The SMT should be able to read project
parameters from the save file

-

D-4.2.4.7-A The SMT should be able to read preprocessed
music data from the save file

-

D-4.2.4.1.8-A The SMT should be able to read processed
music data from the save file

-

D-4.2.4.1.9-A The SMT should not re-write over existing user
input music data if it has not changed

-

38

Design Specification by HappyJam

5 Software Design — User Interface
The User Interface of SMT is the medium between user and music files (data). Our user
interface design aims to bring users the minimalist, practical and aesthetic visual style.
We are providing a dark theme, which is comfortable for eyes in both bright and dim
environments. We are creating an interactive and intuitive interface: buttons, sliders,
tabs and windows will be responsive and informative; symbols will be used to replace
texts and provide shortcuts for various features. The structure will be clear and
straightforward, functions will be grouped and categorized. We are also implementing
animated widgets, to make our UI appearance more modern and stylish.

The tools used to design and implement the user interface are figma, pyside6, python 3,
Qt designer. Figma is used for concept design. PySide 6 and Qt Designer are used for
graphical component implementation. Python 3 is used for animation widget and toning
for the user interface. The output file (.ui) from Qt Designer can be converted to a
python file (.py) and then can be used to do detailed editing. The UI development will be
splitted into three parts: 1. Menubar and topbar. 2. Left sidebar. 3. Main display.

The aesthetic design of the UI will follow specific colour themes. The symbols will also
follow uniformed patterns. The structure and shortcut design will follow Windows 10
operating system style.

Figure 5.1 User Interface Framework

39

Design Specification by HappyJam

The figure 5.1 above shows the framework for the user interface, where menubar,
sliders and buttons have been added. The figure also shows the option to change
between different views.

5.1 Use Cases
Table 5.1 Design Items Governing UI Use Cases

Design Item ID Description Requirement ID

D-5.1.1-A User should be able to see the program as an
icon as .exe file on Windows 10

-

D-5.1.2-A User should be able to open the software by
double click on the program icon

R4.1-A

D-5.1.2.1-A User should be able to run the program from
console (Windows command prompt)

-

D-5.1.3-A User should be able to use dark theme R4.11-A

D-5.1.4-A User can use the menu bar to manipulate files R4.2-A

D-5.1.4.1-A User can import a file from file system -

D-5.1.4.1.1-A User can find the file by navigating through
the file system with a graphic interface

-

D-5.1.4.1.2-B User can import a MusicXML (.xml) file -

D-5.1.4.1.3-A User can import a mp3 (.mp3) file R4.2.2-B

D-5.1.4.1.4-A User can import a wav (.wav) file R4.2.1-A

D-5.1.4.1.5-B User can import a MIDI (.mid) file R4.2.2-B

D-5.1.4.1.6-B User can import a OGG (.ogg) file R4.2.2-B

D-5.1.4.2-A User can export a file to the file system -

D-5.1.4.2.1-A User can open a window and choose location
to export the file

-

D-5.1.4.2.2-B User can export a MusicXML (.xml) file R4.9-V1

D-5.1.4.2.2.1-B User should be able to specify score
presentation such as title and performer

R4.9.1-V1

40

Design Specification by HappyJam

D-5.1.4.2.3-A User can export a PDF (.pdf) file -

D-5.1.4.2.4-B User can export a MIDI (.mid) file R4.8-B

D-5.1.4.2.4.1-B The user must have an input method to write
track information to an exported MIDI file

R4.8.1-B

D-5.1.4.2.5-A User can export spectrum amplitudes (.csv) -

D-5.1.4.2.6-B User should be able to export certain parts,
filtered by timbre

R4.9.2-V1

D-5.1.4.3-A User should be able to open a previously
saved file

R4.18-B

D-5.1.4.4-A User should be able to save the progress R4.17-B

D-5.1.4.4.1-A User can use shortcut to save the file R4.17-B

D-5.1.4.5-B User should be able get help by searching
keywords

-

D-5.1.5-A User can use the left side panel to adjust
parameters

R4.6-B

D-5.1.5.1-A User should be able to configure thresholds
on what the software considers a note

R4.6.1-B

D-5.1.5.2-B The user should be able to configure the
maximum number of timbres to detect in an
audio sample

R4.6.2-V1

D-5.1.6-A User can use top bar to edit views -

D-5.1.7-A User should be able to save the file directly by
click on the icon in the top bar

-

D-5.1.8-A User can see different views in the central
window

R4.5-A

D-5.1.8.1-B User can see sheet music R4.5.3-B

D-5.1.8.1.1-B User should be able to change the key
signature of displayed sheet music

R4.5.3.1-B

D-5.1.8.1.2-B User should be able to change the base note
duration for the displayed sheet music
between half notes, quarter notes, eighth
notes, or sixteenth notes

R4.5.3.2-B

41

Design Specification by HappyJam

D-5.1.8.2-A User can see waveform view R4.5.1-A

D-5.1.8.3-A User can see the spectrum view R4.5.4-B

D-5.1.8.3.1-B User can see pitch, timing, and duration of
notes on the spectrum view

R4.4-A

D-5.1.8.3.2-B user should be able to place markers with text
annotations on specific points of the
spectrogram

R4.5.4.1-B

D-5.1.8.4-B User can display a piano roll of detected
notes

R4.5.2-B

D-5.1.8.4.1-B User should be able to edit existing notes in
the piano roll view

R4.7-V1

D-5.1.8.5-A User should be able to zoom in and out of the
various views

R4.5.6-A

D-5.1.8.6-A User should be able to label identified timbres R4.10-V1

D-5.1.8.7-A User should be able to close views -

D-5.1.8.8-A User should be able to swap views -

D-5.1.8.9-A User can see explanation when hover over a
interactive component for more than 0.4
second

-

D-5.1.9-A User can stop the software and close the
window

R4.1.1-A

D-5.1.9.1-A User should be able to see a popup window
warning the user when exit

-

D-5.1.9.1.1-A User should be able to disable the popup
window and exit directly

-

D-5.1.10-A User can minimize the window -

D-5.1.11-B User should be able to record from an
external microphone using the program

R4.3-B

42

Design Specification by HappyJam

5.2 Theme
In modern UX (User Experience) and UI (User Interface) design, colour choice becomes
more and more important. Different colours evoke different emotions [5]. After doing
research and experiments, we eventually chose the dark theme with blue tones.
According to the research, blue is considered the most preferred color universal, many
most commonly used apps, such as Microsoft, Twitter, Facebook, Skype, etc [5] [6].
Dark UIs are often associated with power, elegance and mystery, which has become a
formidable trend in recent years[7]. Dark mode is often believed to be able to not only
reduce eye strain but also save battery life under certain circumstances [7].

Figure 5.2.1. Color Palette for UI theme

Figure 5.2.1 above shows a color palette with dark grey as primary color, and blue as
secondary color. In the User Interface, we will follow the color palette shown here. The
primary color is the main color for dark mode and the secondary color is for
functionalities.

5.3 Structure
The functional area has been divided into 3 parts, topbar (includes menubar), sidebar
and central window. Different parts hold different functionalities and features
corresponding to the use cases. Menu Bar is for navigating and modifying the files; top
bar is a shortcut for menu bar’s functionalities; sidebar can be used to adjust the

43

Design Specification by HappyJam

parameters and the central window will be used to display sheet music, audio spectrum,
audio waveform and piano roll.

Figure 5.3.1 A scaled graph of the structure of user interface, which can be use as a
reference to Figure 5.1

Figure 5.3.2 scheme for menu bar.

44

Design Specification by HappyJam

Figure 5.3.3 main windows including sidebar and Central Window, which displays sheet
music, audio waveform, audio spectrum and piano roll.

45

Design Specification by HappyJam

6 Conclusion
This Design Specification Document summarizes the design choices for Sheet Music
Transcriber by HappyJam. The main purpose of our project is to make the task of music
transcription interactive and hassle free for professionals as well as aspiring artists. The
design decisions outlined in this document should offer substantial help in allowing
musicians to analyze music and create scores with far less work than a traditional
manual method. For learner or aspiring musicians, the SMT will help bridge the
knowledge gap needed to make a music score from audio.

The algorithmic system of the SMT will generate a spectrogram using the fourier
transform, identify Points of Interest (POIs), identify any percussion, and find the tempo
of a piece of music. The program state management system will make sure the relevant
data is available to all parts of the system in a format that is computationally efficient.
Furthermore this system will be able to save its state to the disk and read from the disk
to enable a user to save their work and load it at a future time. The User Interface (UI)
will take a clean and minimalist approach, providing the user clarity and ease of use in
order to facilitate a positive user experience. The color palette of this system is chosen
to be pleasing to the eye and the layout will be intuitive for any user who uses the
software.

These design specifications are aimed at creating the best music transcription aid for
any musician to use. HappyJam is fully confident that the SMT will create a seamless
process for any musician, lowering the bar for transcription from that of a tedious task to
that of a fun one. Because in the end, music should be fun.

46

Design Specification by HappyJam

7 References
[1] K. Fitz, “Time-Frequency Analysis,” CERL Sound Group, 15-Jan-2010. [Online].

Available: http://www.cerlsoundgroup.org/Kelly/timefrequency.html. [Accessed:
01-Jul-2021].

[2] K. R. Fitz and S. A. Fulop, “A Unified Theory of Time-Frequency Reassignment,”
arXiv, 30-Sep-2005. [Online]. Available: https://arxiv.org/pdf/0903.3080.pdf.
[Accessed: 01-Jul-2021].

[3] “Window function,” Wikipedia, 08-Jun-2021. [Online]. Available:
https://en.wikipedia.org/wiki/Window_function#A_list_of_window_functions.
[Accessed: 03-Jul-2021].

[4] S. Vaniukov. “Colors in UI Design: A Guide for Creating the Perfect UI”.
UsabilityGeek. [Online]. Available:
https://usabilitygeek.com/colors-in-ui-design-a-guide-for-creating-the-perfect-ui/
[Accessed: 07-Jul-2021].

[5] T. Liu. “How To Use Color In UI Design Wisely to Create A Perfect UI Interface?”.

UX Collective. 17-Oct-2017. [Online]. Available:

https://uxdesign.cc/how-to-use-color-in-ui-design-wisely-to-create-a-perfect-ui-int

erface-2af42f901f4. [Accessed: 03-Jul-2021].

[6] M. PHILIPS. “In the Spotlight: the Principles of Dark UI Design”. [Online].
Available: https://www.toptal.com/designers/ui/dark-ui-design. [Accessed:
03-Jul-2021]

[7] “Signals & Slots: Qt Core 5.15.5,” Signals & Slots | Qt Core 5.15.5. [Online].
Available: https://doc.qt.io/qt-5/signalsandslots.html#signals-and-slots.
[Accessed: 11-Jul-2021].

[8] E. Huang, 5 Programming Language That Produce Code Least Prone to Bugs,
2021. [Online]. Available:
https://edward-huang.com/programming/software-development/2021/03/02/5-pro
gramming-language-that-produce-code-least-prone-to-bugs/#expressiveness.
[Accessed: 11-Jul-2021].

[9] L. Hohmann, in Beyond software architecture: creating and sustaining winning
solutions, Boston: Addison-Wesley, 2008, Chapter 5.

[10] “System call,” Wikipedia, 18-Jun-2021. [Online]. Available:
https://en.wikipedia.org/wiki/System_call#Privileges. [Accessed: 11-Jul-2021].

[11] “About Qt,” About Qt - Qt Wiki. [Online]. Available: https://wiki.qt.io/About_Qt.
[Accessed: 11-Jul-2021].

47

https://usabilitygeek.com/colors-in-ui-design-a-guide-for-creating-the-perfect-ui/
https://uxdesign.cc/how-to-use-color-in-ui-design-wisely-to-create-a-perfect-ui-interface-2af42f901f4
https://uxdesign.cc/how-to-use-color-in-ui-design-wisely-to-create-a-perfect-ui-interface-2af42f901f4
https://www.toptal.com/designers/ui/dark-ui-design

Design Specification by HappyJam

[12] “Layout Management: Qt 4.8,” Layout Management | Qt 4.8. [Online].
Available: https://doc.qt.io/archives/qt-4.8/layout.html. [Accessed: 11-Jul-2021].

48

Design Specification by HappyJam

Appendix A - Test Plan

A.1 Algorithm Testing
Algorithmic testing should align with two overall purposes of our program, identify and
separate notes, and process this information to be usable by the user for adjustments.

Table A.1.1 General SMT Algorithmic Functionality Testing Plan

Testing Item
ID

Description Result Comments

D-A.3.1.1-A The SMT identifies the times at which
an instrument plays a note in an audio
sample

D-A.3.1.2-A The SMT identifies the pitches at
which an instrument plays a note in an
audio sample

D-A.3.1.3-B The SMT identifies the lengths of a
notes played by an instrument in an
audio sample

D-A.3.1.4-B The SMT identifies the tempo of the
sample audio

D-A.3.1.5-B The SMT identifies the relative volume
of a notes played by an instrument in
an audio sample

D-A.3.1.6-V1 The SMT identifies a tempo changes
in the audio sample

D-A.3.1.7-A The SMT algorithm packages data
processed by the algorithm in a format
usable by other portions of the
program and the user

Table A.1.2 Single Instrument Testing Plan

Testing Item
ID

Description Result Comments

D-A.3.2.1-A The SMT identifies and processes
notes from a single instrument audio
sample

49

Design Specification by HappyJam

D-A.3.2.1.1-A The SMT identifies the notes of a piano
audio sample and displays them
accurately

D-A.3.2.1.2-A The SMT identifies the notes of a guitar
audio sample and displays them
accurately

D-A.3.2.1.3-B The SMT identifies the notes of a
drum-set audio sample and displays
them accurately

D-A.3.2.2-A The SMT identifies the overtones of a
single instrument and eliminate them in
an audio sample

D-A.3.2.2.1-A The SMT identifies which instrument is
playing in an audio sample based on a
timbre profile

Table A.1.3 Dual Instrument Testing Plan

Testing Item
ID

Description Result Comments

D-A.3.3.1-B The SMT identifies and processes
notes from two instruments
simultaneously in an audio sample

D-A.3.3.1.1-B The SMT identifies the notes from both
a piano and guitar at the same time in
an audio sample

D-A.3.3.1.2-B The SMT identifies the notes from a
piano and violin at the same time in an
audio sample

D-A.3.3.1.3-B The SMT identifies the notes from a
piano and drum set at the same time in
an audio sample

D-A.3.3.1.3.1
-B

The SMT identifies and filters out any
notes related to percussion that
interferes with note detection of other
instruments

D-A.3.3.1.4-B The SMT identifies which instruments

50

Design Specification by HappyJam

are playing which notes in an audio
sample

D-A.3.3.2-B The SMT identifies and eliminates
overtones of each instrument without
disrupting the note identification of the
other instrument

Table A.1.4 Multi-Instrument Testing Plan

Testing Item
ID

Description Result Comments

D-A.3.3.1-V1 The SMT identifies and processes
notes from multiple instruments
simultaneously in an audio sample

D-A.3.3.1.3.1 The SMT identifies and filters out any
notes related to percussion that
interferes with note detection of other
instruments

D-A.3.3.1.4 The SMT identifies which instruments
are playing which notes in an audio
sample

D-A.3.3.2 The SMT identifies and eliminates
overtones of each instrument without
disrupting the note identification of the
other instruments

A.2 Project Manager Testing

Table A.2.1 Project Manager Test Plan

Testing Item
ID

Description Result Comments

D-A.4.1.1-A The SMT is able to load audio files of
various formats (.wav, .mp3, etc.)

D-A.4.1.2-A The SMT is able to save parameters
from the imported audio file

D-A.4.1.3-A A change in parameter values is
registered by the algorithmic subsystem

51

Design Specification by HappyJam

D-A.4.1.4-A The SMT can save user defined
parameter values

D-A.4.1.5-A The SMT can save post processing
data as a project

D-A.4.1.6-A The SMT can load parameter values
saved as a project

D-A.4.1.7-A The SMT can process data from
imported file

52

Design Specification by HappyJam

Appendix B - Supporting Design Options

B.1 Algorithm Design Options
In the course of developing, prototyping, and researching the note detection algorithms,
we reviewed many alternative options and algorithms.

B.1.1 Window Function Options
Wikipedia lists several commonly used window functions [3], including but not limited to:

● Rectangular window
● Parzen window
● Welch window
● Sine window
● Hann window
● Hamming window
● Blackman window
● Gaussian window

As discussed in section 3.1.2, window functions will have different Fourier Transforms
which will create different magnitudes and locations of artifacts around peaks in the
spectrogram.

During prototyping, we used Hann, Hamming, and Blackman windows with success. All
three worked well thanks to their tight concentration of power around the central lobe of
their Fourier Transforms. We ultimately settled on Hann windows due to its use of
time-frequency reassignment as outlined by K. Fitz and S. Fulop [2]. After having time to
experiment with their interoperability with the time-frequency reassignment algorithm
and modified Hough Transform discussed in section 3.2.4, we may give the user the
option to select a window from any of these.

B.1.2 POI Identification Alternatives
POI identification currently relies on thresholding and peakfinding, which generally
narrow in on regions of interest and specific points respectively. There are alternative
strategies for both phases we have opted not to use.

As outlined in section 3.2.3, it is possible to obtain information from the curvature of the
power in the spectrogram. We use downward curvature along the time-axis to indicate
onset incidence, but downward curvature along the frequency axis could indicate
harmonic peak presence and be seen as a convolutional analog to region of interest
identification. However, downward curvature could also come from noise or from
wide-peak percussive notes. As this method failed to filter these regions, we instead
opted for simple thresholding as the initial phase of POI identification.

53

Design Specification by HappyJam

There are more complicated POI identification algorithms we have considered but have
not fully experimented with, largely due to their complexity. At their core is the idea of
processing each connected region of interest as a separate entity. Doing that enables
algorithms that search for the maximum frequency in the region instead of just
frequency peaks. This offers the potential to reduce detection of unwanted ridges like
we see in Figure B.1.2.1, at the cost of much more computer spent identifying each
connected region and processing it independent of the rest of the image.

Figure B.1.2.1 — An unwanted POI ridge that is part of the same connected region of
interest as the main ridge. Using a per-region maximum detection algorithm would keep

this unwanted ridge from being highlighted as a POI.

Unfortunately, as discussed in section 3.2.1 and shown in Figure 3.2.1.1, regions of
interest often merge together for closely spaced notes. For different pitches played at
the same time within this same region, the two POIs will interfere. In the best case, the
ridge containing more power will dominate over the one containing less power,
preventing it from being detected. In the worst case, both ridges will rapidly alternate
which is higher and create a “chattering” effect — that is, rapid breaks in the detected
ridge. As such, we have elected to pass these algorithms over in favour of peak-finding,
which can be more easily performed for the entire spectrogram at once and is more
likely to lead to POIs that look like continuous ridges.

One alternate strategy we are hoping to implement in future is dynamic threshold
adjustment. At the simplest level, this would involve changing the region of interest
threshold to be higher or lower for pixels farther along the frequency axis. This would
allow the user to compensate for any peculiarities of the recording or instrument that
may lead to certain registers being consistently higher or lower than others. At a more
advanced level, we could detect fundamentals and use that to reduce the threshold at

54

Design Specification by HappyJam

the expected locations of the fundamentals’ overtones, allowing for more consistent
overtone detection which could lead to more detailed and consistent timbre profile
construction down the line. As these downstream algorithms have not been
implemented yet, and the UI elements that would give the user this fine control over the
threshold haven’t been developed yet, we will hold off on further investigating this
algorithm until after the alpha release.

B.1.3 Onset Detection Alternatives
As we have used peakfinding along the frequency-axis to detect POIs, it makes sense
to ask what peaks along the time-axis can be used for. During prototyping, we used
these points to indicate likely note onset points. However, the nature of peakfinding
leads to choosing more sparsely-positioned points, and hence is worse at differentiating
between random noise and the actual onset. Compare Figure B.1.3.1 below using
peakfinding and Figure 3.2.3.2 in section 3.2.3, which show the same section of the
same spectrogram but with different point highlighting methods, to see this in action.
While both are rather noisy, the curvature-based onset detector has a greater density of
points near the actual onset of the notes than the peak-finding based one.

Figure B.1.3.1 — A thresholded spectrogram with peaks along the time-axis highlighted
in cyan.

B.1.4 Note Mapping Enhancements
Our current POI identification algorithms map straight from pixel position to note pitch.
However, as the mapping is from a linear-scale view to a logarithmic-scale view, bass

55

Design Specification by HappyJam

notes are actually very closely-spaced. This means that error can be rather high
especially for bass notes.

One possible course to reduce this error is to use time-frequency reassignment [2]. This
is an algorithm that uses phase information in a spectrogram to remap pixel coordinates
to the location of the greatest power contributor. Observe Figures B.1.4.1 and B.1.4.2,
which show unmodified and time-frequency reassigned spectrograms of a bass audio
sample, and note how the reassigned spectrogram gives very detailed information on
the note in both time and frequency domains.

Figure B.1.4.1 — A spectrogram of an acoustic bass playing a note around 73.4 Hz,
showing off the time-smearing with a normal spectrogram. Taken from A Unified Theory

of Time Frequency Reassignment [2]

56

Design Specification by HappyJam

Figure B.1.4.2 — Reassigned spectrogram of an acoustic bass playing a note around
73.4 Hz. Taken from A Unified Theory of Time Frequency Reassignment [2]

We have yet to implement and fully experiment with this algorithm, though it provides
the possibility of getting much more accurate time- and pitch-mapping for our POIs. We
have not committed to using this algorithm because we are unsure of a prerequisite to
using it, as outlined in the paper [2] — separability. If multiple power sources overlap
their contributions at the same time and frequency, then the reassignment is potentially
thrown off. For that reason, if we do include this algorithm in the final SMT algorithm, it
will likely come with the option for the user to turn it off or make adjustments to the
resulting reassigned POIs.

57

Design Specification by HappyJam

B.2 Technical Stack Selection

B.2.1 Implicit requirements
Below we summarized implicit requirements derived from desired user experience and
project timeline constraints. They expand upon explicit requirements items within the
requirements document and as such will not be presented in the usual indexed format.
We will refer to the requirements as IR-A for implicit requirements.

B.2.1.1-A Performance
Audio analysis can be a computationally intensive task from the most basic sampling
techniques to the more ambitious goals that might even require AI algorithms. Some
stacks are better suited than others for providing optimization potential to the
developers. Performance will have a direct impact on our user experience in the time
sensitive and competitive environment.

B.2.1.2-A Syntax complexity
Some languages are more expressive than others. In a time-sensitive development
environment, that can result in a huge difference in our ability to deliver on our promised
feature set. More lines of code take more time to write code physically but also can
bring higher risks by exposing more potential for introducing errors in the code [8].
It is often the case that higher level languages take away some of the control of
resource allocation. Ideally, we want to find a language with reduced syntax complexity
without compromising on the desired performance, mentioned above.

B.2.1.3-A Third-party and community support
(Libraries, Github resources, Stackoverflow, etc)
In the interest of saving as much time as possible we are motivated to conduct a
thorough exploration of the third-party resources available to the various language
options. Ideally we want to settle on the language with the most well established
existing libraries available for satisfying the various aspects of our application. Primarily,
this includes the availability of audio analysis libraries and UI components as well as
audio and display device interface support.

Community support goes beyond just having the appropriate libraries as it is often the
case that commonly encountered problems have associated materials published across
various online resources and documentation material. The more we can avoid
“reinventing the wheel”, the more we can increase our throughput in feature delivery
without compromising the implementation quality [9].

58

Design Specification by HappyJam

B.2.1.4-A Integrated development environment support and dev tooling
Some stacks provide a very extensive set of tools for code generation especially when
considering user interface layouts. Any such tool should give us a dramatic edge to
focus on the more important aspects of our already challenging project. Code
completion, syntax highlighting and common formatting can serve to further optimise
our efficiency as developers.

B.2.1.5-V1 Cross platform compatibility
It should come as no surprise that the success of the project would benefit from
targeting the widest possible user base by including support for as many platforms as
possible. Today this implies the need to support at least the following major platforms

● Windows
● macOS
● Linux

As we all know these major platforms share some similarities but can rely on some
specific layout and API differences that make them unique in their own right [10].
Developing platform-specific applications can give us access to some of the more
unique features available to each platform, however this does come at the cost of
increased development time required to adapt the implementation.

B.2.1.6-V1 Software distribution and packaging
We should aim to provide a self contained package for distribution to the end customer.
We cannot rely on the external third-party platform for executing our final solution,
especially those that require separate licensing such as Matlab.

B.2.2 UI frameworks overview

Table B.2.2.1 Base Design Specification Table for the UI framework

Design Item ID Description Requirement ID

B.2.2.1 - V1 Software should be easily adjusted for
running our application on different OS
such as Linux, Windows, macOS
without sacrificing team developer's
time

IR5-V1

B.2.2.2 - A Software needs to be able to make
system calls to the underlying OS to be
able to utilize hardware resources,

IR1-A

59

Design Specification by HappyJam

required for fast algorithmic processing
as well local data storage

B.2.2.3 - A
Application does not expose unsecure
sockets that can be exploited by
external network applications

R8.5-B

There are a lot of popular UI frameworks that can be used to achieve our project
objectives of providing cross-platform responsive user interface applications, described
in the Table B2.2.1 above. For the purposes of this project we will consider the following
3 options in particular:

● React
● Electron
● Qt

Table B.2.2.2 summary of design specification of the above frameworks.

Design Option Specification

React and Electron Both frameworks require browser engines. For
utilization of hardware infrastructure, the frameworks
require breaking applications into front-end and
back-end. Separated application components require a
network for data transmission as well additional
software code for providing data security and users
confidentiality.

QT framework The framework is designed for applications that run on a
local machine which means that there is no need to
separate back-end and front-end, no need to protect
users data as it is stored within a local machine, and
there is no extra browser overhead.

60

Design Specification by HappyJam

As described in Table B.2.2.2, a major disadvantage of running a browser application
with the React or Electron framework is the need to heavily separate the front-end and
back-end which means that we would have to develop two separate applications.
Otherwise, we would have to run our application within a web browser environment
which prohibits us from making system calls and leveraging resources for memory and
concurrency in case if we require to speed up our algorithmic computations. At this point
these options may be more attractive if we want to provide our solution as a web
application with the backend hosted separately on a dedicated machine however that
comes with additional challenges of maintaining authentication, user confidentiality and
security. Introducing network delay to our solution is also disadvantageous to our
performance objectives.

Therefore we will focus on the lattermost option which is to use the cross platform Qt
framework application with UI and backend integrated within a local device.

B.2.3 Stack Comparison Matrix

Table B.2.3.1 Design requirements that are fulfilled with the stack choice

Design Item ID Description Requirement ID

B.2.3.1.1 - A Code cannot be overly complicated and must de
easy to maintain

IR2-A

B.2.3.1.2 - A Avoid “reinventing the wheel” whenever possible IR3-A

B.2.3.1.3 - V1 Overall application should be easily packable and
self-contained for distribution to the end-user

IR6-V1

61

Design Specification by HappyJam

Table B.2.3.2 Stack Design Options

Design Option Specification

Use Python with QT
only (UI and backend)

● Higher level language - easier to work with and more expressive
● Easier dependency management with pip package manager
● Better 3rd party library support for sound analytics and backend
● Better libraries for math and image processing
● Inferior Qt documentation and support
● Inferior debugging capabilities of Qt objects
● Inferior integration with Qt creator
● Weaker control over memory management and memory-related

performance

Use C++ with QT only ● Superior Qt documentation and support
● Superior debugging capabilities of Qt objects
● Superior integration with Qt creator
● Better memory management
● Better optimization potential-Lower level language more error

prone and less expressive, which may increase development
time

● Inferior dependency management
● Lack of good libraries for sound analytics
● Less portable (Qt is able to solve this problem)

Use both (separate
processes, C++ for GUI
with QT and Python for
backend)

● Superior Qt documentation and support
● Superior debugging capabilities of Qt objects
● Superior integration with Qt creator
● Better 3rd party library support for sound analytics and backend

using python process
● Flexibility to use additional languages or 3rd party command-line

tools as well if needed
● IPC (inter-process communication) can be challenging to

synchronize the steps (wait for step to complete) in separate
processes (use shared medium for inter process communication
- could be just a file on disk)

● Packaging the entire solution can be more complicated

62

Design Specification by HappyJam

After we have outlined specifications of design options that we have considered in the above
Table B.2.3.2, we summarized the results in Figure B.2.3.3, identifying advantages and
disadvantages of each option.

Table B.2.3.3 Comparison Summary

Ease of
development

Dependency
management

3rd Party
support

Doc
support

Granular
Debugging

Ease of
Integration

Performance

Python ✅ ✅ ✅ ❌ ❌ ✅ ✅

C++ ❌ ❌ ❌ ✅ ✅ ✅ ✅++

Mixed ✅ ✅ ✅ ✅ ✅ ❌ ❌

In our struggles to find balance between advantages and disadvantages in regards to
constraints identified in this section, we have concluded that building our solution, using
the Python implementation of the QT framework, compares favorably overall to all the
alternatives that we have considered.

63

Design Specification by HappyJam

Appendix C - User Interface and Appearance
Note that citations within this appendix are limited to the scope of this appendix, with the
corresponding references in Section C.9.

C.1 Introduction
HappyJam’s User Interface (UI) and apparence design aims to provide simplistic,
intuitive, and familiar control for musicians in the Music Transcriber program.
HappyJam’s Music Transcriber automates the recognition of pitch, timing, duration,
timbre, volume, notes, cords and articulation while allowing the user to modify select
parameters to maximize the effectiveness of the algorithm for his or her melody. The
Music Transcriber seeks to turn music transcription into a quick and frustration-free
process and aims to follow the goals described in Table C.1.

Table C.1 The Music Transcriber UI Goals

Goals Description

1. Simplicity All settings and options will be up to 3 clicks away.

2. Discoverability The location and function of buttons, menus, and icons will be
easily understood.

3. Feedback The user will receive feedback for each program change. Any
error messages will feature detailed description with error
prevention measures available.

4. Efficiency All UI will be fluent and will respond to the user quickly with no
delay.

The user will interact with our Graphical User Interface (GUI), where our program will
guide the user in transcribing their melody. First, the user will upload their song to the
program. Our software will prioritize goals 1, 2, and 3 to ensure that the uploading
process is intuitive and easy to understand. Once the uploading process is complete,
our program will display the detected pitch, timing, duration, timbre, volume, notes,
cords and articulation, as well as the parameters used by the algorithm. During this step
our program will prioritize goal 4 to quickly and efficiently provide the user the results.
Lastly, the user will change the different parameters to match the algorithm better for his
or her unique melody and will export the results once complete. During this last step our
program will prioritize goal 3 to provide the user with detailed insights on the
transcription to allow them to make the best decision.

64

Design Specification by HappyJam

C.1.1 Purpose

The purpose of this document is to provide the proper documentation and breakdown of
the Music Transcriber’s User interface. This document also lists the design choices
made during the brainstorming process and will detail the tests and results for the user
interface.

C.1.2 Scope

This document covers the prototype user interface for HappyJam’s Music Transcriber.
Aside from detailing the user interface and design decisions, this document aims to
follow the goals listed in Table C.1 to provide a friendly and intuitive experience for the
user. Lastly, this document covers the Engineering Standards that were applied during
the prototyping of the user interface.

C.2 Audience and User Analysis
The ideal user for the Music Transcriber is a musician or an individual with musical
background (formal or informal). The user is recommended to possess the ability to
read and understand music sheets with the specific capacity to recognize:

● Pitch
● Timing
● Duration
● Timbre
● Volume (also known as dynamics or velocity)
● Articulation

The user must possess a Windows 10 PC with an accessible mouse and keyboard. The
user must also have the ability to acquire the melody by their own means, either via a
recording or download.

C.3 User Interface Analysis
The analysis performed on the Graphic User Interface prototype will be subject to Don
Norman's Design Principles. These principles will also be used throughout this text to
test and prove the effectiveness and reliability of the user interface. Don Norman's
Design Principles are:

● Visibility
● Feedback
● Constraints
● Mapping
● Consistency

65

Design Specification by HappyJam

● Affordance

C.3.1 Visibility

Visibility allows the user to better discover where all the settings and parameters are
located. Following goal 2 and 3 from Table C.1, the user will be able to easily locate all
the functions and understand the current state of the program. This will be achieved via
the following criteria:

1) The user will be guided via a wizard-style interface from stage to stage.
2) The Music Transcriber will contain standardized icons and layout common to

other major programs for Music analysis.
3) All functions will be labeled and categorized in accordance to their subject.
4) The buttons, menus, and other intractable elements will be colored distinctly for

better visibility.

C.3.2 Feedback

Good feedback occurs when the software communicates states, errors, and results in a
clear and detailed manner. To provide proper feedback and achieve goal 3 from Table
C.1, the program will follow the criteria below:

1) The UI will display the real-time transcribed music and all the recognized
elements in the melody via a labeled spectrogram

2) The UI will display the real-time parameters used by the algorithm
3) Each parameter will have a corresponding slider which will update its state in

accordance to the parameter value
4) Each of the three stages (upload, parameter tuning, music sheet) in the wizard is

clearly labeled and is contained in its own distinct tab / window.
5) The resulting music sheet will be updated in real-time as the user modifies the

parameters.
6) The impact after modifying a parameter will be subsequently reflected on the

spectrogram and its labels

C.3.3 Constraints

A well designed user interface restricts the type of user interaction to prevent an invalid
action and clarify what actions can be achieved to guide the user to the next step. Our
program will fulfill this requirement and goal 1 and 3 from Table C.1 via the criteria
below:

1) Using the wizard-style design, the user will be guided between the three stages
(upload, parameter tuning, music sheet).

2) The range for each parameter will be restricted in accordance to our research

66

Design Specification by HappyJam

C.3.4 Mapping

Mapping is referring to the layout of the buttons and the relationship between the
controls and their effect. Our user interface will contain proper mapping by satisfying the
following criteria:

1) Each parameter will be paired with a slider that will move in real-time and display
the value of the parameter.

2) The layout of the software will follow the design of the most popular windows
programs.

3) All parameters will be grouped according to their functionality and relation to
signal processing or music.

4) The impact after modifying a parameter will be subsequently reflected on the
spectrogram and its labels

C.3.5 Consistency

A consistent user interface is one where the same actions will cause the same impact
every time they are triggered. Visually, the user interface must also provide grouped
controls their own distinct style to reflect to the user that they are grouped. The Music
Transcriber aims to meet this requirement and goal 4 from Table C.1 by following the
below criteria:

1) All controls will be grouped and properly divided into distinct categories
2) Each type of element (sliders, buttons, textboxes, etc) will follow the same color

pattern and visual identity so the user will understand what each control is.
3) The program will utilize a set color profile that will be used throughout the

different elements of the software.
4) The layout of the software will follow the design of the most popular windows

programs.

C.3.6 Affordance

A user interface with good affordance is one where the controls like how they are
supposed to be used. The Music Transcriber aims to meet this requirement and goals 1
and 2 from Table C.1 by following the below criteria:

1) Each parameter will be paired with a slider that will move in real-time and display
the value of the parameter.

2) All parameters will be grouped according to their functionality and relation to
signal processing or music.

3) Binary decisions will be mapped to buttons.
4) Tabs will be used to make each of the 3 steps in the wizard distinct and separate.

67

Design Specification by HappyJam

C.4 Engineering Standards

Table C.4.1 Engineering Standards

Engineering Standards Description

ISO/IEC 14496-23:2008 Information technology — Coding of
audio-visual objects — Part 23: Symbolic
Music Representation [2]

ISO/IEC 23000-12:2010 Information technology — Multimedia
application format (MPEG-A) — Part 12:
Interactive music application format [3]

ISO 10957:2009 Information and documentation —
International standard music number
(ISMN) [4]

IEC 60417 Graphical Symbols for Use on Equipment
[5]

ISO/IEC 24752-8:2018 Information technology — User interfaces
— Universal remote console — Part 8:
User interface resource framework [6]

ISO/IEC TR 29119-11:2020 Software and systems engineering —
Software testing — Part 11: Guidelines on
the testing of AI-based systems [7]

ISO/IEC TR 24029-1:2021 Artificial Intelligence (AI) — Assessment
of the robustness of neural networks —
Part 1: Overview [8]

ISO 9241-210:2019 Ergonomics of human-system interaction
— Part 210: Human-centred design for
interactive systems [9]

ISO/IEC 11581-5:2004 Information technology — User system
interfaces and symbols — Icon symbols
and functions — Part 5: Tool icons [10]

ISO/IEC 29138-1:2018 Information technology — User interface
accessibility — Part 1: User accessibility
needs [11]

ISO/IEC 23007-2:2012 Information technology — Rich media
user interfaces — Part 2: Advanced user
interaction (AUI) interfaces [12]

68

Design Specification by HappyJam

C.5 Audience Research
The following survey was conducted to test the different scenarios that a musician might
want to conduct in the program:

C.5.1 User Profile 1

Name: Michael
Occupation: Music student at University of British Columbia
Instruments played: Piano and guitar
Genre: Mostly classic, pop or sometimes country
Level: Intermediate

How often do you find yourself needing to transcribe a melody or a song?
I often like to play freely and try new chords and music types. When I find an interesting
toon I often record it and later attempt to transcribe it. Transcription alone takes many
hours, so having the ability to automate the process will greatly help me produce more
songs.

Have you tried any automated solutions such as AnthemScore or Melody
Scanner?
Yes, while both AnthemScore and Melody Scanner are advertised as music
transcribers, they often have trouble picking up on the correct notes between
instruments. You are only able to modify the results given by AnthemScore or Melody
Scanner and not the way it detects the chords, so there are a lot of corrections that
must be made. If I had the ability to modify some parameters to detect different sections
better, that would be greatly welcomed.

The following questions were given to Michael to gain a better understanding of the type
of User Interface that will most appeal to the user:

Table C.5.1 Michael’s Q&A

Questions Answers

How would you prefer to go about
uploading a song to the program?

Ideally, I would simply start the program
and be presented with either a main
screen where there is only an uploading
button, or a blank project screen where I
will have to start a new project via the file
menu.

69

Design Specification by HappyJam

Would you prefer to have the ability to
pre-set the types of instruments used in
the song you are uploading?

Yes, although I would also like to upload
songs that I have not played myself and
have the program automatically detect the
instruments on my behalf.

Would you be interested in the ability to
manually tune parameters in the program
to better transcribe the music?

Yes,that would be a major benefit to be
since it will a lot of time in trying to correct
wrong transcriptions

How many instruments do you most likely
have in all your songs?

I like to transcribe my own music, which
consists of either just piano or guitar, or
sometimes a piano and guitar. I do
occasional collaborations which may
sometimes include a saxophone.

Do you have good recording equipment? Yes, since this is a big hobby of mine that
I hope to pursue professionally in the
future, I have a studio microphone along
with an amp.

C.5.2 User Profile 2

Name: Jane
Occupation: Arts student at Simon Fraser University
Instruments played: Violin and guitar
Genre: Classical and pop
Level: Intermediate

How often do you find yourself needing to transcribe a melody or a song?
I really like to experiment and learn new songs on both my guitar and violin. Whenever I
am not learning a song I spend time just trying to make my own melody. If I find myself
stroken by inspiration, I sit down and try to make my own song, which involves many
hours of experimentation and going back and forth from the paper to the instrument.
Thus, I would probably say a few times a month.

Have you tried any automated solutions such as AnthemScore or Melody
Scanner?
I have heard of them, but they look very complicated and overwhelming to use so I often
stick to simple pen and pencil. I know they may make the transcribing process quicker,
but I am not very technology literate so I am often uncomfortable with large user
interfaces with a lot of buttons that are presented without an explanation.

70

Design Specification by HappyJam

The following questions were given to Jane to gain a better understanding of the type of
User Interface that will most appeal to the user:

Table C.5.2 Jane’s Q&A

Questions Answers

How would you prefer to go about
uploading a song to the program?

I would like the process to be as simple
as possible. If there was a window that
simply presented an upload button, that
would be perfect.

Would you prefer to have the ability to
pre-set the types of instruments used in
the song you are uploading?

I understand that it may be difficult to
detect the instruments, so I would say yes
just in case the program may have a hard
time doing it itself.

Would you be interested in the ability to
manually tune parameters in the program
to better transcribe the music?

Yes, but if I am presented with such
options they must be placed in a
simplistic and not overwhelming manner.
Options must be grouped or explained as
clearly as possible and labeled
accordingly.

How many instruments do you most likely
have in all your songs?

Usually only one instrument, either my
violin or guitar.

Do you have good recording equipment? Yes, I have the Blue Yeti microphone
which is one of the best USB
microphones on the market.

C.5.3 User Profile 3

Name: Alex
Occupation: Piano tutor
Instruments played: Piano, Saxophone, violine, guitar
Genre: Classical
Level: Professional

How often do you find yourself needing to transcribe a melody or a song?
As an intermediate musician, I transcribe music quite often. I often attempt to create my
own score for the purpose of practice and self-promotion. My process often involved
playing a section of my score and going back and forth between the paper and
instrument to get the most accurate translation to paper. This often takes me weeks to a
month, depending on how much I like my results at the time.

71

Design Specification by HappyJam

Have you tried any automated solutions such as AnthemScore or Melody
Scanner?
No, I very much believe that paper and pen is the best solution for transcription. It may
be tedious, but this way I am able to add all the details required. However, I am open to
the possibility of trying one such automation program as my scores become increasingly
long.

The following questions were given to Alex to gain a better understanding of the type of
User Interface that will most appeal to the user:

Table C.5.3 Alex’s Q&A

Questions Answers

How would you prefer to go about
uploading a song to the program?

I would like to have the ability to upload
both compressed and uncompressed
recordings.

Would you prefer to have the ability to
pre-set the types of instruments used in
the song you are uploading?

Yes, in the future my melodies may
include a large number of instruments so I
want the ability to add each one manually
to ensure that the transcription works
properly.

Would you be interested in the ability to
manually tune parameters in the program
to better transcribe the music?

Yes. There are many scenarios where I
want the sound to come out exactly as I
want, so I don’t want to battle an
automated program and instead give it
the exact parameters I want.

How many instruments do you most likely
have in all your songs?

As of right now, I may have anywhere
from a single instrument to a handful.

Do you have good recording equipment? Yes, I invested a great deal of money on
good-sounding and high quality
equipment.

C.6 Testing
The following criteria was created to test the user interface and ensure that all
requirements were met:

72

Design Specification by HappyJam

Table C.6.1 UI Testing Plan

Requirement Description

R3.1-A The SMT must be able to analyze an audio sample to record a list of
notes and their properties

Criterion: The program can output text representing the note

R3.1.1-A The time of a detected note must be recorded

Criterion: The output note list includes the offset into the audio sample, in either
seconds or samples, at which every note begins

R3.1.2-A The pitch of a detected note must be recorded

Criterion: The output note list includes the pitch name, including the octave
number, of every note in the list

R4.1-A The software must be able to open a window on a desktop PC
running Windows

Criterion: Running the executable opens a window.

R4.1.1-A The user must be able to stop the software and close the window by
pressing the window’s X button.

Criterion: After opening the window, press the X button and ensure the window
closes. Check Task Manager to ensure the process is no longer
running.

R4.2-A The software must have a submenu to select an audio file to import

Criterion: Clicking the audio import option in the submenu opens a file explorer
window.

R4.2.1-A The import feature must take uncompressed audio files in .wav
format

Criterion: Opening the audio import file explorer and selecting a .wav file
correctly opens and displays the audio data.

R4.4.5-A The user must be able to zoom in and out of the audio view formats

Criterion: After importing an audio sample, turning the scroll wheel stretches or
squashes the audio waveform display.

R4.10-A The UI must display in dark mode

Criterion: On opening the UI window, the user’s eyes are soothed with

73

Design Specification by HappyJam

dark-grey colours.

C.7 Graphical Representation
The purpose of the Music Transcriber’s user interface is to present the user with a
simple, intuitive, and transparent program to take in any melody containing three or less
instruments, and transcribe it to the musical sheet. The program will guide the user to
choose the best settings for transcription and will allow the user to modify parameters
accordingly.

The following are some of the screenshots from the prototype currently being
developed:

Figure C.7.1 Spectrogram view functionality

74

Design Specification by HappyJam

Figure C.7.2 Piano view

Figure C.7.3 Musical Sheet view

75

Design Specification by HappyJam

C.8 Conclusion
The user interface of HappyJam’s Music Transcriber aims to deliver the user a simple,
intuitive, and transparent program to take in any melody containing three or less
instruments and transcribe it to the musical sheet. HappyJam’s Music Transcriber
automates the recognition of pitch, timing, duration, timbre, volume, notes, cords and
articulation while allowing the user to modify select parameters to maximize the
effectiveness of the algorithm for his or her melody.

The user will interact with our Graphical User Interface (GUI), where our program will
guide the user in transcribing their melody. First, the user will upload their song to the
program. Our software will prioritize goals 1, 2, and 3 to ensure that the uploading
process is intuitive and easy to understand. Once the uploading process is complete,
our program will display the detected pitch, timing, duration, timbre, volume, notes,
cords and articulation, as well as the parameters used by the algorithm. During this step
our program will prioritize goal 4 to quickly and efficiently provide the user the results.
Lastly, the user will change the different parameters to match the algorithm better for his
or her unique melody and will export the results once complete. During this last step our
program will prioritize goal 3 to provide the user with detailed insights on the
transcription to allow them to make the best decision.

Currently, further research is required in developing a friendly user interface that will be
intuitive and functional for intermediate and professional level musicians. For our first
prototype, we aim to map all backend functionality to the interface and work together to
simplify and categorize different options.

76

Design Specification by HappyJam

C.9 References
[1] S. Rekhi, “Don Norman's Principles of Interaction Design,” Medium, 25-Feb-2018.
[Online]. Available:
https://medium.com/@sachinrekhi/don-normans-principles-of-interaction-design-51025a
2c0f33.

[2] “Information technology — Coding of audio-visual objects — Part 23: Symbolic
Music Representation,” ISO. [Online]. Available:
https://www.iso.org/obp/ui/#iso:std:iso-iec:14496:-23:ed-1:v1:en.

[3] “Information technology — Multimedia application format (MPEG-A) — Part 12:
Interactive music application format,” ISO. [Online]. Available:
https://www.iso.org/obp/ui/#iso:std:iso-iec:23000:-12:ed-1:v1:en.

[4] “Information and documentation — International standard music number (ISMN),”
ISO. [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso:10957:ed-2:v1:en.

[5] “Music,” ISO. [Online]. Available: https://www.iso.org/obp/ui/#iec:grs:60417:5085.

[6] “Information technology — User interfaces — Universal remote console — Part 8:
User interface resource framework,” ISO. [Online]. Available:
https://www.iso.org/obp/ui/#iso:std:iso-iec:24752:-8:ed-1:v1:en.

[7] “Software and systems engineering — Software testing — Part 11: Guidelines on the
testing of AI-based systems,” ISO. [Online]. Available:
https://www.iso.org/obp/ui/#iso:std:iso-iec:tr:29119:-11:ed-1:v1:en.

[8] “Artificial Intelligence (AI) — Assessment of the robustness of neural networks —
Part 1: Overview,” ISO. [Online]. Available:
https://www.iso.org/obp/ui/#iso:std:iso-iec:tr:24029:-1:ed-1:v1:en.

[9] “Ergonomics of human-system interaction — Part 210: Human-centred design for
interactive systems,” ISO. [Online]. Available:
https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-2:v1:en.

[10] “Information technology — User system interfaces and symbols — Icon symbols
and functions — Part 5: Tool icons,” ISO. [Online]. Available:
https://www.iso.org/obp/ui/#iso:std:iso-iec:11581:-5:ed-1:v1:en.

77

Design Specification by HappyJam

[11] “Information technology — User interface accessibility — Part 1: User accessibility
needs,” ISO. [Online]. Available:
https://www.iso.org/obp/ui/#iso:std:iso-iec:29138:-1:ed-1:v1:en.

[12] “Information technology — Rich media user interfaces — Part 2: Advanced user
interaction (AUI) interfaces,” ISO. [Online]. Available:
https://www.iso.org/obp/ui/#iso:std:iso-iec:23007:-2:ed-1:v1:en.

78

