

Solar and Rain Power generation System

ENSC 305/440 Final Presentation Simon Fraser University April 23rd, 2012 GPI member: Frank Feng Jeff Bian Max Liu Zhiyu Hu Daniel Dong

Outline

EN BOM

- GPI Team Members
- Background Information
- Motivation

GPI Team Members

Green Power Innovation (GPI)

- Frank Feng CEO
- Zhiyu Hu CTO \geq
- Max Liu CMO
- Daniel Dong CFO
- Jeff Bian COO \succ

7/ Conclusion

Questions

Background Information

Tonnes of CO2 produced per unit of electricity per TWh (terawatt hour = million megawatt hours)

non-renewable resources

Pollution \triangleright

- > Sulfur dioxide \rightarrow acid rain
- Nitrous oxides \rightarrow urban smog \geq
- Carbon \rightarrow global climate change \succ

6 Future Work 7/ Conclusion 8

Motivation

8

Questions

SolarWindRainALL COMBINING TOGETHER?

System Overview 3 System Specifications 4 Business & Marketing 5 Timeline & Budget 6 Future Work 7 Conclusion

Introduction

2 System Overview 3 System Specifications 2 Business & Marketing 5 Timeline & Budget

6 Future Work 7/ Conclusion

200 EN BOM

System Overview

System Block Diagram

6 Future Work

7/ Conclusion Questions

System Overview

High level Functional Demonstration

Introduction

2 System Overview 3 System Specifications 4 Business & Marketing 5 Timeline & Budget

G Future Work Conclusion

System Overview

System Test Result

Rain Collection Testing

Day	Actual Water Collected (m ³)	Roof top area	Daily Rain (mm)	Expected Total Collected Water (m ³)	Theoretical Max Power Output Value (J)
9	0.25	100 m^2	15	1.5	25000
14	0.19	100 m^2	9	0.9	19000
16	0.12	100 m^2	8	0.8	15000
28	0.16	100 m^2	7	0.7	16000

Introduction

6 Future Work 7/ Conclusion Questions

System Overview

System Test Result **Power Output Testing**

Time	Height	RPM	Power	Electricity Production	Theoretical water potential	Efficiency
5min	5m	60	1.25 W	375 J	2500 J	0. 15
10min	5m	50	0.99 W	600 J	2500 J	0.24
15min	5m	10	N/A	N/A	2500 J	0
5min	10m	150	3.5w	1050 J	5000 J	0. 21
10min	10m	100	3w	1800 J	5000 J	0.36
15min	10m	70	1.5w	1350 J	5000 J	0. 27

6 Future Work

Rain Power Generation System Solar Power Generation System Electrical System User Interface

Minihydro Turbine Subsystem

- Turbine Selection
 - Impulse turbines

The change in momentum (impulse)

Reaction turbines

Changes pressure as it moves through the turbine

Introduction

2 System Overview 3 Sys

System Specifications 2 Business & Marketing 2 5 Timeline & Budget

 \bigcirc Future Work $> \boxed{7}$ Conclusion

8

Minihydro Turbine Subsystem

Turbine Runner Prototype Expected

Our Design

Actual Model

71

Conclusion

Introduction

2 System Overview System Specifications Business & Marketing 5 Timeline & Budget

Future Work

Plumping System

Water Tank

Based on toilet flash tank Releasing water automatically

Plumping Pipe

Valve control flow rate PEX material

6 Future Work 7/ Conclusion 8

Solar Power Generation System

10W 22V Solar Panel

Weather proof 25 years plus durability

6 Future Work 7/ Conclusion 60

Electrical System

LM317 Adjustable Voltage Regulator

Three bypass capacitors

Two protection diodes

		<u>P</u> 2	
		U2	
		• · · · · ·	
		• • • • • • IM 317 txt • • • • •	
		Vout	
. Vin			V.out .
		· · · · · · · · · · · · · · · · · · ·	
		⁵²⁴ . . <u> </u>	
		· · · · · · · · · · · · · · · · · · ·	
		ADJ D1	
	· · · · · · ·		
	C1 .	100nF · · · · · · · · · · · · · · · · · · ·	1uF
	· · · =		
		R2(Aiustable)	C2 · · · ·

6 Future Work 7/ Conclusion Questions

User Interface

Source Selection

Mode Indication

Voltage Adjustment

Voltage Display

Load Selection

6 Future Work 7/ Conclusion

- Social Impact
- What we Need
- Our Solution
- Market Size
- Competitors

Social Impact

World Carbon Dioxide Emissions by Region, Reference Case, 1990-2030

Introduction

System Overview 2 System Specifications 4 Business & Marketing

5 Timeline & Budget

Conclusion

Market Size

- Global power generation industry:\$1,141.8 billion. *
- Renewable Energy:18.7% of the industry total. *

Global power generation industry ca	tegory segmentation :TWh, by v	/olume, 2011(e)
Category	2011	%
Fossil Fuels (Conventional Thermal)		67.7%
Renewable Energy		18.7%
Nuclear Electric Power		13.5%
Total		99.9%
SOURCE: MARKETLINE		MARKETLINE

6 Future Work

CREEN POWER

Business & Marketing

Global Trend

ating / 5 Timeline & Budget 🖌 🗍

6 Future Work > 7 Conclusion

8

Competitors

Traditional Generators

3

Solar Power Generators

Raindrop Generators

Raindrop Generator

High cost

PVDF Price Calculator

Not portable

7/

Conclusion

Timeline & Budget

Timeline

	January	February	March	April
Reseach 01	/05	02/13	03/08	
Project Proposal	01/11 01/16 01/11 01/16			
Functional Specification	01/30	02/06		
Oral Progress	0:	2/06 02/15 2/06 02/15		
Design Specification		02/20	03/05	
Written Progress			03/10 03/19 03/10 03/19	
Order Parts	02/0	02/2 2/06 02/2	3	
Design——Water Tank	01/30	02/06		
Design——Turbine	01/30	02/06		
Design——Electrical	01/30 02/01	02/06		
Design——User Interface	01/30 02/01	02/06	02/29	
Prototype condition——Water Tank	c	02/18	03/05	
Prototype condition——Turbine	o	2/06 02/18	03/05	
Prototype condition——Electrical	c	2/06	03/05	
Prototype condition——User Interface	c	2/0603/	03/05 03/15 03/28	04/07
Testing——Rain Collecting		0:	03/19	03/31
Testing——Power Output		60	03/19	04/07
Integration and Overall Testing		02/15		03/31 04/07 04/20
Documentation	01/11		03/10	04/08
Post Mortem			04/01	04/10

5 Timeline & Budget

Introduction

6 Future Work 7 Conclusion

Timeline & Budget

Budget Initial Estimation

Equipment List (Include brand and model # if possible)	Quantity	Estimated Unit Cost
5W5 Watt 12V Flexible Solar Panel Charger(ICO-SPC-5W)	4X \$28.49	\$113.96
High Performance 2-Piezo Layer Bending Elements(T215-A4CL- 103X)	5X \$44	\$220
Turbo Fans & Gears	-	\$30
High Power Low Speed DC Generator Motor	1	\$245
Rain Collector and other parts	-	\$50
Duracell AA Rechargeable NIMH Battery	4X 2.5	\$9.99
Cables and other electronic parts	-	\$40
Water Filter System	-	\$100
Total Cost		\$808.95

Introduction

2 System Overview 3 System Specifications 4 Business & Marketing 5 Timeline & Budget

6 Future Work 7 Conclusion

Timeline & Budget

Budget Final Cost

Equipment List	Quantity	Price
10 Watt Solar Panel 12V Battery Charger	1	\$53.98
High Power Low Speed DC Generator Motor	1	\$245
Turbine Fans & Gears Spoons Metal Disc 	• 12 • 2	\$20 • \$20 • Borrowed
Electronics Parts Enclosure Toggle switches LEDs LM317T Diode-signal 10/PKG 	 1 2 1 2 1 1 	\$29.22 • \$17.24 • \$5.89 • \$1.49 • \$3 • \$1.60
Rain Collector 79L TOTE Valve Tank Lever FLX CP15X125 Float Ball FLX CP 2X1.5 Reduc Adapt 1 1/4 CPLING	 1 1 1 1 1 1 1 1 1 	\$59.34 • \$11.99 • \$9.99 • \$5.79 • \$7.99 • \$5.79 • \$7.99 • \$2.36 • \$1.08
Turbine Fan Shelter and parts Plastic Sheets Corner Brace Hinge Catch	• 4 • 2 • 1 • 1	\$86.95 • \$68.05 • \$6.58 • \$1.29 • \$1.29
Miscellanies Cables and tubing Shelf 		\$60.85 • \$29.49 • \$31.36
Total Cost		\$555.34

Introduction

CAREEN POWER

Future Work

- Plumbing System
 - Water level sensor
 - Upgrade the water tank size
- Turbo Fan
 - Increase the number of blades
- Water Filter
 - Point-of-user filters
- User Interface
 - Fully Automatic
- Combines with Wind Power

5 Timeline & Budget

Conclusion

Achieve the majority of functions

- Project finished on time
- Future works needed

Conclusion

Acknowledgement

- Dr. Andrew Rawicz
- Steve Whitmore
- Lukas-Karim Merhi
- Ali Ostadfar
- Shaghayegh Hosseinpour
- Fred Heep
- Gary Houghton
- Dr. Marcin Marzencki
- Dr. Behraad Bahreyni

5 Timeline & Budget

Questions

THANK YOU A BILLION TIMES

arketing 5 Timeline & Budget

Conclusion